
Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

400

ALERT CORRELATION USING SUPPORT VECTOR
MACHINE FOR MULTI INTRUSION DETECTION SYSTEMS

1XIAOYUN YE, 2MYUNG-MOOK HAN
1 Department of Computer Science, Gachon University, Seongnam, South Korea
 2 Department of Computer Science, Gachon University, Seongnam, South Korea

E-mail: 1yxysun@gmail.com, 2mmhan@gachon.ac.kr

*Corresponding author: Myung-Mook Han

ABSTRACT

This paper presents a new alert correlation model for multiple intrusion detection systems. Based on the
analysis of the complex relationship between the alert information of the intrusion detection system, an alert
fusion model is proposed and used to alert correlation. The SVM algorithm has an advantage in the multi-
dimensional classification, which can further reduce the influence of false positives and false negatives. The
experimental results show that the alert fusion model has high accuracy and low false positive.

Keywords: Alert Correlation, Intrusion Detection System(IDS), Support Vector Machine (SVM)

1. INTRODUCTION
 In the network intrusion detection and
network alert collection always use different types
of intrusion detection systems. Multiple intrusion
detection systems have a greater advantage in the
detection rate than single intrusion detection
system, but we need face with the following
disadvantages:

(1) Different intrusion detection system using
different alert formats, which brings some
difficulties to the alert analysis.

(2) A large number of duplicate alert data and
redundancy data is not conducive to our analysis.

(3) Different intrusion detection systems have their
limitations. This disadvantage can make a large of
false positives and false negative.

(4) Some intrusion behaviors are related to each
other and need to be analyzed.

Data fusion was first used in military affairs. JDL
(Joint Directors of Laboratories) data fusion
working group set up by the US Department of
Defense proposed a general data fusion model –
JDL model [1][2]. Bass proposed an intrusion
detection data fusion model based on JDL [3]. This
model interprets the distributed intrusion detection
task as a synthesis problem of multiple sensor data
under the hierarchical model. The fusion of
intrusion detection data can be understood as
several levels of the data extracted. In this
hierarchical model, the intrusion detection data
source from the data (Data) to information

(Information) and then to knowledge (Knowledge)
three logical abstraction level. This model provides
a good idea for the application of data fusion in
intrusion detection, but only proposes the functional
level and the processing function requirements that
the layers should meet. The paper does not propose
a concrete implementation scheme.

SVM algorithm has good performance on a small
sample, using this advantage in our model can
correct identification and classification different
type of alert information for alert fusion.
 To overcome these disadvantages, this paper
proposes an alert information fusion model based
on the research of data fusion technology. It can
deal with the alert flow and integrate the alerts from
heterogeneous intrusion detection system according
to the complex relationship among alert
information, and use SVM algorithm to identify the
different alert information in the same attack scene.
Base on this model we present the experimental
results.

The remainder of this paper is structured as
follows: Section 2 presents the description of our
related works. We will introduce the proposed
model in detail, and Section 3 presents the
description of our detection model. Section 4
presents the experimental results. Finally, Section 5
concludes and outlines future work.

2. RELATED WORK

 The complex relationship between intrusion
events determines that there will be complex
relationships between intrusion detection system

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

401

alarms, and different fusion methods are adopted
according to the different needs of their
relationship. There are three types of relationship:
temporal relations, concurrency relations, and
synergistic relations.
(1) Temporal relations: alarms that are triggered by
an intrusion event that satisfies a temporal
relationship can be considered to satisfy a temporal
relationship.
(2) Concurrency relations: alarms that are triggered
in the same period. That alarms’ relationship is
called concurrency relationship.
(3) Synergistic relations: There are multiple attacks
from different attackers or attack sources. There is
cooperation between attacks to achieve some attack
intention. There are synergies between the alerts
triggered by the attacks. These attacks or
concurrency for a common goal, or the existence of
a sequence and dependencies.

