
Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6329

COMPARATIVE STUDY OF PARALLEL IMPLEMENTATION
FOR SEARCHING ALGORITHMS WITH OPENMP

1RENEA CHOWDHURY SHORMEE, 2RAVIE CHANDREN MUNIYANDI, 3DIP NANDI
1Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia

2Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan

Malaysia, Malaysia
3Department of Computer Science, American International University Bangladesh, Bangladesh

E-mail: 1reneachowdhury@gmail.com, 2ravie@ukm.edu.my, 3dip.nandi@aiub.edu

ABSTRACT

Investigating the multi-core architecture is an essential issue to get superior in parallel reenactments.
However, the simulation highlights must fit on parallel programming model to build the execution. The main
goal of this research is to choose and evaluate parallelism using OpenMP over sequential program. For this
purpose, there is a portrayal of two searching algorithms. The calculation is to discover the next edge of
Prim's algorithm and single source shortest way of Dijkstra's algorithm. These two algorithm actualized in
sequential formulation. Parallel searching algorithms are then implemented in view of multicore processor.
The speed-up ratio and efficiency of parallel searching algorithms are tested and investigated in SGEMM
GPU Kernel performance dataset with 241600 records and 18 attributes. Results show the dataset with
different data sizes achieved super linear speed-up ratio and efficiency on OpenMP by running on 4 cores
processor and reduction of the running time over sequential program. More importantly, the new
implementation drastically decreases the time of execution for thread 8 for Prims algorithm from 5.16ms to
1.48 ms for Dijkstra algorithm. Parallel calculation is impressively powerful for huge graph size. General
outcome shows that multi-threaded parallelism is exceptionally successful to accomplish better performance
for dataset based on searching algorithms by separating the primary dataset into sub-datasets to increase
diversity on arrangement investigation.

Keywords: Sequential programming, Parallel programming, Prim’s, Dijkstra’s, OpenMP

1. INTRODUCTION

Finding the shortest distance for all objects in a
graph is a common task in solving many day to day
and logical issues. The algorithm for finding the
shortest path, discover their application in
numerous fields, for example: Google maps,
routing protocol and so on. There are two
algorithms for finding the nearest way and single
source shortest path, utilizing two algorithms Prims
algorithm [4-5] and Dijkstra's algorithm [1-3]. To
improve the searching, the best use of shortest path
is to implement the parallelism.

With the rapid improvement of urban
communities, congested road turned into a
concerning issue. Along these lines the Intelligent
Traffic System is developing rapidly and the
shortest path optimization is an important part of
this problem. This issue has been the research
hotspot for long time and for the sequential shortest

path optimization, individuals have gotten many
research comes about and applied in many
applications [1].

Big data mostly comes from people’s day-to-day
activities and Internet-based companies. Big data
represents content and cloud computing is an
environment that can be used to perform tasks on
big data. Nonetheless, the two concepts are
connected. In fact, big data can be processed,
analyzed, and managed on cloud. Parallel
algorithms can be implemented in the cloud-
computing environment to reduce computation
time, memory usage and I/O overhead for
generating frequent item sets [14].

Moreover, several single source shortest path
algorithms and minimum spanning tree have been
computed in order to resolve this issue, to saves
time using parallel process to quickly focus only on
the results of attentiveness. For this study, the
parallel computation is a proficient method to

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6330

enhance the greedy algorithms containing large
data.

This research aim to achieve the following
objectives:

i) To propose and implement the programming
process between sequential and parallel
programming that required the less execution time
for large datasets.
ii) To investigate and evaluate the performance of
parallel process over sequential using OpenMP
over sequential programming of two searching
algorithms.

In sequential algorithm implementation, it
requires long time to discover the shortest distance
if all sets of vertices are in the graph. So it is
troublesome assignment to locate the most nearest
node from source to goal. Both of the searching
algorithm problem starts initially considering
source as A to all other vertices in datasets. The
graph solving problems increment in size, effective
parallel shortest path handling becomes important
as computational and memory prerequisites
increment [2]. For large structure or framework it
requires long time to perform their tasks and this is
the reason why the parallelization used to perform
operation in less time. Execution for the task in less
time to diminish the proficiency and speedup factor
utilizing the OpenMP and furthermore utilize the
parallel Prims algorithm, parallel Dijkstra algorithm
[1,6-8]. Multicore processors can likewise execute
various assignments at a single time [3].

