
Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6607

A NEW APPROACH FOR MIGRATION OF A RELATIONAL
DATABASE INTO COLUMN-ORIENTED NOSQL

DATABASE ON HADOOP

1YOUNESS KHOURDIFI, 2MOHAMED BAHAJ, 3ALAE ELALAMI

Department of Mathematics and Computer Science (Laboratory of Innovation for New Energy

Technologies and Nano-Materials (LITEN))

Faculty of Sciences and Techniques, Hassan 1st University, Settat, Morocco

E-mail: 1ykhourdifi@gmail.com, 2mohamedbahaj@gmail.com, 3elalamialae@gmail.com

ABSTRACT

This article presents a new approach based on the "Object" concept, to successfully migrate a relational
MySQL database to a column oriented HBase NoSQL database. The purpose of this article is to provide a
new model of migration process divided into three phases, the first of which allows to obtain a copy of
these metadata using the principle of semantic enrichment, and this to extract the different principles of the
objects, including aggregation, inheritance and composition, the second phase of the process concerns the
automatic generation of a New Optimised Data Model 'NODM' containing all relational database
information in a flattened way. The last phase serves for the migration of the existing relational database
into column-oriented database in the Hadoop ecosystem. The whole approach proposes a migration solution
from a relational database to a NoSQL column-oriented database, which exploits the fast extraction of data
columns for several types of applications, thus generating a better factor for analytic query performance,
minimizes the input / output load of the disk, and reduces the amount of data being addressed from the disk.

Keywords: Relational database, HBase, Data Migration, Semantic Enrichment, Schema Translation,
BigData, Hadoop.

1. INTRODUCTION

The digital world is developing very rapidly and
becoming more complex in storage volume, variety
of structures and velocity. This is mainly due to a
change in our habits: what we expect from
computers has changed; the democratization of
smart phones and tablets, and the spread of social
networks encourage the exchange and production of
new content. The growth in the volume of data
produced is increasing exponentially.

In addition to this massive production and
exchange of data, there are data released by
organizations and companies, known as Open Data:
public transportation schedules, regional and
government statistics, corporate network, store data.

Taking the site Planetoscope
(http://www.planetoscope.com) as an example that
estimates 74 460 billion e-mails were sent in the
world in 2015 against 66 795 billion in 2013. In
2015, 204 billion e-mails were sent to the world
(except spam) every day against 183 billion in
2013, or approximately 2 361 000 emails were

received and sent per second. In 2015, there were
4.3 billion e-mail accounts open worldwide. A
company of 100 people generates 13.6 T of CO2
each year if only by the use of e-mail, the
equivalent of 14 Paris New York roundtrips by
plane [1].

The impressive volume of data is closely linked
with the frequent use of computers and with the
dominance of giant web companies (Apple, Google,
Amazon, and LinkedIn). They aim to encourage the
ever-increasing use of their services. This increase
in the consumption of their services mechanically
translates into a growing demand for data
processing and storage power that generates a rapid
obsolescence of the IT architectures usually used:
relational databases and application servers must
give way to new solutions. The searches introduced
a new database model called NoSQL databases that
offers easy scalability of faster I/O operations and
lower cost than traditional databases [2][3].

NoSQL databases don’t follow any particular
structure and don’t support foreign keys, which
facilitates data access [4]. The addressed problem is

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6608

based on the inefficiency of relational databases
that can no longer manage the growing demand for
current applications [5]. Hence, the need to propose
a new system that would be able to migrate the
content of relational databases to NoSQL databases,
while maintaining data integrity and keeping the
application code intact [6]. In this perspective, we
identify a significant number of proposed systems
providing a solution to this problem; however, we
regret the lack of relevant and optimized
approaches in this direction. Our paper analyses
recent approaches proposed in the literature to
migrate relational databases to NoSQL databases
[7][8], we mention these approaches because they
don’t benefit the advantages of NoSQL model, that
manage to gather the tables in an optimized way,
and proposes a new approach capable of
automatically generating the column-oriented
HBase scheme from the imported relational data
from MySQL, using the object concept to enrich the
relational database and benefit from the advantages
of reducing the number of records in the target by
exploiting those of NoSQL type.

The massive multiplication of the number of
columns makes this model capable of storing one-
to-many relationships, which makes it possible to
cover many cases. On the other hand, simplistic
queries are a constraint that will target column-
oriented databases to applications that can be
content with simplified data access in favor of
increased performance, scalability or reliability.

In the Web world, column-oriented databases
will support the progressive increase without
sacrificing query-intensive functionality. Although
they have been forged by the "big ones of the Web"
these databases can also be adapted to other types
of systems.

