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ABSTRACT 

 
This paper presents a new alert correlation model for multiple intrusion detection systems. Based on the 
analysis of the complex relationship between the alert information of the intrusion detection system, an alert 
fusion model is proposed and used to alert correlation. The SVM algorithm has an advantage in the multi-
dimensional classification, which can further reduce the influence of false positives and false negatives. The 
experimental results show that the alert fusion model has high accuracy and low false positive. 

Keywords: Alert Correlation, Intrusion Detection System(IDS), Support Vector Machine (SVM) 
 
1. INTRODUCTION  
             In the network intrusion detection and 
network alert collection always use different types 
of intrusion detection systems. Multiple intrusion 
detection systems have a greater advantage in the 
detection rate than single intrusion detection 
system, but we need face with the following 
disadvantages:  

(1) Different intrusion detection system using 
different alert formats, which brings some 
difficulties to the alert analysis. 

(2) A large number of duplicate alert data and 
redundancy data is not conducive to our analysis. 

(3) Different intrusion detection systems have their 
limitations. This disadvantage can make a large of 
false positives and false negative. 

(4) Some intrusion behaviors are related to each 
other and need to be analyzed. 

Data fusion was first used in military affairs. JDL 
(Joint Directors of Laboratories) data fusion 
working group set up by the US Department of 
Defense proposed a general data fusion model – 
JDL model [1][2]. Bass proposed an intrusion 
detection data fusion model based on JDL [3]. This 
model interprets the distributed intrusion detection 
task as a synthesis problem of multiple sensor data 
under the hierarchical model. The fusion of 
intrusion detection data can be understood as 
several levels of the data extracted. In this 
hierarchical model, the intrusion detection data 
source from the data (Data) to information 

(Information) and then to knowledge (Knowledge) 
three logical abstraction level. This model provides 
a good idea for the application of data fusion in 
intrusion detection, but only proposes the functional 
level and the processing function requirements that 
the layers should meet. The paper does not propose 
a concrete implementation scheme. 

SVM algorithm has good performance on a small 
sample, using this advantage in our model can 
correct identification and classification different 
type of alert information for alert fusion. 
    To overcome these disadvantages, this paper 
proposes an alert information fusion model based 
on the research of data fusion technology. It can 
deal with the alert flow and integrate the alerts from 
heterogeneous intrusion detection system according 
to the complex relationship among alert 
information, and use SVM algorithm to identify the 
different alert information in the same attack scene. 
Base on this model we present the experimental 
results. 

The remainder of this paper is structured as 
follows: Section 2 presents the description of our 
related works. We will introduce the proposed 
model in detail, and Section 3 presents the 
description of our detection model. Section 4 
presents the experimental results. Finally, Section 5 
concludes and outlines future work. 
 
2. RELATED WORK 

             The complex relationship between intrusion 
events determines that there will be complex 
relationships between intrusion detection system 
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alarms, and different fusion methods are adopted 
according to the different needs of their 
relationship. There are three types of relationship: 
temporal relations, concurrency relations, and 
synergistic relations. 
(1) Temporal relations: alarms that are triggered by 
an intrusion event that satisfies a temporal 
relationship can be considered to satisfy a temporal 
relationship. 
(2) Concurrency relations: alarms that are triggered 
in the same period. That alarms’ relationship is 
called concurrency relationship. 
(3) Synergistic relations: There are multiple attacks 
from different attackers or attack sources. There is 
cooperation between attacks to achieve some attack 
intention. There are synergies between the alerts 
triggered by the attacks. These attacks or 
concurrency for a common goal, or the existence of 
a sequence and dependencies. 

According to the above characteristics, we learn 
from the general process of JDI model shown in 
Fig.1. 
    But this model is not complete; it can’t be 
applied to the actual information fusion. Such as the 
process of merge single-to-multiple alerts and 
merge multiple-to-single alerts, the same source IP 
may contain multiple attack information, if the 
attackers use many meaningless attacks to hide the 
true attack, we can’t find them. Intrusion detection 
systems also have many false positive, so we need 
to handle that carefully. That disadvantages can 
make any help for our next analysis. We need to 
make some change for the model.  