According to the above characteristics, we learn
from the general process of JDI model shown in
Fig.1.
 But this model is not complete; it can’t be
applied to the actual information fusion. Such as the
process of merge single-to-multiple alerts and
merge multiple-to-single alerts, the same source IP
may contain multiple attack information, if the
attackers use many meaningless attacks to hide the
true attack, we can’t find them. Intrusion detection
systems also have many false positive, so we need
to handle that carefully. That disadvantages can
make any help for our next analysis. We need to
make some change for the model.

In machine learning, support vector machines
(SVMs, also support vector networks [4]) are
supervised learning models with associated learning
algorithms that analyze data used for classification
and regression analysis. Given a set of training
examples, each marked for belonging to one of two
categories; an SVM training algorithm builds a
model that assigns new examples into one category
or the other, making it a non-probabilistic binary
linear classifier. An SVM model is a representation
of the examples as points in space, mapped so that
the examples of the separate categories are divided
by a clear gap that is as wide as possible. New
examples are then mapped into that same space and
predicted to belong to a category based on which
side of the gap they fall on.

We use some open source intrusion detection
system. Such as Snort IDS, Bro IDS, and OSSEC.

Snort is a free and open source network intrusion
prevention system (NIPS) and network intrusion
detection system (NIDS) [5] created by Martin
Roesch in 1998 [6]. Snort is now developed by

Sourcefire, of which Roesch is the founder and
CTO [7], and which has been owned by Cisco since
2013[8][9].

Figure 1: General Process Of JDI Model

Bro While focusing on network security

monitoring, Bro provides a comprehensive platform
for more general network traffic analysis as well.
Well ground in more than 15 years of research, Bro
has successfully bridged the traditional gap
between academia and operations since its
inception. Today, it is relied upon operationally in
particular by many scientific environments for
securing their cyberinfrastructure. Bro's user
community includes major universities, research
labs, supercomputing centers, and open-science
communities [13].

OSSEC is a free, open-source host-based
intrusion detection system (HIDS). It performs log
analysis, integrity checking, Windows registry
monitoring, rootkit detection, time-based alerting,
and active response. It provides intrusion detection
for most operating systems, including Linux,
OpenBSD, FreeBSD, OS X, Solaris, and Windows.
OSSEC has a centralized, cross-platform
architecture allowing multiple systems to be easily
monitored and managed [14]. For example, when

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

402

we handle the process of alert fusion, if the false
positive is present in the alert data, the result of our
fusion will be poor, and the result will be
unreliable. We need a mechanism to reduce this
condition. According to the characteristics of SVM,
we use it to filter the false positive in the alert
database.

The data set will be divided into two parts:
training data set and test dataset. Training data set
is an attack-free data set. In training data set we
only need four features: SIP (source IP address),
SPT (source port), DIP (destination IP address),
DPT (destination port). Training dataset’s structure
is shown in below:

T = {SIP, SPT, DIP, DPT}

When we replay the test dataset, we got an alert
database. Table.1 gives the attributes in the alert
database and their meanings.

Our proposed model uses SVM algorithm to
make up for the disadvantage of the model. We will
talk about that in next chapter. Every record in the
alert database is shown in the following format:

R = {ST, ET, IID, AID, AC, SIP, SPT, DIP, DPT, TS}

3. PROPOSED MODEL

 The following describes the implementation
of the main components of our alert fusion system
based on our model shown in figure 2.
The processing flow is as follows:
(1) Replay the DARPA dataset with the multi
intrusion detection systems (Snort, Bro, OSSEC).
(2) Normalized alert’s format using Table.1.
(3) Training SVM Classifier with the attack-free
dataset.
(4) Merge duplicate alerts.
(5) Merge concurrent alerts.
(6) Merge single-to-multiple alerts using the SVM
classifier to filter the false positive alerts.
(7) Merge multiple-to-single alerts using the SVM
classifier to filter the false positive alerts.
(8) Put all data into alert correlation database

The alert merge model process in our proposed
model is shown below:

Merge duplicate alerts: In this step, we focused
on processing of duplicate alerts from the same
intrusion detection systems. First, we set a Time
window (2 seconds) to process the alert data.
 Define new alert ܣ௪, Alert a (ܣ) and Alert b
 form database. Use the format we mentioned (ܣ)
earlier. Then we can get:

௪ܣ
ൌ ሼܵ ܶ௪, ܧ ܶ௪, ,௪ܦܫܫ ,௪ܦܫܣ ,௪ܥܣ ܫܵ ܲ௪,
																					ܵܲ ܶ௪, ܫܦ ܲ௪, ܲܦ ܶ௪, ܶܵ௪ሽ

ܣ								
ൌ ሼܵ ܶ, ܧ ܶ, ,ܦܫܫ ,ܦܫܣ ,ܥܣ ܫܵ ܲ, ܵܲ ܶ, ܫܦ ܲ,

ܲܦ																									 ܶ, ܶܵሽ

ܣ								
ൌ ሼܵ ܶ, ܧ ܶ, ,ܦܫܫ ,ܦܫܣ ,ܥܣ ܫܵ ܲ, ܵܲ ܶ, ܫܦ ܲ,

ܲܦ																									 ܶ, ܶܵሽ

Figure.2 Proposed Model

We set the time window is 2 seconds, then we
need to find an ܣ that ܵ ܶ < ܵ ܶ and has the ݏ2
same SIP, SRT, DIP, DPT as ܣ. If we can find the
 :௪ withܣ , then we can getܣ

ܵ ܶ௪ ൌ 	ܵ ܶ
ܧ ܶ௪ ൌ ܧ	 ܶ
௪ܦܫܣ ൌ ܦܫܣ	

௪ܥܣ ൌ ܥܣ ܥܣ
ܫܵ ܲ௪ ൌ ܫܵ	 ܲ
ܵܲ ܶ௪ ൌ 	ܵܲ ܶ
ܫܦ ܲ௪ ൌ ܫܦ ܲ
ܲܦ ܶ௪ ൌ ܲܦ ܶ
ܶܵ௪ ൌ ܶܵ

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

403

In this condition, all alerts came from the same
intrusion detection system, so they all have the
same IID, so we don’t need to change that.
Merge concurrent alerts: We focused on processing
of concurrent alerts from the different intrusion
detection systems. In this step, we need to find out
the alerts that alerted by the different intrusion
detection systems at the same time. We don’t need
the SVM algorithm in this step. It can be easily
processed with the script program.

Defined new alert ܣ௪, Alert a (ܣ) and Alert b
 Use the format we mentioned earlier. Then .(ܣ)
we can get:

௪ܣ								
ൌ ሼܵ ܶ௪, ܧ ܶ௪, ,௪ܦܫܫ ,௪ܦܫܣ ,௪ܥܣ ܫܵ ܲ௪,
																					ܵܲ ܶ௪, ܫܦ ܲ௪, ܲܦ ܶ௪, ܶܵ௪ሽ

ܣ								
ൌ ሼܵ ܶ, ܧ ܶ, ,ܦܫܫ ,ܦܫܣ ,ܥܣ ܫܵ ܲ, ܵܲ ܶ, ܫܦ ܲ,

ܲܦ																									 ܶ, ܶܵሽ

ܣ								
ൌ ሼܵ ܶ, ܧ ܶ, ,ܦܫܫ ,ܦܫܣ ,ܥܣ ܫܵ ܲ, ܵܲ ܶ, ܫܦ ܲ,

ܲܦ																									 ܶ, ܶܵሽ

We set the time window is 2 seconds, then we
need to find an ܣ that ܵ ܶ < ܵ ܶ and has the ݏ2
same SIP, SRT, DIP, DPT as ܣ. If we can find the
 :௪ withܣ , then we can getܣ