Some examples of storage use cases are:
•lists of articles for each user
•list of actions performed by a user
•event timeline maintained and accessed in real
time
•mass data to analyze

Access to this type of information per page will
be very fast because of the co-location of data
provided by the organization of the columns sorted
on the disk. Some users will be able to use this type
of database to take advantage of their data
distribution model and simply use it as key-value
storage, while maintaining the possibility of richer
data persistence in the future.

Our model is split into three parts, the first
consists of the retrieval of data and useful

information for establishing migration, the second
part is represented in the form of a raw relational
database and enriched by the different object
concepts, the third part focuses on the migration of
the relational database to the NoSQL HBase
database using the different object concepts
extracted during the phase of semantic enrichment.

This paper is organized as follows. Section II
briefly reviews the HBase data model in the
Hadoop ecosystem; Section III shows the related
work on migrating SQL to NoSQL databases.
Section IV describes the semantic enrichment that
will play the role of the kernel of the approach, and
Section V describes in detail our approach to
automatically transforming the SQL to HBase
database. Section VI presents the results of the
experiment. Finally, a conclusion and some future
directions will be explored.

2. BACKGROUND

2.1 From 3 V to 7 V
Big Data is a new technological field that

is emerging to fling aside with the growing number
of structured and unstructured data. It aims to offer
an alternative to traditional database and analytics
solutions. This technology allows a very fine
analysis of massive data [9].

At the beginning, the given term "BIG DATA"
was related to the 3V (Volume, Variety, and
Velocity), the 3V are the dimensions of the big
data:

Volume: Big Data is usually associated with this
feature which describes the amount of data
generated.

Variety: One of the components of Big Data is the
diversity of data. They are called unstructured (or
semi-structured) data because they are images,
audio or video files, measurements. Generally, the
variety refers to the number of data types.

Velocity: Velocity describes the frequency with
which data is generated, captured, and shared, and
refers to the speed of data processing.

Today, to enrich the 3 V’s model has been added
else 4 V’s:

Veracity: presents truthfulness of the data.

Value: indicates useful outcomes.

Variability: refers to changes in data format,
structure and semantics.

Visualization: describes presentation of big data.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6609

7 V’s of big data is presented in Fig. 1.

Figure.1: The 7 V’s of Big Data

2.2 The Hadoop ecosystem :
2.2.2 Hadoop

Hadoop [10] is an acronym for the Distributed
Object-Oriented Platform High Availability.
Therefore, an open source platform offers storage
and processing capabilities. It revolves around the
two fundamental concepts: HDFS Hadoop
Distributed File Systemand MapReduce, Figure 2
below Hadoop architecture.

Although it can work on a single machine, its
true power is visible only in an environment
composed of several computers. Hadoop is,
therefore, the answer to a simple observation: the
increase of the disk space does not go with the
acceleration of the data reading. The solution would
be to split the data into various parts to store them
on multiple machines.

What is HDFS?

HDFS [11] is an acronym for Hadoop Distributed
File System; this means that it uses the network to
manipulate access to the system. Each component
of the network can, therefore, access each resource
of other computers that make up this network. In
addition, HDFS is a system adapted to work with
large volumes of data (1 GB and more). The great
positive point of this system is universality.

What is MapReduce?

MapReduce [12] is a programming model that
allows processing large volumes of data in several
simultaneous processes. This model is based on two
steps:

Mapping (map tasks): the developer defines a
mapping function whose purpose is to analyze the

raw data contained in the files stored on HDFS to
output correctly formatted data.

Reducing (reduce tasks): this task retrieves the
data constructed in the mapping step and analyses it
in order to extract the most important information.

Figure.2 : HDFS architecture

2.2.3 HBase :
HBase is the Hadoop database [13][14][15], a

distributed and scalable big data store. HBase has
some features such as linear and modular
scalability, strictly consistent reads and writes
convenient base classes for backing Hadoop
MapReduce jobs with Apache HBase tables. The
HBase table in the database can store a series of
rows. Each row is composed of three basic
definitions: Row Key, Timestamp and Column.
Row Key is a unique identity row in the table,
sorted according to the dictionary order. The
timestamp is the timestamp corresponding to each
data operation, and it will record the different
versions of the data. The column is defined as
<Family> : <Qualifier>, which can specify the data
type. The family identifies a list of clusters, and the
number is constant when setting up the table. While
Qualifier belongs to the list of family clusters in the
column, column clusters can be any number of
columns. The columns in the cluster columns can
be dynamically added and does not require
predefined. The data in the HBase have no types,
which are stored in a binary format. The HBase
index is the row, column, the column name and
timestamp. Through Via Row Key and <Family> :
<Qualifier> can fully determine a data unit value in
tables. Figure 3 below HBase client ecosystem.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6610

