
Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

501

MULTI-LEVEL ATTRIBUTE-BASED MATCHING
APPROACH TOWARDS ENERGY-EFFICIENT RESOURCE

PROVISIONING IN CLOUD DATA CENTERS

1FRANK ELIJORDE, 2SUNGHO KIM, 3*JAEWAN LEE
1 College of Information and Communications Technology, West Visayas State University, Philippines

2 Department of Control and Robotics Engineering, Kunsan National University, South Korea
3 Department of Information and Communication Engineering, Kunsan National University, South Korea

E-mail: 1frank, 2shkim, 3jwlee @kunsan.ac.kr
*Corresponding author: JAEWAN LEE

ABSTRACT

In this paper, we present a resource provisioning technique which classifies data center entities through
their attributes as characterized by their resource requirements. The classification process enables the multi-
level matching approach which assigns client requests to the most appropriate VM, while the VM is
assigned to a Host of similar characteristics. By considering the multi-dimensionality of compute resources,
data center entities which include applications, VMs, and Hosts, are consolidated and assigned according to
the most proportionate available resource. Evaluation results confirm the benefits of applying such
techniques on the performance and energy consumption of a cloud data center.

Keywords: Resource Provisioning, Cloud Data Centers, VM Consolidation, Cloud Computing, Green
Computing

1. INTRODUCTION

 The cloud computing model offers a very
flexible option for businesses to scale up or scale
down their IT systems by allowing them to acquire
compute resource on-the-fly. However, the cost of
maintaining a data center composes a significant
portion of the cost of providing timely
service [1].Workloads in a cloud data center can
fluctuate considerably due to the dynamic behavior
of user applications running on its virtual platform.
This makes statically-configured virtual resources
suffer much the same dilemma as dedicated
physical resources: they are often either
underutilized or overloaded. For these reasons, data
centers are now equipped with monitoring
capabilities and probes such as smart power
distribution units to achieve energy efficiency and
reduce overall cost. Considering a recent study that
forecasts electricity consumption to rise 76% from
2007 to 2030 [2] citing data centers as the major
contributor, an obvious indication of this increase
emphasizes the importance of reducing energy
consumption in the Clouds. In support of this,
studies and experiments [3, 4] have found that an
active server with very low CPU utilization
consumes between 50 and 70 percent of the power
that it consumes when fully utilized.

The aforementioned scenario raised the
concern regarding the importance of VM (virtual
machine) assignment and VM placement in
reducing energy consumption in data centers.
Existing works such as [5] and [6] show the impact
of the virtual machine placement problem, and how
cloud operators can benefit from the use of efficient
placement policy in terms of energy savings.
Obviously, the most straightforward way to lower
energy consumption in a data center is to reduce the
number of running PMs (physical machines). As
different VMs require different kinds and amounts
of resources (e.g., CPU, RAM, bandwidth, storage),
strategies for placing VMs on PMs need to consider
the fact that a PM cannot host any more VM if one
of its resources is exhausted, even when all other
resources are sufficient. Those unutilized resources
in a fully loaded host, still consume significant
amount of energy and is detrimental to the
profitability of a cloud infrastructure. Thus, in order
to improve the resource utilization in a way that
minimizes the number of running PMs, part of our
goal is the reduction of resource excess among
hosts.

Another important characteristic of an
optimized data center is its ability to alleviate
hotspots in order to ease up overloaded nodes that
often lead to performance degradation. Hotspot

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

502

alleviation is often considered to be a more
practical approach in contrast to pure load
balancing which requires maintaining an equal
distribution of load at all times as the latter may
require expensive migrations even when the system
is not under stress. However, deciding which VMs
that are running on the overloaded hosts are to be
migrated and to where remain a challenge. In an
instance where a virtual machine needs to be
deployed to a server, requirements regarding CPU,
RAM, network, and storage of the host machine
should be carefully considered. Therefore, the
multidimensional needs have to be carefully
matched with the multidimensional loads and
capacities on the servers. This policy should also be
observed on the upper level of resource
consolidation which aims to establish proper
matching between applications and the VM to
which they will be assigned for execution. From a
wider view, our goal is to efficiently consolidate
virtual resources among data center entities
(applications, VMs, PMs) and to alleviate hot spots
through VM migration. This leads us to a twofold
objective of imposing energy efficiency in a cloud
data center and at the same time upholding the SLA
(service level agreement) contracted with the
clients.

In energy-aware data centers, the efficient
consolidation of virtualized resources to client
applications is influenced by strategies behind the
VM Assignment and VM Placement. The
aforementioned procedures are geared toward
increasing the utilization of servers and dynamic
consolidation of workload, while at the same time
aiming to save energy and upholding the SLA.
Previous approaches for management and
consolidation of VMs in cloud data centers were
mostly focused on a single requirement which is the
CPU. That is, the allocation of resources for client
requests were heavily based on the CPU requested;
whereas the cloud controller’s approach for Data
Center optimization is also based on the workload
reflected by CPU utilization. Although CPU
utilization has been regarded in numerous studies as
a metric for evaluating the throughput and SLA
adherence of a cloud data center, considering other
resources such as RAM, Network, and I/O would
lead to better profiling of the cloud users’
requirements which leads to a more accurate
matching of Services to VMs and VMs to Hosts. As
compared with a single-dimension approach
towards provisioning of compute resource, we put
forward a better strategy which considers the multi-
dimensional nature of both the virtual machine and
host requirements for compute resources.

The rest of the paper is organized as
follows. In Section 2, we present the related work
of our proposed approach directed towards energy-
efficient cloud data center through proper VM
placement, VM management, and monitoring. In
Section 3, the architecture of the proposed system
and the underlying components and algorithms are
discussed. In Section 4, the implementation of the
simulation setup is discussed; furthermore, the
metrics for evaluation and the corresponding results
are discussed in detail. Finally, in Section 5, we
wrap up the importance of the problem addressed
by our proposed approach and then conclude the
paper.

