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ABSTRACT 

 
In this paper, we present a resource provisioning technique which classifies data center entities through 
their attributes as characterized by their resource requirements. The classification process enables the multi-
level matching approach which assigns client requests to the most appropriate VM, while the VM is 
assigned to a Host of similar characteristics. By considering the multi-dimensionality of compute resources, 
data center entities which include applications, VMs, and Hosts, are consolidated and assigned according to 
the most proportionate available resource. Evaluation results confirm the benefits of applying such 
techniques on the performance and energy consumption of a cloud data center. 

Keywords: Resource Provisioning, Cloud Data Centers, VM Consolidation, Cloud Computing, Green 
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1. INTRODUCTION  
 
       The cloud computing model offers a very 
flexible option for businesses to scale up or scale 
down their IT systems by allowing them to acquire 
compute resource on-the-fly. However, the cost of 
maintaining a data center composes a significant 
portion of the cost of providing timely 
service [1].Workloads in a cloud data center can 
fluctuate considerably due to the dynamic behavior 
of user applications running on its virtual platform. 
This makes statically-configured virtual resources 
suffer much the same dilemma as dedicated 
physical resources: they are often either 
underutilized or overloaded. For these reasons, data 
centers are now equipped with monitoring 
capabilities and probes such as smart power 
distribution units to achieve energy efficiency and 
reduce overall cost. Considering a recent study that 
forecasts electricity consumption to rise 76% from 
2007 to 2030 [2] citing data centers as the major 
contributor, an obvious indication of this increase 
emphasizes the importance of reducing energy 
consumption in the Clouds. In support of this, 
studies and experiments [3, 4] have found that an 
active server with very low CPU utilization 
consumes between 50 and 70 percent of the power 
that it consumes when fully utilized. 

The aforementioned scenario raised the 
concern regarding the importance of VM (virtual 
machine) assignment and VM placement in 
reducing energy consumption in data centers. 
Existing works such as [5] and [6] show the impact 
of the virtual machine placement problem, and how 
cloud operators can benefit from the use of efficient 
placement policy in terms of energy savings. 
Obviously, the most straightforward way to lower 
energy consumption in a data center is to reduce the 
number of running PMs (physical machines). As 
different VMs require different kinds and amounts 
of resources (e.g., CPU, RAM, bandwidth, storage), 
strategies for placing VMs on PMs need to consider 
the fact that a PM cannot host any more VM if one 
of its resources is exhausted, even when all other 
resources are sufficient. Those unutilized resources 
in a fully loaded host, still consume significant 
amount of energy and is detrimental to the 
profitability of a cloud infrastructure. Thus, in order 
to improve the resource utilization in a way that 
minimizes the number of running PMs, part of our 
goal is the reduction of resource excess among 
hosts. 

Another important characteristic of an 
optimized data center is its ability to alleviate 
hotspots in order to ease up overloaded nodes that 
often lead to performance degradation. Hotspot 
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alleviation is often considered to be a more 
practical approach in contrast to pure load 
balancing which requires maintaining an equal 
distribution of load at all times as the latter may 
require expensive migrations even when the system 
is not under stress. However, deciding which VMs 
that are running on the overloaded hosts are to be 
migrated and to where remain a challenge. In an 
instance where a virtual machine needs to be 
deployed to a server, requirements regarding CPU, 
RAM, network, and storage of the host machine 
should be carefully considered. Therefore, the 
multidimensional needs have to be carefully 
matched with the multidimensional loads and 
capacities on the servers. This policy should also be 
observed on the upper level of resource 
consolidation which aims to establish proper 
matching between applications and the VM to 
which they will be assigned for execution. From a 
wider view, our goal is to efficiently consolidate 
virtual resources among data center entities 
(applications, VMs, PMs) and to alleviate hot spots 
through VM migration. This leads us to a twofold 
objective of imposing energy efficiency in a cloud 
data center and at the same time upholding the SLA 
(service level agreement) contracted with the 
clients. 

In energy-aware data centers, the efficient 
consolidation of virtualized resources to client 
applications is influenced by strategies behind the 
VM Assignment and VM Placement. The 
aforementioned procedures are geared toward 
increasing the utilization of servers and dynamic 
consolidation of workload, while at the same time 
aiming to save energy and upholding the SLA. 
Previous approaches for management and 
consolidation of VMs in cloud data centers were 
mostly focused on a single requirement which is the 
CPU. That is, the allocation of resources for client 
requests were heavily based on the CPU requested; 
whereas the cloud controller’s approach for Data 
Center optimization is also based on the workload 
reflected by CPU utilization. Although CPU 
utilization has been regarded in numerous studies as 
a metric for evaluating the throughput and SLA 
adherence of a cloud data center, considering other 
resources such as RAM, Network, and I/O would 
lead to better profiling of the cloud users’ 
requirements which leads to a more accurate 
matching of Services to VMs and VMs to Hosts. As 
compared with a single-dimension approach 
towards provisioning of compute resource, we put 
forward a better strategy which considers the multi-
dimensional nature of both the virtual machine and 
host requirements for compute resources. 

The rest of the paper is organized as 
follows. In Section 2, we present the related work 
of our proposed approach directed towards energy-
efficient cloud data center through proper VM 
placement, VM management, and monitoring. In 
Section 3, the architecture of the proposed system 
and the underlying components and algorithms are 
discussed. In Section 4, the implementation of the 
simulation setup is discussed; furthermore, the 
metrics for evaluation and the corresponding results 
are discussed in detail. Finally, in Section 5, we 
wrap up the importance of the problem addressed 
by our proposed approach and then conclude the 
paper. 