Figure.3 : HBase architecture

3. RELATED WORK

In the relational database migration engineering
that follows a rigid structure for structuring data
collection from various applications, there is
significant research to solve the problem of building
relational databases already in production in
applications that work on the NoSQL paradigm [16]
and provide flexibility in structuring data, for easier
access to data. Among these studies, there are
certain migration hypotheses with a single target;
other researchers chose to work with an
intermediary to migrate a relational database to
multiple models.

Abdelhedi F discussed the process of
transforming a conceptual schema, represented by a
DCL and UML into a column-oriented NoSQL
physical schema [17]. It distinguishes by tree layer:
Computation Independent Model, Platform
Independent Model, and Platform Specific Model.
The Computation Independent Model coincides to
the user specifications that, commonly, are
indicated in natural language. The Platform
Independent Model is the conceptual model. It
could be avoided into different families of NoSQL
databases.

 Liu C [18] proposed a database migration
method RDBMS relational database management
systems to HBase and demonstrates the realization
of this semi-automatic migration design method in
the data migration process, Chevalier M [19]
investigated the implementation of
multidimensional data warehouses based on
column-oriented NoSQL systems, and defined a set
of rules for mapping star schemas in two NoSQL:
column-based and document-based models. The
experimental part is carried out using the TPC
referential reference system. Their experiments

show that rules can actually instantiate such
systems (star schema and network).
They also analyze the differences between the two
NoSQL systems considered. In their experiments,
HBase (column-oriented) is faster than MongoDB
(document-oriented) in terms of loading time.

El Alami A [20] presented some approaches and
methods of migration in database engineering, and
offered an approach to transform a relational
database to a document-oriented NoSQL database
Mongo DB. The approach is based on a number of
rules to allow promoting the determined structure,
to exploit the constraints defined on the schema. It’s
based on foreign key to establish connection
between two types of DBMS to be able in order to
carry out a dialogue. The whole migration is
concentrated on a bridge that will act as a gateway
that will connect the two DBMS.

Ghotiya S, et al. [21] provided a literature review
of some of the recent approaches proposed by
various researchers to migrate data from relational
databases to NoSQL databases.

Lee, C.H. [22] proposed a mechanism for an
automatic transformation of SQL schemas to
NoSQL from MySQL to HBase database. The
proposed method follows NoSQLs DDI principles:
Denormalization, Duplication and Intelligent keys.
In this approach, related tables are aggregated into a
big table and then most suitable key is selected,
which is called row key, to identify each row, it also
use the traditional Web-based content management
system (CMS) to sidestep the cross-table query in
the NoSQL database,

 Li C, et al. [23] proposed a new approach that
transforms a relational database into HBase,
includes two phases, the transformation into HBase
schema, and the second is the experimentation of a
set of nested schemas for relations between two
schemas. They establish a comprehensive review
touching the abilities of different databases
according to burden detecting data created by
performance management tools. They conclude that
the Cassandra assessments continuous latency time
during read/write processes. As for HBase demands
less write latency but gives huge read latency time.
Therefore, a superior capacity for handling
distributed large input files are shown in Hbase
rather than the Cassandra database.

 Li Y, et al. [24] proposed a method based on the
ideas of Model Driven Architecture (MDA) that
transforms UML Unified Modeling Language class
diagrams into HBase based on the Meta-
model.Their method is reclaimable after the model

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6611

mapping is built and the schema for HBase could be
generated directly. The major inconvenient of their
method is the source model’s meta-model they
created is not totally compatible with the conceptual
standard, which means class diagrams and the
conceptual data model which are not obey with this
meta-model need to be remodeled before any
transformation. Something else is the definition of
the model mapping is comparatively fundamentally.

 Rocha L, et al. [25] proposed a NoSQL Layer
that migrate Relational databases to MongoDB
databases without having to change the application
code. The proposed approach keeps the entire
structure of the source database and injects data as
NoSQL model. SQL requests are converted to
NoSQL requests performing them into NoSQL
database.

 Serrano D, et al. [26] suggested a method for
transforming data schemas for the RDBMS to
HBase, the method consists of a set of HBase-
organization guidelines and a four-step data
transformation process.

Zhao G, et al. [27] proposed a new HBase
schema to migrate from the relational database to
HBase, which supports multiple nesting.They apply
a graph transforming algorithm to involve all
required content.