In machine learning, support vector machines 
(SVMs, also support vector networks [4]) are 
supervised learning models with associated learning 
algorithms that analyze data used for classification 
and regression analysis. Given a set of training 
examples, each marked for belonging to one of two 
categories; an SVM training algorithm builds a 
model that assigns new examples into one category 
or the other, making it a non-probabilistic binary 
linear classifier. An SVM model is a representation 
of the examples as points in space, mapped so that 
the examples of the separate categories are divided 
by a clear gap that is as wide as possible. New 
examples are then mapped into that same space and 
predicted to belong to a category based on which 
side of the gap they fall on. 

We use some open source intrusion detection 
system. Such as Snort IDS, Bro IDS, and OSSEC. 

Snort is a free and open source network intrusion 
prevention system (NIPS) and network intrusion 
detection system (NIDS) [5] created by Martin 
Roesch in 1998 [6]. Snort is now developed by 

Sourcefire, of which Roesch is the founder and 
CTO [7], and which has been owned by Cisco since 
2013[8][9]. 
 

 
Figure 1: General Process Of JDI Model 

 
Bro While focusing on network security 

monitoring, Bro provides a comprehensive platform 
for more general network traffic analysis as well. 
Well ground in more than 15 years of research, Bro 
has successfully bridged the traditional gap 
between academia and operations since its 
inception. Today, it is relied upon operationally in 
particular by many scientific environments for 
securing their cyberinfrastructure. Bro's user 
community includes major universities, research 
labs, supercomputing centers, and open-science 
communities [13].  

OSSEC is a free, open-source host-based 
intrusion detection system (HIDS). It performs log 
analysis, integrity checking, Windows registry 
monitoring, rootkit detection, time-based alerting, 
and active response. It provides intrusion detection 
for most operating systems, including Linux, 
OpenBSD, FreeBSD, OS X, Solaris, and Windows. 
OSSEC has a centralized, cross-platform 
architecture allowing multiple systems to be easily 
monitored and managed [14]. For example, when 
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we handle the process of alert fusion, if the false 
positive is present in the alert data, the result of our 
fusion will be poor, and the result will be 
unreliable. We need a mechanism to reduce this 
condition. According to the characteristics of SVM, 
we use it to filter the false positive in the alert 
database. 

The data set will be divided into two parts: 
training data set and test dataset. Training data set 
is an attack-free data set. In training data set we 
only need four features: SIP (source IP address), 
SPT (source port), DIP (destination IP address), 
DPT (destination port). Training dataset’s structure 
is shown in below: 

T = {SIP, SPT, DIP, DPT} 

When we replay the test dataset, we got an alert 
database. Table.1 gives the attributes in the alert 
database and their meanings. 

Our proposed model uses SVM algorithm to 
make up for the disadvantage of the model. We will 
talk about that in next chapter. Every record in the 
alert database is shown in the following format: 
 

R = {ST, ET, IID, AID, AC, SIP, SPT, DIP, DPT, TS} 
 

3. PROPOSED MODEL 
 
        The following describes the implementation 
of the main components of our alert fusion system 
based on our model shown in figure 2. 
The processing flow is as follows: 
(1) Replay the DARPA dataset with the multi 
intrusion detection systems (Snort, Bro, OSSEC). 
(2) Normalized alert’s format using Table.1. 
(3) Training SVM Classifier with the attack-free              
dataset. 
(4) Merge duplicate alerts. 
(5) Merge concurrent alerts. 
(6) Merge single-to-multiple alerts using the SVM 
classifier to filter the false positive alerts. 
(7) Merge multiple-to-single alerts using the SVM 
classifier to filter the false positive alerts. 
(8) Put all data into alert correlation database 

The alert merge model process in our proposed 
model is shown below: 

Merge duplicate alerts: In this step, we focused 
on processing of duplicate alerts from the same 
intrusion detection systems. First, we set a Time 
window (2 seconds) to process the alert data. 
    Define new alert ܣ௪, Alert a ( ܣ) and Alert b 
 form database. Use the format we mentioned (ܣ )
earlier. Then we can get: 
 

௪ܣ
ൌ ሼܵ ܶ௪, ܧ ܶ௪, ,௪ܦܫܫ ,௪ܦܫܣ ,௪ܥܣ ܫܵ ܲ௪, 
																					ܵܲ ܶ௪, ܫܦ ܲ௪, ܲܦ ܶ௪, ܶܵ௪ሽ 
 