2. RELATED WORK

In a cloud data center, the placement of
virtual machines on a cluster of physical machines
is a crucial task brought by the emerging
virtualization technology; as such, different factors
have to be considered in the process of VM
placement. As matter of fact, much work has been
done regarding VM placement in the cloud
computing environment, which involves various
constraints such as performance, availability,
network, and cost. For instance, the work in
[7] presents a high level overview of VM
placement, and proposes a VM placement system
architecture design, which adopts autonomic VM
placement, to achieve cost savings from the better
utilization of computing resources. A traffic-aware
policy of optimizing the placement of VMs is
proposed in [8]. Traffic patterns among VMs were
aligned with the communication distance between
them and VMs with mutual bandwidth usage are
assigned to PMs in close proximity. As for the
work in [9], they take network conditions into
account to minimize the data transfer time
consumption and maintain application performance.
To achieve better performance, live migration is
adopted in their work. An application profiling
technique was employed in [10] to improve
resource utilization in the process of VM
placement.

The task of VM placement is widely
investigated under various constraints and different
objectives. In [11], they propose a three-tier
algorithm to take both energy efficiency and QoS
into consideration. First, the algorithm partitions
VMs to reduce traffic transmission across the entire
datacenter. Then, it decides the minimum number
of server without SLA violation. Finally, the
controller assigns the paths to avoid congestion and
balance the network load. In [12], resource

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

503

allocation to VMs is done by considering the
relationship between two heterogeneous workload
types such as transactional and long running tasks,
by looking at their respective resource needs to
meet SLA goals. The work in [13] employed
average resource utilization over a configurable
time window to carry out different VM placement
policies toward power saving and load balancing
among hosts; however, as the authors pointed out,
the amount of required VM migrations might
quickly become too high in case of high churn
which affects system performance. A Power
Manager energy monitoring service is presented in
[14] as part of their GreenCloud data center
solution. It collects the energy usage information
from Intelligent Power Distribution Units (iPDUs),
which are devices installed on physical machines of
the data center to perform real-time energy
monitoring. The authors analyzed and extracted the
temporal patterns of energy usage of different
devices from the database which allowed them to
devise energy distribution models for various
machines. In [15], they proposed a hierarchical
architecture for VM management in a large-scale
data center. They deployed agents that work
cooperatively to manage VMs in order to reduce
the energy consumption and SLA violations. Due to
the heterogeneity of various jobs, different VMs on
the same PM can have different job completion
times. Therefore, different VM placements have
different job completion times.

3. CLOUD DATACENTER MONITORING

AND OPTIMIZATION
3.1 System Architecture

The subscription and provisioning of
various services in the cloud architecture discussed
in this paper mainly involves the Cloud Users, the
Data Center Broker, and the Cloud Service
Provider. The cloud users are subscribed to the
service providers of their choice and avail of the
services being offered by form of requests which
requires the consolidation of virtualized resources.
The data center broker mediates and facilitates the
aggregation, integration and customization of
services and the corresponding compute resources
to client requests. In this work’s context, we refer to
a cloud service as a service utilized by IT
consumers for a certain application, which in our
proposed cloud system, is within the SaaS and PaaS
layers of the cloud paradigm. Also, a cloud service
can be composed of several services. On the other
hand, the cloud service provider as the supplier of
services hosted in a cloud data center needs to

manage a huge number of physical servers and
keep the optimization of their performance and
utilization.

With regards to resource consolidation,
Fig. 1 shows the client applications requesting for
compute resources. Requests are being gathered
and processed by the Data Center Broker for their
respective VM and Host assignments prior to their
submission to the Cloud Manager. However, prior
to the assignment procedure, the broker needs to
classify the entities (Application, VM, Host) that
are involved. The classification is important for
determining the type of application that needs to be
run, the type of VM in which it will be executed,
and the type of host to which the VM will be
deployed. Considering a layered approach, the
Cloud Manager utilizes the VM mapping and Host
assignment data to determine the number of client
requests and their respective application class in
terms of their resource requirements. At the
platform level, the information gathered from the
previous procedure will be used in order to deploy a
number of compatible VM instances. The goal is to
consolidate sufficient VM instances of different
types according to the total amount of resources
required by the client requests. Finally, within the
infrastructure level, the goal is to assign the VMs
into their respective servers as characterized by
their attributes, which in turn will also determine
the number and types of Servers that need to be
activated in the data center. In this paper, the term
‘attribute’ refers to the resources (CPU, RAM, Nw,
I/O) that are utilized by a data center entity. Thus,
the class (e.g. cpu-intensive, memory-intensive) to
which an entity belongs is determined by its most
dominant attribute.

3.2 VM Consolidation

In cloud data centers, user demands have

varying requirements depending on the application
they wish to deploy on the cloud provider’s
infrastructure. For example, Amazon EC2 offers
different types of VM instances according to the
perceived requirement of the client whether it is
CPU Optimized, Memory Optimized, or simply
General Purpose. On the part of the cloud provider,
this manner of resource consolidation which
classifies virtual machines is further applied to the
process of VM Assignment and VM Placement. In
our approach, the assignment procedure is carried
out whenever the client requests to execute an
application. Collectively, requests are being
processed by the Data Center Broker which is
responsible for assigning these tasks to a virtual

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

504

1. Algorithm: EntTypeList
2. Input: entPool //requests,VM,Hosts
3. Output: EntList //entity list
4. For each entity in entPool {
5. entype = GetType(entity)
6. entity.type = entype
7. EntList.add(entity)
8. }
9. Return EntList

10. Function GetType(entity) {
11. curHi = min
12. For each entity.attrib {
13. curAtt = entity.attrib
14. If curHi < curAtt
15. curHi = curAtt
16. }
17. Return curHi
18. }