The next section of this study, Section 2 presents
a literature review on the research work. Section 3
introduces methodology of parallelization
framework for OpenMP. Section 4 elaborates on
the experiments and findings from the experiments.
Finally, Section 5 concludes this research based on
the investigation.

2. LITERATURE REVIEW

Cao et al. [1] proposed the plan to apply the non
hierarchical algorithm such as Dijkstra’s algorithm
to various levels and the entry and exit points (node
E) between a high-level and low-level are acquired
by the heuristic coordinating search approach.

According to Awari [2] graph problem solve by
utilizing the standard graph Algorithm. There is a
depiction of two algorithm, Floyd War shall
algorithm and Dijkstra's algorithm. Parallel
algorithm is impressively compelling for large
graph size. These two algorithm execute in serial
formulation. Parallel algorithm utilized for

calculating or finding shortest way of graph. With
the help of graph algorithm these tasks should be
possible in parallel and reduce the computation
time and efficiency.

In Pathare & Kulkarni [3] the parallel technique
was applied to achieve the best performance by
reducing the execution time using OpenMP for
matrix multiplication algorithm along with floyd
war shall algorithm on a single processor or multi
core processor for a sequential execution and then
obtained the good performance by parallelization.

The key algorithm of parallel innovation in view
of OpenMP is progressed to arrange the promoter
data in Shi et al. [8]. The promoter data are
incepted from the upstream region of five plants
successions. The preparation integrates disturbing
the arrangements in random, figuring the P esteem,
choosing the noteworthy themes from the
continuous themes, marking the arrangement
number and so on. The serial algorithm and the
parallel algorithm are analyzed in the usage system.

In Anjaneyulu et al. [10] proposed algorithms
produces the spanning tree using Prim's algorithms
for parallelism, usefulness of Prims algorithms
comes when there are more number of edges into
the graph and it performs faster. With regards to
speed and time complexity the serial algorithm
takes more time to execute and not an achievable
solution for the problem for getting approximation
for metric travelling salesman problem (TSP). In
the way of getting the minimum spanning tree, the
tree traversed using depth first traversal in which
use of parallelism and recursion was provided.

Jasika et al. [11] presents the issue of
parallelization of Dijkstra's algorithm. Here
Dijkstra’s shortest path algorithm is actualized and
displayed, and the exhibitions of its parallel and
serial execution are looked at. The algorithm
execution was parallelized utilizing OpenMP and
OpenCL techniques. Its performance were
measured on 4 different configurations. The results
demonstrate that the parallel execution of the
algorithm has great performances as far as terms of
speed-up ratio, when compared to its serial
execution.

In Maroosi et al. [12], an inventive classification
algorithm based on a weighted system is presented.
Two new algorithms have been proposed for
recreating membrane frameworks models on a
Graphics Processing Unit (GPU). Correspondence
and synchronization amongst strings and string
hinders in a GPU are tedious procedures. In past
examinations, subordinate items were appointed to

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6331

various strings. This builds the requirement for
correspondence amongst strings, and accordingly,
execution diminishes.

In Ang et al. [13], to acquire the great execution
for CVS on multi-core systems, it is vital to use
parallelism devices proficiently. These parallelism
devices should be used on hotspots so as to limit
improvement time, to diminish application
advancement costs. This is a testing task and
requires an inside and out examination of multi-
core systems.

The Apriori algorithm is extraordinary compared
to other classical algorithms for finding continuous
item sets from a value-based database, yet it has a
few disadvantages, for example, that it scans the
dataset commonly to produce frequent item sets and
that it creates numerous candidate item sets. At the
point when data mining mainly deals with large
volumes of data, both memory utilization and
computational cost can be very high, additionally, a
single processor's memory and central processing
unit resources are limited, which impacts the
inefficient execution of the algorithm. In Saabith et
al. [14] Apriori algorithm has numerous downsides
for preparing tremendous datasets. Parallel and
distributed computing used for the better solution
for conquer the above issues.

The approach used in Maroosi et al. [15] is the
parallel membrane computing model to execute
parallelized harmony search efficiently on different
cores, where the film figuring correspondence
attributes were utilized to trade data between the
activities on various cores, in this way expanding
the decent variety of congruity look and enhancing
the execution of concordance seek.

