© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

DEVELOPMENT OF ANEKA EVALUATION MODEL BASED ON TOPSIS IN SEARCHING THE DOMINANT ASPECTS OF COMPUTER LEARNING QUALITY DETERMINANTS

¹I PUTU WISNA ARIAWAN, ²WAKHINUDDIN SIMATUPANG, ³ANDI MUHAMMAD ISHAK, ⁴ANAK AGUNG GEDE AGUNG, ⁵SURATMIN, ⁶AGUS ADIARTA, ^{7*}DEWA GEDE HENDRA DIVAYANA

¹Department of Mathematics Education, Universitas Pendidikan Ganesha, Indonesia

²Department of Technology and Vocational Education, Universitas Negeri Padang, Indonesia

³Department of Evaluation in Education, Universitas Negeri Jakarta, Indonesia

⁴Department of Education Technology, Universitas Pendidikan Ganesha, Indonesia

⁵Department of Sport Education, Universitas Pendidikan Ganesha, Indonesia

⁶Department of Electrical Education, Universitas Pendidikan Ganesha, Indonesia

⁷Department of Information Technology Education, Universitas Pendidikan Ganesha, Indonesia

*Correspondence E-mail: hendra.divayana@undiksha.ac.id

ABSTRACT

The implementation of this research was intended to obtain information about the design of *ANEKA* evaluation model based on *TOPSIS* which can describe the stages to obtain dominant aspects of the quality determinant of computer learning. This research was development research using Borg and Gall design that was limited up to preliminary field test stage in generating *ANEKA* evaluation model based on *TOPSIS*. The data collection in this research was done through documentation, interview, observation, and questionnaire distribution. Subjects involved in conducting the preliminary field test of evaluation model designs were two informatics experts and two education experts. The analyst technique used in this research was descriptive guantitative based on *TOPSIS* that was ready to be used because evidenced from the average percentage of model design quality of 89.00% viewed from the results of the preliminary field test that was conducted by experts. Besides, it has also been proven from the simulation result of *TOPSIS* method accurately, can be determined the most dominant evaluation aspect.

Keywords: Evaluation, ANEKA, TOPSIS, Dominant Aspect, Computer Learning.

1. INTRODUCTION

Generally, the initial perception of most teachers stated that the learning process in school could run optimally if the students already have good intellectual ability and good manners. However, with the rapid development of information technology that's influenced and triggered by the emergence of the current era of industrial revolution 4.0, the balance between intellectual ability and character in the learning process began to fades away. This condition can happen because of a paradigm shift in the learning process in school in the era of industrial revolution 4.0 currently, where the learning process in schools undergoes changes and developments from conventional processes through face to face in the classroom into a learning process based on the digital form that can be done online (*asynchronous learning*) using internet facilities both at school and out of school. Face-toface learning in classroom cause to direct interaction between teachers and students making it easier to supervise the different activities undertaken by students while in the classroom, but access to knowledge resources is limited only to material provided by the teachers. But, online learning makes it difficult for teachers to monitor the different activities that are undertaken by students while outside the classroom, but online <u>15th October 2018. Vol.96. No 19</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

<u>www.jatit.org</u>

E-ISSN: 1817-3195

learning provides the ease in obtaining a source of knowledge quickly.

Similar to the learning process in general subjects that occur in schools, in this era of industrial revolution 4.0, students who follow computer learning in schools do not need to memorize one by one all the basic knowledge and mathematical logic formula to support computer learning, because the current students have been able to find sources of knowledge directly from the internet without having to wait for instructions and can train their brain and logic through examples of problems or cases related to computer subjects via the internet instantly. However, behind the ease that was offered through the advancement of information technology that supports the process of computer learning in school, it raises new problems that are the declining quality of intellectual ability and character possessed by the students. The form of their intellectual degradation, indicated by the conditions such as reading interest that was decreased, lazy to make tasks, ability, and memory of students were limited, mathematical ability and ability to think logically they also were reduced. The form of the students' moral decline was shown by several conditions such as students often truant, brave against teachers, intercourse and early childhood sex, the emergence of gangster culture, etc.

Problems relating to the decline in intellectual ability and character in the computer learning process often occurs in students in the medium education level, especially vocational school in the field of information technology because psychologically students at the medium education level are experiencing a phase of mental development in their's life and tend to be unstable. Besides, organizational and institutional status, the vocational school in the field of information has directly provided complete technology computer facilities and internet network as an essential tool to support the learning process in each subject, so that students are easy to access the internet. The ease of internet access provided by the school and given freely to students to use it, but not accompanied by a strong mental from within the students, and even the students use the ease provided by the school to look for things that deviate from the learning material, so this condition to become a severe problem that must be solved.

Based on the problems found in the computer learning process in the vocational school in the field of information technology, shows a decrease in the computer learning quality. Therefore, it is necessary to make an effort to overcome these problems, by appropriate recommendation. providing an Appropriate recommendations can be obtained by conducting an evaluation activity. It is accordance with the opinions of some researchers, such as Prinsloo and Harvey [1]; Arnyana, et al [2]; Toyoda [3]; Divayana and Sanjaya [4]; Brink and Bartz [5]; Mahayukti, et al [6]; Chow and Hollo [7]; Divayana, Adiarta, and Abadi [8]; Põldoja, Duval, and Leinonen [9]; Divayana, et al [10]; Wotela [11]; Divayana, et al [12]; Saucier, et al [13]; Jampel, et al [14]; Liu, Xu, and Stronge [15]; Suandi, Putrayasa, and Divayana [16]; Harris-Packer and Ségol [17]; Divayana, et al [18]; Schwab [19]; Divayana, Ardana, and Ariawan [20]; Arnold and Reed [21]; Divayana, Adiarta, and Abadi [22]; Mengoni, Bardsley and Oates [23]; Divayana [24]; Climie and Henley [25]; Norman and Parker [26]; which states that good recommendations can be obtained through evaluation activities that were conducted thoroughly, completely and deeply using appropriate models.

Appropriate evaluation model used to evaluate the quality of computer learning is a model that can measure the intellectual level and character of students precisely and accurately. To be able to show fast and precise results in evaluating the quality of computer learning is evidenced by the discovery of the dominant aspects of the overall quality of computer learning (both concerning intellectual level and student character). Based on that statement, the evaluation model that can be developed to evaluate the quality of computer learning is the form of ANEKA evaluation model based on TOPSIS. This model can measure the intellectual level and student character based on the point of view of ANEKA component and can determine the dominant aspect of the quality determinant of computer learning comprehensively using TOPSIS method calculation.

Based on the problems findings and the solution model form so that it can be obtained the problems statements of this research, i.e.: 1) How the design of ANEKA evaluation model based on TOPSIS that used to evaluate the computer learning quality, 2) How the simulation of ANEKA evaluation model based on TOPSIS? From those problems statements, so the purpose of this research was to know the design and simulation of ANEKA evaluation model based on TOPSIS used to evaluate the computer learning quality.

This research based on several research results that have been done in 2017 by Divayana et al. [27]

<u>15th October 2018. Vol.96. No 19</u> © 2005 – ongoing JATIT & LLS

www.jatit.org

E-ISSN: 1817-3195

about the development of *ANEKA* evaluation model instruments, have similarities with this research regarding the research object about *ANEKA* model, but the difference lies research objectives, where this research was more focused in developing *ANEKA* model to be able to determine the dominant aspect of determining of computer learning quality by evaluation calculation process applying *TOPSIS* method, while research that was done by Divayana, et al. only focuses on determining the validity and reliability of *ANEKA* model instruments, so has not been able to show precisely the dominant aspect that becomes a priority to be implemented in supporting the computer learning quality in schools.

The research that was conducted in 2016 by Oktarina about the actualization of the ANEKA values in the profession as lecturers at IHDN as the basis of public service quality commitment [28] has similarities with that done by researchers regarding utilizing the ANEKA values indicators. However, the difference lies in the purpose of the research, where this research focuses on developing the ANEKA evaluation model based on TOPSIS that is used to evaluate the quality of computer learning, while the research that was conducted by Oktarina focuses only on actualizing the ANEKA values for maintaining the quality commitment in providing services to the students at IHDN, so it has not been able to find out deeply the values of ANEKA that can determine the learning quality of students at IHDN comprehensively.