 

2. RELATED WORK 

In a cloud data center, the placement of 
virtual machines on a cluster of physical machines 
is a crucial task brought by the emerging 
virtualization technology; as such, different factors 
have to be considered in the process of VM 
placement. As matter of fact, much work has been 
done regarding VM placement in the cloud 
computing environment, which involves various 
constraints such as performance, availability, 
network, and cost. For instance, the work in 
[7] presents a high level overview of VM 
placement, and proposes a VM placement system 
architecture design, which adopts autonomic VM 
placement, to achieve cost savings from the better 
utilization of computing resources. A traffic-aware 
policy of optimizing the placement of VMs is 
proposed in [8]. Traffic patterns among VMs were 
aligned with the communication distance between 
them and VMs with mutual bandwidth usage are 
assigned to PMs in close proximity.  As for the 
work in [9], they take network conditions into 
account to minimize the data transfer time 
consumption and maintain application performance. 
To achieve better performance, live migration is 
adopted in their work. An application profiling 
technique was employed in [10] to improve 
resource utilization in the process of VM 
placement.  

The task of VM placement is widely 
investigated under various constraints and different 
objectives. In [11], they propose a three-tier 
algorithm to take both energy efficiency and QoS 
into consideration. First, the algorithm partitions 
VMs to reduce traffic transmission across the entire 
datacenter. Then, it decides the minimum number 
of server without SLA violation. Finally, the 
controller assigns the paths to avoid congestion and 
balance the network load. In [12], resource 
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allocation to VMs is done by considering the 
relationship between two heterogeneous workload 
types such as transactional and long running tasks, 
by looking at their respective resource needs to 
meet SLA goals. The work in [13] employed 
average resource utilization over a configurable 
time window to carry out different VM placement 
policies toward power saving and load balancing 
among hosts; however, as the authors pointed out, 
the amount of required VM migrations might 
quickly become too high in case of high churn 
which affects system performance. A Power 
Manager energy monitoring service is presented in 
[14] as part of their GreenCloud data center 
solution. It collects the energy usage information 
from Intelligent Power Distribution Units (iPDUs), 
which are devices installed on physical machines of 
the data center to perform real-time energy 
monitoring. The authors analyzed and extracted the 
temporal patterns of energy usage of different 
devices from the database which allowed them to 
devise energy distribution models for various 
machines. In [15], they proposed a hierarchical 
architecture for VM management in a large-scale 
data center. They deployed agents that work 
cooperatively to manage VMs in order to reduce 
the energy consumption and SLA violations. Due to 
the heterogeneity of various jobs, different VMs on 
the same PM can have different job completion 
times. Therefore, different VM placements have 
different job completion times. 
 
3. CLOUD DATACENTER MONITORING 

AND OPTIMIZATION  
3.1 System Architecture 
 

The subscription and provisioning of 
various services in the cloud architecture discussed 
in this paper mainly involves the Cloud Users, the 
Data Center Broker, and the Cloud Service 
Provider. The cloud users are subscribed to the 
service providers of their choice and avail of the 
services being offered by form of requests which 
requires the consolidation of virtualized resources. 
The data center broker mediates and facilitates the 
aggregation, integration and customization of 
services and the corresponding compute resources 
to client requests. In this work’s context, we refer to 
a cloud service as a service utilized by IT 
consumers for a certain application, which in our 
proposed cloud system, is within the SaaS and PaaS 
layers of the cloud paradigm. Also, a cloud service 
can be composed of several services. On the other 
hand, the cloud service provider as the supplier of 
services hosted in a cloud data center needs to 

manage a huge number of physical servers and 
keep the optimization of their performance and 
utilization. 

With regards to resource consolidation, 
Fig. 1 shows the client applications requesting for 
compute resources. Requests are being gathered 
and processed by the Data Center Broker for their 
respective VM and Host assignments prior to their 
submission to the Cloud Manager. However, prior 
to the assignment procedure, the broker needs to 
classify the entities (Application, VM, Host) that 
are involved. The classification is important for 
determining the type of application that needs to be 
run, the type of VM in which it will be executed, 
and the type of host to which the VM will be 
deployed. Considering a layered approach, the 
Cloud Manager utilizes the VM mapping and Host 
assignment data to determine the number of client 
requests and their respective application class in 
terms of their resource requirements. At the 
platform level, the information gathered from the 
previous procedure will be used in order to deploy a 
number of compatible VM instances. The goal is to 
consolidate sufficient VM instances of different 
types according to the total amount of resources 
required by the client requests. Finally, within the 
infrastructure level, the goal is to assign the VMs 
into their respective servers as characterized by 
their attributes, which in turn will also determine 
the number and types of Servers that need to be 
activated in the data center. In this paper, the term 
‘attribute’ refers to the resources (CPU, RAM, Nw, 
I/O) that are utilized by a data center entity. Thus, 
the class (e.g. cpu-intensive, memory-intensive) to 
which an entity belongs is determined by its most 
dominant attribute. 
 
