
Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

418

TOWARD IMPLEMENTATION OF ONEM2M BASED
IOT PLATFORM

1VINCENTIUS CHRISTIAN ANDRIANTO, 2JUNHUY LAM, 3RYAN NATHANAEL SOENJOTO
WIDODO, 4SANG-GON LEE*, 5HOON-JAE LEE, 6HYO-TAEK LIM

Department of Ubiquitous IT, Division of Computer & Information Engineering, Dongseo University,

Busan, South Korea

E-mail: 1vincent.ch93@gmail.com, 2timljh@msn.com, 3ryannswidodo@gmail.com,
4nok60@dongseo.ac.kr, 5hjlee@dongseo.ac.kr, 6htlim@dongseo.ac.kr

*corresponding author

ABSTRACT

A Many organizations have its own proprietary Internet of Things (IoT) architecture. This creates
additional processes such as system extension, integrating new data, managing device, and adding security
become difficult, especially when it involves multiple platforms. In order to solve this problem, the
standardized oneM2M architecture was initiated. OCEAN is an IoT platform based on oneM2M standards.
This work presents an implementation of oneM2M based IoT platform using OCEAN, in which the system
is built from the proposed smart home scenario.

Keywords: Internet of Things, M2M, MQTT, OCEAN, oneM2M.

1. INTRODUCTION

Internet of Things was first declared in 1999 by
Kevin Ashton in the context of supply chain
management [1], the definition of things has
changed as technology evolved. However, the main
goal remains the same, which is to provide a
solution that involves communication between the
machines and automates without human
intervention [2].

Task of the IoT device management is very
challenging due to the heterogeneity of things in
terms of communication, types of data generated,
access control for users, ease of adding and deleting
IoT device description, and etc. [3].

These issues make it difficult to extend systems
to support new services, integrate new device or
data, and interoperate with other Machine-to-
Machine (M2M) systems. The “oneM2M Global
Initiative” proceed to standardize a common M2M
service layer platform for globally applicable and
access-independent M2M services [4].

One of the IoT platform based on oneM2M
standards is OCEAN (Open Alliance for IoT
Standard). OCEAN aims to develop IoT platforms,
products, and services by the widespread adoption
of IoT standards-compliant. OCEAN has IoT server
and device platform; namely, Mobius and &Cube
respectively [5].

In this paper, we demonstrated a reference
exploitation of OCEAN, to implement a simple
Smart Home IoT service scenario. For the first step
of implementation, we modeled physical things into
virtual things based on oneM2M entity modeling.
The second step is to design a communication and
message architecture between each entity. The third
step is to build the system architecture based on the
existing entity. The final step is to test the whole
system using a use case scenario.

This paper is organized as follows. In Section II,
we explain the background and related works of our
approach. In Section III, we address design and
implementation. In Section IV, we describe our
proposed system architecture. Finally, Section V
concludes the paper and discusses future work.

2. BACKGROUND AND RELATED WORK

2.1 Message Queue Telemetry Transport
(MQTT)

MQTT was invented by Dr. Andy Stanford-Clark
from IBM, and Arlen Nipper from Arcom (now
Eurotech) in 1999. It is a connectivity protocol for
M2M or IoT. MQTT was designed as an extremely
lightweight publish/subscribe messaging transport.
It has low power usage, small header, and efficient
distribution to one or many clients [6].

The principle of publish/subscribe messaging
transport is entities which are interested in certain

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

419

information will register their interest. The process
of registering an interest is called subscription, and
the interested entity is called subscriber. Entities,
which want to produce certain information, called
publishers. There is a broker between these two
entities, which ensures data delivery from the
publishers to the subscribers [7].

Publisher Broker

pub (topic, data)

Subscriber

sub (topic)

pub (topic, data)

Figure 1:Topic-based pub/sub system.