2. RESEARCH METHODOLOGY

This research uses development research approach using Borg and Gall model. Borg and Gall's model has 10 stages, including: (1) Research and Information Collecting, (2) Planning, (3) Develop Preliminary Form of Product, (4) Preliminary Field Test, (5) Main Product Revision, (6) Main Field Test, (7) Operational Product Revision, (8) Operational Field Testing, (9) Final Product Revision, and (10) Dissemination and Implementation. The implementation of this research was limited to Preliminary Field Test. Some of the activities undertaken in this study for each stage using the Borg and Gall model, including: (1) at the stage of research and information collecting was conducted the literature search and documentation study on ANEKA evaluation model and TOPSIS method used as the basis or preliminary study in making the design of ANEKA evaluation model based on TOPSIS; (2) at the stage of *planning* was conducted the personnel planning that involved and the time required to complete the design of *ANEKA* evaluation model based on *TOPSIS*; (3) at the *develop preliminary form of product* stage was conducted the initial design of ANEKA evaluation model based on TOPSIS; (4) at the stage of *preliminary field test* was conducted a limited trial toward the design of *ANEKA* evaluation model based on *TOPSIS* design which has been formed, with involving two informatics experts and two education experts.

The location of the Preliminary Field Test of design of ANEKA evaluation model based on TOPSIS was conducted in one of the existing vocational school of information technology field in Badung Regency (namely SMK TI Udayana), because that school has the vision and mission to realize the school of information technology that is superior, independent, character and cultured. The data were collected through documentation study to gain basic knowledge about ANEKA concept and TOPSIS method, interview with the headmaster, direct observation on the design of ANEKA evaluation model based on TOPSIS which tested at research location, and dispersion of test questionnaire to experts.

Data analysis technique used as the basis of interpretation of research result was quantitative descriptive technique, by using descriptive percentage calculation. The formula used for descriptive percentage calculation as follows [29].

$$Percentage = \frac{\sum (Answer * Weight Each Choice of Answers)}{n * Highest Weight} * 100\% \quad (1)$$

Where:

 $\Sigma = Amount$

n = Total number of questionnaire items

Furthermore, to calculate the percentage of all respondents involved in the study can use the following formula [29]:

$$Percentage = \frac{F}{N}$$
 (2)

Where:

F = Total percentage of the entire subject

N = Number of subjects

To be able to give meaning and decisionmaking at the level of achievement of computer learning quality can use the scale conversion of quality level, as shown in Table 1 below:

Table 1. Conversion of Quality Level with Scales' Five

Quality Level	Category	Recommendation
90-100 %	Excellence	Not Revised
80-89 %	Good	Not Revised

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Quality Level	Category	Recommendation
65-79 %	Moderate	Revised
55-64 %	Less	Revised
0-54 %	Poor	Revised

3. RESULTS AND DISCUSSION

3.1 Results

Several items that are shown as the results of this research, including:

1) Results at Stage of Research and Information Collecting

The results obtained at this stage contain preliminary information about ANEKA aspects and TOPSIS method. Generally, ANEKA is an acronym of the following five words: (a) Akuntabilitas (in Indonesian) or Accountability (in English); (b) Nasionalisme (in Indonesian) or Nationalism (in English); (c) Etika Publik (in Indonesian) or Public Ethics (in English); (d) Komitmen Mutu (in Indonesian) or Quality Commitment (in English); dan (e) Anti korupsi (in Indonesian) atau anticorruption (in English). Accountability related to the responsibilities of students doing all the tasks assigned by the teachers. The evaluation aspects included in the accountability component are clarity of target, responsibilities, neutral, honest, consistent, participatory, and prioritizing the public interest. Nationalism is related to students' loves sincerely and profoundly toward the school where they gain knowledge from the teachers. The evaluation aspects included in the nationalism component are transparent, tolerant, mutual cooperation. work ethic. self-confidence. deliberation, wise, kinship, mutual help, and ungreedy. Public ethics is related to the ethics of students in maintaining their behavior to maintain the good reputation of the school in the public sphere. The evaluation aspects included in the public ethics component are obey in the laws and regulations, respect, careful, high integrity, polite, and obey on commands. Quality commitment is related to the students' ability to show their intellectual qualities or achievements in a good and sincere way. The evaluation aspects included in the quality commitment component are efficiency, quality oriented, effectiveness, and innovation. Anti-corruption is related to the ability of students to avoid negative things that cause the existence of misappropriation and lies in the learning process. The evaluation aspects included in the anticorruption component are discipline, independent, courageous, fair, hard work, simple, and care.

The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method is one of the decision support methods that using the principle the chosen alternative must have the nearest distance from the positive ideal solution and the furthest distance from the negative ideal solution based on a geometric point of view by using the Euclidean distance to determine the relative proximity from an alternative with the optimal solution [30]. The stages of TOPSIS method calculation, consist of (a) making a normalized decision matrix, (b) making a weighted normalization decision matrix, (c) determining the positive ideal solutions matrix and the negative ideal solution matrix, (d) determining the distance between values any alternative with a positive solution ideal matrix and the negative solution ideal matrix, (e) determining the preference value for each alternative.

TOPSIS requires performance rating of each alternative A_i on each of the normalized C_j criteria, namely:

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^{2}}}$$
(3)

The positive ideal solution (A+) and the negative ideal solution (A-) can be determined based on the normalized weighted rating (y_{ij}) as follows:

$$y_{ij} = w_i r_{ij} \tag{4}$$

$$A^{+} = \left(y_{1}^{+}, y_{2}^{+}, \cdots, y_{n}^{+}\right)$$
(5)

$$A^{-} = \left(y_{1}^{-}, y_{2}^{-}, \cdots, y_{n}^{-}\right)$$
(6)

Where :

$$y_{j}^{+} = \begin{cases} \max_{i} y_{ij}; & \text{if } j \text{ is an benefit attribute} \\ \\ \min_{i} y_{ij}; & \text{if } j \text{ is an cost attribute} \end{cases}$$
(7)

$$y_{j}^{-} = \begin{cases} \min_{i} y_{ij}; & \text{if j is an benefit attribute} \\ \max_{i} y_{ij}; & \text{if j is an cost attribute} \end{cases}$$
(8)

The distance between alternative Ai with the positive ideal solution is formulated as follows.

$$D_i^+ = \sqrt{\sum_{j=1}^n (y_i^+ - y_{ij})^2}$$
(9)

<u>15th October 2018. Vol.96. No 19</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

<u>www.jatit.org</u>

E-ISSN: 1817-3195

The distance between alternative Ai with the negative ideal solution is formulated as follows.

$$D_i^- = \sqrt{\sum_{j=1}^n (y_{ij} - y_i^-)^2}$$
(10)

The preference value for each alternative (Vi) is given as:

$$V_{i} = \frac{D_{i}^{-}}{D_{i}^{-} + D_{i}^{+}}$$
(11)

A larger V_i score indicates that Ai alternatives are preferred.

2) Results at Stage of Planning

The results obtained at this stage contain information on the personnel involved in the design of *ANEKA* evaluation model based on *TOPSIS* (as shown in Table 2) and the time required for completion (shown in Table 3).

Table 2: Personnel that are Involves in the Design ofANEKA Evaluation Model Based on TOPSIS

N 0	Activity	Number of Personnel (Person)
1.	Determination of components and aspects of the evaluation	3

N 0	Activity	Number of Personnel (Person)
2.	Determination of the indicators of each evaluation aspect	3
3.	Create the design model	3
4.	The preliminary field test of design	4
	Total	13

Table 3: Time Required for the Design of ANEKAEvaluation Model Based on TOPSIS

N 0	Activity	Time (Day)
1.	Determination of components and aspects of the evaluation	5
2.	Determination of the indicators of each evaluation aspect	6
3.	Create the design model	5
4.	The preliminary field test of design	14
	Total	30

3) Results at Stage of Develop Preliminary Form of Product

At this stage was produced the design of ANEKA evaluation model based on TOPSIS that presented completely in Figure 1 below.

Figure 1: The Design of ANEKA Evaluation Model Based on TOPSIS

E-ISSN: 1817-3195

ISSN: 1992-8645

<u>www.jatit.org</u>

4) Results at Stage of Preliminary Field Test

At this stage, the preliminary field test results that conducted by two education experts and two informatics experts toward the *ANEKA* evaluation model based on *TOPSIS*, shown in Table 4 below.

 Table 4: Results of the Preliminary Field Test that Conducted by Experts toward Design of ANEKA Evaluation Model

 Based on TOPSIS

N	Expert	Items								Tetal	Percentage		
INO		1	2	3	4	5	6	7	8	9	10	Total	(%)
1.	E-1	5	4	5	5	4	5	4	4	5	5	46	92.00
2.	E-2	4	5	4	4	5	4	5	5	4	5	45	90.00
3.	E-3	5	5	4	4	5	4	4	4	4	4	43	86.00
4.	E-4	4	4	5	4	4	5	5	5	4	4	44	88.00
Average								89.00					

Besides the results of preliminary field test, at this stage also shows the simulation of *TOPSIS* method calculation to determine the dominant aspects of computer learning quality determinants, which wholly explained as follows.