3.2 VM Consolidation 

 
In cloud data centers, user demands have 

varying requirements depending on the application 
they wish to deploy on the cloud provider’s 
infrastructure. For example, Amazon EC2 offers 
different types of VM instances according to the 
perceived requirement of the client whether it is 
CPU Optimized, Memory Optimized, or simply 
General Purpose. On the part of the cloud provider, 
this manner of resource consolidation which 
classifies virtual machines is further applied to the 
process of VM Assignment and VM Placement. In 
our approach, the assignment procedure is carried 
out whenever the client requests to execute an 
application. Collectively, requests are being 
processed by the Data Center Broker which is 
responsible for assigning these tasks to a virtual 
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1. Algorithm: EntTypeList 
2. Input: entPool //requests,VM,Hosts 
3. Output: EntList //entity list 
4. For each entity in entPool { 
5. entype = GetType(entity) 
6. entity.type = entype 
7. EntList.add(entity) 
8. } 
9. Return EntList 

 
10. Function GetType(entity) { 
11. curHi = min 
12. For each entity.attrib { 
13. curAtt = entity.attrib 
14. If curHi < curAtt 
15. curHi = curAtt 
16. } 
17. Return curHi 
18. } 

1. Algorithm: Attribute-Based VM 
Consolidation 

2. Input: SrvList //service list 
3.        VMList  //vm list 
4. Output: SrvVmMap //mapping list 
5. SrvList = EntTypeList(requests) 
6. VMList = EntTypeList(VMs) 
7.  
8. For each Srv in SrvList{  
9.   Srv.mapped= false 
10.   For each VM in VMList{ 
11. if VM.type = Srv.Type   
12.    VMcompList.add(VM) //compatible 
13.   } 
14. VMcompList.Sort // sort according to 

attribute availability, ascending 
15.   For each VM in VMcompList{ 
16. if Srv.attrib  VM.attrib {  
17.         SrvVMmap.Add(VM,Srv) 
18.         Srv.mapped= true 
19.         Continue 
20.      } 
21.   } 
22. if Srv.mapped =false 
23. SrvVMmap.Add(Rand(VMcompList),Srv)  
24. } 

machine for execution. A number of important 
considerations that we will tackle are: a) software 
services should run on platforms that are 
compatible to the application’s resource demands 
b) VMs should be deployed to hosts that are 
configured for certain classes of VMs. Thus, for a 
given entity with a set of attributes, it is important 
to establish its attribute weights and determine the 
most dominant one. For instance, to determine the 
dominant attribute ܾ݅ݎݐݐܣௗ of an application we use 
the following: 

 
ௗܾ݅ݎݐݐܣ ൌ maxሺܾܽ݅ݎݐݐଵ. .  ሻܾ݅ݎݐݐܽ

where 
    (1) 

ܾ݅ݎݐݐܽ ൌ
ܾ݅ݎݐݐܽ െ minሺܾܽ݅ݎݐݐሻ

maxሺܾܽ݅ݎݐݐሻ െ	minሺܾܽ݅ݎݐݐሻ
     (2) 

 
The variable ܾܽ݅ݎݐݐ  stands for the 

rescaled value of the compute resource i. 
Normalizing those values are important in order to 
give them an equal influence on an entity’s 
classification. After an application has been 
classified based on its dominant attribute, it will be 
assigned to a compatible VM for execution. It 
should be noted that the VMs were also subjected 
to a similar classification process. The process of 
generating the entity list with their corresponding 
types is shown in Algorithm 1.  

 

Algorithm 1. Entity classification and list generation. 

 
The algorithm takes as input the pool of 

requests, VM, and Hosts. For example, given a pool 
of VMs, each of them is assigned a class via the 
GetType function by deriving the most dominant 
attribute, which is the most utilized resource. 

After the entity list and their 
corresponding classification are established, they 

will be forwarded to the next process which is the 
VM consolidation. The procedure for the VM 
consolidation approach is shown in Algorithm 2. 
 

 
Algorithm 2. The VM consolidation algorithm. 

 
In the algorithm, the main inputs are the 

client requests, and the VM list. The client requests 
are to be interpreted as applications to be executed, 
thus comprised in the service list, while the VM list 
is composed of the active VMs that are currently 
deployed among servers. In the main loop, the Data 
Center Broker scans the list of services (requests) 
to be executed and compares each of them against 
the available VMs listed. Initially, the mapping info 
of a service is set to false which means that it is 
currently not assigned to any VM for execution. In 
the second loop, the list of active VMs is being 
checked for any VMs whose class is similar to that 
of the requested service. Whenever a compatible 
VM is found, it is added to VMcompList which is 
the list of compatible VMs. In the third phase of the 
algorithm, the list of compatible VMs is sorted 
according to the availability of their dominant 
attribute in an ascending order; which is done 
according to the principle of Bin Packing. The VM 
with the highest utilization is considered first in 
order to fully optimize its resource consumption. In 
the final loop, the Data Center Broker iteratively 
checks VMcompList and looks for a VM whose 
resources are sufficient to support the incoming 
request. If an appropriate VM for the request has 
been found, the mapping information between the 
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two entities is added to  SrvMap and the request is 
set as mapped. However, if the loop terminates and 
the mapping condition is not met, a VM from the 
compatibility list will be randomly selected and 
assigned to execute the request. To better illustrate 
the VM consolidation process, it is shown in Fig. 2. 
In the figure, each VM is categorized according to 
their attributes and is then provisioned with a set of 
virtualized resources, each with corresponding 
maximum capacity indicated by ‘*’. Similarly, the 
incoming client requests are also classified in terms 
of their most dominant attribute. For example, 
Request 4 requires the following: CPU=800Ghz, 
RAM=256MB, NW=100mbps, I/O = 500MB; in 
this case, the most dominant attribute is its CPU 
requirement. Upon classification, it is determined 
that the application is compatible to VM1 and VM2 
which are both classified as Type 1 virtual 
machines. Basically, all compatible VMs in the 
pool will be queried and the one with the highest 
utilization but can still provide the required 
resources without getting overloaded is selected as 
the application’s execution platform. To easily 
determine their compatibility, an application’s 
system requirements are being scaled against a 
VM’s available resources. The details of how the 
scaling is done are further discussed in the next 
section, which applies the same approach to the 
VM placement routine. 