ܣ								
ൌ ሼܵ ܶ, ܧ ܶ, ,ܦܫܫ ,ܦܫܣ ,ܥܣ ܫܵ ܲ, ܵܲ ܶ, ܫܦ ܲ, 

ܲܦ																									 ܶ, ܶܵሽ 
 
ܣ								
ൌ ሼܵ ܶ, ܧ ܶ, ,ܦܫܫ ,ܦܫܣ ,ܥܣ ܫܵ ܲ, ܵܲ ܶ, ܫܦ ܲ, 

ܲܦ																									 ܶ, ܶܵሽ 
 

 
 

Figure.2 Proposed Model 
 

We set the time window is 2 seconds, then we 
need to find an ܣ that ܵ ܶ <  ܵ ܶ   and has the ݏ2
same SIP, SRT, DIP, DPT as ܣ. If we can find the 
 :௪ withܣ , then we can getܣ
 

ܵ ܶ௪ ൌ 	ܵ ܶ 
ܧ ܶ௪ ൌ ܧ	 ܶ 
௪ܦܫܣ ൌ  ܦܫܣ	

௪ܥܣ ൌ ܥܣ  ܥܣ 
ܫܵ ܲ௪ ൌ ܫܵ	 ܲ 
ܵܲ ܶ௪ ൌ 	ܵܲ ܶ 
ܫܦ ܲ௪ ൌ ܫܦ ܲ 
ܲܦ ܶ௪ ൌ ܲܦ ܶ 
ܶܵ௪ ൌ ܶܵ 
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In this condition, all alerts came from the same 
intrusion detection system, so they all have the 
same IID, so we don’t need to change that. 
Merge concurrent alerts: We focused on processing 
of concurrent alerts from the different intrusion 
detection systems. In this step, we need to find out 
the alerts that alerted by the different intrusion 
detection systems at the same time. We don’t need 
the SVM algorithm in this step. It can be easily 
processed with the script program. 

Defined new alert ܣ௪, Alert a ( ܣ) and Alert b 
 Use the format we mentioned earlier. Then .(ܣ )
we can get: 
 
௪ܣ								
ൌ ሼܵ ܶ௪, ܧ ܶ௪, ,௪ܦܫܫ ,௪ܦܫܣ ,௪ܥܣ ܫܵ ܲ௪, 
																					ܵܲ ܶ௪, ܫܦ ܲ௪, ܲܦ ܶ௪, ܶܵ௪ሽ 
 
ܣ								
ൌ ሼܵ ܶ, ܧ ܶ, ,ܦܫܫ ,ܦܫܣ ,ܥܣ ܫܵ ܲ, ܵܲ ܶ, ܫܦ ܲ, 

ܲܦ																									 ܶ, ܶܵሽ 
 
ܣ								
ൌ ሼܵ ܶ, ܧ ܶ, ,ܦܫܫ ,ܦܫܣ ,ܥܣ ܫܵ ܲ, ܵܲ ܶ, ܫܦ ܲ, 

ܲܦ																									 ܶ, ܶܵሽ 
 

We set the time window is 2 seconds, then we 
need to find an ܣ that ܵ ܶ <  ܵ ܶ   and has the ݏ2
same SIP, SRT, DIP, DPT as ܣ. If we can find the 
 :௪ withܣ , then we can getܣ
 

ܵ ܶ௪ ൌ 	ܵ ܶ 
ܧ ܶ௪ ൌ ܧ	 ܶ 
௪ܦܫܣ ൌ  ܦܫܣ	

ܦܫܫ  =௪ܦܫܫ 	ܦܫܫ 
௪ܥܣ ൌ ܥܣ  ܥܣ 
ܫܵ ܲ௪ ൌ ܫܵ	 ܲ 
ܵܲ ܶ௪ ൌ 	ܵܲ ܶ 
ܫܦ ܲ௪ ൌ ܫܦ ܲ 
ܲܦ ܶ௪ ൌ ܲܦ ܶ 
ܶܵ௪ ൌ ܶܵ 