Column-oriented databases are organized into
column families. This type of grouping is similar to
the concept of a table in a relational database.
Although they are organized into tables, their layout
is totally different. Thus while the columns of a
relational database are static and present for each
row, those of a column-oriented database are
dynamic and present only for the lines concerned.
In other words, it is possible to add columns to a
row at any time and the cost of storing a null is 0.
It's not just about storing the fields of an entity, but
also one-to-many relationships. The possible
queries are simple. It is possible to make requests
by key, or set of keys and to add a predicate on a
range of columns. The query system is minimalist
and it greatly simplifies the design of these
databases, in favor of performance. It is then
possible to make queries that concern a name or a
range of names of super-columns thus making it
possible to obtain in return a list of super-columns
and all their contents.

Our approach takes an existing relational
database as input and produces an HBase database
output with the use of metadata and a set of
treatment. We use the principle of semantic
enrichment to extract different characteristics of the

object concept from the physical schema of the
RDB, including aggregation, inheritance and
composition. We optimize the model proposed by
El Alami et al. [28] to make it more efficient and
more lightweight, which eliminates some
unnecessary element in our migration approach, and
which is essential in their migration approach from
a RDB to ORDB.

4. SEMANTIC ENRICHMENT

Semantic enrichment is a process of analyzing
and examining a database to capture its structure
and definitions at a higher level of meaning. This is
done by improving the representation of the
structure of an existing database in order to make its
hidden semantics explicit.

We mean enriching the content/context of the
data by labeling, categorizing and/or classifying the
data in relation to each other, with dictionaries
and/or other basic reference sources. In its simplest
form, this means adding additional contextual
information to some existing data.

In the semantic enrichment phase, we use the
passed model to preserve the semantic database,
create the NoSQL schema, and inject the data with
the transformation algorithms.

Definition of the New Optimized Data Model
(NODM)

The NODM model is a rich flattened relational
model, divided into four entities, defined as
follows:

NODM := {C| C := <Cn, Classification,
Attribute (An,tag), Contributor>}

With Cn is the table name, Classification to
define the relationship between tables by the object
concept. For Attribute there is An as the attribute
name, and tag to distinguish between PK and FK
keys and a simple attribute. Finally, Contributor to
list tables in relation with Cn.

NoSQL engines solve the problem of NULLs,
but there are two more things to
report. First, NULLs are a real problem in the
relational model because they hinder queries by
their three-state logic. In this case, problem solved.
As far as space utilization of NULLs is concerned,
it is minimal in RDBMS, and you cannot really
save storage space on NoSQL engines.
 The lack of relationship between the tables
generally leads to a lot of data redundancy and so,
NULL or not NULL, NoSQL engines occupy much
more storage space than a properly standardized

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6612

model RDBMS. This is more of a gain in clarity for
programming than storage.

5. OUR APPROACH TO AUTOMATIC
TRANSFORMATION FROM SQL
SCHEMA TO HBASE

The migration to a column-oriented database is
necessary in several cases because the data is added
on one dimension which is technically simpler and
faster: the data are concatenated one after the other,
thus support much higher write speeds with very
low latency. A better scalability since the
development of data is done only on one dimension
their partitioning is simpler to perform and can be
distributed across multiple servers.

5.1 Transformation rules
For the migration from a relational database to a

NoSQL database, a set of rules has been established
to ensure the integrity constraints to obtain an
HBase database.

Simple Class and aggregation: For the
transformation of a simple or aggregated class, we
will create a table with the name of the relational
table having the same name as the old one in the
RDB by adding a name of ColumnFamily, is
fn_TableName and for the attributes, they are
represented by columns qualify.

Class inheritance and association: For the
migration of a class inherited or associated, one
proceeds to the creation of the two types, the
mother classes then the classes girls, for the first
classification one will create a table in the Row Key
with the primary key of the main table, and for the
second classification we will integrate it as familiar
columns.

Composition class: The composition class is
integrated into the class that collaborates with it
according to Contributor = C1.Cn and
C1.Classification = Composition, the class becomes
a familiar column; the creation of the versions is
established according to the number of records that
appears in the relational database by a specific
selection method.

For the detection of different object concept, we
proceed by the inheritance detection via a data
dictionary and a processing set, which is based on
the comparison between primary keys to remedy
problems related to non-standardized database.

Association detection is based on the detection of
composite keys and the absence of primary keys,

which are the migration results of primary keys
when moving from the conceptual model to the
logical model during the conception of the database.