Known the data obtained from simulation test that was conducted by four experts, shown entirely in Table 5 below.

	Components	ANEKA					
		Assautshility	Nationalism	Public	Quality	Anti-	
Asp	pects	Accountability	Inationalism	Ethics	Commitment	Corruption	
1	Clarity of target	4.25	1.00	1.00	1.00	1.00	
2	Responsibilities	4.50	1.00	1.00	1.00	1.00	
3	Neutral	4.50	1.00	1.00	1.00	1.00	
4	Honest	4.25	1.00	1.00	1.00	1.00	
5	Consistent	4.50	1.00	1.00	1.00	1.00	
6	Participatory	4.25	1.00	1.00	1.00	1.00	
7	Prioritizing the public interest	4.50	1.00	1.00	1.00	1.00	
8	Transparent	1.00	4.25	1.00	1.00	1.00	
9	Tolerant	1.00	4.50	1.00	1.00	1.00	
10	Mutual Cooperation	1.00	4.25	1.00	1.00	1.00	
11	Work Ethic	1.00	4.50	1.00	1.00	1.00	
12	Self-Confidence	1.00	4.25	1.00	1.00	1.00	
13	Deliberation	1.00	4.25	1.00	1.00	1.00	
14	Wise	1.00	4.25	1.00	1.00	1.00	
15	Kinship	1.00	4.50	1.00	1.00	1.00	
16	Mutual Help	1.00	4.50	1.00	1.00	1.00	
17	Un-Greedy	1.00	4.25	1.00	1.00	1.00	
18	Obey in the Laws and Regulations	1.00	1.00	4.50	1.00	1.00	
19	Respect	1.00	1.00	4.50	1.00	1.00	
20	Careful	1.00	1.00	4.25	1.00	1.00	
21	High Integrity	1.00	1.00	4.25	1.00	1.00	
22	Polite	1.00	1.00	4.25	1.00	1.00	
23	Obey on Commands	1.00	1.00	4.50	1.00	1.00	
24	Efficiency	1.00	1.00	1.00	4.50	1.00	
25	Quality Oriented	1.00	1.00	1.00	4.75	1.00	
26	Effectiveness	1.00	1.00	1.00	4.50	1.00	
27	Innovation	1.00	1.00	1.00	4.50	1.00	
28	Discipline	1.00	1.00	1.00	1.00	4.50	
29	Independent	1.00	1.00	1.00	1.00	4.00	
30	Courageous	1.00	1.00	1.00	1.00	4.25	
31	Fair	1.00	1.00	1.00	1.00	4.50	
32	Hard Work	1.00	1.00	1.00	1.00	4.50	
33	Simple	1.00	1.00	1.00	1.00	4.50	
34	Care	1.00	1.00	1.00	1.00	4.25	

Table 5: Simulation Data that Input By Experts

Journal of Theoretical and Applied Information Technology <u>15th October 2018. Vol.96. No 19</u> © 2005 – oppoing JATIT & U.S

ISSN: 199	2-864	5		www.ja	atit.org]
Based of	n th	e data in	Table 5 a	bove, we can		X ₂₅₁	1.00
calculate	TOP	SIS with t	he following	steps.	$r_{251} =$	X1	= 12.735
a) Deter	mini	ng a norm	alized decisi	on matrix		X ₂₆₁	1.00
$ x_1 =$	4.252	$+4.50^2 + 4.50^2$	$+4.25^{2}+4.50^{2}+4.3$	$35^2 + 4.50^2 + 27(1.00)^2$	$r_{261} =$	X1	= 12.735
= 12.7	735				r —	X 271	_ 1.00
		X11	4.25	0.004	1271 -	$ \mathbf{x}_1 $	12.735
r_{11}	= -	X1	12.735	= 0.334	$\mathbf{r}_{201} =$	X281	= 1.00
	_	X ₂₁	4.50	- 0 252	1281	$ \mathbf{x}_1 $	12.735
r ₂₁		X1	12.735	- 0.333	$r_{291} =$	X291	$=\frac{1.00}{1.00}$
F 21	= -	X31	4.50	= 0.353	271	$ \mathbf{x}_1 $	12.735
131		$ \mathbf{X}_1 $	12.735	0.555	$r_{301} =$	X301	$=\frac{1.00}{12.725}$
r 41	= -	X41	= 4.25	= 0.334		X1	12./35
- 41		$ \mathbf{X}_1 $	12.735		$r_{311} =$	X311	$=\frac{1.00}{12.725}$
r ₅₁	= -	X51	$=\frac{4.50}{12.525}$	= 0.353		X 1 X 221	12.755
		$ \mathbf{X}_1 $	12.735		$r_{321} =$	<u> </u>	$=\frac{1.00}{12.735}$
r ₆₁	= -	X61	$=\frac{4.25}{12.725}$	= 0.334		A] X221	1 00
		X1 X	12.735		$r_{331} =$	X1	$=\frac{1.00}{12.735}$
r_{71}	= -	<u> </u>	$=\frac{4.30}{12.735}$	= 0.353		X341	1.00
		A] X 01	1 00		$r_{341} =$	X1	= 12.735
r_{81}	= -	x ₁	$=\frac{1.00}{12.735}$	= 0.079		1 -1	
		\mathbf{X}_{91}	1.00		$ \mathbf{x}_2 = \sqrt{7(1.00)^2 + 4}$	25 ² + 4.50 ² + 4.25 ² + 4.50	² +425 ² +425 ² +425 ²
r 91	= -	X1	= 12.735	= 0.079	= 14.607		
		X ₁₀₁	1.00	0.070		X12	1.00
r ₁₀₁		X ₁	12.735	= 0.0/9	$r_{12} =$	X2	= 14.607
r		X111	1.00	= 0.079	* —	X ₂₂	_ 1.00
1111		$ \mathbf{x}_1 $	12.735	- 0.079	1 ₂₂ –	$ \mathbf{x}_2 $	14.607
r 121	= -	X121	= <u>1.00</u>	= 0.079	$r_{22} =$	X32	= <u>1.00</u>
-121		$ \mathbf{X}_1 $	12.735	0.079	132	$ \mathbf{x}_2 $	14.607
r ₁₃₁	= -	X131	$=\frac{1.00}{12.725}$	= 0.079	$r_{42} =$	X42	$=\frac{1.00}{14.607}$
		X ₁	12./35			$ \mathbf{X}_2 $	14.607
r_{141}	= -	X141	$=\frac{1.00}{12.725}$	= 0.079	r ₅₂ =	X52	$=\frac{1.00}{14.607}$
		X1 X151	12.735			X2 X	14.007
r 151	= -	x ₁₅₁	$=\frac{1.00}{12.735}$	= 0.079	r ₆₂ =	<u></u>	$=\frac{1.00}{14.607}$
		X 161	1.00			A2 X72	1 00
r ₁₆₁	= -	X1	= <u>12.735</u>	= 0.079	$r_{72} =$	X2	$=\frac{1.00}{14.607}$
		X171	1.00	0.070		X82	4.25
r_{171}	= -	X1	12.735	$= 0.0^{7}/9$	r ₈₂ =	x ₂	= 14.607
	_	X181	1.00	-0.070		X_{92}	4.50
F 181		X 1	12.735	- 0.079	$r_{92} =$	X ₂	14.607
r 101	= -	X191	1.00	= 0.079	r	X102	4.25
1 191		$ \mathbf{x}_1 $	12.735	0.079	1102 —	$ \mathbf{x}_2 $	14.607
r 201	= -	X ₂₀₁	$=\frac{1.00}{1.00}$	= 0.079	$r_{112} =$	X112	= 4.50
-201		$ \mathbf{x}_1 $	12.735	01079	- 112	$ \mathbf{x}_2 $	14.607
r ₂₁₁	= -	X211	$=\frac{1.00}{12.725}$	= 0.079	$r_{122} =$	<u>X122</u>	$=\frac{4.25}{14.07}$
-		$ \mathbf{X}_1 $	12.735			X ₂	14.607
r ₂₂₁	= -	X221	$=\frac{1.00}{12.725}$	= 0.079	$r_{132} =$	X132	$=\frac{4.23}{14.607}$
		A] Xaat	12.755			X2 X140	14.00/ 1 25
r ₂₃₁	= -	<u>A231</u>	$=\frac{1.00}{12.735}$	= 0.079	$r_{142} =$	<u>A142</u>	$=\frac{4.23}{14.607}$
		[A]	12.133			 ^ 2	14.007
		X 241	1 00			X150	4 50