 
 

Fig. 2. The VM consolidation process. 

 
3.3 VM Placement 

 
After the VM consolidation, the VMs need 

to be deployed to their respective Hosts by the 
process of VM Placement. At this stage, the VM 
tasked to execute the given client requests will be 
assigned to a Host based on the following function: 

 

 

 
where ݐݏܪ௩  is the total ratio of the host’s 
available resources. On the other hand, ܸܯ 
stands for the total resource requirement of the VM 
which is made proportionate to the available 
resources of the Host to which it is compared with. 
If the proportionate size of a VM is less than or 
equal to the server’s available resources, then the 
VM will be deployed to the said host. The 
proportion of a VM against the availability of a 
Host is derived by: 

 
 

ܯܸ ൌ
ܸ௨

௨ܪ
∗ ଵݓ 

ܸ

ܪ
∗  ଶݓ

																			 ܸ௪

௪ܪ
∗ ଷݓ 		

ܸ/

/ܪ
∗  ସݓ

 
where  

 

(4) 

 ݓ ൌ 1
ସ

ୀଵ
 (5) 

 
The variable w assigns weight to each 

attribute, thereby comprising the 100% 
combination of CPU, RAM, Nw, and Storage 
resources of the virtual machine and host. The same 
process is applied to each VM as they are compared 
against potential hosts that are available. The host 
utilization level ݐݏܪ௨, which is the accumulation 
of VM placements on a given host is quantified as: 

 

௨ݐݏܪ ൌ  ܯܸ

ே

ୀଵ
 (6) 

 
where ܸܯ

 is the proportionate size of the VM 

i deployed in the host. Finally, the utilization level 
of the host should be governed by a condition such 
that: ݐݏܪ௨   indicating that a host’s ,݈݄݀ݏ݁ݎ݄ݐ
utilization level should not exceed a certain 
threshold or else an overloading will occur which 
triggers VM migration. 

For the users what matters is their 
demands are satisfied as reflected in the agreed 
upon SLA, which means the manner in which 
resources are allocated to them can be completely 
transparent. On the part of the provider, more profit 
can be gained by consolidating resources to user 
applications in a way which closely matches the 
actual compute requirements. The proposed VM 

,ܯ൫ܸ݊݃݅ݏݏ݂ܽ ൯ݐݏܪ ൌ 

൜
,݁ݑݎݐ ܯܸ  ௩ݐݏܪ	
,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ

 
(3) 
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1. Algorithm: Optimize Utilization 
2. While request <> 0 
3.   uThreshold= GetUpperThreshold() 
4.   lThreshold= GetLowerThreshold() 
5.   For each host in ActiveHosts{ 
6. if hostOverloaded(host, uThreshold) 
7.         HMigList.Add(host)   
8. if hostUnderloaded(host,lThreshold) 
9.         HMigList.Add(host)  
10.   } 
11.   For each host in HMigList{ 
12.    SelectVM(host) //select vm from 

host 
13.      VMList.Add(vm) 
14.   } 
15.   clear HMigList 
16.   For each vm in VMList{ 
17.      AllocateVM(vm,host) 
18.   } 
19.   Clear VMList 
20. End while 

Placement approach is illustrated in Fig. 3. 
 

 
Fig. 3. VM Placement using VM and Host matching. 

 
As shown, after the Data Center Broker 

received the incoming requests, the Cloud Manager 
activates the hosts that match the incoming 
workload. In the above example, Host1 and Host2 
are configured for specific applications as indicated 
by the weight assignment of their dominant 
attributes. Consequently, VMs were consolidated to 
client applications according to their class, resulting 
to the deployment of Vm1 and Vm2 which were 
classified as CPU-intensive, and Vm3 and Vm4 
which are RAM and I/O intensive. Knowing the 
type and attribute weights of the VMs and Hosts, 
efficient VM placement can be achieved by way of 
proportionate matching. 
 
 
3.4 Load Monitoring and Optimization 

Physical machines can turn into hot spots in which 
available resources are not sufficient to satisfy the 
provisioning requirements, while cold spots are 
over-provisioned hosts which lead to 
underutilization of resources and low energy 
efficiency in a data center. From a cloud provider’s 
point of view, handling hot spots is extremely 
important in order to meet the quality of service 
agreed upon with the clients. Moreover, eliminating 
cold spots would also leverage the optimal 
utilization of physical resources and eliminate 
resource wastage thereby taking advantage of 
virtualization to its full potential. To attain this, a 
number of considerations have to be met, as shown 
in Algorithm 3. First, we need to know whether a 
host is overloaded which would require migrating 
one or more VMs to a less loaded host. Similarly, 
an underloaded host also needs to migrate its VMs 

to another host so it can be put to a low-power 
mode. Another consideration is the policy for the 
selection of VMs that need to be migrated. Finally, 
the VMs chosen for migration need to be re-
deployed to new hosts; this process is not 
straightforward and also needs an efficient 
technique. Below, we show the overall algorithm 
for the optimization approach. 

An overloaded host could occur due to 
excessive CPU, memory, network or disk I/O 
usage, depending on its class. To address the 
occurrence of overloads, the algorithm scans the 
utilization level of each host and whenever a host is 
found to be overloaded, it is added to the migration 
list. The goal of establishing a migration list is to 
prepare the transfer of one or more VMs from their 
hosts to the more suitable ones. As discussed in the 
previous section, the consolidation process assigns 
the VMs to client requests. However, application 
workloads are dynamic; when some VMs terminate 
or decrease their demand for compute resources, it 
could cause the server to become underutilized. 
Moreover, when the requirements of VMs spike up, 
a server becomes overloaded which leads to SLA 
violation. Failing to act upon the overloaded host 
would degrade the performance of the data center, 
while failing to meet the agreed upon QoS in the 
SLA would hamper its profitability. 
 

