
Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6618

A COMPARATIVE STUDY OF TEST CASE
GENERATION AND OPTIMIZATION USING GENETIC

ALGORITHM

1ITTI HOODA, 2PROF. DR. RAJENDER SINGH CHHILLAR

1Research Schooler, Department of Comp. Sc. and Applications, M.D.U, Rohtak, Haryana, India
2Professor, Department Of Comp. Sc. and Applications, M.D.U, Rohtak, Haryana, India

E-mail:-1ittihooda01@gmail.com, 2chhillar02@gmail.com

ABSTRACT

The main consideration of the work is a comparative study and analysis of test case generation and
optimization algorithms based on Genetic Algorithm. The work also present how genetic algorithm shows
the better result as compared to other techniques by using UML diagram .The comparison is shown
between three different techniques which differently consider the genetic algorithm for the purpose of test
case generation and optimization. The survey is being presented using the activity diagram and also the
activity graph of the Airline Reservation System. The activity diagram of the airline reservation system is
first converted into the activity graph. As any graph is the combination of vertices and edges which are
connected with some nodes, in the activity graph the nodes actually represents the test path, the test path of
the system is being optimized using the optimization technique or we can say using the Genetic Algorithm.
The survey conducted is estimated or analysed on various defined factors which are differing for every
technique defined in the study. Three algorithms considered are “Test case generation and Optimization
using UML models and Genetic Algorithm”, “Optimization of Test case generation using Genetic
Algorithm” and “Test case retrieval Model by Genetic algorithm with UML diagram”. This work with the
empirical results prove that the algorithm for test case retrieval model by Genetic Algorithm with UML
diagram shows better results as compared to other discussed techniques.
Keywords:UML, Genetic Algorithm, Optimization, test path, Test case, Mutation,Crossover,GA.

1. INTRODUCTION

The software system is the part of modern day to
day life at present. As the software systems are now
applicable for each and every task of life starting
from the kitchen systems to almost all kind typical
infrastructures required in life which actually works
intangibly, that means for enjoying the life all sort
of availability provided for which the software is
must part as per the present scenario. As per the fact
that the usage and also the importance for using the
software system is increasing then the same is to be
developed more proficiently. Software development
is the long process and consist many stages to make
it usable for the user in day to day life. Means the
simple looking expression is to be translated into
the computer words which actually have some line
code or we can say interrelated codes. As per the
scenario generated in 1960’s which actually termed
as the software crisis, by that it is quite clear that to
have the software system at large scale, it is not
very much prone to the bugs or issues. As per the

facts the existing system were not efficient for the
tasks arising at that time or they were not able to
give the predictable output. [1]

The development of the software have may stages
which are combined together as software
development lifecycle and almost half of the cost of
the software development is consumed in the testing
part. The cost of testing the software can be reduced
to an extent in the case when the predicted errors or
bugs are detected at the early development stages of
the software development lifecycle. So as ensure the
quality and reliability of the software system testing
is the most important stage of the software
development stages. The software testing process
has the following stages or steps:

1. Test data generation,
2. Test data Execution and
3. Evaluation of the test outcomes.
If the practicality of the concern or the above

points is concerned then it is hard to carry out the

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6619

things manually. For reducing the cost and effort
required for the testing the things are supposed to be
carried out automatically. Test cases are designed to
detect and also to resolve the maximum number of
defects or bugs from the software system. Just
because of the matter of the time and cost the
exhaustive type of testing cannot be adopted
software testing.

White box testing and behavioural testing are
the majorly used testing techniques. White box
testing is also being defined as structural testing
which is actually for finding the test data from the
internal programming and also deriving the
structure of the program. In the case of the black
box testing strategy the functionality of the code is
being verified and doesn’t check the internal
structure of the application code. In the case of the
structural testing strategy the test paths are being
verified for the obtained test data provided as input.
The term path coverage is being first generated and
then different test scenarios are being obtained.
After obtaining the test paths the same are then
prioritized and along with that the test data for that
is path is being generated, which is then followed
by the evaluation of the same.[2]

The focus of the work for the analysis of the
three defined techniques for test case generation and
optimization using genetic algorithm and the
analysis specification is being provided using
different factors when applied on same execution
module.

The further modules of the paper are as under
section 2 defines the previous work in the field of
test case generation and optimization, section 3
talks about themethodologies discussed and also
about the case used for describing the techniques as
airline reservation system with the activity diagram
and activity graph of the same, section 4 describes
the conclusion and the future work on the basis of
the study done.