 
In this condition, all alerts came from different 

intrusion detection system, so they don’t have the 
same IID, so we need to change that. For example,  
௪ܦܫܫ ܦܫܫ  = 	ܦܫܫ  can be changed like 
,ܦܫܫ} =௪ܦܫܫ  .ሽ, but not the sum of valueܦܫܫ
    Merge single-to-multiple alerts: In this part, we 
focused on processing of single-to-multiple alerts 
from the intrusion detection systems. First, we set a 
Time window (120 seconds); the connection for the 
alerts are at least two connections. This step and 
next step we use SVM algorithm to get the 
classification boundary, because, one scene may 
contain different types of attack. The experimental 

results will show the advantage for this 
improvement. 

Define new alert ܣ௪, Alert a ( ܣ) and Alert b 
ܣ ) ) form database. And define a scene use the 
format we mentioned earlier. This phase is 
characterized by some alerts containing the same 
source IP address and port, but with different 
destination IP addresses and ports. Then, we can 
use scenes to merge these alert as an integrated part.  
  A single-to-multiple scene’s structure is shown in 
below: 
 
ܵܿ݁݊݁

ൌ ,ܲܫܵ ܵܲܶ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ 1	݁ݕݐ	݇ܿܽݐݐܽ ൜

ሼܵ ଵܶ, ܧ ଵܶ, ܫܦ ଵܲ, ܲܦ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܦ ଶܲ, ܲܦ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܦ ଷܲ, ܲܦ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܦ ସܲ, ܲܦ ସܶሽ

ൠ
…
…

݊	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ܶିଵ, ܧ ܶିଵ, ܫܦ ܲିଵ, ܲܦ ܶିଵሽ

ሼܵ ܶ, ܧ ܶ, ܫܦ ܲ, ܲܦ ܶሽ
ൠ
ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

 

 
We set the time window is 120 seconds, then we 

can get some scenes in this step. If we found 
another scene with the same scene structure and the 
same SIP and SPT, we can merge that scene. For 
example, there are two scenes: ܵܿ݁݊݁ and	ܵܿ݁݊݁ 
ܵܿ݁݊݁’s start time is later than ܵܿ݁݊݁, they have 
the same structure.   
 
ܵܿ݁݊݁

ൌ ,ܲܫܵ ܵܲܶ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܦ ଵܲ, ܲܦ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܦ ଶܲ, ܲܦ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܦ ଷܲ, ܲܦ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܦ ସܲ, ܲܦ ସܶሽ

ൠ
ۙ
ۘ

ۗ
 

 
ܵܿ݁݊݁

ൌ ,ܲܫܵ ܵܲܶ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܦ ଵܲ, ܲܦ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܦ ଶܲ, ܲܦ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܦ ଷܲ, ܲܦ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܦ ସܲ, ܲܦ ସܶሽ

ൠ
ۙ
ۘ

ۗ
 

 
ܵܿ݁݊݁௪

ൌ ,ܲܫܵ ܵܲܶ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܦ ଵܲ, ܲܦ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܦ ଶܲ, ܲܦ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܦ ଷܲ, ܲܦ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܦ ସܲ, ܲܦ ସܶሽ

ൠ
ۙ
ۘ

ۗ
 

 
We will merge ܵܿ݁݊݁  and	ܵܿ݁݊݁ . Before the 

merge process, we need use the SVM classifier to 
filter the false positive alerts. And then we need to 
get ܵܿ݁݊݁௪ with: 
 
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଵܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଵܶ 
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଶܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଶܶ 
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ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଷܶ
ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଷܶ 

ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ସܶ
ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ସܶ 

ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଵܶ
ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଵܶ 

ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଶܶ
ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଶܶ 

ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଷܶ
ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଷܶ 

ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ସܶ
ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ସܶ 

 
Merge multiple-to-single alerts:  In this part, we 

focused on processing of multiple-to-single alerts 
from the intrusion detection systems. First, we set a 
Time window (200 seconds); the connection for the 
alerts are at least 500 connections. This step we 
also used the SVM algorithm. 
A multiple-to-single scene’s structure is shown in 
below: 
 