There are three kinds of pub/sub systems: topic
based, type based, and content-based [8]. This paper
is using a topic-based as the pub/sub systems. With
topic-based systems, the list of topics is known in
advance, e.g., during the design phase of an
application. The publishers and subscribers both
know which topic they want to publish or subscribe
to.

Topic-based pub/sub system is the simplest
system compared with the other. The
communication model of a topic-based pub/sub
system is shown in Figure 1. A subscriber sends a
sub(topic) message to the broker, whereas a
publisher sends a pub(topic, data) message which
contains the data to be published to its related topic.
The broker will transfer the pub(topic, data)
message to the subscriber if the topic is matched. A
single message from the publisher may be
distributed to multiple subscribers, as long as the
topic is matched [7].

MQTT supports basic end-to-end Quality of
Service (QoS) [9]. MQTT has three QoS levels,
depending on how reliable messages should be
delivered to its receiver. QoS level 0 is the simplest
one, where messages are delivered either once or
not at all, no retransmission or acknowledgment is
defined. QoS level 1 provides a more reliable
transport, messages will be retransmitted until
acknowledged by the receiver. The highest QoS,
level 2, ensures not only the reception of the
messages but also that they are delivered only once
to the receiver. It's up to the application to select
which QoS should they use for the systems [7].

2.2 OneM2M: An M2M Standards

Currently, many industries rely on vertically
specified machine-to-machine (M2M) solutions that

typically designed for that industry’s service. More
industries are developing their own M2M system.
Thus, there is a need to develop a horizontal
common platform across of industry, which can
increase the efficiency of M2M deployment. A
common M2M service platform also needed to
handle heterogeneous M2M systems.

oneM2M is an international partnership project,
established in order to maintain the M2M service
layer specifications related to M2M solutions. This
common service layer is used for various hardware
and software to ensure M2M devices can
communicate on a global scale, this is the main
objective of the oneM2M.

The oneM2M system is formed by functional
entities called nodes. These are known as
application dedicated node (ADN), application
service node (ASN), and infrastructure node (IN).
Each node consists of one oneM2M common
service entity (CSE) or one oneM2M application
entity (AE). The CSE is an entity that has a set of
service functions called common services functions
(CSFs). The AE is an entity that provides
application logic for end-to-end M2M solutions [1].

oneM2M used a resource-based data model [11].
All of the oneM2M services are represented as
resources. A resource is a data structure that can be
uniquely addressed by a uniform resource identifier
(URI). Figure 2 shows the resources structure of
oneM2M services. oneM2M use a tree-based
resources structure to explain the connection
between each resource. <CSE> can have multiple
<AE>, but one <AE> has to be under one <CSE>.
Each <AE> can have multiple <container>
indicating the data inside that <AE>. Each
<container> has one <contentInstance> which
represent a data instance in the container. The
operations of the resources can be achieved by the
(CREATE, RETRIEVE, UPDATE, and DELETE)
CRUD commands [10].

<CSE>
<AE>

<container1>

<container 2>

<contentInstance>

<contentInstance>

Figure 2: An example of oneM2M resource structure.

oneM2M has adapted some of the standardized
communication protocol, such as MQTT,
REpresentational State Transfer (REST), and
Constrained Application Protocol (CoAP). These

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

420

three protocols are mentioned in oneM2M technical
specifications [11]. In this paper, we used MQTT
and REST as our communication protocol.

MQTT connection in oneM2M uses parameters
that are serialized into the payload of an MQTT
publish packet. It has request and response
primitives. When an MQTT client sends a request
message to the broker, the MQTT receiver response
it with a response message. The request shall
contain the mandatory parameters such as
operation, to, from, and request identifier [11].

An example of an MQTT request message
serialized using JSON is: {"op": 1, "to":
"//xxxxx/2345", "fr": "//xxxxx/99", "rqi": "A1234",
"ty": 18, "pc":{"m2m:sch": {"rn":"schedule1", "se":
"* 0‐5 2,6,10 * * * *"}}, "ot": 20150910T062032}.