 
Algorithm 3. The utilization optimization approach. 

 
3.4.1 Hotspot Alleviation and VM Selection 

However, not at all times that a VM 
reported as overloaded would be subjected to 
immediate migration. We argue that migrating 
overloaded VMs in a greedy manner does not 

W= .6 W=.2 W=.1 W=.1 

   

Vm2 

Vm2 

Vm2 

Vm2 

Vm2 

Vm2 

Vm1 

Vm1  

Vm1 Vm2 

Vm1 Vm2   

Vm1 Vm1 Vm2 Vm2 

Vm1 Vm1 Vm1 Vm1 

CPU RAM Nw I/O 

Host 1 

W= .1 W=.4 W=.1 W=.4 

 

    

Vm3 Vm3 

Vm3 Vm3 

Vm3 Vm3 

Vm3 Vm3 

Vm4 Vm4 

 Vm4  Vm4 

Vm3 Vm4 Vm3 Vm4 

Vm4 Vm4 Vm4 Vm4 

CPU RAM Nw I/O 

Host 2 
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1. Algorithm: Alleviate Hotspot 
2. Input: Host //overloaded host 
3. Output: MigList //migration list 
4.  
5. RecTH = GetRecTime(Host)  
6.   For each vm in Host{ 
7.     migTvm = GetMigTime(vm) 
8.     if RecTH  MigTVM 
9.         tmpList.Add(vm)  
10.   } 
11.   tmpList.sort //sort decreasing 
12.   loadDiff=GetDiff(Host) 
13.   vmMig=false 
14.   For each vm in tmpList{ 
15.     if ܸܯ  ݂݅ܦ ௨݂  
16.       MigList.Add(vm) 
17.       vmMig=true      
18.       break  
19.   } 
20.   if vmMig=false 
21.     MigList.Add(tmpList[0]) 
22. Return MigList 

necessarily lead to an optimal hotspot alleviation. 
There are instances that the overhead involved in 
migrating a VM costs more and it would be more 
practical to just allow the VM to execute and finish 
its processing. In our approach, we will first 
determine if the overloaded host can still recover 
from its current state and get back to its normal 
utilization level. The recovery ܴ݁ܿ ܶ  time of a 
certain host is given by: 

 

ܴ݁ܿ ுܶ ൌ 	 ቆ ሺܽݐܶ െ ሻ݁ܶܽ


ୀଵ
ቇ




ୀଵ
 (7) 

 
where ܴ݁ܿ ܶ  is derived by summing up the 
difference between the total execution time and 
elapsed time of n applications running in m VMs. 
The recovery time of a host is then compared 
against the migration time ݃݅ܯ ܶ	of the VM in 
question. Whether to migrate a given VM or not is 
governed by: 

 
ሻܯሺܸ݁ݐܽݎ݂݃݅݉

ൌ ൜
,݁ݑݎݐ ܴ݁ܿ ுܶ  ݃݅ܯ	 ܶ

,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ  
(8) 

 
In cases where the recovery time of a host 

is greater than the migration time, the Migration 
Handler needs to decide which VM to migrate 
according to the migration list. Recall that hosts are 
also classified according to their dominant attribute 
to facilitate matching between them and the VMs 
they host. In the case of overloading, the Cloud 
Manager needs to find the difference between the 
overloaded host’s current utilization level and the 
upper threshold such as: 

 
݂݅ܦ ௨݂ ൌ ௧ݐݏܪ െ  ௨ (9)ݐݏܪ

For each overloaded host, their VM list is 
traversed and sorted according to their dominant 
attributes (e.g. CPU, RAM) in a decreasing order. 
For the purpose of bringing the utilization level of 
the host below its threshold as much as possible, 
the list is then searched for the VM whose 
proportion is greater than or equal to the host’s 
excess load and is then selected as candidate for 
migration; if no such VM is found, the one at the 
top of the list shall be selected. Doing so will 
alleviate the host of overloading in its most 
dominant attribute since our approach always 
consider the multi-dimensionality of compute 
resources in a data center. The entire process of 
selecting the VM for hotspot alleviation is shown in 
Algorithm 4. 

 

 
Algorithm 4. The hotspot alleviation approach. 

 

3.4.2 Host Selection and VM Migration 

Once the VMs that need to be migrated 
have been chosen, the next step is to assign them to 
their new hosts. The strategy for choosing the hosts 
for the migrating VMs is concerned not only about 
finding hosts that can support them but also to 
maintain a desirable system performance by 
keeping the disruption as little as possible. For this 
purpose, we present a host selection approach 
which considers the overhead involved if a given 
VM will be migrated to a certain Host. The 
overhead of assigning a VM to a host is given by: 

 

ܱ݄݁ܽ݀ ൌ ቆ ሺܽݐܶ െ ሻ݁ܶܽ


ୀଵ
ቇ 

∗ ௗ݅ݐܴܽ  ݃݅ܯ ܶ 
where 

(10) 

ௗ݅ݐܴܽ ൌ ௌܯܸ
ு௦௧ܯܸ/

 (11) 

 
where ∑ ሺܽݐܶ െ ሻ݁ܶܽ


ୀଵ  is the total 

remaining time of n applications running on a VM, 
ௗ݅ݐܴܽ   is the ratio of the VM’s utilization level 
against that of the potential target host, while 
݃݅ܯ ܶ is the migration time of such VM.  Finally, 
the VM will be assigned to the host which has the 
lowest overhead. We emphasize that our approach 
captures the different capacities of the physical 
server, thus it is designed to handle heterogeneity 
among machines in a cloud data center. The process 
of host selection for the migrating VMs is shown in 
Algorithm 5. 
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1. Algorithm: Host Selection 
2. Input:  MigList, Hostlist 