4. LITERATURE REVIEW

[3] Presented the technique for the purpose of
assembling the libraries of the application software
for increasing the reusability of the modules and
making the availability of the libraries closer which
are required most frequently. [4] Defined a
novalapproach which actually is based on
information retrieval and particularly considers the
BM25, function for similarity of the documents,
which works for automatically detecting the bugs in
the application software and also generates the bug
reports. Certain labels are then assigned to the bug
report on the basis of like if they are reported in the
past or are newly generated.

[5] proposed BLUIR, which works on the open
source tool of IR, the IR toolkit provides the basic
ground for the IR based lo0calization of the bugs.
Author evaluated BLUIR for four different projects
with approx. 3400 bugs finding in all. As per the
consideration of the application scenario the BLUIR
matches outperforms the available state-of-art tool,
the results by the BLUIR are efficient in the case
also when it is not using the concept of similarity
function for document consideration.

[6] describes the facts that how the history of
the different versions of the same application
software can be used to make the upcoming version
as error prone as possible. The bug localization by
including the base version as the part of the current
development the MAP (Mean Average Precision)
for the bug detection has being raised by something
around 30%.

[7] in the research a contextual searching
system is being proposed for software engineering
tasks, the proposal actually is the combination of
behavioural data and Information retrieval part. [8]
proposed a technique for the generation of the test
data and procedure which are for the real time
application systems and also the best enablers for
the practical aspects for MBT. As the future aspects
are also considered means in the proposal the MBT
technique is being used sketching the testing teams
is done.

[9] in the work author conducted a review of
the traceability researchers and found that the
student artifacts are the mostly considered
representative for the counterparts of the
organizations which actually are not validated for
the organizational representativeness.

[10] considered the basic level of educational
level gaming applications and is actually based on
two aspects of research: agile development
methodology and user-cantered design (UCD), the
development is generally considered for the group
age of 7-10 years of children. A continuous
communication among the stakeholders of the
development is considered, the facility is being
provided by the agile methodology extreme
programming (XP) which is quite help in the case
of the development of the series games for the
students. In the communication of the stakeholders
the end user of the product are also considered. In
the case UCD the complete profile of the user is
known or is being identified for the purpose that the
developed work meets the desired outcome as per
the end user, and also motivation, capabilities and
needs of the children are considered in the defined
approach.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6620

[11] the work tries to provide a specific, upto-
date, introductory information about the process
making the test case generation process automated
and also the comprehensive and the authoritive
concerns are well maintained in the approach. A
orchestrated kind of review of the techniques which
are quite prominent for the automated test data
generation is considered and also the same is being
reviewed for the segment of self-standing.

[12] proposed a technique for the performance-
based problems using the black-box testing strategy
which works automatically. The technique is
applied and implemented for the medium ranged
application software’s, majorly for the insurance
company as an open-source software. The problems
or errors related to the performance of the system
are automatically detected and are considered by the
experienced testers for confinement of the same.

[13] described a technique termed as Refoqus
which is actually based on the concept of the
machine learning, the training data for machine
learning process are the test cases or some queries
along with the valid and tested results of the same,
the refoqus is evaluated with the four-line technique
which actually are used for the retrieval of the
natural language-based documents.

[14] studied and evaluated the researches done
by the various researchers related to the domain of
software engineering and considered the concerns
of the researchers along with there proposals and
analysed all for the betterment of the SR process.
[15] analysed reported patches for three existing
generate-and-validate patch generation systems
(GenProg, RSRepair, andAE) and also present Kali,
a generate-and-validate patch generation system
that only deletes functionality. [16] analysed the
usage of the history of pre-version modules of the
same application and also considered the tangible
changes that are related with one-another and also
the analysis of the results are being compromised by
noise and bias.

[17] in the study the formal analysis concept
approach and information retrieval are combined
together for addressing the open source problems of
source code. The textual description of the
application software is being depicted by the latent
semantic indexing which actually is an information
retrieval technique and also used for bug reporting
for the specific parts of the software code which are
been provided as the ranked list of the elements of
the software code.

5. TEST CASE GENERATION

3.1. Activity Diagram

The reviewed technique are applied and analysed on
the activity diagram of the airline reservation
system. As the modelling is just dynamic for which
the activity diagram of the application module is
being used [18]. The activity diagram is the
combination of the nodes and connected edges or
we can say that it is the graphical representation of
the task which a proper flows of the activities. The
diagram in figure depicts the activity diagram of the
airline reservation system and similarly the diagram
in figure 2 depicts the activity graph of the same.