An example of an MQTT response message is:
{"rsc": 2000, "rqi": "A1234", "pc":
{"m2m:sch":{"se": "* 0‐5 2,6,10 * * * *"}}, "to":
"//xxxxx/2345", "fr":"//xxxxx/99"}. Where op is a
short name of operation parameter, rsc is a short
name for response status code parameter, to is a
short name of to parameter, fr is a short name of
from parameter, rqi is a request identifier, ty is a
resource type, pc is a content, and ot is an
originating timestamp [11].

2.3 OCEAN: An IoT Platform Based on
oneM2M Standards

OCEAN is an IoT platform based on oneM2M
standards initiated by Korea Electronics
Technology Institute (KETI) in 2010. OCEAN aims
to develop and commercialize oneM2M standards-
compliant platforms, products, and services.
OCEAN has a server and gateway platform namely
Mobius and &Cube. There are several variants of
each platform provided by OCEAN.

Mobius server platform manages information of
various IoT devices installed. Mobius controls
access of devices, manages authentications and
users, and provides many IoT services such as
MQTT server, HTTP server, and database
connector. Mobius platform acts as a bridge
between devices and applications in order for them
to communicate with each other. The device sends
the data to the server platform, then the platform
will store the data and forwards it to the application
with the matching access rights. The server contains
four main parts, which are Mobius MQTT proxy,
MySQL database, Mobius REST Server, and
MQTT broker.

&Cube provides common service functions for
IoT systems, working together with the Mobius
platform, including sending, managing, and
receiving control commands for end-node devices.
&Cube supports various protocol bindings in order
to communicate with the Mobius, including REST,
MQTT, and CoAP [5].

3 DESIGN AND IMPLEMENTATION
SMART HOME SCENARIO

Our IoT Smart Home scenario consists of IoT
server, IoT gateway, IoT end-user application, end-
node device, one sensor and one actuator. We use
basic temperature and humidity sensor, and Light
Emitting Diode (LED) for the actuator. These
sensor and actuator are connected directly to the
end-node device. When there is a 1.0 point change
in temperature or humidity, the end-node device
will publish the data to the IoT server through IoT
gateway. Our IoT end-user application can add,
view, edit, or remove resources inside the server.
For example, it can view the current value of the
temperature and humidity sensor or turn on or off
the LED. Registration of the resources is done by
the IoT gateway.

3.2 Resource-based Information Modelling

From our scenario, we model our system to the
resource-based information. In oneM2M system,
the information inside the network will be stored in
the system as resources as mentioned in II. In our
case, the resource-based information will be stored
inside the MySQL database reside at the server. In
order to manipulate the resource information,
actions such as CRUD can be applied.

Defined resource types in our system are the
system resource and application data resource.
System resources are Common Service Entity
(<CSE>) the Mobius server and Application Entity
(<AE>) the &Cube gateway. Application data
resources are sensors and actuators. We model our
sensor and actuator as a <container>. We named
our temperature sensor (<temp1>), humidity sensor
(<hum1>), and the LED (<led1>) respectively, their
value will be stored inside the <contentInstance> of
the respective container. Resource tree structure of
smart home scenario is shown in Figure 3.

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

421

(b) AE (a) CSE

(c) container (d) contentInstance

Figure 3: Resource tree structure of smart home

scenario.

When resources are created in the server’s
database, attributes and child resources of the
respective resource also created at the same time.
Square boxes with round corners are used for
attributes and square boxes are used for resources as
shown in Figure 4 [11].

Figure 4: Diagram of respective resources.

3.3 oneM2M Communication Protocol

In order to connect each resource reside in the
system, it requires service layer function in
oneM2M architecture. The oneM2M protocol
specification will cover resource details, procedures
among oneM2M entities, and message sequences
that cross the reference points. After we have our
resource-based structure, the next step is to design
how these system resources are connected with
each other and processes application data resources.