//migration list, host list 
3. Output: MigMap //migration map 
4.  
5. For each vm in MigList { 
6.   minOhead = max 
7.   For each host in HostList { 
8.     oHead = GetOverHead(vm, host) 
9.     if oHead < minOhead { 
10.       minOhead = oHead 
11.       migHost = host     
12.  } 
13.   } 
14.   MigMap.add(vm,host) 
15.   MigList.remove(vm)   
16. } 
17. Return MigMap //new host assignment 

 
Algorithm 5. The host selection approach 

 
4. IMPLEMENTATION AND EVALUATION 

RESULTS 
4.1 Simulation Setup 

Due to the hardware and software complexities and 
the massive size of a real-world cloud data center, 
testing it using physical machines would be very 
costly and impractical; thus, simulation has been a 
widely-used approach for system evaluations. 
Regarding the simulation platform, we used 
CloudSim toolkit [16] which is a simulation 
framework made in Java. After we modified and 
extended parts of the simulator, we implemented 
our proposed approach and performed extensive 
simulation equivalent to a 24-hour operation of a 
data center. The simulated data center is set by 
using realistic models of Cloud Applications, VM 
instances, and Host machines. With regards to the 
applications, we used specifications from the 
Google App Engine instances [17]. For the 1050 
VM instances, we deployed 5 types of VM 
instances with characteristics similar to the Amazon 
EC2 instance types [18] shown in Table 1. 
 

Table 1. VM instances specification. 

Instance 
Type 

CPU 
(1 compute unit = 

1.0 Ghz) 

RAM 
(GB) 

BW 

C4 High-
CPU Extra  
Large 

4 cores with 16 
EC2 Compute 
Unit 

7.5 1000mbps 

M2 High 
Memory/IO 
Extra 
Large 

2 core with 6.5 
EC2 Compute 
Units 

17.1 500 mbps 

High I/O 
Quadruple  
Extra 
Large 

16 cores with 35 
EC2 Compute 
Units  
each 

60.5 10 gbps 

M1 GP 
Large 

2 cores with 4 
EC2 Compute 
Units each 

7.5 500 mbps 

M1 GP 
Small 

1 core with 1 
EC2 Compute 
Units each 

1.7 250 mbps 

 

For the heterogeneous data center setup, 
we considered 300 physical machines with 
specifications and power consumptions (in Watts) 
shown in Table 2. The server variants are: 1) 
Fujitsu PRIMERGY RX300 S7 (8 cores, Intel Xeon 
E5-2660 2.2 GHz processor, 16GB RAM), 2) IBM 
System X3500 M4 (8 cores, Intel Xeon E5-2680 
2.7 GHz processor, 16GB RAM), 3) HP ProLiant 
DL380 G7 (6 cores, Intel Xeon X5675 3.07 GHz 
processor, 12GB RAM), 4) HP ProLiant ML110 
G5 (2 cores Xeon 3075 2660 MHz processor, 
4GB), 5) HP ProLiant ML110 G4 (2 cores Xeon 
3040 1860 MHz processor, 4GB). The production 
of multi-core CPUs and improved virtualization led 
to the production of modern servers equipped with 
large amounts of memory, which begins to 
dominate their power consumption [19]. 
Furthermore, the recent hardware advancement and 
the complexity of modeling power consumption by 
modern multi-core CPUs makes building precise 
analytical models a complex research problem [20]. 
This is same reason we utilize real data on power 
consumption provided by the results of the 
SPECpower [21] benchmark instead of using an 
analytical model of power consumption by a server. 

 
Table 2. Server power consumption at varying loads. 

Server 
Variant 

Target Load (%) 
100 90 80 70 60 50 40 30 20 10 0 

RX300 S7 255 217 187 156 134 117 105 95 85 75 54

X3500 M4 247 233 217 196 169 142 123 107 95 86 57

DL380 G7 222 199 180 163 147 136 126 116 106 94 52

ML110 G5 135 133 129 125 121 116 110 105 101 97 94

ML110 G4 117 114 112 108 106 102 100 96 93 90 86

 
4.2 Evaluation Results  

Prior to the evaluation of our proposed 
approach with other strategies, we first conducted 
an experiment regarding its performance under 
different configurations. In this initial experiment, 
we would like to know first how our multi-level 
matching approach would benefit the data center 
with regards to a number of metrics. In Table 3, we 
show the different scenarios which include: a) 
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Without Matching - requests are assigned to VMs 
and VMs are assigned to hosts using the First Fit 
Decreasing approach of bin packing, b) App/VM 
Matching – requests are assigned to VMs which 
match their attributes, c) App/VM/Host Matching – 
initiates another level of matching in which VMs 
are assigned to hosts that are similar to their 
characteristics.  

As shown in the table, imposing a policy 
which concerns the consolidation of VMs to client 
requests play an important role in improving the 
efficiency and performance of a cloud datacenter. 
By classifying applications according to their 
attributes and assigning them to VMs with 
corresponding resources, crucial parameters such as 
energy consumption, VM migrations, SLA 
violation, and host utilization were significantly 
improved. Seeing the remarkable difference, we 
further applied another level of matching between 
VMs and Hosts; expectedly, improvements are 
more pronounced as compared with the previous 
configuration which only involves single-level 
entity matching. The result of the initial experiment 
brings us to a decision to indeed utilize the 
configuration for two-level entity matching in the 
final performance evaluation, hence we call it 
TAbM. 
 