In Maroosi & Muniyandi [16], another model of
membrane computing with dynamic films is
characterized for taking care of the N-queens issue.
This model builds the parallelism of past
Membrane registering with dynamic membranes.
Correspondence rules reduce speed on multi-core
processing meanwhile correspondences.
Synchronizations between threads and cores that
are fundamental for correspondence rules are
exceptionally time consuming process.

The related works for the proposed study has
been described in this section 2. There are already
many research that has been done on this two
algorithms for sequential process. Parallel
implementation using OpenMP also has been done
by researchers. From the section 2, it can been seen
that the comparative study of two MST has been
done. Also, the analysis has been done on SSSP

with matrix multiplication and various algorithms.
There is no research on Dijkstra's algorithm with
the Prim's algorithm. So, this study proposed the
parallel implementation of two algorithms based on
two searching algorithms which are greedy
algorithms using OpenMP, where the Prim's
algorithm is the optimal solution of MST and
Dijkstra’s algorithm is the optimal solution of SSSP
of greedy algorithm.

3. METHODOLOGY

This section introduces a brief background of the
two searching algorithms and the parallel
framework as OpenMP that was implemented in
this research. Both of the searching algorithms are
greedy algorithms but have some different criteria.
The primary distinction between the two is the rule
that is utilized to pick the following vertex for the
tree.

3.1 Prim’s Algorithm

The algorithm was found in 1930 by
mathematician Vojtech Jarnik and later
independently by computer scientist Robert C. Prim
in 1957. It begins with an empty spanning tree. The
idea is to keep up two sets of vertices. The first set
contains the vertices already included into the
MST, the other set contains the vertices not yet
included [4-5]. At each progression, it consider all
the edges that connect the two sets and picks the
minimum weight edge from these edges. After
picking the edge, it moves the other end point of the
edge to the set containing minimum spanning tree.

3.2 Dijkstra’s Algorithm
Dijkstra's algorithm is used to locate the single

source shortest path issue. This solution is a prime
example of a greedy algorithm. Considering the
single vertex to all different vertices in the graph.
Dijkstra's algorithm solves the single source
shortest-path problem on directed and undirected
graphs with non-negative weights edges. Dijkstra's
algorithm find the minimum distance from single
vertex [4].Dijkstra's algorithm is like Prim's
algorithm. This algorithm fabricates the tree
outward from source in a greedy design. Taking
after Prim’s algorithm, it incrementally find the
shortest ways from source to alternate vertices of
graph.

3.3 Open Multi-Processing (OpenMP)
OpenMP was introduced in 1997 to standardize

programming expansions for shared memory
machines. OpenMP is an application worked with
the hybrid model of parallel programming which
can keep running on a computer cluster using

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6332

OpenMP, to such an extent that OpenMP is utilized
for parallelism inside a (multi-core) hub [6].
OpenMP is an API that supports multi-platform
shared memory multiprocessing programming in C,
C++, and Fortran, on most stages, guideline set
structures and working frameworks, including
Solaris, Linux, macOS, and Windows [7]. There are
three components of API such as compiler
directive, runtime library routines and environment
variables. This directives are represented with
“#pragma omp” that help users explicitly build
parallelism using constructs. The main technique
used to parallelize code in OpenMP are the
compiler directives. The directives are added to the
source code as an indicator to the compiler of the
presence of a region to be executed in parallel,
along with some instruction on how that region is to
be parallelized.

OpenMP was initially designed to parallelize
loop-based sequential programs based on a fork-
join model. The model allows one master thread to
perform tasks throughout the whole program and
forks off threads to process parts of the program
that needed to run in parallel. It is simple, portable
and extensible [7,9].
3.3.1 OpenMP analysis
There are four scheduling policies accessible in
OpenMP: static scheduling, dynamic scheduling,
guided scheduling, and runtime scheduling. Static
scheduling is to averagely separate the loop
iterations and assign them to the individual threads
and diminish the collision when visiting shared
memory. This research uses static scheduling
policy. Dynamic scheduling is not the same as
static scheduling by dividing the blocks and
utilizing FIFO to handle them. The number of
iteration of each time equals to the assigned block
size by the schedule clause. At the point when a
thread completes the iteration assigned to it, it will
request the following group of iteration until the
number of iteration is less than the block size. The
static scheduling is relatively convenient and also
able to improve the efficiency and performance of
algorithm [1].
3.3.2 Parallel execution
The algorithm itself is broken into two stages. This
is vital in light of the fact that synchronization isn't
feasible outside of neighborhood work-bunches in
OpenMP and this would be required to execute the
algorithm initially in a single thread. The first phase
of the algorithm visits all vertices that have been
checked and decides the cost to each neighbor [8].
The second period of the algorithm verifies whether
a smaller cost has been found for every vertex and
provided that this is true, marks it as requiring

appearance and updates the cost. At the end of a
parallel region, the thread teams are stopped and the
master thread continues execution [11].