OCEAN has several variants of server and
gateway platform. Each of them has their own
specifications. In this paper, we used Mobius:
Yellow Turtle version 2.0.5 for our server and
&Cube: Thyme version 1.5 for the gateway. These
two platforms use MQTT for their communication
channel. We chose MQTT over CoAP because
MQTT runs over Transmission Control Protocol
(TCP) so that it become more reliable compared to
CoAP. For the security aspect, we can enhance the
security of the transport level of TCP using
Transport Layer Security (TLS).

Communication between gateway and server
runs through MQTT connection. As mentioned in
section II, MQTT uses pub/sub system as their
communication scheme. End-node device and
gateway are connected directly through a Universal
Serial Bus (USB) cable. This can be replaced with
another connection such as Ethernet or Wi-Fi. End-
node device connected directly to the sensors and
actuators. The sensors will publish the data to the
gateway only when there is a change in the sensor’s
value.

Figure 5: AE resource registration to CSE.

Mobius also provides a REST API through the
HTTP server in order to communicate with the end-
user application. The end-user application will
request or provide data to the Mobius server by
using CRUDN commands. It means that end-user

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

422

application can view and modify the resource on the
server. These two communication channels operate
independently.

Figure 6: Container resource registration to CSE.

Resource registration must be done first before
the system resources can communicate through
MQTT connection. The registration can only be
done through the REST API by using CREATE
command. Resources created are stored inside the
server’s database as shown in Figure 5 and 6. After
all resources registered on the server, the gateway
can start to pub/sub to the respective <container>.

In the MQTT protocol, each MQTT client shall
subscribe to the MQTT broker to receive messages
[11]. After each MQTT client connects to the
broker, it can start to communicate through MQTT
connection. Topics that are used between MQTT
client are “/oneM2M/req/<originator>/ <receiver>”
for the request messages and
“/oneM2M/resp/<originator>/<receiver>” for
response messages. The message transferred
between these two clients is serialized using JSON
as mentioned in II. For example, the request
message published by <AE> in Figure 8 will look
like this: {"op": 1, "to": "//cse-name/ ae-
name/conName", "fr": "//AE-ID", "rqi": "A1234",
"ty": 4, "pc":{"m2m:cin":{"con": "content"}}, "ot":
20160910T073423}. It means that the request is
from <AE> with ID “AE-ID” to the <container>
named “conName” located under “/cse-name/ae-
name/conName” and the message is “content”.
Thus, the receiver shall response with a response
message, which will be look like this: {"rsc": 2001,
"rqi": "A1234", "pc":
{"m2m:cin":{"con":”content“}}, "to": "//cse-
name/ae-name/conName","fr":"//CSE-ID"}, which
means the response code is “2001” for the request
message from originator.

The end-user application can do the CRUD
command through the HTTP connection. It can
READ the sensor’s data using HTTP GET
command or update the actuator’s data using HTTP
POST command to the respective container as
shown in Figure 7.

Figure 7: Message communication diagrams of IoT
system.

4 SYSTEM ARCHITECTURE

We designed our architecture based on the
service and communication diagram as shown in
Figure 7. Our device architecture has four main
parts, which are an IoT application, IoT server, IoT
gateway, and end-node device.IoT Server

The Mobius server contains Mobius MQTT
Proxy, MySQL database, and Mobius REST Server.
Mobius: Yellow Turtle version 2.0.5 was setup on a
computer running Linux OS Ubuntu Server 14.04.4.
The database used is MySQL version 5.6.30. The
requirement of Mobius’s web server that provides
the REST API and the Mobius’s MQTT proxy is
node.js version 4.4.3. The last component is the
MQTT broker that provides the communication
channel for the gateway to transfer the information
to the server.