Table 3. Effect of entity (App/VM/Host) matching. 

 

Metric 
Without 

Matching 
1-level 

Matching 
2-level 

Matching 

Energy Consumption 
KWh 

239.83 237.17 230.87 

VM Migrations 12987 9422 9139 

SLA Violation% 2.752 2.72 2.525 

Host Shutdowns 2198 1784 1778 

Matched VM/App/Host 1015 1050 1050 

Host OverUtilization 83100 67265 58884 

Host Underutilization 37867 36800 37130 

Requests Completed 1494 1506 1528 

Ave. Host Utilization% 93.93 96.17 95.84 

Utilization Excess% 6.03 3.79 4.12 

Ave Host Consumption 
Wsec 

2664.82 2404.88 2614.38 

Average MIPS 
Allocated to VM % 

82.26 83.43 83.11 

Average RAM 
Allocated to VM % 

94.68 92.34 91.88 

Average BW Allocated 
to VM % 

92.5 92.44 92.41 

 
After we derive the best configuration for 

our proposed scheme, we evaluate its performance 

by comparing it with other methods presented in 
[20]. The methods chosen for comparison are: a) 
Threshold-Based (THR) approach, which requires 
setting the upper limit for host utilization and 
keeping the total CPU utilization below such 
threshold. b) Inter Quartile Range (IQR), using the 
given CPU utilization history it measures the 
dispersion of data which is used to decide on host 
overloading. c) Median Absolute Deviation 
(MAD), which uses residuals from the CPU 
utilization data’s median. The derived value is then 
used to set the upper utilization threshold for 
detecting overloaded hosts. d) Local Regression 
(LR), which builds a trend line that estimates the 
next observation for the CPU utilization which will 
decide if a host is overloaded. e) Random Selection 
(RS), which randomly selects a number of VMs and 
migrating it to less loaded hosts. f) The Non Power-
Aware (NPA) policy, which does not employ 
energy efficient techniques and assumes 100% 
CPU host utilization thereby consuming maximum 
power at any given instance. g) Dynamic Voltage 
and Frequency Scaling (DVFS), which uses 
dynamic voltage scaling to reduce the energy 
consumption of hosts. Methods a to d use the 
Minimum Migration Time Policy (MMT) policy to 
select a VM which requires the least time to 
complete a migration compared to other VMs 
hosted by the physical server. To better interpret the 
results, we divide the performance metrics into two 
groups, the minor metrics and the major metrics. In 
Table 4, we compare the aforementioned strategies 
against our proposed approached using the minor 
metrics. For these metrics however, it should be 
noted that some are not applicable to NPA and 
DVFS due to their lack of power-awareness. 

Starting with the Average Host 
Consumption, TabM has the lowest energy 
consumption at the host level with a value of 
2368.61, while the NPA approach has the highest at 
17578.23 due to its lack of power-aware capability. 
As for the number of VM Migrations, LR has the 
lowest at 8807 while that of THR is the highest at 
39640. As will be shown in the succeeding 
discussions, the frequency of migrations has a 
crucial effect in the overall performance and 
availability of services in a cloud system; thus, 
minimizing them is an important part of keeping 
the optimum performance of a data center. For the 
number of Host Shutdowns, IQR has the highest at 
6797 while LR has the lowest at 1730. This metric 
refers to the number of times a host shutdown was 
carried out; therefore, this also tells us the number 
of times that hosts are required to be turned on 
whenever they are required and turned off again 
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after serving the requests. As already known, the 
delays involved in turning on a server has a 
significant impact on the occurrence of SLA 
violations in a cloud system. As for the next metric, 
at 1050 TabM has the most number of Matched 
Deployments with regards to the Applications, 
VMs, and Host. This is consistent with the 
intentions of our proposed consolidation approach 
which is to consolidate the most appropriate VMs 
to client requests, and place VMs to Hosts that 
share the same attributes in terms of compute 
resources in order to reduce resource excess. Next 
is the Number of Requests Completed, this refers to 
the number of client requests that have been fully 
executed within the given simulation period. As 
shown, MAD has the most number of completed 
requests at 1774 while TabM comes at 1728. In the 
latter discussions, its relation to host utilization will 
also be tackled. The next metric is the Average 
Percentage of resource (CPU, RAM, BW) requests 
that have been completely allocated to the clients. 
As shown, TabM was able to deliver the highest 
percentage of compliance to user requests. 
However, due to the volume of user requests 
coming into the cloud system and the limitations of 
the physical hardware itself, the compute 
requirements of the applications are not always 
fully allocated upon request. Still, the extents to 
which requests are met are also an important factor 
in the efficiency of resource provisioning. The next 
metric is the number of times Host Overutilization 
occurred; this refers to the instance where a host 
gets loaded past its maximum threshold. As shown, 
RS has the lowest at 55028, TabM comes next with 
58884, while THR is the highest with 92149. As for 
the Host Underutilization, TabM has the lowest 
number of occurrences at 32730 while IQR has the 
highest at 37109. In the latter discussion, their 
relationship with the major performance metrics 
will be analyzed. 

Before we go further, we would like to 
point out that the SLA Violation metric does not 
apply to NPA and DVFS. This is for the reason that 
both approaches have no capabilities to 
dynamically optimize resource allocation, as well 
as monitoring SLA violations and energy 
consumption. In Fig. 4 it is shown that TabM has 
the lowest SLA Violation of about 2.5%, while 
THR has the highest with 5%. As the result shows, 
it is consistent with the outcomes of VM 
Migrations, Host Shutdowns, and Host 
Overutilization in Table 4. This shows that 
effectively handling the occurrences of those three 
events would result to a lower SLA Violation rate 
and higher QoS. 