1. Algorithm: Attribute-Based VM
Consolidation

2. Input: SrvList //service list
3. VMList //vm list
4. Output: SrvVmMap //mapping list
5. SrvList = EntTypeList(requests)
6. VMList = EntTypeList(VMs)
7.
8. For each Srv in SrvList{
9. Srv.mapped= false
10. For each VM in VMList{
11. if VM.type = Srv.Type
12. VMcompList.add(VM) //compatible
13. }
14. VMcompList.Sort // sort according to

attribute availability, ascending
15. For each VM in VMcompList{
16. if Srv.attrib VM.attrib {
17. SrvVMmap.Add(VM,Srv)
18. Srv.mapped= true
19. Continue
20. }
21. }
22. if Srv.mapped =false
23. SrvVMmap.Add(Rand(VMcompList),Srv)
24. }

machine for execution. A number of important
considerations that we will tackle are: a) software
services should run on platforms that are
compatible to the application’s resource demands
b) VMs should be deployed to hosts that are
configured for certain classes of VMs. Thus, for a
given entity with a set of attributes, it is important
to establish its attribute weights and determine the
most dominant one. For instance, to determine the
dominant attribute ܾ݅ݎݐݐܣௗ of an application we use
the following:

ௗܾ݅ݎݐݐܣ ൌ maxሺܾܽ݅ݎݐݐଵ. . ሻܾ݅ݎݐݐܽ

where
 (1)

ܾ݅ݎݐݐܽ ൌ
ܾ݅ݎݐݐܽ െ minሺܾܽ݅ݎݐݐሻ

maxሺܾܽ݅ݎݐݐሻ െ	minሺܾܽ݅ݎݐݐሻ
 (2)

The variable ܾܽ݅ݎݐݐ stands for the

rescaled value of the compute resource i.
Normalizing those values are important in order to
give them an equal influence on an entity’s
classification. After an application has been
classified based on its dominant attribute, it will be
assigned to a compatible VM for execution. It
should be noted that the VMs were also subjected
to a similar classification process. The process of
generating the entity list with their corresponding
types is shown in Algorithm 1.

Algorithm 1. Entity classification and list generation.

The algorithm takes as input the pool of

requests, VM, and Hosts. For example, given a pool
of VMs, each of them is assigned a class via the
GetType function by deriving the most dominant
attribute, which is the most utilized resource.

After the entity list and their
corresponding classification are established, they

will be forwarded to the next process which is the
VM consolidation. The procedure for the VM
consolidation approach is shown in Algorithm 2.

Algorithm 2. The VM consolidation algorithm.

In the algorithm, the main inputs are the

client requests, and the VM list. The client requests
are to be interpreted as applications to be executed,
thus comprised in the service list, while the VM list
is composed of the active VMs that are currently
deployed among servers. In the main loop, the Data
Center Broker scans the list of services (requests)
to be executed and compares each of them against
the available VMs listed. Initially, the mapping info
of a service is set to false which means that it is
currently not assigned to any VM for execution. In
the second loop, the list of active VMs is being
checked for any VMs whose class is similar to that
of the requested service. Whenever a compatible
VM is found, it is added to VMcompList which is
the list of compatible VMs. In the third phase of the
algorithm, the list of compatible VMs is sorted
according to the availability of their dominant
attribute in an ascending order; which is done
according to the principle of Bin Packing. The VM
with the highest utilization is considered first in
order to fully optimize its resource consumption. In
the final loop, the Data Center Broker iteratively
checks VMcompList and looks for a VM whose
resources are sufficient to support the incoming
request. If an appropriate VM for the request has
been found, the mapping information between the

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

505

two entities is added to SrvMap and the request is
set as mapped. However, if the loop terminates and
the mapping condition is not met, a VM from the
compatibility list will be randomly selected and
assigned to execute the request. To better illustrate
the VM consolidation process, it is shown in Fig. 2.
In the figure, each VM is categorized according to
their attributes and is then provisioned with a set of
virtualized resources, each with corresponding
maximum capacity indicated by ‘*’. Similarly, the
incoming client requests are also classified in terms
of their most dominant attribute. For example,
Request 4 requires the following: CPU=800Ghz,
RAM=256MB, NW=100mbps, I/O = 500MB; in
this case, the most dominant attribute is its CPU
requirement. Upon classification, it is determined
that the application is compatible to VM1 and VM2
which are both classified as Type 1 virtual
machines. Basically, all compatible VMs in the
pool will be queried and the one with the highest
utilization but can still provide the required
resources without getting overloaded is selected as
the application’s execution platform. To easily
determine their compatibility, an application’s
system requirements are being scaled against a
VM’s available resources. The details of how the
scaling is done are further discussed in the next
section, which applies the same approach to the
VM placement routine.

Fig. 2. The VM consolidation process.

3.3 VM Placement

After the VM consolidation, the VMs need

to be deployed to their respective Hosts by the
process of VM Placement. At this stage, the VM
tasked to execute the given client requests will be
assigned to a Host based on the following function:

where ݐݏܪ௩ is the total ratio of the host’s
available resources. On the other hand, ܸܯ
stands for the total resource requirement of the VM
which is made proportionate to the available
resources of the Host to which it is compared with.
If the proportionate size of a VM is less than or
equal to the server’s available resources, then the
VM will be deployed to the said host. The
proportion of a VM against the availability of a
Host is derived by:

ܯܸ ൌ
ܸ௨

௨ܪ
∗ ଵݓ

ܸ

ܪ
∗ ଶݓ

																			 ܸ௪

௪ܪ
∗ ଷݓ 		

ܸ/

/ܪ
∗ ସݓ

where

(4)

 ݓ ൌ 1
ସ

ୀଵ
 (5)

The variable w assigns weight to each

attribute, thereby comprising the 100%
combination of CPU, RAM, Nw, and Storage
resources of the virtual machine and host. The same
process is applied to each VM as they are compared
against potential hosts that are available. The host
utilization level ݐݏܪ௨, which is the accumulation
of VM placements on a given host is quantified as:

௨ݐݏܪ ൌ ܯܸ

ே

ୀଵ
 (6)

where ܸܯ

 is the proportionate size of the VM

i deployed in the host. Finally, the utilization level
of the host should be governed by a condition such
that: ݐݏܪ௨ indicating that a host’s ,݈݄݀ݏ݁ݎ݄ݐ
utilization level should not exceed a certain
threshold or else an overloading will occur which
triggers VM migration.