Figure 1: Iteration During Execution

Here figure 1 illustrates the iteration process during
the execution of parallelized Prim's and Dijkstra's
algorithms. For this proposed work the hardware
configuration consists four processors as a
multicore processor [1].

 Figure 2: Parallel Work Flow

Figure 2 shows the work flow for both algorithms
using OpenMP techniques and threads.

4. PERFORMANCE ANALYSIS

In this chapter, the simulation is carried out to
estimate the performance of the proposed parallel
implementation, which represents the comparison

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6333

of speedup and efficiency for two algorithms.
Moreover, OpenMP is extensively used. The
performance will be using performance metrics
with dataset for parallel program based on different
number of threads.

4.1 System Configuration
In this section, the hardware and software

configuration are described as follows:
4.1.1 Hardware configuration
1) Processor: Intel Core i5-5200U CPU @ 2.20GHz
2.19GHz
2) Memory: 4GB
4.1.2 Software configuration
1) Operating system: Windows version 8.1
2) Compiler and code editor: Dev C++ version
5.11 TDM-GCC
3) Communication protocol: OpenMP

4.2 Dataset

The dataset used for testing was the SGEMM
GPU Kernel performance dataset which was taken
from the UCI Machine Learning repository [20].
The informational collection contains 241600
records with each record having eighteen attributes,
which are all integer. The records are divided into 5
classes as 50k, 100k, 150k, 200k and the SGEMM
dataset containing all records.

4.3 Performance Metrics

Subsections beneath describe the execution
analysis metrics used to assess the proposed
algorithms.
4.3.1 Execution time
While invoking each algorithm, it start to check the
time and the precision is milliseconds. At the point
when the calculations are done, which implies the
shortest paths have been discovered, the counter is

halted and the execution time is shown on the
screen [7, 13].
4.3.2 Speedup ratio
Equation (1) is used to measure the execution time
performance gain [7, 13] in parallel computation
analysis,

 (1)

where is the best serial code execution
time, divided by parallel code execution time

 solving the same problem with p
processors or threads [7].
4.3.3 Efficiency
Correlated to speedup, to measure the parallel
performance on average percentage of non-idle
time,

 (2)

where S is the speedup defined in Equation (1), and
p is the number of processors or threads, essentially

, S and E are depend on p. Efficiency is
denoted in percentage (%) [7, 13].

4.4 Results

This section represents the comparison and
analysis of performance of two proposed
algorithms. Each has two versions: sequential and
parallel, thus this study can compare and analyze
the performance. Both of the programs are executed
on same processor machine. In table 1 and 2, the
execution time for sequential and parallel program
are recorded to compare the results of sequential vs
parallel. Execution time is recorded against
different dataset to analyze the speedup of parallel
algorithm against sequential [3].

 Table 1: Sequential And Parallel Contrast Time of Prim’s Algorithm for Different Threads

Datasets Sequential
Prim’s

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Thread
8

50k data 1.537000 12.59 6.55 5.00 2.48 1.97 4.72 5.04 5.04

100k
data

1.518000 12.52 6.86 4.64 2.52 2.07 4.66 4.91 5.04

150k
data

1.541000 12.59 6.80 3.52 3.06 2.24 3.12 5.01 4.96

200k
data

2.149000 12.59 6.63 4.20 2.46 1.98 4.48 4.83 5.08

SGEMM
dataset

2.293000 12.58 6.66 3.99 2.40 2.31 5.20 5.46 5.16

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6334

TABLE 2: SEQUENTIAL AND Parallel Contrast Time of Dijkstra’s Algorithm for Different Threads

Figure 3: Performance Analysis of Prim's Algorithm for Sequential Program and Different Threads

with Different Data Sizes

 Figure 4: Performance Analysis of Dijkstra’s Algorithm for Sequential Program and Parallel
Program for Different Threads with Different Data Sizes