In Figure 8, it shows that there are two Linux
Container Server with two Internet Protocol (IP)
addresses, 10.0.3.20 (Container 1) and 10.0.3.21
(Container 2) respectively. Container 1 is hosting
the Mobius Webserver, MySQL database, and
MQTT proxy, while Container 2 is hosting only the
MQTT broker.

The Mobius web server is mainly used to
perform three tasks. The first one will be providing
the REST API to the mobile/web applications (user
interface) to perform CRUDN commands. The

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

423

second task will be retrieving the data from the
database and converting it to the XML/JSON
format when the mobile/web applications request
for a particular information. The third task is
receiving the data in XML/JSON format from the
application and converting it to the database format
then storing it there. The Mobius webserver is
running on port 7579. In MySQL database, all of
the tables were created in accordance with the
oneM2M specification.

LX
C

Cl
ou

d
Se

rv
er

Figure 8: Device architecture of IoT system.

On the MQTT side of the Mobius server, it
requires MQTT broker and MQTT proxy, and both
of these services have to be on two different
servers. In Figure 8, it shows that both MQTT
proxy and gateway can connect to MQTT broker
through port 1883. When the gateway sends data to
the MQTT broker, the MQTT broker then forwards
these message to the MQTT proxy. MQTT proxy
then will translate the messages and store them in
the database. This communication also works in the
opposite direction. MQTT broker will also reply to
the message from the gateway using a oneM2M
response status codes as mentioned in [11].

4.2 IoT Gateway

We used Raspberry Pi 2 Model B as our gateway
device. For the platform, we are using &Cube:
Thyme version 1.5. This Thyme variant uses the
node.js framework. &Cube: Thyme connects to the
MQTT broker through port 1883 of the IoT server.
The gateway can modify the value of the
<contentInstance> as well as getting data from it.
The gateway will publish a sensor data to its
corresponding resource, or send the information to
the actuator based on subscribed resource.

Gateway will publish the message to a
topic, and then MQTT proxy will subscribe to that
topic and then store/retrieve the message from the
database. The message transferred in this
connections is in XML/JSON format. MQTT proxy
will do the translation of the XML/JSON files in
order to modify the resource in the database.

4.3 End-node Device

We used Arduino Mega 2560 for our end-node
device in this paper. Sensor and actuator are
connected directly with Arduino’s input/output
(I/O) pin. The Arduino will read the data from the
sensor and then send it via USB serial to the
gateway (Raspberry Pi). The gateway will send the
sensor’s data to the server, and the server will reply
with the acknowledgment status as mentioned in
oneM2M technical specification [11] as shown in
Figure 9. This is opposite for the actuators, where
Arduino will write to the actuator based on the data
received from the gateway. The gateway and end-
node device connected with USB cable, but it can
be replaced with other communication channels
such as Ethernet or Wi-Fi.

Figure 9: Screenshot of message communication between
the gateway and end-node device.

End-node device will publish data to the gateway
if there is any change in the sensor’s value. End-
node device will compare the current value with the
previous one, if there is no change, then it will not
publish the data to the gateway. The data
transferred between the end-node device and the
gateway has a format: “ctname, con”, where ctname
is the container’s name (sensor or actuator’s name),
and con is the content of that container as shown in
Figure 9.

4.4 IoT End-user Application

We made an IoT mobile application runs on
Android Operating System (OS). There are two
main parts of the application. The first one is the
user interface, which contains buttons to edit
sensors or actuators, or change settings of the IoT
system. This user interface allows the user to read

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

424

sensor’s value or send actuator’s value and even
add, edit, or delete sensors or actuators resources as
shown in Figure 10. The second part is object
management, serialization, and deserialization.
Mobius supports XML and JSON format for data
exchange and we choose JSON for the application.
To serialize and deserialize the object we used
FasterXML Jackson. The JSON data received from
the server is deserialized into a custom Java object.
Once it is deserialized, the content can be processed
by the application and displayed to the user. When
sending a data to the server, the application
serializes the content into JSON format and sends it
to the server.