Specification of the software module:-
1. Enter arrival and departure dates in Airline

Reservation System.
2. Enter client’s personal Information and

search for the availability.
3. choose flight and add reward points if

applicable.
4. Hold reservation and complete the

payment information as needed.
5. Select seat/seats and carry-on with the

payment and an acknowledgement will be
shared registered or entered on E- mail.

Figure 1. Activity Diagram (AD) for Airline Reservation
System.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6621

Figure 2. Activity Graph (AG) for Airline Reservation
System.

3.2. Test case generation and Optimization
using UML models and Genetic Algorithm

The test cases for the software module
generated right after gathering all the required
information. The optimization of the test cases
generated is being done using the evolutionary
methodology. The below segment describes the
mechanism of obtaining and optimizing the test
cases using the genetic algorithm applied on the
activity graph. The step by step implementation of
the methodology is under [19]:-

Algorithm : GEN-OPT TESTCASES
Input: - Activity Graph (AG)
Output: - Optimized test cases

1. Discover all the scenarios, R= {r1, r2, r3,
r4, r5.....} from initial vertex to the final
vertex in the Activity Graph.

2. Weights are assigned to scenarios in
increasing order from left to right.
Individual vertexes are being provided
weights as the actual weight of the child
vertex which is obtained from weight of
the parent node. If in the case any child
having more than one parents then weight
of that vertex is computed by summing up
the weights of the parent’s node.

3. Next is to compute the cost (x) of each
scenario (path) as the cost of any path is
computed by adding the weights of all
vertexes on that path.

4. Genetic Algorithm is being applied to the
AG.

5. Fitness value computation
a. For each scenario compute the

value of cost(x).
b. Fitness function is used as

F(x)=x*x
c. Probability is computed for

individual as P(i)=F(x)/ƩF(x)

6. For obtaining new generation of solutions
best individuals are selected from existing
large initial population for mating pool.

a. Best individual’s probability
range is grouped into bins, the
size of the bin relies on the
relative fitness of the solution

b. Random values are obtained and
then verified against the bin
where those values related to,
choosingthe individuals for the
next generation.

7. Crossover is performed on the
chromosome pairs by mating two
individuals together and applying single
point crossover from 4thbit from right.

8. Mutation operation is performed by
mutating every third bit from left where
the random number generated is less than
0.5.

9. This complete process is rehearsed till the
minimization of the fitness value or the
maximum number of generations is
reached or all the scenarios have been
traversed.

10. Test cases are optimized by generating the
best scenario as output.

11. End.

The example for the evaluation of the technique
is the airline reservation system. The next segment
represents the mathematical evaluation of the
Genetic Algorithm on the considered example. [19]
The possible scenarios generated from the above
graph are:-

Scenario1:-
Start:=>V1=>V2=>V3=>V4=>V5=>V6=>V7=>V
8=> V9=>end, cost=55

Scenario2:-
Start:=>V1=>V2=>V3=>V4=>V5=>V6=>V7=>V
8=> V9=>V10=>V11=>end, cost=78

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6622

Scenario5:-
Start:=>V1=>V2=>V3=>V1=>V2=>V3=>V4=>V
5=>V6=>V7=>V8=>V9=>V10=>V11=>end,

Scenario3:-
Start:=>V1=>V2=>V3=>V4=>V5=>V6=>V7=>V
8=> V9=>V10=>V12=>end, cost=79

Scenario4:-
Start:=>V1=>V2=>V3=>V1=>V2=>V3=>V4=>V
5=> V6=>V7=>V8=>V9=>end, cost=64

Scenario5:-
Start:=>V1=>V2=>V3=>V1=>V2=>V3=>V4=>V
5=>V6=>V7=>V8=>V9=>V10=>V12=>end,
cost=88
These different scenarios become different
chromosomes in the population.

Table 1. Fitness Of Initial Population

Scenario No. Chromosomes
*Y

Probability Cumulative probability Associated Probability

1 0110111
5 025

0.0870 0.0870 0-0.2

2 1001110
8 084

0.1750 0.2620 0.2-0.4

3 1001111
9 241

0.1795 0.4415 0.4-0.5

4 1000000
4 096

0.1178 0.5593 0.5-0.6

5 1010111
7 569

0.2177 0.7770 0.6-0.8

6 1011000
8 744

0.2227 1 0.8-1

Table 2. Selection of new generation.