Datasets Sequential
Dijkstra’s

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Thread
8

50k data 3.459000 12.60 6.54 4.48 2.54 2.02 1.62 1.47 1.48

100k
data

4.086000 12.58 6.56 4.61 2.54 2.01 1.64 1.47 1.48

150k
data

4.088000 12.59 6.59 4.58 2.54 2.03 1.79 1.48 1.48

200k
data

4.957000 12.63 6.62 4.84 4.24 2.65 2.11 1.90 1.47

SGEMM
dataset

5.494000 12.58 6.68 4.54 4.12 2.67 2.08 1.71 1.48

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6335

 Table 3: Speed-Up Ratio and Efficiency of Prim’s Algorithm for Different Threads

Here, figure 3 represents the execution time of
sequential and parallel program for Prims
algorithm. Then figure 4 shows the same actions for
Dijkstra’s algorithm with impressive result
completed within 1.47ms. From the execution time,
calculated the speed-up ratio S for Prim’s and
Dijkstra’s algorithm using equation (1), which are
represented in table 3 and 4 respectively. Then it
executed equation (2) and get the efficiency E in
table 3 and 4. In figure 5 and 6, it can be seen that
the efficiency of Prim’s and Dijkstra’s has been
executed. The ratio of efficiency is between 0 and
1. Efficiency varies with different number of
threads and data sizes. If the = P, E= 1 then the
algorithm is a best parallel algorithm. This is only
the ideal situation and in reality it is impossible
since the ratio is affected by the low degree of
parallelism, lack of load balance and

communication collision, etc [1,7,13]. There are
significant changes for the results of computation
time of algorithms for both techniques.

4.5 Significance

The fundamental significance of this research
can be compressed in the stated points:

1) Execution Time: The Sequential searching
algorithm and OpenMP searching algorithm
programs are infused with time estimation function
code to stamp the new best arrangement found on
each execution in millisecond granular time to
encourage information gathering. Here the running
time of Prim’s algorithm is 2 times less than
Dijksra’s algorithm. On the other hand, the running
time for OpenMP Prims algorithm is more than 2
times over OpenMP Dijkstra’s algorithm.

Table 4: Speed-Up Ratio and Efficiency of Dijkstra’s Algorithm for Different Threads

 Number of Threads

Dataset
s

S and
E

1 2 3 4 5 6 7 8

50k S 0.1221 0.2346 0.3074 0.6197 0.7802 0.3256 0.3049 0.3049

E 0.1221 0.1173 0.1024 0.1549 0.1560 0.0542 0.0435 0.0381

100k S 0.1212 0.2212 0.3271 0.6023 0.7333 0.3257 0.3091 0.3011

E 0.1212 0.1106 0.1090 0.1505 0.1466 0.0542 0.0441 0.0376

150k S 0.1224 0.2266 0.4377 0.5035 0.6879 0.4939 0.3075 0.3106

E 0.1224 0.1133 0.1459 0.1258 0.1375 0.0823 0.0439 0.0388

200k S 0.1706 0.3241 0.5116 0.8735 1.0853 0.4796 0.4449 0.4230

E 0.1706 0.1620 0.1705 0.2183 0.2170 0.0799 0.0635 0.0528

SGEM
M

S 0.1822 0.3442 0.5746 0.9554 0.9926 0.4409 0.4199 0.4443

E 0.1822 0.1721 0.1915 0.2388 0.1985 0.0734 0.0599 0.0555

 Number of Threads
Dataset

s
S

and
E

1 2 3 4 5 6 7 8

50k S 0.2745 0.5288 0.7721 1.3618 1.7123 2.1352 2.3531 2.3372
E 0.2745 0.2644 0.2573 0.3404 0.3424 0.3558 0.3361 0.2921

100k S 0.3248 0.6228 0.8863 1.6086 2.0328 2.4914 2.7795 2.7608
E 0.3248 0.3114 0.2954 0.4021 0.4065 0.4152 0.3970 0.3451

150k S 0.3247 0.6203 0.8925 1.6094 2.0137 2.2837 2.7621 2.7621
E 0.3247 0.3101 0.2975 0.4023 0.4027 0.3806 0.3452 0.3452

200k S 0.3934 0.7487 1.0241 1.1694 1.8705 2.3492 2.6089 3.3721
E 0.3924 0.3743 0.3413 0.2922 0.3741 0.3915 0.3727 0.3727