Aggregation is a particular association which
schematizes two classes ("aggregated") and
("aggregate") named respectively by C1 (E1, E2)
and C2 (E3, E4) such that C2 is shareable and
independent of C1. The semantic aspect is more
important than the conceptual aspect. The
aggregation relation is subjective whereas the
association relation is pejorative leaving a doubt
about the belonging of the class. The association is
less precise and semantically weak, but remains
correct.

The detection of composition is done when a
class ("component") is not shareable, and dependent
on a single class ("composite"). The dependency
between the two classes prevents the referenced
object from being deleted as long as the dependency
is linked to the physical schema.

All transformation phases are shown in Fig.4.

Figure.4 : Transformation Overview

5.2 Transformation algorithm :
To get the interaction of the HBase database, we

have three methods, including a dedicated shell by
running the HBase shell command, a native JAVA
API that can inject it into a JAVA program, and
finally external APIs like REST or Thrift.

In our approach, we use a Java API to create an
HBase database from a relational MySQL database.
The approach is focused on a three-layer step, the
first layer will be dedicated to data recovery and
other useful information to establish migration, the
second layer will play the role of the core
application that will be a flattened relational
database form enriched by the different object
concepts, the third layer will start the migration
from the relational database to the HBase target
database via the metadata captured in the first layer
and the different object concepts captured during
the semantic enrichment phase.

The whole application is based on two methods,
the first method is a global selection and the second
method is a specific selection in order to obtain the

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6613

number of versions for the composition class and to
obtain a personalized selection according to the
class identifier that collaborates with the
composition.

// Algorithm producing HBase table
Foreach Class C NODM do

tableName= resultset.getObject(tablename)

if C.Classification = Simple || C.Classification =
Agregation then

 // Instantiating table descriptor class with table
name
HTableDescriptor(TableName.valueOf(tableName)
);

 // Adding column families to table descriptor

tableDescriptor.addFamily(new
HColumnDescriptor(”fn_”+tableName));

 // Execute the table through admin

admin.createTable(tableDescriptor);

String t[][] = db.selectAll(tableName);

for (int ii = 0; ii <t.length; ii++) //we start from 0 to
get the name of attribute

for (int jj = 0; jj< t[ii].length; jj++) {

if C.Attribut.tag=pk then

Put p = new Put(Bytes.toBytes("t[ii][jj]"));

end if

p.add(Bytes.toBytes(“fn_”+tableName),

Bytes.toBytes(t[0][0]),Bytes.toBytes(t[ii][jj]));

end for

end for

else if C.Classification = inherBy then

 // Instantiating table descriptor class with table
name

tableName= resultset.getObject(tablename)

HTableDescriptor(TableName.valueOf(tableName)
);

 // Adding column families to table descriptor
tableDescriptor.addFamily(new
HColumnDescriptor(”fn_”+tableName));

for (String v: C.Contibutor.getValues())

req = C.Contibutor.getNomTable();

for(inti = 0; ii <table.length; i++)

ifC.Cn=req&& ((C.Classification= Inherts)||
(C.Classification= Association)|| (C.Classification=
contributor)) then

tableDescriptor.addFamily(new
HColumnDescriptor(”fn_”+req));

end if

end for

end for

 }

 // Execute the table through admin

admin.createTable(tableDescriptor);

String t[][] = db.selectAll(tableName);

Key=null;

Val=null;

for (inthh = 0; hh<t.length; hh++)

 //we start from 0 to get the name of attribute

for (intff = 0; f < t[hh].length; ff++) {

ifC.Attribut.tag=pk then

 Val = t[hh][ff];

 Key = t[0][0] ;

end if

end for

end for

for (int ii = 0; ii <t.length; ii++)

 //we start from 0 to get the name of attribute

for (int jj = 0; jj< t[ii].length; jj++) {

if C.Attribut.tag=pk then

 Put p = new
Put(Bytes.toBytes("t[ii][jj]"));

end if

p.add(Bytes.toBytes(“fn_”+tableName),
Bytes.toBytes(t[0][0]),Bytes.toBytes(t[ii][jj]));

end for

end for

for (String v: C.Contibutor.getValues())

req = C.Contibutor.getNomTable();

for(inti = 0; ii <table.length; i++)

if C.Cn=req&& ((C.Classification= Inherts)||
(C.Classification= Association)) then