E-ISSN: 1817-3195

r ₂₅₁	=	$\frac{x_{251}}{ x_1 } =$	12.735	= 0.079
r ₂₆₁	=	$\frac{X_{261}}{ X_1 } =$	$=\frac{1.00}{12.735}$	= 0.079
r ₂₇₁	=	$\frac{X_{271}}{ x_1 } =$	$=\frac{1.00}{12.735}$	= 0.079
r ₂₈₁	=	$\frac{X_{281}}{ x_1 } =$	$=\frac{1.00}{12.735}$	= 0.079
r ₂₉₁	=	$\frac{X_{291}}{ \mathbf{x}_1 } =$	$= \frac{12.735}{12.735}$	= 0.079
r ₃₀₁	=	$\frac{ \mathbf{X}_1 }{ \mathbf{X}_2 } =$	$= \frac{12.735}{1.00}$	= 0.079
r ₃₁₁	=	$\frac{ \mathbf{X}_1 }{ \mathbf{X}_2 } =$	$= \frac{12.735}{12.735}$	= 0.079
r ₃₂₁	=	$\frac{ \mathbf{X}_1 }{\mathbf{X}_{321}} =$	$= \frac{12.755}{1.00}$	= 0.079
r 331	=	$\frac{ \mathbf{X}_1 }{\mathbf{X}_{331}} =$	$\frac{12.735}{1.00}$	= 0.079
r ₃₄₁	=	$\frac{ \mathbf{X}_1 }{\mathbf{X}_{341}} =$	$\frac{12.735}{1.00}$	= 0.079
		$ \mathbf{X}_1 $	12.735	

 2 + 4.50² + 4.50² + 4.25² + 17(1.00)²

14.0	,01			
r ₁₂	=	$ \mathbf{x}_{12} $	$=\frac{1.00}{14.607}$	= 0.068
r ₂₂	=	$\frac{\mathbf{x}_{22}}{ \mathbf{x}_2 }$	$=\frac{1.00}{14.607}$	= 0.068
r ₃₂	=	$\frac{\mathbf{x}_{32}}{ \mathbf{x}_2 }$	$=\frac{1.00}{14.607}$	= 0.068
r ₄₂	=	$\frac{\mathbf{x}_{42}}{ \mathbf{x}_2 }$	$=\frac{1.00}{14.607}$	= 0.068
r ₅₂	=	$\frac{\mathbf{x}_{52}}{ \mathbf{x}_2 }$	$=\frac{1.00}{14.607}$	= 0.068
r ₆₂	=	$\frac{\mathbf{x}_{62}}{ \mathbf{x}_2 }$	$=\frac{1.00}{14.607}$	= 0.068
r 72	=	$\frac{\mathbf{x}_{72}}{ \mathbf{x}_2 }$	$=\frac{1.00}{14.607}$	= 0.068
r ₈₂	=	$\frac{\mathbf{x}_{82}}{ \mathbf{x}_2 }$	$=\frac{4.25}{14.607}$	= 1.237
r ₉₂	=	$\frac{X_{92}}{ \mathbf{x}_2 }$	$=\frac{4.50}{14.607}$	= 1.386
r ₁₀₂	=	$\frac{\mathbf{x}_{102}}{ \mathbf{x}_2 }$	$=\frac{4.25}{14.607}$	= 1.237
r ₁₁₂	=	$\frac{\mathbf{x}_{112}}{ \mathbf{x}_2 }$	$=\frac{4.50}{14.607}$	= 1.386
r ₁₂₂	=	$\frac{\mathbf{x}_{122}}{ \mathbf{x}_2 }$	$=\frac{4.25}{14.607}$	= 1.237
r ₁₃₂	=	$\frac{\mathbf{x}_{132}}{ \mathbf{x}_2 }$	$=\frac{4.25}{14.607}$	= 1.237
r ₁₄₂	=	$\frac{\mathbf{x}_{142}}{ \mathbf{x}_2 }$	$=\frac{4.25}{14.607}$	= 1.237
r ₁₅₂	=	$\frac{\mathbf{x}_{152}}{ \mathbf{x}_2 }$	$=\frac{4.50}{14.607}$	= 1.386

<u>15^m October 2018. \</u>	/ol.96. No 19
© 2005 – ongoing	JATIT & LLS

ISSN: 1992-8645		ww	w.jatit.org		E	-ISSN: 181'
$r_{162} = -2$	$\frac{x_{162}}{ x_2 } = \frac{4.50}{14.607}$	= 1.386	r ₇₃	$=\frac{X_{73}}{ X_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{172} = -2$	$\frac{x_{172}}{ x_2 } = \frac{4.25}{14.607}$	= 1.237	r ₈₃	$=\frac{\mathbf{X}_{83}}{ \mathbf{X}_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{182} = -2$	$\frac{X_{182}}{ \mathbf{x}_2 } = \frac{1.00}{14.607}$	= 0.068	r ₉₃	$= \frac{x_{93}}{ x_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{192} = -2$	$\frac{ x_{192} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₀₃	$= \frac{x_{103}}{ x_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{202} = -2$	$\frac{x_{202}}{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₁₃	$= \frac{\mathbf{X}_{113}}{ \mathbf{X}_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{212} = -2$	$\frac{x_{212}}{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₂₃	$= \frac{\mathbf{x}_{123}}{ \mathbf{x}_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{222} = -2$	$\frac{ x_{222} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₃₃	$= \frac{\mathbf{X}_{133}}{ \mathbf{X}_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{232} = -2$	$\frac{ x_{232} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₄₃	$= \frac{X_{143}}{ X_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{242} = -2$	$\frac{ x_{242} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₅₃	$= \frac{\mathbf{X}_{153}}{ \mathbf{X}_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{252} = -2$	$\frac{ x_{252} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₆₃	$= \frac{\mathbf{X}_{163}}{ \mathbf{X}_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{262} = -2$	$\frac{ x_{262} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₇₃	$= \frac{X_{173}}{ X_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{272} = -2$	$\frac{ x_{272} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₈₃	$= \frac{X_{183}}{ X_3 }$	$=\frac{4.50}{11.956}$	= 1.694
$r_{282} = -2$	$\frac{ x_{282} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₁₉₃	$= \frac{\mathbf{x}_{193}}{ \mathbf{x}_3 }$	$=\frac{4.30}{11.956}$	= 1.694
$r_{292} = -2$	$\frac{ x_{292} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₂₀₃	$= \frac{\mathbf{x}_{203}}{ \mathbf{x}_3 }$	$=\frac{4.25}{11.956}$	= 1.511
$r_{302} = -2$	$\frac{ x_{302} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₂₁₃	$= \frac{\mathbf{x}_{213}}{ \mathbf{x}_3 }$	$=\frac{4.25}{11.956}$	= 1.511
$r_{312} = -2$	$\frac{ x_{312} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₂₂₃	$= \frac{\mathbf{x}_{223}}{ \mathbf{x}_3 }$	$=\frac{4.23}{11.956}$	= 1.511
$r_{322} = -2$	$\frac{ x_{322} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₂₃₃	$= \frac{\mathbf{x}_{233}}{ \mathbf{x}_3 }$	$=\frac{4.30}{11.956}$	= 1.694
$r_{332} = -2$	$\frac{ x_{332} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₂₄₃	$= \frac{x_{243}}{ x_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{342} = -2$	$\frac{ x_{342} }{ x_2 } = \frac{1.00}{14.607}$	= 0.068	r ₂₅₃	$= \frac{\mathbf{x}_{253}}{ \mathbf{x}_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$ \mathbf{x}_3 = \sqrt{17(1.00)^2 + 4.5}$	0 ² + 4.50 ² + 4.25 ² + 4.25 ² + 4.2	5 ² + 4.50 ² + 11(1.00	r_{263}	$= \frac{X_{263}}{ X_3 }$	$=\frac{1.00}{11.956}$	= 0.084
= 11.956 $r_{13} =$	$\frac{X_{13}}{11.056} = \frac{1.00}{11.056}$	= 0.084	r ₂₇₃	$= \frac{\mathbf{x}_2/\mathbf{x}_3}{ \mathbf{x}_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_2 = -$	$\frac{ x_{3} }{ x_{23} } = \frac{11.956}{11.056}$	= 0.084	r ₂₈₃	$= \frac{\mathbf{x}_{285}}{ \mathbf{x}_3 }$	$= \frac{1.00}{11.956}$	= 0.084
$r_{33} =$	$\frac{ X_{3} }{ X_{33} } = \frac{11.956}{11.056}$	= 0.084	r ₂₉₃	$= \frac{ \mathbf{x}_2 ^2}{ \mathbf{x}_3 }$	$=\frac{1.00}{11.956}$	= 0.084
$r_{43} =$	$\frac{ \mathbf{x}_3 }{ \mathbf{x}_{43} } = \frac{11.956}{1.00}$	= 0.084	r ₃₀₃	$= \frac{ \mathbf{x}_{303} }{ \mathbf{x}_{3} }$	$=\frac{1.00}{11.956}$	= 0.084