SGEM
M

S 0.4367 0.8224 1.2101 1.3334 2.0576 2.6413 3.2128 3.8419
E 0.4367 0.4112 0.4033 0.3334 0.4115 0.4402 0.4589 0.4589

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6336

Figure 5: Efficiency of Prim’s
Algorithm

Figure 6: Efficiency of Dijkstra’s
Algorithm

2) Speed-up ratio: The main goal of this research is
to compare the performance. So for that it need to
calculate the speed-up ratio from the execution time
[1]. Then it can find out the efficiency from speed-
up ratio and the numbers of threads used for
parallel execution.All the significance of this
research is co-related to each other.The speed-up
ratio of OpenMP Dijkstra is also more than 2 times
over OpenMP Prim’s algorithm. The best can hope
for is Tparallel = Tserial/p. When this happens,
then it can be said that the parallel program has
linear speedup.For this research it is not linear.

3) Efficiency: The workload of the nodes can be
represented as the division between the normal
workload and the most extreme workload
(considering all nodes). This proportion, in the ratio
between 0 and 1, shows how much distinction there
is between maximum load and normal, so
efficiency close to 1 implies a balanced
parallelism,while 0 speaks to the most extreme
unbalance [1]. Response time and efficiency are
connected, since a low degree of parallelism will
introduce worse response time. The two measures
are considered to demonstrate the pick-up of the
proposed processes from two distinct perspectives.
For this research, the efficiency of OpenMP
Dijkstra is relatively near to 1 (which is 0.4802)
over OpenMP Prim’s algorithm (which is 0.2388),
which implies a balanced parallelism.

There is a limitation for searching the path
from source to destination of Prim’s algorithm or
the next edge of Dijkstra’s algorithm. For the

sequential execution the simulation started the
searching from node 0 as the source for both
algorithms. The source is not chosen randomly by
the system. Again, for the parallel computation, the
process insert the starting node as 0. Thus it found
the next edge according to the edge A as a starting
node. This had been done to compare the results
further for sequential and parallel program for
similar scenario. So, this study only compared the
results where the source is nothing but 0 for both
algorithms. Also in this study, the experiment has
been done by one single machine mentioned in the
sub subsection 4.1.1 which could be simulated in
different configurations to compare the
performance

Main execution bottleneck of Prim's algorithm is
correspondence overhead of all-to-one reduce task.
Reduce task is costly in contrast with local
computation, and every single different process are
idle while waiting for diminish to finish. This
prevents Prim's algorithm to accomplish significant
efficiency on a large number of datasets.
Subsequently, Prim's algorithm is best utilized on a
smallest graph on which parceled input graph can
fit.

5. CONCLUSION

In this study, two searching algorithms are
prepared with five sub-datasets by the OpenMP
parallel innovation. Initially, the algorithms were
sequential. At first, the simulation has been done
for sequential program. Then the parallel process of

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6337

OpenMP has been applied to get the parallel
execution time. This two types of execution time
was utilized to compare the performance. The
experiment result shows that the parallel algorithms
simulated in this research are efficient over the
sequential algorithms and the speed-up ratio of the
two parallel algorithms are satisfied in finding the
shortest path [7]. Also the efficiency of those two
parallel algorithms has been compared.

There are few aspects that can enhance the task
later on. The conceivable outcomes of different
parallel techniques in the programming part and
more updated, for instance OpenMP with MPI,
OpenMPI, CUDA could be tried. Also, this study
intend to test other searching algorithms such as-
Kruskal, BFS with required number of threads on
the OpenMP based parallelism and determine
whether a similar approach can be executed to get
better performance of those algorithms in such an
environment.

ACKNOWLEDGEMENT

This work is supported by the Fundamental
Research Grant Scheme of the Ministry of Higher
Education (Malaysia; Grant code: FGRS/1/2015
/ICT04/UKM/02/3).

REFERENCES:

 [1] Cao H, Wang F, Fang X, Tu H-L, Shi J.
OpenMP parallel optimal path algorithm and its
performance analysis. 2009 WRI World Congr
Softw Eng WCSE 2009. 2009;1.

 [2] Awari R. Parallelization of shortest path
algorithm using OpenMP and MPI. Proc Int
Conf IoT Soc Mobile, Anal Cloud, I-SMAC
2017. 2017;304–9.