 

 
 

 
Fig. 4. Comparison of SLA Violation rate 

 
We show in Fig. 5 the comparison in terms 

of Energy Consumption. As expected NPA has the 
highest energy consumption, while TabM has the 
lowest, which conforms to its low Average Host 
Consumption in Table 4. Moreover, due to its 
ability to match Apps, VMs, and Hosts in terms of 
their requirements and attributes, virtual resources 
are efficiently provisioned; thereby reducing 
underutilization and minimizing resource excess, 
which leads to a fewer number of active servers. 

 

 
 
Fig. 5. Overall energy consumption. 

 
In Fig. 6, the data center’s Average 

Utilization level for each of the aforementioned 
strategies is compared. Looking back at Table 4, 
the result for TabM agrees with its Number of 
Requests Completed and Average Percentage of 
resources allocated to each request. This shows that 
a higher number of completed requests are an 
indication that resources are efficiently provisioned, 
thus keeping the hosts optimally utilized. 
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Fig. 6. Average utilization of hosts. 

 
Shown in Fig. 7 is the result for the 

Utilization Excess. This metric refers to the average 
percentage of resources that are considered excess 
once the host’s utilization level reaches the 
maximum and can no longer accommodate 
incoming requests. In the figure, TabM has the 
lowest percentage of excess resource whereas 
DVFS has the highest. Looking at TabM, it is 
consistent with the result for its Host 
Overutilization and Host Underutilization which 
means that compute resources are efficiently 
utilized with regards to the minimum and maximum 
thresholds. 

 

 
Fig. 7. Average utilization excess. 

 
Shown in Fig. 7 is the result for the 

Utilization Excess. This metric refers to the average 
percentage of resources that are considered excess 
once the host’s utilization level reaches the 
maximum and can no longer accommodate 
incoming requests. In the figure, TabM has the 
lowest percentage of excess resource whereas 
DVFS has the highest. Looking at TabM, it is 
consistent with the result for its Host 
Overutilization and Host Underutilization which 
means that compute resources are efficiently 
utilized with regards to the minimum and maximum 
thresholds. 

 

5. CONCLUSIONS 
Being the core of a cloud infrastructure, 

the performance of a data center directly affects the 
quality of service provided to the clients. These 
facts make it a basic research issue, which is to 
increase the resource utilization, decrease the 
excess resources, and to improve the performance 
of a data center while at the same time keeping the 
energy consumption at its most efficient. In this 
work, we emphasized the importance of VM 
Assignment and VM Placement, and their influence 
in the efficient consolidation of virtualized 
resources in a cloud data center. Although hotspot 
mitigation is also addressed by our proposed 
solution in general, we put emphasis on the 
resource provisioning approach that we presented 
on this paper. As opposed to the common practice 
of resource provisioning and load balancing which 
are primarily based on CPU utilization, we present 
a multi-dimensional approach which considers all 
of the compute resources available. The approach 
enabled the classification of entities according to 
their attributes which leads to better 
accommodation of requests, VM consolidation, and 
Host assignment. Furthermore, the classification 
procedure also allowed us to perform a matching 
strategy which designates application requests to 
the most appropriate VM for execution and also 
deploying the VMs to hosts of the same 
characteristics based on their resource 
requirements. Based on the results, we are able 
validate the realization of our objectives by 
comparing our work, TabM, to other previously-
proposed approaches using a number of 
performance metrics. In terms of SLA Violation 
rate, TabM is able to outperform its counterparts 
which also conform to its number of VM 
Migrations, Host Shutdown, and Host 
Overutilization. It also had the lowest overall 
Energy Consumption as supported by its low 
Average Host Consumption. With regards to the 
Average Utilization of the entire data center, it also 
coincides with the number of Completed Requests 
and the Average Percentage of allocated resources 
to client requests. Finally, we are also able to 
minimize the amount of idle resources by keeping 
TabM’s Utilization Excess the lowest among other 
approaches. Putting it altogether, it is indeed 
important to employ an excellent approach for 
provisioning virtualized resources. By doing so, 
efficiency in cloud data centers can be achieved 
which leads to improved performance and lower 
energy consumption. 
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APPENDIX: 
 
 

 
 

 

Fig. 1. The resource consolidation approach. 

 
Table 4. Comparison of minor performance metrics. 

 
Metrics TabM THR IQR MAD LR RS NPA DVFS 

Ave Host 
Consumption Wsec 

2368.61 3093.65 3221.24 3078.42 2614.38 2540.58 17578.23 13759.74

VM Migrations 9139 39640 38529 37860 8807 8850 N/A N/A

Host Shutdowns 1778 6675 6797 6743 1730 1751 N/A N/A

Matched 
Deployments 

1050 1016 1002 969 983 1017 996 1014

Requests 
Completed 

1728 1684 1708 1742 1552 1512 1426 1774

Average CPU 
Allocated to VM % 

83.11 81.75 81.86 82.13 82.37 82.6 80.56 78.94

Average RAM 
Allocated to VM % 

96.88 94.68 96.56 96.13 91.36 92.23 87.99 87.89

Average BW 
Allocated to VM % 

95.41 92.78 92.7 92.65 92.35 92.39 91.69 91.69

Host Overutilization 58884 92149 89299 85275 61204 55028 N/A N/A

Host 
Underutilization 

32730 34403 37109 33354 32810 36023 N/A N/A

 
 