 $\frac{|\mathbf{x}_3|}{|\mathbf{x}_3|} = \frac{11.956}{11.956} = 0.084$ $\frac{1.00}{11.956} = 0.084$ $|\mathbf{x}_{63}|$ - = -

r₅₃

r₆₃

= -

	_	X263	_	1.00	- 0.094
F 263	=	X3	=	11.956	= 0.084
	_	X273	_	1.00	- 0.094
F 273	_	X ₃	_	11.956	- 0.084
	_	X283	_	1.00	- 0.094
r ₂₈₃	_	X3	_	11.956	- 0.084
	_	X293	_	1.00	- 0.094
r 293	_	X3	=	11.956	= 0.084
	_	X303	_	1.00	- 0.094
F 303	_	X3	_	11.956	- 0.084
	_	X313	_	1.00	- 0.094
r ₃₁₃	=	X3	=	11.956	= 0.084
	_	X323	_	1.00	- 0.094
F 323		X3	=	11.956	= 0.084
	_	X333	_	1.00	- 0.094
r 333	=	X ₃		11.956	= 0.084

Journal of Theoretical and Applied Information Technology <u>15th October 2018. Vol.96. No 19</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-86	45		<u>www.ja</u>	<u>tit.org</u>			E·	ISSN: 1817-3195
r ₃₄₃ =	<u>X₃₄₃</u> X ₃	$=\frac{1.00}{11.956}$	= 0.084	r ₂₂₄	= -	$\frac{\mathbf{x}_{224}}{ \mathbf{x}_4 }$	$=\frac{1.00}{10.645}$	= 0.094
x4 = <mark>√23(1.0</mark>	$(0)^2 + 4.50^2 -$	+ 4.75 ² + 4.50 ² +	• 4.50 ² + 7(1.00) ²	r ₂₃₄	= -	$\frac{x_{234}}{ x_4 }$	$=\frac{1.00}{10.645}$	= 0.094
= 10.645 $r_{14} =$	<u>X14</u>	$=\frac{1.00}{10.645}$	= 0.094	r 244	= -	$\frac{\mathbf{x}_{244}}{ \mathbf{x}_4 }$	$=\frac{4.50}{10.645}$	= 1.902
r ₂₄ =	X4 	$=\frac{1.00}{10.645}$	= 0.094	r 254	= -	$\frac{\mathbf{x}_{254}}{ \mathbf{x}_4 }$	$=\frac{4.75}{10.645}$	= 2.120
r ₃₄ =	X34	$=\frac{1.00}{10.645}$	= 0.094	r ₂₆₄	= -	$ \mathbf{X}_{264} $	$=\frac{4.50}{10.645}$	= 1.902
r ₄₄ =	X4 X44	$=\frac{1.00}{10.645}$	= 0.094	r ₂₇₄	= -	$\begin{array}{c} \mathbf{x}_{274} \\ \mathbf{x}_{4} \end{array}$	$=\frac{4.50}{10.645}$	= 1.902
r ₅₄ =	X4 X54	$=\frac{1.00}{10.645}$	= 0.094	r ₂₈₄	= -	$\begin{array}{c} \mathbf{x}_{284} \\ \hline \mathbf{x}_{4} \end{array}$	$=\frac{1.00}{10.645}$	= 0.094
$r_{64} =$	X4 X64	$= \frac{1.00}{1.00}$	= 0.094	r ₂₉₄	= -	$ \mathbf{x}_{294} $	$=\frac{1.00}{10.645}$	= 0.094
$r_{74} =$	X4 	$=\frac{10.645}{10.645}$	= 0.094	r ₃₀₄	= -	X ₃₀₄	$=\frac{1.00}{10.645}$	= 0.094
r ₈₄ =	X84	$=\frac{1.00}{10.645}$	= 0.094	r ₃₁₄	= -	$\frac{\mathbf{x}_{314}}{ \mathbf{x}_4 }$	$=\frac{1.00}{10.645}$	= 0.094
r ₉₄ =	X4 X94	$=\frac{1.00}{10.645}$	= 0.094	r ₃₂₄	= -	X ₃₂₄	$=\frac{1.00}{10.645}$	= 0.094
$r_{104} =$	X4 X104	10.645 = $\frac{1.00}{1.00}$	= 0.094	r ₃₃₄	= -	X334	$=\frac{1.00}{10.645}$	= 0.094
r ₁₁₄ =	$ \mathbf{x}_4 $ \mathbf{x}_{114}	10.645 = <u>1.00</u>	= 0.094	r 344	= -	X4 X344	$=\frac{1.00}{10.645}$	= 0.094
1 114	$ \mathbf{x}_4 $ \mathbf{x}_{124}	10.645 1.00	- 0.004	$ \mathbf{v}_{c} = lag($	4.0002	X4	10.645	4 502 1 4 502 1 4 252
r ₁₂₄ –	X4 X134	- <u>10.645</u> 1.00	- 0.094	$ X5 = \sqrt{21}$ = 12.6	1.00)- 554	+ 4.50° + 4.00	1 00	4.50" + 4.50" + 4.25"
$r_{134} =$	X4 X4	= 10.645	= 0.094	r ₁₅	= -	X ₁₅ X ₅	$=\frac{1.00}{12.654}$	= 0.079
$r_{144} =$	$\frac{\mathbf{x}_{144}}{ \mathbf{x}_4 }$	$=\frac{1.00}{10.645}$	= 0.094	r ₂₅	= -	$ \mathbf{x}_{25} $	$=\frac{1.00}{12.654}$	= 0.079
r_{154} =	$\frac{\mathbf{x}_{154}}{ \mathbf{x}_4 }$	$=\frac{1.00}{10.645}$	= 0.094	r ₃₅	= -	$ \mathbf{x}_{35} $	$=\frac{1.00}{12.654}$	= 0.079
r_{164} =	$\frac{\mathbf{x}_{164}}{ \mathbf{x}_4 }$	$=\frac{1.00}{10.645}$	= 0.094	r ₄₅	= -	$ \mathbf{x}_{45} $	$=\frac{1.00}{12.654}$	= 0.079
r_{174} =	$\frac{x_{174}}{ x_4 }$	$=\frac{1.00}{10.645}$	= 0.094	r 55	= -	X55 X5	$=\frac{1.00}{12.654}$	= 0.079
r_{184} =	$\frac{X_{184}}{ x_4 }$	$=\frac{1.00}{10.645}$	= 0.094	r ₆₅	= -	$ \mathbf{x}_{65} $	$=\frac{1.00}{12.654}$	= 0.079
r_{194} =	$\frac{x_{194}}{ x_4 }$	$=\frac{1.00}{10.645}$	= 0.094	r ₇₅	= -	$ \mathbf{x}_{5} $	$=\frac{1.00}{12.654}$	= 0.079
r ₂₀₄ =	$\frac{\mathbf{x}_{204}}{ \mathbf{x}_4 }$	$=\frac{1.00}{10.645}$	= 0.094	r ₈₅	= -	$ \mathbf{x}_{85} $	$=\frac{1.00}{12.654}$	= 0.079
$r_{214} =$	$\frac{X_{214}}{ X_4 }$	$=\frac{1.00}{10.645}$	= 0.094	r 95	= -	$ \mathbf{x}_{95} $	$=\frac{1.00}{12.654}$	= 0.079