 String t[][] = db.selectAll(req);

for (int ii = 0; ii <t.length; ii++) //we start from 0 to
get the name of attribute

for (intjj = 0; jj< t[ii].length; jj++) {

if C.Attribut.tag = pk then

 Put p = new Put(Bytes.toBytes("t[ii][jj]"));

end if
p.add(Bytes.toBytes(“fn_”+req),
Bytes.toBytes(t[0][0]),Bytes.toBytes(t[ii][jj]));

end for

end for

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6614

else if C.Cn=req&&C.Classification=
composition)then

String t[][] = db.selectAllByChampO(req , Key,
Val)

 q=fn_+req;

q.setMaxVersions(t.length);

for (int iii = 0; iii <t.length; iii++)

 //we start from 0 to get the name of attribute

for (intjjj = 0; jj< t[iii].length; jjj++) {

ifC.Attribut.tag=pk then

Put p = new Put(Bytes.toBytes("t[iii][jjj]"));

end if
p.add(Bytes.toBytes(“fn_”+req),
Bytes.toBytes(t[0][0]),Bytes.toBytes(t[iii][jjj]));

end for

end for

end if

end for

// Saving the put Instance to the HTable.

hTable.put(p);

System.out.println(“data inserted”);

// closing HTable

hTable.close();

end for

This algorithm traverses the generated model set
from the relational database, and for each
classification check an instance of the description
table is created by the name extracted from the
NODM's C.CN database, then we add the column
families from the description table instantiated
before, then via the simple selection method we
establish a selection of the names of the attributes
via the table of the RDB (we start with the value 0
in our loop to capture the name of the attributes.
The incrementation of the variable will give rise to
the selection Data). For the versions where there
will be a nesting of data we will use the specific
method of selection to capture the number of
versions and to make a selection via the identifier of
the table which enters in collaboration with the
aggregated table.

// The global selection method
Definition of the selectAll method

public String[][] selectAll(String tableName) {
String req = “SELECT * FROM “ +tableName;
 try {

Statement sql = db.createStatement();
ResultSetrs = sql.executeQuery(req);
ResultSetMetaDatarsm = rs.getMetaData();
 int columns = rsm.getColumnCount();
 String data[][];
 rs.last();
 int rows = rs.getRow() + 1;
 data = new String[rows][columns];
for (int I = 1; I <=columns; i++) {
 data[0][i-1] = rsm.getColumnName(i);
 }
 int row = 1;
 rs.beforeFirst();
 while (rs.next()) {
 for (inti=1; i<=columns; i++) {
 data[row][i-1] = rs.getString(i);
 }
 row++;
 }
 return data;
 }
catch (Exception e) {
 e.printStackTrace();
 returnnull;
 }
 }

// The specific selection method
Definition of the selectAllByChamp method:
specific request

public String[][] selectAllByChampO(String
tableName,Stringchamp,String name) {
 String req = "SELECT * FROM "
+ tableName +" where "+ champ +"='"+name+"'";
 try {
int type =
ResultSet.TYPE_SCROLL_INSENSITIVE;
int mode = ResultSet.CONCUR_UPDATABLE;
 Statement
sql=db.createStatement(type,mode);
ResultSetrs = sql.executeQuery(req);
ResultSetMetaDatarsm = rs.getMetaData();
 int columns =
rsm.getColumnCount();
 System.out.println(columns);
 String data[][];
 try {
 rs.last();
 } catch (Exception e) {
 System.err.println("Erreur sur rs.last()");
 }
 int rows = rs.getRow() + 1;

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6615

 data = new String[rows][columns];
 for (inti = 1; i<=columns; i++) {
 data[0][i-1] = rsm.getColumnName(i);
 }
 int row = 1;
 rs.beforeFirst();
 while (rs.next()) {
 for (inti=1; i<=columns; i++) {
 data[row][i-1] = rs.getString(i);
 }
 row++;
 }
 return data;
 }
 catch (Exception e) {
 e.printStackTrace();
 returnnull;
 }
 }

6. EXPERIMENTAL RESULT

In our model, new concepts have been exploited
to build the transformation of relational databases
into column-oriented HBase databases, making it an
efficient model with relevant results.

For a column-oriented database, the notion of
column does not really make sense. The data
management model is based on a notion of couple
{key, value}. The name of the column can be seen
as the key. There is indeed no notion of column as it
can be heard in a relational database. So to avoid
any ambiguity with the notion of column for
relational databases, we have reasoning in terms of
Map, exploiting the object concept and the relations
between objects that we extracted as it appears in
table 1. Thus, our base relational data has become a
column-oriented database that we can define as a
Map-oriented database. The data in a Map-oriented
database (column) is identified by a unique key
(equivalent to a primary key for relational
databases). Thus, we associate with these identifiers
a set of data composed of a key pair, value (hence
the notion of Map). In the relational world, these
keys are called columns. The columns of a column-
oriented database are dynamic and present only for
the rows concerned.