For the users what matters is their
demands are satisfied as reflected in the agreed
upon SLA, which means the manner in which
resources are allocated to them can be completely
transparent. On the part of the provider, more profit
can be gained by consolidating resources to user
applications in a way which closely matches the
actual compute requirements. The proposed VM

,ܯ൫ܸ݊݃݅ݏݏ݂ܽ ൯ݐݏܪ ൌ

൜
,݁ݑݎݐ ܯܸ ௩ݐݏܪ	
,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ

(3)

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

506

1. Algorithm: Optimize Utilization
2. While request <> 0
3. uThreshold= GetUpperThreshold()
4. lThreshold= GetLowerThreshold()
5. For each host in ActiveHosts{
6. if hostOverloaded(host, uThreshold)
7. HMigList.Add(host)
8. if hostUnderloaded(host,lThreshold)
9. HMigList.Add(host)
10. }
11. For each host in HMigList{
12. SelectVM(host) //select vm from

host
13. VMList.Add(vm)
14. }
15. clear HMigList
16. For each vm in VMList{
17. AllocateVM(vm,host)
18. }
19. Clear VMList
20. End while

Placement approach is illustrated in Fig. 3.

Fig. 3. VM Placement using VM and Host matching.

As shown, after the Data Center Broker

received the incoming requests, the Cloud Manager
activates the hosts that match the incoming
workload. In the above example, Host1 and Host2
are configured for specific applications as indicated
by the weight assignment of their dominant
attributes. Consequently, VMs were consolidated to
client applications according to their class, resulting
to the deployment of Vm1 and Vm2 which were
classified as CPU-intensive, and Vm3 and Vm4
which are RAM and I/O intensive. Knowing the
type and attribute weights of the VMs and Hosts,
efficient VM placement can be achieved by way of
proportionate matching.

3.4 Load Monitoring and Optimization

Physical machines can turn into hot spots in which
available resources are not sufficient to satisfy the
provisioning requirements, while cold spots are
over-provisioned hosts which lead to
underutilization of resources and low energy
efficiency in a data center. From a cloud provider’s
point of view, handling hot spots is extremely
important in order to meet the quality of service
agreed upon with the clients. Moreover, eliminating
cold spots would also leverage the optimal
utilization of physical resources and eliminate
resource wastage thereby taking advantage of
virtualization to its full potential. To attain this, a
number of considerations have to be met, as shown
in Algorithm 3. First, we need to know whether a
host is overloaded which would require migrating
one or more VMs to a less loaded host. Similarly,
an underloaded host also needs to migrate its VMs

to another host so it can be put to a low-power
mode. Another consideration is the policy for the
selection of VMs that need to be migrated. Finally,
the VMs chosen for migration need to be re-
deployed to new hosts; this process is not
straightforward and also needs an efficient
technique. Below, we show the overall algorithm
for the optimization approach.

An overloaded host could occur due to
excessive CPU, memory, network or disk I/O
usage, depending on its class. To address the
occurrence of overloads, the algorithm scans the
utilization level of each host and whenever a host is
found to be overloaded, it is added to the migration
list. The goal of establishing a migration list is to
prepare the transfer of one or more VMs from their
hosts to the more suitable ones. As discussed in the
previous section, the consolidation process assigns
the VMs to client requests. However, application
workloads are dynamic; when some VMs terminate
or decrease their demand for compute resources, it
could cause the server to become underutilized.
Moreover, when the requirements of VMs spike up,
a server becomes overloaded which leads to SLA
violation. Failing to act upon the overloaded host
would degrade the performance of the data center,
while failing to meet the agreed upon QoS in the
SLA would hamper its profitability.

Algorithm 3. The utilization optimization approach.

3.4.1 Hotspot Alleviation and VM Selection

However, not at all times that a VM
reported as overloaded would be subjected to
immediate migration. We argue that migrating
overloaded VMs in a greedy manner does not

W= .6 W=.2 W=.1 W=.1

Vm2

Vm2

Vm2

Vm2

Vm2

Vm2

Vm1

Vm1

Vm1 Vm2

Vm1 Vm2

Vm1 Vm1 Vm2 Vm2

Vm1 Vm1 Vm1 Vm1

CPU RAM Nw I/O

Host 1

W= .1 W=.4 W=.1 W=.4

Vm3 Vm3

Vm3 Vm3

Vm3 Vm3

Vm3 Vm3

Vm4 Vm4

 Vm4 Vm4

Vm3 Vm4 Vm3 Vm4

Vm4 Vm4 Vm4 Vm4

CPU RAM Nw I/O

Host 2

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

507

1. Algorithm: Alleviate Hotspot
2. Input: Host //overloaded host
3. Output: MigList //migration list
4.
5. RecTH = GetRecTime(Host)
6. For each vm in Host{
7. migTvm = GetMigTime(vm)
8. if RecTH MigTVM
9. tmpList.Add(vm)
10. }
11. tmpList.sort //sort decreasing
12. loadDiff=GetDiff(Host)
13. vmMig=false
14. For each vm in tmpList{
15. if ܸܯ ݂݅ܦ ௨݂
16. MigList.Add(vm)
17. vmMig=true
18. break
19. }
20. if vmMig=false
21. MigList.Add(tmpList[0])
22. Return MigList

necessarily lead to an optimal hotspot alleviation.
There are instances that the overhead involved in
migrating a VM costs more and it would be more
practical to just allow the VM to execute and finish
its processing. In our approach, we will first
determine if the overloaded host can still recover
from its current state and get back to its normal
utilization level. The recovery ܴ݁ܿ ܶ time of a
certain host is given by:

ܴ݁ܿ ுܶ ൌ 	 ቆ ሺܽݐܶ െ ሻ݁ܶܽ

ୀଵ
ቇ

ୀଵ
 (7)

where ܴ݁ܿ ܶ is derived by summing up the
difference between the total execution time and
elapsed time of n applications running in m VMs.
The recovery time of a host is then compared
against the migration time ݃݅ܯ ܶ	of the VM in
question. Whether to migrate a given VM or not is
governed by:

ሻܯሺܸ݁ݐܽݎ݂݃݅݉

ൌ ൜
,݁ݑݎݐ ܴ݁ܿ ுܶ ݃݅ܯ	 ܶ

,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ
(8)

In cases where the recovery time of a host

is greater than the migration time, the Migration
Handler needs to decide which VM to migrate
according to the migration list. Recall that hosts are
also classified according to their dominant attribute
to facilitate matching between them and the VMs
they host. In the case of overloading, the Cloud
Manager needs to find the difference between the
overloaded host’s current utilization level and the
upper threshold such as:

݂݅ܦ ௨݂ ൌ ௧ݐݏܪ െ ௨ (9)ݐݏܪ

For each overloaded host, their VM list is
traversed and sorted according to their dominant
attributes (e.g. CPU, RAM) in a decreasing order.
For the purpose of bringing the utilization level of
the host below its threshold as much as possible,
the list is then searched for the VM whose
proportion is greater than or equal to the host’s
excess load and is then selected as candidate for
migration; if no such VM is found, the one at the
top of the list shall be selected. Doing so will
alleviate the host of overloading in its most
dominant attribute since our approach always
consider the multi-dimensionality of compute
resources in a data center. The entire process of
selecting the VM for hotspot alleviation is shown in
Algorithm 4.

Algorithm 4. The hotspot alleviation approach.

3.4.2 Host Selection and VM Migration

Once the VMs that need to be migrated
have been chosen, the next step is to assign them to
their new hosts. The strategy for choosing the hosts
for the migrating VMs is concerned not only about
finding hosts that can support them but also to
maintain a desirable system performance by
keeping the disruption as little as possible. For this
purpose, we present a host selection approach
which considers the overhead involved if a given
VM will be migrated to a certain Host. The
overhead of assigning a VM to a host is given by:

ܱ݄݁ܽ݀ ൌ ቆ ሺܽݐܶ െ ሻ݁ܶܽ

ୀଵ
ቇ

∗ ௗ݅ݐܴܽ ݃݅ܯ ܶ
where

(10)

ௗ݅ݐܴܽ ൌ ௌܯܸ
ு௦௧ܯܸ/

 (11)

where ∑ ሺܽݐܶ െ ሻ݁ܶܽ

ୀଵ is the total

remaining time of n applications running on a VM,
ௗ݅ݐܴܽ is the ratio of the VM’s utilization level
against that of the potential target host, while
݃݅ܯ ܶ is the migration time of such VM. Finally,
the VM will be assigned to the host which has the
lowest overhead. We emphasize that our approach
captures the different capacities of the physical
server, thus it is designed to handle heterogeneity
among machines in a cloud data center. The process
of host selection for the migrating VMs is shown in
Algorithm 5.

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

508

1. Algorithm: Host Selection
2. Input: MigList, Hostlist

//migration list, host list
3. Output: MigMap //migration map
4.
5. For each vm in MigList {
6. minOhead = max
7. For each host in HostList {
8. oHead = GetOverHead(vm, host)
9. if oHead < minOhead {
10. minOhead = oHead
11. migHost = host
12. }
13. }
14. MigMap.add(vm,host)
15. MigList.remove(vm)
16. }
17. Return MigMap //new host assignment

Algorithm 5. The host selection approach

4. IMPLEMENTATION AND EVALUATION

RESULTS
4.1 Simulation Setup

Due to the hardware and software complexities and
the massive size of a real-world cloud data center,
testing it using physical machines would be very
costly and impractical; thus, simulation has been a
widely-used approach for system evaluations.
Regarding the simulation platform, we used
CloudSim toolkit [16] which is a simulation
framework made in Java. After we modified and
extended parts of the simulator, we implemented
our proposed approach and performed extensive
simulation equivalent to a 24-hour operation of a
data center. The simulated data center is set by
using realistic models of Cloud Applications, VM
instances, and Host machines. With regards to the
applications, we used specifications from the
Google App Engine instances [17]. For the 1050
VM instances, we deployed 5 types of VM
instances with characteristics similar to the Amazon
EC2 instance types [18] shown in Table 1.

Table 1. VM instances specification.

Instance
Type

CPU
(1 compute unit =

1.0 Ghz)

RAM
(GB)

BW

C4 High-
CPU Extra
Large

4 cores with 16
EC2 Compute
Unit

7.5 1000mbps

M2 High
Memory/IO
Extra
Large

2 core with 6.5
EC2 Compute
Units

17.1 500 mbps

High I/O
Quadruple
Extra
Large

16 cores with 35
EC2 Compute
Units
each

60.5 10 gbps

M1 GP
Large

2 cores with 4
EC2 Compute
Units each

7.5 500 mbps

M1 GP
Small

1 core with 1
EC2 Compute
Units each

1.7 250 mbps

For the heterogeneous data center setup,
we considered 300 physical machines with
specifications and power consumptions (in Watts)
shown in Table 2. The server variants are: 1)
Fujitsu PRIMERGY RX300 S7 (8 cores, Intel Xeon
E5-2660 2.2 GHz processor, 16GB RAM), 2) IBM
System X3500 M4 (8 cores, Intel Xeon E5-2680
2.7 GHz processor, 16GB RAM), 3) HP ProLiant
DL380 G7 (6 cores, Intel Xeon X5675 3.07 GHz
processor, 12GB RAM), 4) HP ProLiant ML110
G5 (2 cores Xeon 3075 2660 MHz processor,
4GB), 5) HP ProLiant ML110 G4 (2 cores Xeon
3040 1860 MHz processor, 4GB). The production
of multi-core CPUs and improved virtualization led
to the production of modern servers equipped with
large amounts of memory, which begins to
dominate their power consumption [19].
Furthermore, the recent hardware advancement and
the complexity of modeling power consumption by
modern multi-core CPUs makes building precise
analytical models a complex research problem [20].
This is same reason we utilize real data on power
consumption provided by the results of the
SPECpower [21] benchmark instead of using an
analytical model of power consumption by a server.