6588

<u>15" October 2018. \</u>	<u>Vol.96. No 19</u>
© 2005 – ongoing	JATIT & LLS

ISSN: 1992-8645		<u>www.jati</u>	<u>t.org</u>			E-ISSN:	1817-3195
$r_{105} = \frac{x_{105}}{ x_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	r 335	$= \frac{\mathbf{x}_{335}}{ \mathbf{x}_5 }$	$-=\frac{4.5}{12.6}$	$\frac{0}{54} = 1.6$	600
$r_{115} = \frac{x_{115}}{ x_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	r ₃₄₅	$=\frac{x_{345}}{ x_5 }$	$-=\frac{4.2}{12.6}$	$\frac{5}{54} = 1.4$	427
$r_{125} = \frac{x_{125}}{ x_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	Thos into mat	e result of rix form, whi	normalizat ch can be s	ion then of seen as foll	converted lows.
$r_{135} = \frac{x_{135}}{ x_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	1.418	3 0.068	0.084	0.094	0.079
$r_{145} = \frac{x_{145}}{ x_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	1.590) 0.068) 0.068	0.084	0.094	0.079
$r_{155} = \frac{x_{155}}{ x_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	1.418	3 0.068) 0.068	0.084	0.094	0.079
$r_{165} = \frac{x_{165}}{ x_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	1.418	0.068 0.068	0.084	0.094	0.079
$r_{175} = \frac{x_{175}}{ x_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	0.079	 1.237 1.386 1.237 	0.084	0.094	0.079
$r_{185} = \frac{X_{185}}{ \mathbf{x}_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	0.079	1.237 1.386 1.237	0.084	0.094	0.079
$r_{195} = \frac{X_{195}}{ x_5 } =$	$\frac{1.00}{12.654} = 0$	0.079	0.079	1.237 1.237 1.237	0.084	0.094	0.079
$r_{205} = \frac{X_{205}}{ x_1 } =$	$\frac{1.00}{12.654} = 0$	0.079	0.079) 1.386) 1.386	0.084 0.084	0.094 0.094	0.079
$r_{215} = \frac{x_{215}}{x_{215}} =$	$\frac{1.00}{12.654} = 0$	0.079	$R = \begin{bmatrix} 0.079\\ 0.079 \end{bmatrix}$	1.2370.068	0.084 1.694	0.094 0.094	0.079 0.079
$ \mathbf{X}_5 $ $\mathbf{r}_{225} = \frac{\mathbf{X}_{225}}{\mathbf{X}_{225}} =$	$\frac{12.034}{1.00} = 0$	0.079	0.079	0.0680.068	1.694 1.511	0.094 0.094	0.079 0.079
$ X_5 $ $T_{225} = \frac{X_{235}}{X_{235}} =$	12.654 <u>1.00</u> = 0	0 079	0.079 0.079	0.068 0.068	1.511 1.511	0.094 0.094	0.079 0.079
$ x_{5} $ $ x_{5} $	12.654 <u>1.00</u> =	0.079	0.079 0.079	0.068 0.068	1.694 0.084	0.094 1.902	0.079 0.079
$ x_{245} = x_{5} $	12.654 1.00	0.079	0.079 0.079	0.068 0.068	0.084 0.084	2.120 1.902	0.079 0.079
$\begin{array}{c} 1_{255} - \overline{1_{x5 }} - \\ \mathbf{x}_{265} \end{array}$	12.654 - 1.00	0.079	0.079 0.079	0.068 0.068 0.068	0.084 0.084	1.902 0.094	0.079 1.600
$\mathbf{r}_{265} = \frac{\mathbf{x}_{5 }}{ \mathbf{x}_{5 }} = \mathbf{x}_{275}$	12.654 = 1.00	0.079	0.079	0.068 0.068 0.068	0.084 0.084	0.094 0.094	1.264 1.427
$\mathbf{r}_{275} = \frac{\mathbf{r}_{275}}{ \mathbf{x}_5 } = \mathbf{x}_{285}$	12.654 = 0	0.079	0.079	0.068 0.068 0.068	0.084	0.094 0.094	1.600 1.600
$\mathbf{r}_{285} = \frac{265}{ \mathbf{X}_5 } = \mathbf{X}_{295}$	$\frac{12.654}{4.00} =$	1.600	0.079	0.068 0.068	0.084 0.084	0.094 0.094	1.600 1.427
$r_{295} = \frac{x_{295}}{ x_5 } =$	$\frac{100}{12.654} = 4.25$	1.264	b) Dete matr	rmining a we ix	eighted nor	malization	decision
$r_{305} = \frac{x_{305}}{ x_5 } =$	$\frac{12.654}{4.50} =$	1.427	Making conduct	a weighted i ed by multi	normalizati plying the	on decisio R matri:	on matrix, x by the
$r_{315} = \frac{x_{315}}{ x_5 } =$	$\frac{100}{12.654} = 450$	1.600	weight of the exp	of each evaluerts. The w	ation comp eighted de	oonent has etail giver	given by 1 by the
$r_{325} = \frac{x_{325}}{ x_5 } =$	$\frac{12.654}{12.654} =$	1.600	experts	ior each ANE	A evaluat	ion compo	ment was

<u>15" October 2018.</u>	Vol.96.	No 19
© 2005 – ongoing	JATIT	& LLS

ISSN: 1992-8645 www.it					www.ja	atit.org E-ISSN: 1817-3195
Γ4	4 4 4	41		.1		
[4 4	+ 4 4 nolizoti	4], so we	can calcu	fallows	weighted	0.310; 0.310; 0.310; 0.310; 0.310; 0.310; 0.310; 0.310; 0.316;
N=	11a11Zati [R]*[4		maurix as	ionows.		0.316, 0.316, 0.316, 0.316, 0.316, 0.316, 0.316
1-	[K] [4]			_	0.316; 0.316;
	5 (72	0.272	0.226	0.276	0.216	$v_{2}^{+} = \max\{0.272; $
	5.072	0.272	0.330	0.376	0.310	0.272; 4.948; 5.544; 4.948; 5.544; 4.948;
	0.300	0.272	0.330	0.570	0.310	4.948; 4.948; 5.544; 5.544; 4.948; 0.272;
	6.360	0.272	0.336	0.376	0.316	0.272; 0.272; 0.272; 0.272; 0.272; 0.272;
	5.672	0.272	0.336	0.376	0.316	0.272; 0.272; 0.272; 0.272; 0.272; 0.272; 0.272;
	6.360	0.272	0.336	0.376	0.316	$0.272; 0.272; 0.272; 0.272\} = 5.544$
	5.672	0.272	0.336	0.376	0.316	$y_3^+ = \max\{0.336; 0.33$
	6.360	0.272	0.336	0.376	0.316	0.336; 0.336;
	0.316	4.948	0.336	0.376	0.316	0.336; 0.336; 0.336; 0.336; 0.336; 0.336; 6.7/6;
	0.316	5.544	0.336	0.376	0.316	0.7/0; 0.044; 0.044; 0.044; 0.7/0; 0.330; 0.336;
	0.316	4.948	0.336	0.376	0.316	0.336; 0.336; 0.336; 0.336; 0.336; = 6.776
	0.316	5.544	0.336	0.376	0.316	$v_4^+ = \max\{0.376; 0.37$
	0.316	4.948	0.336	0.376	0.316	0.376: 0.376: 0.376: 0.376: 0.376: 0.376:
	0.316	4.948	0.336	0.376	0.316	0.376; 0.376; 0.376; 0.376; 0.376; 0.376; 0.376;
	0.316	4.948	0.336	0.376	0.316	0.376; 0.376; 0.376; 0.376; 0.376; 7.608;
	0.316	5.544	0.336	0.376	0.316	8.480; 7.608; 7.608; 0.376; 0.376; 0.376;
	0.316	5.544	0.336	0.376	0.316	$0.376; 0.376; 0.376; 0.376\} = 8.480$
V-	0.316	4.948	0.336	0.376	0.316	$y_5^+ = \max\{0.316; 0.31$
I –	0.316	0.272	6.776	0.376	0.316	0.316; 0.316;
	0.316	0.272	6.776	0.376	0.316	0.316; 0.316;
	0.316	0.272	6.044	0.376	0.316	0.310; 0.310; 0.310; 0.310; 0.310; 0.310; 0.310; 0.310; 0.316;
	0.316	0.272	6.044	0.376	0.316	6400: 6400: 6400: 5708 = 6400
	0.316	0.272	6.044	0.376	0.316	$A^+ = \{6, 360; 5, 544; 6, 776; 8, 480; 6, 400\}$
	0.316	0.272	6.776	0.376	0.316	
	0.316	0.272	0.336	7 608	0.316	(2) Negative ideal solution matrix
	0.316	0.272	0.336	8 480	0.316	$y_1 = \min\{5.672; 6.360; 6.360; 5.672; 6.360; 5.672;$
	0.316	0.272	0.336	7.608	0.316	6.360; 0.316; 0.316; 0.316; 0.316; 0.316;
	0.310	0.272	0.330	7.008	0.310	0.316; 0.316; 0.316; 0.316; 0.316; 0.316; 0.316;
	0.310	0.272	0.330	7.008	0.310	0.316; 0.316; 0.316; 0.316; 0.316; 0.316; 0.316; 0.316;
	0.510	0.272	0.330	0.570	5.056	0.316; 0.316; 0.316; 0.316; 0.316; 0.316; 0.316; 0.316;
	0.316	0.272	0.336	0.376	5.056	$0.316; 0.316; 0.316; 0.316; 0.310\} = 0.316$
	0.316	0.272	0.336	0.376	5.708	$y_2 = \min\{0.2/2, 0.2/2,$
	0.316	0.272	0.336	0.376	6.400	$4 948 \cdot 4 948 \cdot 5 544 \cdot 5 544 \cdot 4 948 \cdot 0 272 \cdot$
	0.316	0.272	0.336	0.376	6.400	0.272; 0.272;
	0.316	0.272	0.336	0.376	6.400	0.272; 0.272;
	0.316	0.272	0.336	0.376	5.708	0.272; 0.272; 0.272; 0.272 = 0.272
a) 1	 Dotorra	ining the	aitina id-	al caluti-		$y_3 = \min\{0.336; 0.336;$
()	and the	negative ide	eal solution	ai solulle n matrix	ms maurix	0.336; 0.336; 0.336; 0.336; 0.336; 0.336;
	and the	INCHAILY O IUN	car boruno	II IIIGUIIA		