Random No. Falls into Bin Selection Crossover Mutation
0.8924 6 1011000 1010111 1010111
0.7187 5 1010111 1011000 1011000
0.4376 3 10011111 1000111 1010111
0.6097 5 1010111 1011111 1011111
0.3967 2 1001110 1001000 1011000
0.9126 6 1011000 1011110 1011110

Table3. Fitness Of Initial Population

Scenario
No.

Chromosomes X X*Y Probability Cumulative
probability

Associated
Probability

1 1010111
7

7569 0.1561 0.1561 0-0.2

2 1011000
8

7744 0.1597 0.3158 0.2-0.4

3 1010111
7

7569 0.1561 0.4719 0.4-0.5

4 1011111
5

9025 0.1861 0.6580 0.5-0.7

5 1011000
8

7744 0.1597 0.8177 0.7-0.9

6 1011110
4

8836 0.1822 1 0.9-1

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6623

Figure 4: Selection of new generation.

Random No. Falls into Bin Selection Crossover Mutation
0.3896 2 1011000 1011000 1001000
0.8846 5 1011000 1011000 1011000
0.4290 3 1010111 1011111 1011111
0.6714 4 1011111 1010111 1010111
0.8761 5 1011000 1011110 1011110
0.9128 6 1011110 1011000 1011000

Table 5:- Fitness Of Initial Population

Scenario No. Chromosomes X X*Y Probability Cumulative probability Associated Probability
1 1001000

2
5184 0.1196 0.1196 0-0.2

2 1011000
8

7744 0.1787 0.2983 0.2-0.4

3 1001111
9

6241 0.1440 0.4423 0.4-0.6

4 1010111
7

7569 0.1747 0.6170 0.6-0.8

5 1011110
4

8836 0.2039 0.8209 0.8-0.9

6 1011000
8

7744 0.1787 1 0.9-1

Table 6. Selection of new generation.

Random No. Falls into Bin Selection Crossover Mutation
0.4120 3 1001111 1001000 1001000
0.9265 6 1011000 1011111 1011111
0.7635 4 1010111 1011000 1011000
0.3127 2 1011000 1010111 1000111
0.9745 6 1011000 1010111 1010111
0.6793 4 1010111 1011000 1011000

There is a decrement in the difference between
the chromosome’s value when considered after each
and every iteration. Which actually is the
representation of the fact of survival of the fittest,
the technique ends at the cost value of 88. The
further computation shows that the scenario 6
whose cost value is 88 is the optimum path.

3.3. Optimization of Test Case Generation
using Genetic Algorithm

[20] The proposed technique is all about the
optimization of the work or process, the concept of
optimization is being carried out using the concept
of Genetic Algorithm. Different project inspection
is being considered for the purpose of
accommodation of the Genetic Algorithm for
optimization. The technique also provides the

aspects to have the better results in the efficient
time.

The purpose of software testing many
researchers have proposed many techniques and
assures the better quality of one over another in
terms of the quality. For all the techniques there
exists some hole of limitation. So as to overcome
the issues or limitations in the software testing or
specifically saying the issues related to the
generation and optimization of the test cases the
below study tries to provide better solution for the
same for generation and optimization of the test
cases.

The evolutionary test data generation
techniques are generally good and are for bringing
the routinely data which is quite of high quality.
The evolutionary techniques are applied on many of
the real time application problems. Genetic
Algorithm [21] has resulted a good and efficient
technique for the optimization and other market
related requirements, as per the studies the genetic

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6624

algorithm is actually a seeking technique. The
selection procedure in the GA is based on the real
time example of choosing the

man and women who are fit on the basis of the there
food selection. Genetic Algorithm can be
successfully used with any of the computer software
test methodology.

Optimized algorithm
1. Inject the mutant in the program.
2. Generate random test cases.
3. Find the mutation score with the formula,

mutation score= (number of mutants
found) / (total number of mutants).

4. If the mutant score is satisfactory
(Maximum) stop, otherwise go to step 5.

5. Refine the test case using mutation score.
Test case, having mutation score 20% or
less drops them.

6. Apply Genetic Algorithm Operations on
remaining test cases to produce new
experiments. Go to step 3.

Algorithm for ab. Where a and b are positive
numbers.