Table 2. Server power consumption at varying loads.

Server
Variant

Target Load (%)
100 90 80 70 60 50 40 30 20 10 0

RX300 S7 255 217 187 156 134 117 105 95 85 75 54

X3500 M4 247 233 217 196 169 142 123 107 95 86 57

DL380 G7 222 199 180 163 147 136 126 116 106 94 52

ML110 G5 135 133 129 125 121 116 110 105 101 97 94

ML110 G4 117 114 112 108 106 102 100 96 93 90 86

4.2 Evaluation Results

Prior to the evaluation of our proposed
approach with other strategies, we first conducted
an experiment regarding its performance under
different configurations. In this initial experiment,
we would like to know first how our multi-level
matching approach would benefit the data center
with regards to a number of metrics. In Table 3, we
show the different scenarios which include: a)

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

509

Without Matching - requests are assigned to VMs
and VMs are assigned to hosts using the First Fit
Decreasing approach of bin packing, b) App/VM
Matching – requests are assigned to VMs which
match their attributes, c) App/VM/Host Matching –
initiates another level of matching in which VMs
are assigned to hosts that are similar to their
characteristics.

As shown in the table, imposing a policy
which concerns the consolidation of VMs to client
requests play an important role in improving the
efficiency and performance of a cloud datacenter.
By classifying applications according to their
attributes and assigning them to VMs with
corresponding resources, crucial parameters such as
energy consumption, VM migrations, SLA
violation, and host utilization were significantly
improved. Seeing the remarkable difference, we
further applied another level of matching between
VMs and Hosts; expectedly, improvements are
more pronounced as compared with the previous
configuration which only involves single-level
entity matching. The result of the initial experiment
brings us to a decision to indeed utilize the
configuration for two-level entity matching in the
final performance evaluation, hence we call it
TAbM.

Table 3. Effect of entity (App/VM/Host) matching.

Metric
Without

Matching
1-level

Matching
2-level

Matching

Energy Consumption
KWh

239.83 237.17 230.87

VM Migrations 12987 9422 9139

SLA Violation% 2.752 2.72 2.525

Host Shutdowns 2198 1784 1778

Matched VM/App/Host 1015 1050 1050

Host OverUtilization 83100 67265 58884

Host Underutilization 37867 36800 37130

Requests Completed 1494 1506 1528

Ave. Host Utilization% 93.93 96.17 95.84

Utilization Excess% 6.03 3.79 4.12

Ave Host Consumption
Wsec

2664.82 2404.88 2614.38

Average MIPS
Allocated to VM %

82.26 83.43 83.11

Average RAM
Allocated to VM %

94.68 92.34 91.88

Average BW Allocated
to VM %

92.5 92.44 92.41

After we derive the best configuration for

our proposed scheme, we evaluate its performance

by comparing it with other methods presented in
[20]. The methods chosen for comparison are: a)
Threshold-Based (THR) approach, which requires
setting the upper limit for host utilization and
keeping the total CPU utilization below such
threshold. b) Inter Quartile Range (IQR), using the
given CPU utilization history it measures the
dispersion of data which is used to decide on host
overloading. c) Median Absolute Deviation
(MAD), which uses residuals from the CPU
utilization data’s median. The derived value is then
used to set the upper utilization threshold for
detecting overloaded hosts. d) Local Regression
(LR), which builds a trend line that estimates the
next observation for the CPU utilization which will
decide if a host is overloaded. e) Random Selection
(RS), which randomly selects a number of VMs and
migrating it to less loaded hosts. f) The Non Power-
Aware (NPA) policy, which does not employ
energy efficient techniques and assumes 100%
CPU host utilization thereby consuming maximum
power at any given instance. g) Dynamic Voltage
and Frequency Scaling (DVFS), which uses
dynamic voltage scaling to reduce the energy
consumption of hosts. Methods a to d use the
Minimum Migration Time Policy (MMT) policy to
select a VM which requires the least time to
complete a migration compared to other VMs
hosted by the physical server. To better interpret the
results, we divide the performance metrics into two
groups, the minor metrics and the major metrics. In
Table 4, we compare the aforementioned strategies
against our proposed approached using the minor
metrics. For these metrics however, it should be
noted that some are not applicable to NPA and
DVFS due to their lack of power-awareness.

Starting with the Average Host
Consumption, TabM has the lowest energy
consumption at the host level with a value of
2368.61, while the NPA approach has the highest at
17578.23 due to its lack of power-aware capability.
As for the number of VM Migrations, LR has the
lowest at 8807 while that of THR is the highest at
39640. As will be shown in the succeeding
discussions, the frequency of migrations has a
crucial effect in the overall performance and
availability of services in a cloud system; thus,
minimizing them is an important part of keeping
the optimum performance of a data center. For the
number of Host Shutdowns, IQR has the highest at
6797 while LR has the lowest at 1730. This metric
refers to the number of times a host shutdown was
carried out; therefore, this also tells us the number
of times that hosts are required to be turned on
whenever they are required and turned off again