Making the matrix of positive and negative ideal solutions largely determined is by the categorization of each evaluation component. Categorization for each component of ANEKA evaluation was included in the category of benefit attribute, so it can be calculated the matrix of positive and negative ideal solutions as follows. (1) Positive ideal solution matrix

 $y_1^+ = \max\{5.672; 6.360; 6.360; 5.672; 6.360; 5.672;$ 6.360; 0.316; 0.316; 0.316; 0.316; 0.316; 0.336; 0.336; 0.336; 0.336; 0.336; 6.776;

6.776; 6.044; 6.044; 6.044; 6.776; 0.336;

0.336; 0.336; 0.336; 0.336; 0.336; 0.336;

0.376; 0.376; 0.376; 0.376; 0.376; 0.376;

0.376; 0.376; 0.376; 0.376; 0.376; 0.376;

0.376; 0.376; 0.376; 0.376; 0.376; 7.608;

8.480; 7.608; 7.608; 0.376; 0.376; 0.376;

 $0.336; 0.336; 0.336; 0.336\} = 0.336$

 $0.376; 0.376; 0.376; 0.376\} = 0.376$

 $y_4 = \min\{0.376; 0.376;$

Journal of Theoretical and Applied Information Technology <u>15th October 2018. Vol.96. No 19</u>

©2	2005 – ongoinę	g JATIT & LLS	JATIT
ISSN: 1992-8645	www.jatit	.org	E-ISSN: 1817-3195
$y_5 = \min\{0.316; 0.316;$	6; 0.316;	$D_{21}^{+} = \sqrt{(0.316 - 6.360)^{4}}$	+ (0.272 - 5.544) ² + (6.044 - 6.776) ² + (0.376 - 8.480) ² + (0.316 - 6.400) ²
0.316; 0.316;	5; 0.316; 5; 0.316; 5; 0.316;	$D_{22}^{+} = \sqrt{(0.316 - 6.360)^{3}}$ $= 12.944$	+ (0.272 - 5.544) ² + (6.044 - 6.776) ³ + (0.376 - 8.480) ² + (0.316 - 6.400) ²
0.316; 0.316; 0.316; 6.400; 5.056 6.400; 6.400; 6.400; 5.708 = 0.316	5; 5.708;	$D_{23}^{+} = \sqrt{(0.316 - 6.360)^{1}}$ $= 12.923$	+ (0.272 - 5.544) ² + (6.776 - 6.776) ² + (0.376 - 8.480) ² + (0.316 - 6.400) ²
$A^{-} = \{0.316; 0.272; 0.336; 0.376; 0.316\}$		$D_{24}^{+} = \sqrt{(0.316 - 6.360)^{4}}$ $= 11.982$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (7.608 - 8.480) ² + (0.316 - 6.400) ²
d) Calculates the distance between the each alternative with the positive ideal	value of solution	$D_{25}^{+} = \sqrt{(0.316 - 6.360)^{4}} = 11.950$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (8.480 - 8.480) ² + (0.316 - 6.400) ²
matrix and the negative ideal solution n (1) The distance between the value	natrix of each	$D_{26}^{+} = \sqrt{(0.316 - 6.360)^2} = 11.982$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (7.608 - 8.480) ² + (0.316 - 6.400) ²
alternative with the positive ideal matrix	solution	$D_{27}^{+} = \sqrt{(0.316 - 6.360)^2} = 11.982$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (7.608 - 8.480) ² + (0.316 - 6.400) ²
$D_1^{+} = \frac{1}{(5.672 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2}$ = 13.131	·+ (0.316 - 6.490)·	$D_{28}^{+} = \sqrt{(0.316 - 6.360)^{1}} = 13.095$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (0.376 - 8.480) ² + (6.400 - 6.400) ²
$D_2^{-1} = \sqrt{(6.360 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2}$ = 13.113	+ (0.316 - 6.400)2	$D_{29}^{+} = \sqrt{(0.316 - 6.360)^{4}} = 13.164$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ³ + (0.376 - 8.480) ² + (5.056 - 6.400) ²
$D_{3}^{+} = \sqrt{(6.360 - 6.360)^{2} + (0.272 - 5.544)^{2} + (0.336 - 6.776)^{2} + (0.376 - 8.480)^{2}}$ = 13.113	+ (0.316 - 6.400) ¹	$D_{30}^{+} = \sqrt{(0.316 - 6.360)^2} = 13.113$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (0.376 - 8.480) ² + (5.708 - 6.400) ²
$D_4' = \sqrt{(5.672 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2}$ = 13.131	+ (0.316 - 6.400) ¹	$D_{31}^{+} = \sqrt{(0.316 - 6.360)^2} = 13.095$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (0.376 - 8.480) ² + (6.400 - 6.400) ²
$D_5' = \sqrt{(6.360 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2}$ = 13.113	¹ + (0.316 - 6.400) ²	$D_{32}^{+} = \sqrt{(0.316 - 6.360)^2} = 13.095$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (0.376 - 8.480) ² + (6.400 - 6.400) ²
$D_6' = \sqrt{(5.672 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2}$ = 13.131	+ (0.316 - 6.400) ¹	$D_{33}^{+} = \sqrt{(0.316 - 6.360)^2} = 13.095$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (0.376 - 8.480) ² + (6.400 - 6.400) ²
$D_7' = \sqrt{(6.360 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2}$ = 13.113	+ (0.316 - 6.400) ²	$D_{34}^{+} = \sqrt{(0.316 - 6.360)^2} = 13.113$	+ (0.272 - 5.544) ² + (0.336 - 6.776) ² + (0.376 - 8.480) ² + (5.708 - 6.400) ²
$D_8' = \sqrt{(0.310 - 0.300)^2 + (4.998 - 5.544)^2 + (0.330 - 0.770)^2 + (0.370 - 8.480)^2} = 13.455$; + (0.310 - 0.490);	(2) The distance	e between the value of each
$D_9^+ = \sqrt{(0.316 - 6.360)^2 + (5.544 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2} = 13.442$	² + (0.316 - 6.400) ²	alternative matrix	with the negative ideal solution
$D_{10}^{+} = \sqrt{(0.316 - 6.360)^{2} + (4.948 - 5.544)^{2} + (0.336 - 6.776)^{2} + (0.376 - 8.480)^{2}}$ = 13.455	+ (0.316 - 6.400) ²	$D_1^- = \sqrt{(5.672 - 0.316)^2} = 5.356$	+ (0.272 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²
$D_{11}^{+} = \sqrt{(0.316 - 6.360)^2 + (5.544 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2}$ = 13.442	³ + (0.316 - 6.400) ²	$D_2^- = \sqrt{(6.360 - 0.316)^2} = 6.044$	+ (0.272 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²
$D_{12}^{+} = \sqrt{(0.316 - 6.360)^{2} + (4.948 - 5.544)^{2} + (0.336 - 6.776)^{2} + (0.376 - 8.480)^{2}} = 13.455$	² + (0.316 - 6.400) ²	$D_{3}^{-} = \sqrt{(6.360 - 0.316)^{4}} = 6.044$	+ (0.272 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²
$D_{13}^{+} = \sqrt{(0.316 - 6.360)^2 + (4.948 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2} = 13.455$	+ (0.316 - 6.400) ²	$D_{4}^{-} = \sqrt{(5.672 - 0.316)^{4}} = 5.356$	+ (0.272 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²
$D_{14}^{+} = \sqrt{(0.316 - 6.360)^{2} + (4.948 - 5.544)^{2} + (0.336 - 6.776)^{2} + (0.376 - 8.480)^{2}}$ = 13.455	+ (0.316 - 6.400) ¹	$D_{5}^{-} = \sqrt{(6.360 - 0.316)^{4}} = 6.044$	+ (0.272 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²
$D_{15}^{+} = \sqrt{(0.316 - 6.360)^{2} + (5.544 - 5.544)^{2} + (0.336 - 6.776)^{2} + (0.376 - 8.480)^{2}} = 13.442$	² + (0.316 - 6.400) ²	$D_6^- = \sqrt{(5.672 - 0.316)^4} = 5.356$	+ (0.272 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²
$D_{16}^{+} = \sqrt{(0.316 - 6.360)^{2} + (5.544 - 5.544)^{2} + (0.336 - 6.776)^{2} + (0.376 - 8.480)^{2}} = 13.442$	+ (0.316 - 6.400) ²	$D_7^- = \sqrt{(6.360 - 0.316)^2} = 6.044$	+ (0.272 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²
$D_{17}^{+} = \sqrt{(0.316 - 6.360)^2 + (4.948 - 5.544)^4 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2}$ = 13.455	² + (0.316 - 6.400) ²	$D_{8^{-}} = \sqrt{(0.316 - 0.316)^{6}} = 4.676$	+ (4.948 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²
$D_{18}^{+} = \sqrt{(0.316 - 6.360)^{4} + (0.272 - 5.544)^{4} + (6.776 - 6.776)^{4} + (0.376 - 8.480)^{4}}$ = 12.923	³ + (0.316 - 6.400) ²	$D_{9}^{-} = \sqrt{(0.316 - 0.316)^{t}} = 5.272$	+ (5.544 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²
$D_{19}^{+} = \sqrt{(0.316 - 6.360)^{2} + (0.272 - 5.544)^{2} + (6.776 - 6.776)^{2} + (0.376 - 8.480)^{2}}$ = 12.923	² + (0.316 - 6.400) ¹	$D_{10}^{-} = \sqrt{(0.316 - 0.316)^2}$ = 4 676	+ (4.948 - 0.272) ² + (0.336 - 0.336) ² + (0.376 - 0.376) ² + (0.316 - 0.316) ²