To demonstrate the effectiveness and validity of
our approach, we used a relational database,
presented in Fig. 5, we have also developed a
prototype, realizing these algorithms.

Below is the entire relational database that acts as
a source database, from which we will proceed to
the migration.

Figure.5 : Relational databases

Table 1 shows the results of the flattened
relational database enriched by the different
concepts of objects.

The results were evaluated, and represented in
Fig.6. The result is an optimal source HBase
database that belongs to the column-oriented
NoSQL family, which encapsulates several tables in
a single table according to our migration approach
to exploit the concept of column-oriented databases.

Person
RowKey Pno

Family fn_Person
Pname
Bdate
Adress
Dno
PnoSup

Family fn_Trainee
Level
Type

Familyfn_Employ
Salary
Grade

Familyfn_Works_on
Prno

Familyfn_Kids
Kno
Kname (NbVersion)
Sex

Dept
RowKey Dno

Family fn_Dept
Dname

Proj
RowKey Prno

Family fn_Proj
Prname
Description

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6616

Figure.6 : HBase schema after migration

Table 1. : Results of NODM generation

7. CONCLUSION

This paper provides a comprehensive solution to
the problem of RDB migration to HBase.

Our model uses an existing MySQL relational
database as input and produces aHBase column-
oriented database as output. We use the principle of
semantic enrichment to extract the different features

of objects, including aggregation, inheritance and
composition that are represented in a New
Optimized Data Model (NODM).

This model is used to create a new way to store
in a column oriented database which is focalized on
Map structure. The purpose of this article is not to
expose the details of the limitations of traditional
(relational) database management systems, but to
present a database system for large data
management that can use a dynamic column. All
the migration is done in an automatic manner, a
prototype is made which prove the effectiveness of
the approach.

The first phase of the migration process is the
retrieval of data and information for establishing
migration, the second phase deals with the
automatic generation of a New Optimized Data
Model that contains all the information related to
the relational database, and finally, the last phase
that inject the relational data to the HBase column-
oriented database in the Hadoop ecosystem.The
migration approach is used when there is a need to
write heavy applications and used whenever we
need to provide fast random access to available
data.

REFERENCES

[1] https://www.planetoscope.com/Internet-/1024-
emails-envoyes-dans-le-monde.html.

[2] P. Atzeni, F. Bugiotti, L. Cabibbo, and R.
Torlone, “Data modeling in the NoSQL
world,”Comput. Stand. Interfaces, 2016.

[3] R. Yangui, A. Nabli, and F. Gargouri,
“Automatic Transformation of Data Warehouse
Schema to NoSQL Data Base: Comparative
Study,” Procedia Comput. Sci., vol. 96, no.
September, pp. 255–264, 2016.

[4] D. Liang, Y. Lin, and G. Ding, “Mid-model
design used in model transition and data
migration between relational databases and
NoSQL databases,” Proc. - 2015 IEEE Int.
Conf. Smart City, SmartCity 2015, Held Jointly
with 8th IEEE Int. Conf. Soc. Comput.
Networking, Soc. 2015, 5th IEEE Int. Conf.
Sustain. Comput. Commun. Sustain. 2015,
2015 Int. Conf. Big Data Intell. Comput.
DataCom 2015, 5th Int. Symp. Cloud Serv.
Comput. SC2 2015, pp. 866–869, 2015.

[5] C. H. Lee and Y. L. Zheng, “SQL-To-NoSQL
Schema Denormalization and Migration: A
Study on Content Management Systems,” in
Proceedings - 2015 IEEE International

Cn
Classificat

ion
Attribut Contri

butor An tag

Person InherBy

Pno PK Kids

Works_
on
Trainee

Employ
Pname

Bdate

Adress

Dno FK Dept

PnoSup FK Person

Trainee Inherts

Pno FK Person

Level

Type

Employ Inherts

Pno FK Person

Salary

Grade

Works
_on

Association
Prno FK Proj

Pno FK Person

Dept Simple
Dno PK Person

Dname

Proj Simple

Prno PK Work_o
n

Prname

Description

Kids
Compositio
n

Kno PK

Kname

Sex

Pno FK Person

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6617

Conference on Systems, Man, and Cybernetics,
SMC 2015, 2016.

[6] Y. T. Liao, J. Zhou, C. H. Lu, S. C. Chen, C. H.
Hsu, W. Chen, M. F. Jiang, and Y. C. Chung,
“Data adapter for querying and transformation
between SQL and NoSQL database,” Futur.
Gener. Comput. Syst., 2016.