1. Power(a, b)
2. If(a= =1)
3. Return 1
4. If(b= =1)
5. Return a
6. P=1, i=1
7. While(i<=b)
8. {P=P*a
9. i++}
10. return P
Inject four mutants in this program Now

algorithm look like this.
1. Power(a, b)
2. If(a=1)
3. Return 1
4. If(b=1)
5. Return a
6. P=1, i=1
7. While(i<b)
8. {P=P+a
9. i++}
10. return P

Figure 3. Optimized algorithm flow.

As per indicated in the block diagram of the
proposed technique in figure 3, the number of
mutants are generated. In the initial stage some of
the mutants are added to the program, where the
mutants actually defines the type of error and helps
to find the optimized test cases. After the addition
of the mutants the performance of the test cases is
been evaluated which is the initial step of the
overall process. In the case when all of the inserted
mutants are not detected then query arises that what
actually is the number of detected mutants. In the
case when the detected number of the mutants are
less then that of the minimum number of mutants
then the test cases defined are not able to detect the
errors properly or just failed.

In the situation of no the fitness function is
being computed for estimating the exact number of
mutants inserted. In the next case when the number
of detected mutants are around fifty percent of the
inserted mutants then it the test case is considered
as fit and in the case when it is less than 50% then
the presentation is all about the number of mutants
value. In the case when total number of mutants are
detected in the 2nd stage that means the optimal
solution is being found and there is no need for
going further and also means that the test case is
able to detect almost all type of errors in the
application software used or is under test.

Just because of the matter of reviewing there is
requirement of characterizing the technique which
can define the nature of experiment carried. So as to
rehash the botches the students are the best

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6625

propensity. There also exist a case when it is not
able consider a class and can also repeat the same
for the large part of the module. The related aspects
of the experiments are considered as the important
point and there is absence of the same in the
learning process.

A. Regulated depiction of experiment
execution

B. Make particulars of substantial and invalid
inputs

C. Understanding directions/level of points of
interest

D. Elaborate experiment creation, and not just
utilizing the most evident experiment or
info

E. Comprehend the motivation behind the
framework and current level and
connection of testing

F. Characterize a reasonable beginning
position for the experiment

G. Understanding test techniques and how to
apply them

H. Suppositions, e.g. concerning accuracy and
culmination of particulars

I. Experiment assessment (ventures to take to
make an unmistakable correlation with
expected result ought to be clear)

J. Tidy up after an experiment, repeatability

The above described factors plays an important
role for the test cases. These factors are playing
very important role in test cases. Further analysis
depicts that the elaborating factors have greater
influence over the test cases. The elaborating factors
have differing impact ratio and are depicted in the
table 7.

Table 7. Factors and impact ratio
Factors Impact(%)

Regulated Depiction 55%
Valid and invalid inputs 38%
Good Detail level 44%
Variation in Test cases 75%
Understand system’s framework 50%
clear beginning position 60%
test design techniques better 80%
accurate suppositions 70%
test case assessment 50%
Tidy up after execution 78%

The system considered for experiments is taken
the process of different activities or with the
depiction of activities is particular order. For
making the way of execution characterized the
experiments are considered in small and strides

which are extremely itemized which is nearly same
as that of code of composing.

Figure 4. Impact of regulated depiction

Impacts of regulated depiction is being
presented in the graph shown in figure 4 for
different test cases. The maximum depiction of the
impact for the four different sets of test cases is
55%. In the sets of the test cases every of the set
contains 3 different test cases where the first
regulated depiction of the defined test cases is 55,
55 and 49. In the case of the set 2nd the depiction
impact which is regulated are 51, 55 and 48. In the
case of the 3rd set the impact of depiction are 50, 53
and 55. The depiction impact for the last set are 54,
48 and 44. Something around the 55% of depiction
impacts provides the data which is actually deficient
and elements which are subtle so as provide the
steps which are trailed unambiguously by the
required jumps of the humans and other related
personalities those who are taken into consideration
at the time of the execution.

Figure 5. Impact of input analysis

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6626

The different test cases are analysed and the
graph depicts the representation of the same[29].
From the four different sets of test cases 38% is the
maximum impact found for analysis of the input.
Similarly every of the set of the test cases contains
three different test cases, where the first regulated
depiction of the defined test cases is 38, 37 and 33.
In the case of the set 2nd the depiction impact which
is regulated are 36, 38 and 37. In the case of the 3rd
set the impact of depiction are 33, 34 and 38. The
depiction impact for the last set are 31, 37 and 33.
The things were troubling for the analyser as only
62% were close to the expectation of the
examination. The students were at larger extent
were selected for getting the information for the
examination. The complete data space was not
handled by anyone as the impacts remains to be just
38%.