ܵ ܶ௪ ൌ 	ܵ ܶ
ܧ ܶ௪ ൌ ܧ	 ܶ
௪ܦܫܣ ൌ ܦܫܣ	

ܦܫܫ =௪ܦܫܫ 	ܦܫܫ
௪ܥܣ ൌ ܥܣ ܥܣ
ܫܵ ܲ௪ ൌ ܫܵ	 ܲ
ܵܲ ܶ௪ ൌ 	ܵܲ ܶ
ܫܦ ܲ௪ ൌ ܫܦ ܲ
ܲܦ ܶ௪ ൌ ܲܦ ܶ
ܶܵ௪ ൌ ܶܵ

In this condition, all alerts came from different

intrusion detection system, so they don’t have the
same IID, so we need to change that. For example,
௪ܦܫܫ ܦܫܫ = 	ܦܫܫ can be changed like
,ܦܫܫ} =௪ܦܫܫ .ሽ, but not the sum of valueܦܫܫ
 Merge single-to-multiple alerts: In this part, we
focused on processing of single-to-multiple alerts
from the intrusion detection systems. First, we set a
Time window (120 seconds); the connection for the
alerts are at least two connections. This step and
next step we use SVM algorithm to get the
classification boundary, because, one scene may
contain different types of attack. The experimental

results will show the advantage for this
improvement.

Define new alert ܣ௪, Alert a (ܣ) and Alert b
ܣ)) form database. And define a scene use the
format we mentioned earlier. This phase is
characterized by some alerts containing the same
source IP address and port, but with different
destination IP addresses and ports. Then, we can
use scenes to merge these alert as an integrated part.
 A single-to-multiple scene’s structure is shown in
below:

ܵܿ݁݊݁

ൌ ,ܲܫܵ ܵܲܶ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ 1	݁ݕݐ	݇ܿܽݐݐܽ ൜

ሼܵ ଵܶ, ܧ ଵܶ, ܫܦ ଵܲ, ܲܦ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܦ ଶܲ, ܲܦ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܦ ଷܲ, ܲܦ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܦ ସܲ, ܲܦ ସܶሽ

ൠ
…
…

݊	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ܶିଵ, ܧ ܶିଵ, ܫܦ ܲିଵ, ܲܦ ܶିଵሽ

ሼܵ ܶ, ܧ ܶ, ܫܦ ܲ, ܲܦ ܶሽ
ൠ
ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

We set the time window is 120 seconds, then we

can get some scenes in this step. If we found
another scene with the same scene structure and the
same SIP and SPT, we can merge that scene. For
example, there are two scenes: ܵܿ݁݊݁ and	ܵܿ݁݊݁
ܵܿ݁݊݁’s start time is later than ܵܿ݁݊݁, they have
the same structure.

ܵܿ݁݊݁

ൌ ,ܲܫܵ ܵܲܶ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܦ ଵܲ, ܲܦ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܦ ଶܲ, ܲܦ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܦ ଷܲ, ܲܦ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܦ ସܲ, ܲܦ ସܶሽ

ൠ
ۙ
ۘ

ۗ

ܵܿ݁݊݁

ൌ ,ܲܫܵ ܵܲܶ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܦ ଵܲ, ܲܦ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܦ ଶܲ, ܲܦ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܦ ଷܲ, ܲܦ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܦ ସܲ, ܲܦ ସܶሽ

ൠ
ۙ
ۘ

ۗ

ܵܿ݁݊݁௪

ൌ ,ܲܫܵ ܵܲܶ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܦ ଵܲ, ܲܦ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܦ ଶܲ, ܲܦ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܦ ଷܲ, ܲܦ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܦ ସܲ, ܲܦ ସܶሽ

ൠ
ۙ
ۘ

ۗ

We will merge ܵܿ݁݊݁ and	ܵܿ݁݊݁ . Before the

merge process, we need use the SVM classifier to
filter the false positive alerts. And then we need to
get ܵܿ݁݊݁௪ with:

ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଵܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଵܶ
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଶܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଶܶ

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

404

ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଷܶ
ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଷܶ

ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ସܶ
ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ସܶ

ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଵܶ
ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଵܶ

ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଶܶ
ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଶܶ

ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଷܶ
ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଷܶ

ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ସܶ
ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ସܶ

Merge multiple-to-single alerts: In this part, we

focused on processing of multiple-to-single alerts
from the intrusion detection systems. First, we set a
Time window (200 seconds); the connection for the
alerts are at least 500 connections. This step we
also used the SVM algorithm.
A multiple-to-single scene’s structure is shown in
below:

ܵܿ݁݊݁

ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ 1	݁ݕݐ	݇ܿܽݐݐܽ ൜

ሼܵ ଵܶ, ܧ ଵܶ, ܫܵ ଵܲ, ܵܲ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܵ ଶܲ, ܵܲ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܵ ଷܲ, ܵܲ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܵ ସܲ, ܵܲ ସܶሽ

ൠ
…
…

݊	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ܶିଵ, ܧ ܶିଵ, ܫܵ ܲିଵ, ܵܲ ܶିଵሽ

ሼܵ ܶ, ܧ ܶ, ܫܵ ܲ, ܵܲ ܶሽ
ൠ
ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

,ܲܫܦ ܶܲܦ

We set the time window is 120 seconds, then we

can get some scenes in this step. If we found
another scene with the same scene structure and the
same SIP and SPT, we can merge that scene. For
example, there have two scenes: ܵܿ݁݊݁
and 	ܵܿ݁݊݁ . ܵܿ݁݊݁ ’s start time is later than
ܵܿ݁݊݁, they have same structure.

ܵܿ݁݊݁

ൌ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܵ ଵܲ, ܵܲ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܵ ଶܲ, ܵܲ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܵ ଷܲ, ܵܲ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܵ ସܲ, ܵܲ ସܶሽ

ൠ
ۙ
ۘ

ۗ
,ܲܫܦ ܶܲܦ

ܵܿ݁݊݁

ൌ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܵ ଵܲ, ܵܲ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܵ ଶܲ, ܵܲ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܵ ଷܲ, ܵܲ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܵ ସܲ, ܵܲ ସܶሽ

ൠ
ۙ
ۘ

ۗ
,ܲܫܦ ܶܲܦ

ܵܿ݁݊݁௪

ൌ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܵ ଵܲ, ܵܲ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܵ ଶܲ, ܵܲ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܵ ଷܲ, ܵܲ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܵ ସܲ, ܵܲ ସܶሽ

ൠ
ۙ
ۘ

ۗ
,ܲܫܦ ܶܲܦ

We will merge ܵܿ݁݊݁ and	ܵܿ݁݊݁ . Before the
merge process, we need use the SVM classifier to
filter the false positive alerts. And then we need to
get ܵܿ݁݊݁௪ with:

ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଵܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଵܶ
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଶܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଶܶ
ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଷܶ

ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଷܶ
ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ସܶ

ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ସܶ
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଵܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଵܶ
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଶܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଶܶ
ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଷܶ

ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଷܶ
ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ସܶ

ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ସܶ

In the step of merge single-to-multiple alerts and
merge multiple-to-single alerts, we use SVM to
make a classifier to divide the data into normal data
and intrusion data. We will show the experiment
results in the next chapter.

Table 1: Output Format.

Attributes name Meaning

ST Alert’s start time

ET Alert’s end time

IID ID of alerted IDS

AID Alert’s unique ID

AC Number of alerts

SIP Source IP

SPT Source Port

DIP Destination IP

DPT Destination Port

TS Alert’s timestamp

3. EXPERIMEN

 The computer environment is shown in Table.2.

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

405

Table.2 Computer Environment

CPU: Intel Core i5 2.5Ghz
Memory: 8G
OS: Ubuntu 14.04

This paper used the DARPA [17] as our training

data set and test data set. DARPA data set’s format
is TCP dump (pcap). The advantage of this format
is that it can be replayed. There is a software called
TCP replay that can replay the data stream from
that time. It is used for testing the ability of
intrusion detection systems. The data are stored in a
database. The available fields are shown in Table
.1.