Figure 10: Screenshot of application’s main menu.

Mobius uses Uniform Resource Locator (URL)
to address a resource. For example, to GET a
resource at server.com, with <CSE> name, cse1,
<AE> name, ae1, and <container> name,
temperature1, we will use “http://
server.com/cse1/ae1/temperature1/latest” as the
URL. The string latest at the end of the URL
defines that we want the latest data. Contrary, if we
want to retrieve the first data created for that
resource, we can use “oldest” instead of “latest”.

Figure 11: Screenshot of application’s sensor menu.

Figure 12: Screenshot of application’s control menu.

4. CONCLUSIONS

In this paper, we built a complete IoT system
based on oneM2M specification with OCEAN
platform. A oneM2M architecture incorporating the
entire components prototype implementation. We
built our system from the mobile applications for
end user interface, IoT server setup, and the
gateway with the end-node device.

We put the server on the cloud so that the user
can access and manage the server from anywhere.
As for the gateway, we used the Raspberry Pi 2, so
that we can connect it to the cloud server as well.
We chose the MQTT publish/subscribe protocol as
the messaging between the gateway and server. The
user can access the data on the server through the
easy to use mobile applications. The user can easily
manage, view, and edit the resource inside the
system.

oneM2M as the standardized protocol for the IoT
system, proven to facilitate the system to achieve a
better IoT implementation.

5. FUTURE WORK

Our simple smart home scenario is the starting
step for the bigger IoT system ahead. As for future
work, we are exploring other more use cases, and
adding several gateways, sensors and actuators, or
end-node devices so that our system can be
extended to a larger system.

ACKNOWLEDGMENT
This research was supported by Basic Research

Program through National Research Foundation of
Korea funded by the Ministry of Education, Science
and Technology (Grand no. : NRF-

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

425

2014R1A1A2060021). The fifth Author (Hoon-Jae
lee) was supported by Basic Research Program
through National Research Foundation of Korea
funded by the Ministry of Education, Science and
Technology (Grand no. : NRF-
2016R1D1A1B01011908).

REFRENCES:
 [1] Ashton, Kevin. "That ‘internet of things’ thing."

RFiD Journal 22.7 (2009): 97-114.
[2] Gubbi, Jayavardhana, et al. "Internet of Things

(IoT): A vision, architectural elements, and
future directions." Future Generation Computer
Systems 29.7 (2013): 1645-1660.

[3] Datta, Soumya Kanti, and Christian Bonnet. "A
lightweight framework for efficient M2M
device management in oneM2M architecture."
Recent Advances in Internet of Things (RIoT),
2015 International Conference on. IEEE, 2015.

[4] Swetina, Jorg, et al. "Toward a standardized
common M2M service layer platform:
Introduction to oneM2M." IEEE Wireless
Communications 21.3 (2014): 20-26.

[5] OCEAN: A global alliance based on open
source and IoT standards,
http://www.iotocean.org

[6] MQ Telemetry Transport, http://mqtt.org
[7] Hunkeler, Urs, Hong Linh Truong, and Andy

Stanford-Clark. "MQTT-S—A
publish/subscribe protocol for Wireless Sensor
Networks." Communication systems software
and middleware and workshops, 2008.
comsware 2008. 3rd international conference
on. IEEE, 2008.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and
A.-M. Kernmarrec, “The many faces of
publish/subscribe,” ACM Computing Surveys,
vol. 35, no. 2, pp. 114–131, June 2003.

[9] D. Chen and P. K. Varshney, “QoS support in
wireless sensor networks: A survey.” in
International Conference on Wireless Networks,
2004, pp. 227–233.

[10] Richardson, Leonard, and Sam Ruby. RESTful
web services. " O'Reilly Media, Inc.", 2008.

[11] oneM2M Technical Specifications,
http://www.onem2m.org/technical/published-
documents