 [3] Pathare S, Kulkarni P, Kardel R. Performance
Analysis of Algorithm Using OpenMP.
2014;1(1):152–6.

 [4] Fallis A. Data Structure and algorithms in java.
Vol. 53, Journal of Chemical Information and
Modeling. 2013. 1689-1699 p.

 [5] Prim RC. Shortest Connection Networks And
Some Generalizations. Bell Syst Tech J.
1957;36(6):1389–401.

 [6] Grama A, Gupta A, Karypis G, Kumar V.
Introduction to Parallel Computing, Second
Edition. Communication. 2003. 856 p.

 [7] P. Pacheco, An Introduction to Parallel
 Programming, Burlington, USA: Elsevier,2011.
 [8] Shi Y, Lu J, Shi X, Zheng J, Li J. The Key

Algorithms of Promoter Data Parallel
Processing based on OpenMP. 2014;154–7.

 [9] OpenMP Architecture Review Board,
 "OpenMP Application Program Interface",

http://openmp.org/forum/
 [10] Anjaneyulu GSGN, Dashora R, Vijayabarathi

A, Rathore BS. Improving the performance
of Approximation algorithm to solve
Travelling Salesman Problem using Parallel
Algorithm. 2014;337(3):334–7.

 [11] Jasika N, Alispahic N, Elma A, Ilvana K,
Elma L, Nosovic N. Dijkstra’s shortest path
algorithm serial and parallel execution
performance analysis. MIPRO, 2012 Proc
35th Int Conv Inf Commun Technol
Electron Microelectron. 2012;1811–5.

[12] Maroosi A, Muniyandi RC, Sundararajan E,
Zin AM. Parallel and distributed computing
models on a graphics processing unit to
accelerate simulation of membrane
systems. Simulation Modelling Practice and
Theory. 2014;47:60-78. Available from,
DOI: 10.1016/j.simpat.2014.05.005

[13] Ang MC, Aghamohammadi A, Ng KW,
Sundararajan E, Mogharrebi M, Lim TL.
Multi-core Frameworks Investigation on a
real-time object Tracking application. J
Theor Appl Inf Technol. 2014;70(1):163–
71.

[14] Saabith ALS, Sundararajan E, Bakar
AA. Parallel implementation of Apriori
algorithms on the Hadoop-MapReduce
platform - An evaluation of
literature. Journal of Theoretical and
Applied Information Technology. 2016
Mar 31;85(3):321-351.

[15] Maroosi A, Muniyandi RC, Sundararajan E,
Zin AM. A parallel membrane inspired
harmony search for optimization
problems: A case study based on a flexible
job shop scheduling problem. Applied Soft
Computing Journal. 2016 Dec 1;49:120-
136. Available from,
DOI: 10.1016/j.asoc.2016.08.007

[16] Maroosi A, Muniyandi RC. Accelerated
simulation of membrane computing to
solve the N-queens problem on multi-core.
In Lecture Notes in Computer Science
(including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics). PART 2 ed. Vol. 8298
LNCS. 2013. p. 257-267. (Lecture Notes in
Computer Science (including subseries
Lecture Notes in Artificial Intelligence and

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6338

Lecture Notes in Bioinformatics); PART 2).
Available from, DOI: 10.1007/978-3-319-
03756-1_23

[17] Setia R, Nedunchezhian A, Balachandran S.
A new parallel algorithm for minimum
spanning tree problem. Proc Int Conf High
Perform Comput [Internet]. 2009;1–5.
Available from:
http://111.hipc.org/hipc2009/documents/HI
PCSS09Papers/1569250351.pdf

[18] Loncar V, Skrbic S. Parallel implementation
of minimum spanning tree algorithms using
MPI. CINTI 2012 - 13th IEEE Int Symp
Comput Intell Informatics, Proc. 2012;35–
8.

 [19] Dev C++. Available from:
https://sourceforge.net/projects/orwelldevcp
p/files/Setup Releases/Dev-Cpp 5.11 TDM-
GCC 4.9.2 Setup.exe/download

 [20] UCI Machine Learning Repository:
SGEMM GPU kernel performance Data Set
[Internet]. [cited 2018 May 24]. Available
from:
https://archive.ics.uci.edu/ml/datasets/SGE
MM+GPU+kernel+performance