Figure.3 The Structure Of Computers And Database

We use three computers with the same hardware
and system shown in Figure 3. Each computer has a
different IDS environment and alert database. Use
this method; we can get more accurate alert start
time and end time.

The test dataset contains 888139 connection form
DARPA dataset. We divided the data set into ten
parts, take the average of the test results, remove
the unreasonable maximum and minimum. This can
accurately measure the system’s detection ability.
We used the general JDL model and the proposed
model to process the same alerts data from the
intrusion detection systems. The alert collection

results are shown in Figure. 4. We got about 5716
alerts; there are 896 real attack alerts in this data.
Also, we can get the 3754 normal data from the
original model and 3528 normal data from the
proposed model.

We can use formula 1 and 2 to calculate the
fusion rate and the accuracy rate. The experimental
results are shown in Table. 3.
 There are two formulas, used to calculate the
fusion rate and accuracy rate.

FR ൌ 	
ି

…………………………….…… (1)

AR ൌ
்ା்ே

்ା்ேାிାிே
 …………………………… (2)

We use FR and AR to represent fusion rate and

the accuracy rate, use BAC to represent the alert
count before fusion process, use AAC to represent
the alert count after fusion process. The meaning of
TP, TN, FP and FN are true positive, true negative,
false positive, and false negative. RA means the
real attack in the data set.

Table.3 Proposed Model Results

Original model Proposed model

TP: 631 TP: 773
FP: 461 FP: 131
FN: 265 FN:123

TN: 3293 TN: 3397
AR: 84.39% AR: 94.34%

Table.4 General Jdl Model Fusion Results

Alert Count Alert Count After
fusion process

Fusion
rate(average)

Snort 2083

1357 76.26%
Bro 1795

OSSEC 1838
Sum: 5716

Table.5 Proposed Model Fusion Results

Alert Count
Alert Count
After fusion

process
Fusion rate

Snort 2083

1027 82.03%
Bro 1795

OSSEC 1838
Sum: 5716

 The fusion results of the original model and the
proposed model are shown in Table. 4 and Table. 5.
We can compare the fusion ability of the two
models in the Figure. 5 and Figure. 6. Obviously,

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

406

our model’s fusion ability is better than the original
model.

Figure.4 The Alert Collection Results (10 Data Sets)

Figure.5 Alert Fusion Rate (10 Data Sets)

Figure.6 Alert Count After Fusion Process

Thanks to the SVM classifier, the number of

false positives in our experimental results is
significantly reduced. We can get the ten dataset’s
false positives shown in Figure. 7.

Figure.7 False Positive Count

The results show that our model for alert fusion

improved the fusion rate from 76.26% to 82.03%,
and also improved the accuracy rate from 84.39%
to 94.34%. The results show our proposed model is
better than the original model.

5. CONCLUSIONS

This paper presents a new alert correlation
structure and uses SVM to filter and optimize the
false positive of the IDS systems, which greatly
improves the system’s fusion ability and the
detection accuracy. The simulation was done
against DARPA data set and shows the
performance of proposed approach with an
improvement in false positive rate. We use the
average value to measure the ability of the fusion
system, which can more accurately reflect the
actual situation of the system.

6. FUTURE WORKS

Our proposed model has a limitation: the
SVM’s process speed is too slow. Our future work
will be to investigate other architectures to see if we
can achieve better performance of more effective
and faster alert correlation. Other future work will
be to more thoroughly investigate the algorithms
currently being used in our research. And use
another classification algorithm to improve the
accuracy of classification.

ACKNOWLEDGEMENT:

This research was supported by Basic Science
Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry
of Education (NRF-2015R1D1A1A01060874).

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

407

REFERENCES

[1] Alan N. Steinberg, Christopher L. Bowman,

Franklin E. White. Revisions to the JDL Data
Fusion Model[A]. In Sensor Fusion:
Architectures, Algorithms, and Applications,
Proceedings of the SPIE[C]. Vol. 3719, 1999.