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

510

after serving the requests. As already known, the
delays involved in turning on a server has a
significant impact on the occurrence of SLA
violations in a cloud system. As for the next metric,
at 1050 TabM has the most number of Matched
Deployments with regards to the Applications,
VMs, and Host. This is consistent with the
intentions of our proposed consolidation approach
which is to consolidate the most appropriate VMs
to client requests, and place VMs to Hosts that
share the same attributes in terms of compute
resources in order to reduce resource excess. Next
is the Number of Requests Completed, this refers to
the number of client requests that have been fully
executed within the given simulation period. As
shown, MAD has the most number of completed
requests at 1774 while TabM comes at 1728. In the
latter discussions, its relation to host utilization will
also be tackled. The next metric is the Average
Percentage of resource (CPU, RAM, BW) requests
that have been completely allocated to the clients.
As shown, TabM was able to deliver the highest
percentage of compliance to user requests.
However, due to the volume of user requests
coming into the cloud system and the limitations of
the physical hardware itself, the compute
requirements of the applications are not always
fully allocated upon request. Still, the extents to
which requests are met are also an important factor
in the efficiency of resource provisioning. The next
metric is the number of times Host Overutilization
occurred; this refers to the instance where a host
gets loaded past its maximum threshold. As shown,
RS has the lowest at 55028, TabM comes next with
58884, while THR is the highest with 92149. As for
the Host Underutilization, TabM has the lowest
number of occurrences at 32730 while IQR has the
highest at 37109. In the latter discussion, their
relationship with the major performance metrics
will be analyzed.

Before we go further, we would like to
point out that the SLA Violation metric does not
apply to NPA and DVFS. This is for the reason that
both approaches have no capabilities to
dynamically optimize resource allocation, as well
as monitoring SLA violations and energy
consumption. In Fig. 4 it is shown that TabM has
the lowest SLA Violation of about 2.5%, while
THR has the highest with 5%. As the result shows,
it is consistent with the outcomes of VM
Migrations, Host Shutdowns, and Host
Overutilization in Table 4. This shows that
effectively handling the occurrences of those three
events would result to a lower SLA Violation rate
and higher QoS.

Fig. 4. Comparison of SLA Violation rate

We show in Fig. 5 the comparison in terms

of Energy Consumption. As expected NPA has the
highest energy consumption, while TabM has the
lowest, which conforms to its low Average Host
Consumption in Table 4. Moreover, due to its
ability to match Apps, VMs, and Hosts in terms of
their requirements and attributes, virtual resources
are efficiently provisioned; thereby reducing
underutilization and minimizing resource excess,
which leads to a fewer number of active servers.

Fig. 5. Overall energy consumption.

In Fig. 6, the data center’s Average

Utilization level for each of the aforementioned
strategies is compared. Looking back at Table 4,
the result for TabM agrees with its Number of
Requests Completed and Average Percentage of
resources allocated to each request. This shows that
a higher number of completed requests are an
indication that resources are efficiently provisioned,
thus keeping the hosts optimally utilized.

0

1

2

3

4

5

6

TabM THR IQR MAD LR RS NPA DVFS

SLA Violation%

0

500

1000

1500

TabM THR IQR MAD LR RS NPA DVFS

Energy Consumption (KWh)

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

511

Fig. 6. Average utilization of hosts.

Shown in Fig. 7 is the result for the

Utilization Excess. This metric refers to the average
percentage of resources that are considered excess
once the host’s utilization level reaches the
maximum and can no longer accommodate
incoming requests. In the figure, TabM has the
lowest percentage of excess resource whereas
DVFS has the highest. Looking at TabM, it is
consistent with the result for its Host
Overutilization and Host Underutilization which
means that compute resources are efficiently
utilized with regards to the minimum and maximum
thresholds.

Fig. 7. Average utilization excess.

Shown in Fig. 7 is the result for the

Utilization Excess. This metric refers to the average
percentage of resources that are considered excess
once the host’s utilization level reaches the
maximum and can no longer accommodate
incoming requests. In the figure, TabM has the
lowest percentage of excess resource whereas
DVFS has the highest. Looking at TabM, it is
consistent with the result for its Host
Overutilization and Host Underutilization which
means that compute resources are efficiently
utilized with regards to the minimum and maximum
thresholds.

5. CONCLUSIONS
Being the core of a cloud infrastructure,

the performance of a data center directly affects the
quality of service provided to the clients. These
facts make it a basic research issue, which is to
increase the resource utilization, decrease the
excess resources, and to improve the performance
of a data center while at the same time keeping the
energy consumption at its most efficient. In this
work, we emphasized the importance of VM
Assignment and VM Placement, and their influence
in the efficient consolidation of virtualized
resources in a cloud data center. Although hotspot
mitigation is also addressed by our proposed
solution in general, we put emphasis on the
resource provisioning approach that we presented
on this paper. As opposed to the common practice
of resource provisioning and load balancing which
are primarily based on CPU utilization, we present
a multi-dimensional approach which considers all
of the compute resources available. The approach
enabled the classification of entities according to
their attributes which leads to better
accommodation of requests, VM consolidation, and
Host assignment. Furthermore, the classification
procedure also allowed us to perform a matching
strategy which designates application requests to
the most appropriate VM for execution and also
deploying the VMs to hosts of the same
characteristics based on their resource
requirements. Based on the results, we are able
validate the realization of our objectives by
comparing our work, TabM, to other previously-
proposed approaches using a number of
performance metrics. In terms of SLA Violation
rate, TabM is able to outperform its counterparts
which also conform to its number of VM
Migrations, Host Shutdown, and Host
Overutilization. It also had the lowest overall
Energy Consumption as supported by its low
Average Host Consumption. With regards to the
Average Utilization of the entire data center, it also
coincides with the number of Completed Requests
and the Average Percentage of allocated resources
to client requests. Finally, we are also able to
minimize the amount of idle resources by keeping
TabM’s Utilization Excess the lowest among other
approaches. Putting it altogether, it is indeed
important to employ an excellent approach for
provisioning virtualized resources. By doing so,
efficiency in cloud data centers can be achieved
which leads to improved performance and lower
energy consumption.