Figure 6. Impact of detail level

The above analysis depicts that the about 29%
of the applicants not even read the experimental
conveyance and around 15% of the applicants
doesn’t completed the layout of the experiments,
means the impact of depiction is just 44% from the
four different sets of the test cases. In the sets of the
test cases every of the set contains 3 different test
cases where the first regulated depiction of the
defined test cases is 41, 38 and 40. In the case of the
set 2nd the depiction impact which is regulated are
40, 44 and 42. In the case of the 3rd set the impact of
depiction are 44, 38 and 40. The depiction impact
for the last set are 39, 39 and 43.

Figure 7. lack of variation

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6627

3.4. PROPOSED METHODOLOGY

Figure 8. Block diagram of research methodology.

ALGORITHM

Input:
 The UML Diagram[22] to be tested U;
 The flow of graph (CFG) and attributer

(ADG) of U;
 The population size (PS)
 Maximum number of Generation (MG);
 Probability of crossover (PX);

 Probability of mutation (PM);
Output:

 TRP of Test Case Retrieval
Begin

Step 1: Initialization
 for i= 1 to PS
 Initialize each feature Uw ᶲ;
 Initialize the weight Uw ᶲ;

Input project

Create fitness
of features

Given weight
to features

Cross over the
features

Genetic Initial
Population

Start Genetic
Algorithm

Extract feature

Reduce feature
by correlation

Design UML
Diagram

Extract the
features

Converge or
optimize

Termination
criteria reached

Analysis TPR

Test cases
retrieving

Weight
Feature

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6628

 nRum 0;

Step 2: Retrieval test cases
 While (Test cases not finish)

Begin
 nRumnRum +1
 for i=1 to PS
 Put each Ui {wo.wk}
 Current_PopulationInitial_Poplulation
 No_Of_Generation 0;
 For each individual of current population

do
Begin

 Convert current chromosome according to
features;

 If (current features is optimize) then
 nfeaturesnfeatures +1

End If
End For;

 While (the Best Individual is not
Independent feature and
No_of_Generations MG)

Begin

 Select set of parents of new population
from members of current population using
roulette wheel method;

 Generate New_population using crossover
and mutation operations;

 Current_PopulationNew_Population;
 For each Individual of Current_Population

do
Begin

Given the weight of features
 nfeaturesnfeatures + 1

End

 No_Of_GenerationNo_Of_Generation +1
 While (Test Case)
 Weighted features match with use

caseDatabase
 Select Test Cases;
 Analysis TRP

End while

Genetic Algorithm for Feature Selection

The Genetic Algorithm is the part of the heuristic
optimization techniques. The solution to the multi-
dimensional issues of the optimization is the major
usage of the Genetic Algorithm or in the cases

where there is no possibility of having the analytic
solution.
An optimization problem is denoted as:

x̄opt= arg opt{f(x̄)│x̄⋲C}(1)

where

 f is the cost function,
 C is the set of feasible solutions,
 x̄ is a feasible solution and
 x̄optis the optimum weight to features.

In the described approach the set C which is
being for the purpose of searching is part to be
concerned at most. So as to get the solution which is
quite feasible the step-by-step method is considered
as one of the most primitive technique for
computing the cost function and also for the best
solution. This is not a practical scene to be
considered. The infinitely defined set is C, The C is
finite in the case when the computer is being used
because of the fact that in the memory infinite
number of combinations are being stored. The
number of elements in the set C are always high.

In the defined approach the Genetic Algorithm
[23] make use of the natural evolution, in the
methodology the chromosomes with highest weight
is having more chance of generating new offsprings
or to have child[29].

Mutation is being defined as the small
alteration in the genetic data. In the weights of the
features the changes in the conditions for living are
quite easy. Mutation can also prevent from the
situation of the degeneration as the optimization
deadlock is the analogy of the degeneration.

Using following steps the execution of GA can
be described:

1. Usually random generation is used for the
generation of initial population.

2. All features fitness is computed.
3. for parent selection and
4. for offspring generation.
5. By using deletion operator creating new

population and in step
6. generated offspring is added.
7. Then mutation takes place.
8. Get back to step 3, in case stopping rule is

not satisfied.
9. In the population, the result is the best

individual.