ܵܿ݁݊݁

ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ 1	݁ݕݐ	݇ܿܽݐݐܽ ൜

ሼܵ ଵܶ, ܧ ଵܶ, ܫܵ ଵܲ, ܵܲ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܵ ଶܲ, ܵܲ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܵ ଷܲ, ܵܲ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܵ ସܲ, ܵܲ ସܶሽ

ൠ
…
…

݊	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ܶିଵ, ܧ ܶିଵ, ܫܵ ܲିଵ, ܵܲ ܶିଵሽ

ሼܵ ܶ, ܧ ܶ, ܫܵ ܲ, ܵܲ ܶሽ
ൠ
ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

,ܲܫܦ  ܶܲܦ

 
We set the time window is 120 seconds, then we 

can get some scenes in this step. If we found 
another scene with the same scene structure and the 
same SIP and SPT, we can merge that scene. For 
example, there have two scenes: ܵܿ݁݊݁ 
and 	ܵܿ݁݊݁ . ܵܿ݁݊݁ ’s start time is later than 
ܵܿ݁݊݁, they have same structure.   
 
ܵܿ݁݊݁

ൌ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܵ ଵܲ, ܵܲ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܵ ଶܲ, ܵܲ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܵ ଷܲ, ܵܲ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܵ ସܲ, ܵܲ ସܶሽ

ൠ
ۙ
ۘ

ۗ
,ܲܫܦ  ܶܲܦ

 
ܵܿ݁݊݁

ൌ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܵ ଵܲ, ܵܲ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܵ ଶܲ, ܵܲ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܵ ଷܲ, ܵܲ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܵ ସܲ, ܵܲ ସܶሽ

ൠ
ۙ
ۘ

ۗ
,ܲܫܦ  ܶܲܦ

 
ܵܿ݁݊݁௪

ൌ

ە
۔

1	݁ݕݐ	݇ܿܽݐݐܽۓ ൜
ሼܵ ଵܶ, ܧ ଵܶ, ܫܵ ଵܲ, ܵܲ ଵܶሽ
ሼܵ ଶܶ, ܧ ଶܶ, ܫܵ ଶܲ, ܵܲ ଶܶሽ

ൠ

2	݁ݕݐ	݇ܿܽݐݐܽ ൜
ሼܵ ଷܶ, ܧ ଷܶ, ܫܵ ଷܲ, ܵܲ ଷܶሽ
ሼܵ ସܶ, ܧ ସܶ, ܫܵ ସܲ, ܵܲ ସܶሽ

ൠ
ۙ
ۘ

ۗ
,ܲܫܦ  ܶܲܦ

 

We will merge ܵܿ݁݊݁  and	ܵܿ݁݊݁ . Before the 
merge process, we need use the SVM classifier to 
filter the false positive alerts. And then we need to 
get ܵܿ݁݊݁௪ with: 
 
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଵܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଵܶ 
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଶܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଶܶ 
ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଷܶ

ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ଷܶ 
ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ସܶ

ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܵ ସܶ 
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଵܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଵܶ 
ܵܿ݁݊݁௪. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଶܶ

ൌ 	 ܵܿ݁݊݁. .1	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଶܶ 
ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଷܶ

ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ଷܶ 
ܵܿ݁݊݁௪. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ସܶ

ൌ 	 ܵܿ݁݊݁. .2	݁ݕݐ	݇ܿܽݐݐܽ ܧ ସܶ 
 

In the step of merge single-to-multiple alerts and 
merge multiple-to-single alerts, we use SVM to 
make a classifier to divide the data into normal data 
and intrusion data. We will show the experiment 
results in the next chapter. 
 

Table 1: Output Format. 
 

Attributes name Meaning 

ST Alert’s start time 

ET Alert’s end time 

IID ID of alerted IDS 

AID Alert’s unique ID 

AC Number of alerts 

SIP Source IP 

SPT Source Port 

DIP Destination IP 

DPT Destination Port 

TS Alert’s timestamp 
 

 

 

3. EXPERIMEN 

 The computer environment is shown in Table.2. 
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Table.2 Computer Environment 
 

CPU: Intel Core i5 2.5Ghz 
Memory: 8G 
OS: Ubuntu 14.04 

 
This paper used the DARPA [17] as our training 

data set and test data set. DARPA data set’s format 
is TCP dump (pcap). The advantage of this format 
is that it can be replayed. There is a software called 
TCP replay that can replay the data stream from 
that time. It is used for testing the ability of 
intrusion detection systems. The data are stored in a 
database. The available fields are shown in Table 
.1.  