0

20

40

60

80

100

TabM THR IQR MAD LR RS NPA DVFS

Average Utilization%

0

20

40

60

80

100

TabM THR IQR MAD LR RS NPA DVFS

Utilization Excess%

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

512

ACKNOWLEDGEMENTS

This research is partially supported by Institute of
Information and Telecommunication Technology of
KNU

REFERENCES

[1] A. Greenberg, J. Hamilton, D.A. Maltz, P. Patel,

“The cost of a cloud: research problems in data
center networks”, ACM SIGCOMM Computer
Communication Review, 2009, pp. 68–73

[2] “World Energy Outlook 2009 FACT SHEET”,
http://www.iea.org/weo/docs/weo2009/factsheet
sWEO2009.pdf.

[3] A. Greenberg, J. Hamilton, D.A. Maltz, and P.
Patel, “The Cost of a Cloud: Research
Problems in Data Center Networks,” Proc.
ACM SIGCOMM Computer Comm. Rev., vol.
39, 2009, pp.68-73.

[4] A. Khosravi, S. Garg, and R. Buyya, “Energy
and Carbon-Efficient Placement of Virtual
Machines in Distributed Cloud Data Centers,”
Proc. 19th Int’l Conf. Parallel Processing
(Euro-Par ’13), 2013.

[5] R. Bianchini, R. Rajamony, “Power and energy
management for server systems”, IEEE
Computer, vol. 37, no. 11, 2004, pp. 68–74.

[6] W. Vogels, “Beyond server consolidation”,
ACM Queue, vol. 6, no. 1, 2008, pp. 20–26.

[7] C. Hyser, B. McKee, R. Gardner, B.J. Watson,
Autonomic virtual machine placement in the
data center, February 2008, HP Labs Technical
Report.

[8] X. Meng, V. Pappas, L. Zhang, “Improving the
scalability of date center networks with traffic-
aware virtual machine placement”, in: Proc.
the 29th Conference on Computer
Communications, INFOCOM, 2010.

[9] J.T. Piao, J. Yan, “A network-aware virtual
machine placement and migration approach in
cloud computting”, in: Proc. of 9th
International Conference on Grid and Cloud
Computing, GCC, 2010.

[10] A.V. Do, J. Chen, C. Wang, Y.C. Lee, A.Y.
Zomaya, B.B. Zhou, “Profiling applications for
virtual machine placement in clouds”, in: Proc.
the 2nd International Conference on Cloud
Computing, GRIDs, and Virtualization, 2011.

[11] S. H. Wang; Huang, P.P.-W.; Wen, C.H.-P.; Li-
Chun Wang, "EQVMP: Energy-efficient and
QoS-aware virtual machine placement for
software defined datacenter
networks," Information Networking (ICOIN),

2014 International Conference on , February
2014, pp.220-225.

[12] D. Carrera, M. Steinder, and I. Whalley,
“Autonomic Placement of Mixed Batch and
Transactional Workloads,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23,
no. 2, 2012, pp. 219–231.

[13] F. Wuhib, R. Stadler, and H. Lindgren,
“Dynamic resource allocation with
management objectives: Implementation for an
OpenStack cloud,” in CNSM’12, 2012, pp.
309–315.

[14] L. Liu, H. Wang, X. Liu, X. Jin, W. He, Q.
Wang, Y. Chen, “GreenCloud: a new
architecture for green data center, in: 6th
International Conference Industry Session on
Autonomic Computing and Communications
Industry, 2009, pp. 29–38.

[15] F. Farahnakian, P. Liljeberg, T. Pahikkala, J.
Plosila, H. Tenhunen, "Hierarchical VM
Management Architecture for Cloud Data
Centers," Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th
International Conference on , December 2014,
pp.306-311.

[16] R.N. Calheiros, R. Ranjan, A. Beloglazov,
C.A.F.D. Rose, R. Buyya, “CloudSim: a toolkit
for modeling and simulation of Cloud
computing environments and evaluation of
resource provisioning algorithms”, Software:
Practice and Experience, 2011, pp. 23–50.

[17] Google App Engine Frontend Instance Class
[Online]. Available:
https://cloud.google.com/appengine/docs/admin
console/instances, Accessed: 15:42:20
20/01/2016

[18] Amazon EC2 Instance Types [Online].
Available: http://aws.amazon.com/ec2/instance-
types/

[19] L. Minas, B. Ellison, “Energy Efficiency for
Information Technology: How to Reduce Power
Consumption in Servers and Data Centers”.
Intel Press: Hillsboro.

[20] A. Beloglazov and R. Buyya, "Optimal Online
Deterministic Algorithms and Adaptive
Heuristics for Energy and Performance Efficient
Dynamic Consolidation of Virtual Machines in
Cloud Data Centers", Concurrency and
Computation: Practice and Experience
(CCPE), John Wiley & Sons, Ltd, 2012, pp.
1397-1420.

[21] Standard Performance Evaluation Corporation
[Online]. Available:
http://www.spec.org/power_ssj2008/results/,
Accessed: 13:28:37 20/01/2016

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

513

APPENDIX:

Fig. 1. The resource consolidation approach.

Table 4. Comparison of minor performance metrics.

Metrics TabM THR IQR MAD LR RS NPA DVFS

Ave Host
Consumption Wsec

2368.61 3093.65 3221.24 3078.42 2614.38 2540.58 17578.23 13759.74

VM Migrations 9139 39640 38529 37860 8807 8850 N/A N/A

Host Shutdowns 1778 6675 6797 6743 1730 1751 N/A N/A

Matched
Deployments

1050 1016 1002 969 983 1017 996 1014

Requests
Completed

1728 1684 1708 1742 1552 1512 1426 1774

Average CPU
Allocated to VM %

83.11 81.75 81.86 82.13 82.37 82.6 80.56 78.94

Average RAM
Allocated to VM %

96.88 94.68 96.56 96.13 91.36 92.23 87.99 87.89

Average BW
Allocated to VM %

95.41 92.78 92.7 92.65 92.35 92.39 91.69 91.69

Host Overutilization 58884 92149 89299 85275 61204 55028 N/A N/A

Host
Underutilization

32730 34403 37109 33354 32810 36023 N/A N/A