Result and Analysis

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6629

Figure 9. Feature set of Class

Figure 10. Features Set of Activity.

Figure 11. Representation of Generic algorithm

without features selection of class.

Figure 12. Representation of Generic algorithm
without features selection of Activity.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6630

Figure 13.Representation of Generic algorithms with

correlations of Class.

Figure 14. Representation of Generic

algorithms with correlations of Class

4. CONCLUSION

Testing is the concept which provides the means of
guarantee for the better execution of code of the
application software. There are many concerns
which are connected with the concept of testing
which are considered as the fundamental part of the
development cycle, the issues which are attached
with the testing part are needed to be resolved at
first. The issues can be defined as the compilation
error, experimental prioritization, etc., which are
considered of the major concern. The major issue
with testing of the application software is that how
to get the set of cases that bitterly defines almost all
aspects of usage of the application software.

The work defined in the paper presents the
different techniques for the optimization and
generation test cases using the Genetic Algorithm

for which three different techniques are used. The
discussed and presented techniques are executed on
the system module of the airline reservation system
whose activity diagram and also the activity graph
is presented in the work. The efficiency and also the
performance of the proposed methodology and also
discussed in the work are analysed and on the basis
of the results and discussion of the all three the
proposed technique for test case generation and
optimization outperforms in the work as it is able to
Genetic captures more number of iterations.

The results are efficient and faster as the time
consumption is lesser by using GA. Also there is a
need to select Fitness function, Best value for
Chromosome population, probability for Crossover
and Mutation operators in GA which makes it
faster. We conclude with the result that correlation
show more accuracy than without correlation. In
future we can enhance this work with more use
cases and optimize by learning and optimization
method with GA and can be implemented using
neural networks and some more relevant technique
to obtain better quality test results by minimizing
testing effort.

REFERENCES

[1] Freund, L., & Toms, E. G.,“Contextual search:
from information behaviour to information
retrieval”, Proceedings of the Annual
Conference of CAIS/Actes du congrèsannuel
de l'ACSI.

[2] D. Kundu, M. Sharma, D. Samanta,R. Mall,
“System testing for object-oriented systems
with test case prioritization”, Journal of
Software Testing, Verification and Reliability,
Willey online Library,2009,volume 19, pp.
297-333.

[3] Maarek, Y. S., Berry, D. M., & Kaiser, G.
E.,“An information retrieval approach for
automatically constructing software
libraries”, IEEE Transactions on software
engineering, Vol. 17, No. 8, 1991, pp. 800-
813.

[4] Tian, Y., Lo, D., & Sun, C.,“Information
retrieval based nearest neighbor classification
for fine-grained bug severity prediction”, 19th
Working Conference on Reverse Engineering,
IEEE, October 2012, pp. 215-224.

[5] Saha, R. K., Lease, M., Khurshid, S., & Perry,
D. E.,“Improving bug localization using
structured information retrieval”,Automated
Software Engineering (ASE), IEEE/ACM 28th
International Conference, November 2013,
pp. 345-355.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6631

[6] Sisman, B., &Kak, A. C.,“Incorporating
version histories in information retrieval based
bug localization”, Proceedings of the 9th IEEE
Working Conference on Mining Software
Repositories, June 2012, pp. 50-59.

[7] Wieringa, R. J., “Design science methodology
for information systems and software
engineering”, Springer, 2014.

[8] Peleska, J.,“Industrial-strength model-based
testing-state of the art and current
challenges”, arXiv preprint arXiv:1303.1006,
2013.

[9] Borg, M.,“Advancing Trace Recovery
Evaluation-Applied Information Retrieval in a
Software Engineering Context”, arXiv
preprint arXiv:1602.07633, 2016.

[10] Cano, S. P., González, C. S., Collazos, C. A.,
Arteaga, J. M., & Zapata, S., “Agile Software
Development Process Applied to the Serious
Games Development for Children from 7 to 10
Years Old”, International Journal of
Information Technologies and Systems
Approach (IJITSA), 2015, Vol. 8, No. 2, pp.
64-79.

[11] Anand, S., Burke, E. K., Chen, T. Y., Clark, J.,
Cohen, M. B., Grieskamp, W., ...& McMinn,
P.,“An orchestrated survey of methodologies
for automated software test case
generation”, Journal of Systems and
Software, Vol. 86, No. 8, 2013, pp. 1978-
2001.