[7] L. Stanescu, M. Brezovan, and D. D. Burdescu,
“Automatic Mapping of MySQL Databases to
NoSQL MongoDB,” vol. 8, pp. 837–840, 2016.

[8] J. Xu, M. Shi, C. Chen, Z. Zhang, J. Fu, & C.
H. Liu, (2016, August). ZQL: A unified
middleware bridging both relational and
NoSQL databases. In Dependable, Autonomic
and Secure Computing, 14th Intl Conf on
Pervasive Intelligence and Computing, 2nd Intl
Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), 2016
IEEE 14th Intl C (pp. 730-737). IEEE.

[9] P. Zikopoulos, & C. Eaton,"Understanding big
data: Analytics for enterprise class hadoop and
streaming data". McGraw-Hill Osborne Media
2011.

[10] G. Turkingeton, Hadoopbeginner’s guide,
2013.

[11] T. White, Hadoop in practice, 2009.
[12] S. Guo, Hadoop operations and cluster

management cookbook, 2013.
[13] L. George, HBase: The Definitive Guide,

O'Reilly Media, Inc, USA (2011).
[14] T. White, Hadoop: The Definitive Guide,

O'Reilly Media, Inc, USA, 3rd Revised edition
(2012).

[15] C.X. Li, Transforming relational database into
HBase: A case study, Software Engineering
and Service Sciences (2010), 683–687.

[16] Atzeni, P., Bugiotti, F., Cabibbo, L., and
Torlone, R. (2016). Data modelling in the
NoSQL world. Computer Standards and
Interfaces.

[17] F. Abdelhedi, A. A. Brahim, F. Atigui, and G.
Zurfluh, “Big Data and Knowledge
Management: How to implement conceptual
models in NoSQL systems?”KMIS. 2016.

[18] L., Chen, F., Zhicheng, Y., Zhengqiu, et al.
General Research on Database Migration from
RDBMS to HBase. In : 2015 International
Symposium on Computers&Informatics.
French: Atlantis Press. 2015. p. 124-237.

[19] M. CHEVALIER, M. EL MALKI, A.
KOPLIKU, et al. “Implementation of
multidimensional databases in column-oriented
NoSQL systems”. In : East European
Conference on Advances in Databases and

Information Systems. Springer, Cham, 2015. p.
79-91.

[20] A. EL ALAMI, and M. BAHAJ. “Migration of
a relational databases to NoSQL: The way
forward”. In : Multimedia Computing and
Systems (ICMCS), 2016 5th International
Conference on. IEEE, 2016. p. 18-23.

[21] S. Ghotiya, J. Mandal, and S. Kandasamy,
“Migration from relational to NoSQL
database,” in IOP Conference Series: Materials
Science and Engineering, 2017.

[22] C. H. Lee and Y. L. Zheng, “Automatic SQL-
to-NoSQL schema transformation over the
MySQL and HBase databases,” in 2015 IEEE
International Conference on Consumer
Electronics - Taiwan, ICCE-TW 2015, 2015.

[23] L. Chongxin. Transforming relational database
into HBase: A case study. In : Software
Engineering and Service Sciences (ICSESS),
2010 IEEE International Conference on. IEEE,
2010. p. 683-687.

[24] Y. Li, P. Gu, and C. Zhang, “Transforming
UML class diagrams into HBase based on
meta-model,” in Proceedings - 2014
International Conference on Information
Science, Electronics and Electrical
Engineering, ISEEE 2014, 2014.

[25] L . Rocha, F. Vale, E. Cirilo, D. Barbosa, & F.
Mourão, " A Framework for Migrating
Relational Datasets to NoSQL".In Procedia
Computer Science of International Conference
On Computational Science, Volume 51, 2015,
Pages 2593–2602.

[26] D. SERRANO, D. HAN, et STROULIA, Eleni.
From relations to multi-dimensional maps:
towards an SQL-to-HBase transformation
methodology. In : Cloud Computing (CLOUD),
2015 IEEE 8th International Conference on.
IEEE, 2015. p. 81-89.

[27] G. Zhao, L. Li, Z. Li, and Q. Lin, “Multiple
nested schema of HBase for migration from
SQL,” in Proceedings - 2014 9th International
Conference on P2P, Parallel, Grid, Cloud and
Internet Computing, 3PGCIC 2014, 2014.

[28] M. Bahaj, and A. Elalami. "The migration of
data from a relational database (RDB) to an
object relational (ORDB) database." Journal of
Theoreticaland Applied Information
Technology 58.2 (2013).