[2] Llinas J, Bowman C, Rogova G, et al.
Revisiting the JDL data fusion model II[R].
SPACE AND NAVAL WARFARE
SYSTEMS COMMAND SAN DIEGO CA,
2004.

[3] Bass T. Multisensor data fusion for next
generation distributed intrusion detection
systems[J]. 1999.

[4] Chandola, V.; Banerjee, A.; Kumar, V. (2009).
"Anomaly detection: A survey". ACM
Computing Surveys. 41 (3): 1–58.

[5] Helman, Paul, Liepins, Gunar, and Richards,
Wynette, "Foundations of Intrusion
Detection," The IEEE Computer Security
Foundations Workshop V, 1992.

[6] http://bammv.github.io/sguil/index.html
[7] https://www.snort.org/license
[8] Jeffrey Carr (2007-06-05). "Snort: Open

Source Network Intrusion Prevention".
Retrieved 2010-06-23.

[9] eWeek.com Staff (2008-04-04). "100 Most
Influential People in IT". Retrieved 2010-06-
23.

[10] Larry Greenemeier (2006-04-25). "Sourcefire
Has Big Plans For Open-Source Snort".
Retrieved 2010-06-23.

[11] "Cisco to Buy Sourcefire, a Cybersecurity
Company, for $2.7 Billion". The New York
Times. Retrieved July 23, 2013.

[12] Doug Dineley; High Mobley (2009-08-17).
"The Greatest Open Source Software of All
Time". Retrieved 2010-06-23.

[13] https://www.bro.org/
[14] "SteelApp for Application Delivery Control &

Scalability". riverbed.com.
[15] Cortes, C.; Vapnik, V. (1995). "Support-vector

networks". Machine Learning. 20 (3): 273–297.
doi:10.1007/BF00994018.

[16] Nalini L. A Comprehensive Approach to
Intrusion Detection Alert Correlation[J].
Adarsh Journal of Information Technology,
2015, 2(1): 69-71.

[17] MIT Lincoln Laboratory, Lincoln Lab Data
Sets,http://www.ll.mit.edu/IST/ideval/data/dat
a_index.html, 2000.

[18] A.K. Ghosh, J. Wanken, and F. Charron,
“Detecting Anomalous and Unknown
Intrusions against Programs,” Proc. Ann.
Computer Security Application Conf.
(ACSAC ’98), pp. 259-267, Dec. 1998.

[19] R. Gula, “Correlating IDS Alerts with
Vulnerability Information,” 2002.

[20] technical report, Tenable Network Security,
Dec. 2002.

[21] J. Haines, D.K. Ryder, L. Tinnel, and S.
Taylor, “Validation of Sensor Alert
Correlators,” IEEE Security and Privacy
Magazine, vol. 1, no. 1, pp. 46-56, Jan. Feb.
2003.

[22] C. Kruegel and W. Robertson, “Alert
Verification: Determining the Success of
Intrusion Attempts,” Proc. First Workshop the
Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA 2004),
July 2004.

[23] C. Warrender, S. Forrest, and B.A. Pearlmutter,
“Detecting Intrusions Using System Calls:
Alternative Data Models,” Proc. IEEE Symp.
Security and Privacy, pp. 133-145, 1999.

[24] J. McHugh, “Testing Intrusion Detection
Systems: A Critique of the 1998 and 1999
DARPA Intrusion Detection System
Evalautions as Performed by Lincoln
Laboratory,” ACM Trans. Information and
System Security, vol. 3, no. 4, Nov. 2000.

[25] H.S. Javitz and A. Valdes, “The NIDES
Statistical Component Description and
Justification,” technical report, SRI Int’l, Mar.
1994.

[26] S.M. Bellovin, “Packets Found on an Internet,”
technical report, AT&T Bell Laboratories,
May 1992.

[27] F. Cuppens and A. Miege, “Alert Correlation
in a Cooperative Intrusion Detection
Framework,” Proc. IEEE Symp. Security and
Privacy, May 2002.