[12] Grechanik, M., Fu, C., &Xie,
Q.,“Automatically finding performance
problems with feedback-directed learning
software testing”, 34th International
Conference on Software Engineering (ICSE),
IEEE, 2012, June, pp. 156-166.

[13] Bajracharya, S., Ossher, J., & Lopes,
C.,“Sourcerer: An infrastructure for large-
scale collection and analysis of open-source
code”, Science of Computer
Programming, 2014, Vol. 79, pp. 241-259.

[14] Dit, B., Revelle, M., &Poshyvanyk,
D.,“Integrating information retrieval,
execution and link analysis algorithms to
improve feature location in
software”, Empirical Software
Engineering, 2014, Vol. 18, No. 2, pp. 277-
309.

[15] Cleland-Huang, J., Gotel, O. C., Huffman
Hayes, J., Mäder, P., &Zisman, A.,“Software
traceability: trends and future
directions”,Proceedings of the on Future of
Software Engineering, ACM, 2014, May, pp.
55-69.

[16] Unterkalmsteiner, M., Gorschek, T., Feldt, R.,
&Klotins, E., “Assessing requirements
engineering and software test alignment—Five
case studies”, Journal of Systems and
Software, Vol. 109, pp. 62-77.

[17] Herzig, K., Just, S., & Zeller, A, “The impact
of tangled code changes on defect prediction
models”, Empirical Software Engineering,
2016, Vol. 21, No. 2, pp. 303-336.

[18] D. Kundu and D. Samant, “A Novel Approach
to Generate Test Cases from UML Activity
Diagrams” Journal of Object Technology,
2009, 8(3), pp. 65-83.

[19] N. Khurana, R.S Chhillar, “Test case
generation and Optimization using UML
models and Genetic Algorithm”,Procedia
Computer Science, Elsevier Volume - 57, pp,
pages 996-1004. (ICRTC 2015)

[20] Ahmed Mateen, Marriam Nazir and Salman
Afsar Awan, “Optimization of Test Case
Generation using Genetic Algorithm (GA)”,
international Journal of Computer
Applications (0975 – 8887) Volume 151 –
No.7, pp.6-14, October 2016.

[21] N. Khurana, R.S Chhillar, Usha Chhillar “A
Novel technique for Generation and
Optimization of test cases using Use Case,
Sequence, Activity Diagram and Genetic
Algorithm @March 2016 Journal of Software,
pp 242-250.

[22] Ajay K. Jena, Santosh K. Swain, Durga K.
Mohapatra, “Test case generation and
prioritization based on UML Behavioral
Models”, Journal of Theoretical and applied
Information Technology, Vol 78, No. 3,pp.
336-352.@2015

[23] Nguyen, B. N., Robbins, B., Banerjee, I.,
&Memon, A.,“GUITAR: an innovative tool
for automated testing of GUI-driven
software”, Automated Software Engineering,
2014, Vol. 21, No. 1, pp.65-105.

[24] Choi, W., Necula, G., & Sen, K.,“Guided gui
testing of android apps with minimal restart
and approximate learning”, ACM SIGPLAN
Notices, ACM,2013, October, Vol. 48, No. 10,
pp. 623-640.

[25] Harman, M., “The role of artificial intelligence
in software engineering”, Proceedings of the
First International Workshop on Realizing AI
Synergies in Software Engineering,
IEEE,2012, June, pp. 1-6.

[26] Acher, M., Collet, P., Lahire, P., & France, R.
B., “Familiar: A domain-specific language for
large scale management of feature

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6632

models”, Science of Computer Programming,
2013, Vol. 78, No. 6, pp. 657-681.

[27] Poshyvanyk, D., Gethers, M., & Marcus,
A.,“Concept location using formal concept
analysis and information retrieval”, ACM
Transactions on Software Engineering and
Methodology (TOSEM), 2014, Vol. 21, No. 4,
pp. 23.

[28] Walkinshaw, N., Taylor, R., & Derrick,
J.,“Inferring extended finite state machine
models from software executions”, Empirical
Software Engineering, 2015, Vol. 21, No. 3,
pp. 811-853.

[29] Itti Hooda., Rajender Singh Chhillar., “Test
Case Retrieval Model by Genetic Algorithm
with UML diagram”, International Journal Of
Applied Engineering Research, Vol 13, No.
7,pp.5167-5174 @2018