 
 

Figure.3 The Structure Of Computers And Database 
 

We use three computers with the same hardware 
and system shown in Figure 3. Each computer has a 
different IDS environment and alert database. Use 
this method; we can get more accurate alert start 
time and end time.  

The test dataset contains 888139 connection form 
DARPA dataset. We divided the data set into ten 
parts, take the average of the test results, remove 
the unreasonable maximum and minimum. This can 
accurately measure the system’s detection ability. 
We used the general JDL model and the proposed 
model to process the same alerts data from the 
intrusion detection systems. The alert collection 

results are shown in Figure. 4. We got about 5716 
alerts; there are 896 real attack alerts in this data. 
Also, we can get the 3754 normal data from the 
original model and 3528 normal data from the 
proposed model. 

We can use formula 1 and 2 to calculate the 
fusion rate and the accuracy rate. The experimental 
results are shown in Table. 3.  
   There are two formulas, used to calculate the 
fusion rate and accuracy rate. 
 

FR ൌ 	
ି


…………………………….…… (1) 

 

AR ൌ
்ା்ே

்ା்ேାிାிே
 …………………………… (2) 

 
We use FR and AR to represent fusion rate and 

the accuracy rate, use BAC to represent the alert 
count before fusion process, use AAC to represent 
the alert count after fusion process. The meaning of 
TP, TN, FP and FN are true positive, true negative, 
false positive, and false negative. RA means the 
real attack in the data set. 

 
Table.3 Proposed Model Results 

 
Original model Proposed model 

TP: 631 TP: 773 
FP: 461 FP: 131 
FN: 265 FN:123 

TN: 3293 TN: 3397 
AR: 84.39% AR: 94.34% 

 
Table.4 General Jdl Model Fusion Results 

 

Alert Count Alert Count After 
fusion process 

Fusion 
rate(average) 

Snort 2083 

1357 76.26% 
Bro 1795 

OSSEC 1838 
Sum: 5716 

 
Table.5 Proposed Model Fusion Results 

 

Alert Count 
Alert Count 
After fusion 

process 
Fusion rate 

Snort 2083 

1027 82.03% 
Bro 1795 

OSSEC 1838 
Sum: 5716 

    The fusion results of the original model and the 
proposed model are shown in Table. 4 and Table. 5. 
We can compare the fusion ability of the two 
models in the Figure. 5 and Figure. 6. Obviously, 
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our model’s fusion ability is better than the original 
model. 

 

 
Figure.4 The Alert Collection Results (10 Data Sets) 

 

 
 

Figure.5 Alert Fusion Rate (10 Data Sets) 
 

 
Figure.6 Alert Count After Fusion Process 

 
Thanks to the SVM classifier, the number of 

false positives in our experimental results is 
significantly reduced. We can get the ten dataset’s 
false positives shown in Figure. 7.  
 

 
Figure.7 False Positive Count 

 
The results show that our model for alert fusion 

improved the fusion rate from 76.26% to 82.03%, 
and also improved the accuracy rate from 84.39% 
to 94.34%. The results show our proposed model is 
better than the original model. 
 
5.   CONCLUSIONS 

This paper presents a new alert correlation 
structure and uses SVM to filter and optimize the 
false positive of the IDS systems, which greatly 
improves the system’s fusion ability and the 
detection accuracy. The simulation was done 
against DARPA data set and shows the 
performance of proposed approach with an 
improvement in false positive rate. We use the 
average value to measure the ability of the fusion 
system, which can more accurately reflect the 
actual situation of the system. 
 
6.   FUTURE WORKS 

Our proposed model has a limitation: the 
SVM’s process speed is too slow. Our future work 
will be to investigate other architectures to see if we 
can achieve better performance of more effective 
and faster alert correlation. Other future work will 
be to more thoroughly investigate the algorithms 
currently being used in our research. And use 
another classification algorithm to improve the 
accuracy of classification. 
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