 $\mathbf{D}_{20}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (6.044 - 6.776)^2 + (0.376 - 8.480)^2 + (0.316 - 6.400)^2}$ = 12.944

-
$D_{23}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (6.776 - 6.776)^2 + (0.376 - 8.480)^2 + (0.316 - 6.400)^2} = 12.923$
$\mathbf{D_{24}}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (7.608 - 8.480)^2 + (0.316 - 6.400)^2}$
= 11.982
$D_{25}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.480 - 0.480)^2 + (0.316 - 6.400)^2}$ = 1.1.950
$\mathbf{D}_{26}^{+} = \sqrt{(0.316 \pm 6.360)^2 \pm (0.272 \pm 5.544)^2 \pm (0.326 \pm 6.776)^2 \pm (7.608 \pm 9.480)^2 \pm (0.316 \pm 6.400)^2}$
= 11.982
$D_{27}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (7.608 - 8.480)^2 + (0.316 - 6.400)^2} = 11.982$
$D_{28}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2 + (6.400 - 6.400)^2}$
-13.093 $D_{aa}^{+} = \sqrt{0.916} + \frac{2.093}{0.000} + \frac{10.929}{0.000} + \frac{10.926}{0.000} + \frac{2.726}{0.000} + \frac{10.926}{0.000} $
= 13.164
$\mathbf{D_{30}}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2 + (5.708 - 6.400)^2}$
= 13.113
$\mathbf{D}_{31}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2 + (6.400 - 6.400)^2}$
= 13.095
$D_{32} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2 + (6.400 - 6.400)^2} = 13.095$
$D_{33}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2 + (6.400 - 6.400)^2}$ = 1.3.095
$\mathbf{D}_{34}^{+} = \sqrt{(0.316 - 6.360)^2 + (0.272 - 5.544)^2 + (0.336 - 6.776)^2 + (0.376 - 8.480)^2 + (5.708 - 6.400)^2}$
= 13.113
(2) The distance between the value of each
alternative with the negative ideal solution
matrix
$\mathbf{D}_{1}^{-} = \sqrt{(5.672 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$
= 5.356
$\mathbf{D}_2^- = \sqrt{(6.360 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$
= 6.044
= 6.044
$\mathbf{D_4}^- = \sqrt{(5.672 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$
= 5.356
$\mathbf{D}_{5^-} = \sqrt{(6.360 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$
= 6.044
$D_6 = \frac{1}{2} ((5.672 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2 - 5.256$
- 5.550

- 5 0.336)² + (0.376 0.376)² + (0.316 0.316)²
- 5 0.336)² + (0.376 0.376)² + (0.316 0.316)²
- 6 0.336)² + (0.376 0.376)² + (0.316 0.316)²
- $\mathbf{D}_{11}^{-} = \sqrt{(0.316 0.316)^2 + (5.544 0.272)^2 + (0.336 0.336)^2 + (0.376 0.376)^2 + (0.316 0.316)^2}$ = 5.272

Journal of Theoretical and Applied Information Technology 15th October 2018. Vol.96. No 19 © 2005 – ongoing JATIT & LLS

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ISSN:	1992-8645 <u>www.j</u>	tit.org		E-ISSN: 1817-3195
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D ₁₂ - :	$= \sqrt{(0.316 - 0.316)^2 + (4.948 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$ = 4.676	= 0.290	=	0.315
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	D ₁₃ -	$= \sqrt{(0.316 - 0.316)^2 + (4.948 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$ = 4.676	$V_3 = \frac{D_3}{D_3 + D_3}$	- V ₄ =	$\frac{D_4}{D_4} + D_4$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D ₁₄ :	$= \sqrt{(0.316 - 0.316)^2 + (4.948 - 0.272)^2 + (0.326 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$	_ 6.044	_	5.356
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D ₁₅ -	$= 4.676$ $= (0.316 \ 0.316)^2 (5.514 \ 0.272)^2 (0.336 \ 0.336)^2 (0.376 \ 0.376)^2 (0.316 \ 0.316)^2 (0.316 \ 0$	$= \frac{1}{6.044 + 13.113}$		5.356+13.131
$\begin{aligned} &= 5.272 \\ &= 5.722 \\ D_{17}^{$	D ₁₆ :	= 5.2 / 2 = $\sqrt{(0.316 - 0.316)^{3} + (5.544 - 0.272)^{3} + (0.316 - 0.336)^{3} + (0.376 - 0.376)^{2} + (0.316 - 0.316)^{5}}$	- 0.515		0.290 D -
$\begin{aligned} \frac{4.676}{6.044} = \frac{4.676}{6.044 + 13.113} &= \frac{5.356}{5.356 + 13.131} \\ = \frac{6.440}{6.044 + 13.113} &= \frac{5.356}{5.356 + 13.131} \\ = 0.315 &= 0.290 \\ v_{7} &= \frac{0.290}{0.35 + 105^{2} + 0.271 - 0.271^{2} + 0.076 - 1386^{2} + 0.376 - 0.376^{2} + 0.0376 - 0.0376^{2} + 0.0376^{2} + 0.0376^{2} + 0.0376^{2} + 0.0376^{2} - 0.0282 = 0.258 \\ 20.258 - 0.0284 = 0.258 \\ 20.258 - 0.0258 = 0.258 \\ 20.258 - 0.0258 = 0.258 \\ 20.258 - 0.0258 = 0.258 \\ 20.258 - 0.0258 = 0.258 \\ 20.258 - 0.0258 = 0.258 \\ 20.258 - 0.0258 = 0.258 \\ 20.258 - 0.0282 = 0.282 \\ 20.258 - 0.0282 = 0.282 \\ 20.258 - 0.0282 = 0.282 \\ 20.258 - 0.0282 = 0.282 \\ 20.258 - 0.0282 = 0.282 \\ 20.282 - 0.0282 = 0.282 \\ 20.282 - $: D ₁₇ - :	$= 5.272$ $= \frac{1}{(0.216 - 0.216)^{2} + (4.002 - 0.272)^{2} + (0.236 - 0.236)^{2} + (0.276 - 0.276)^{2} + (0.216 - 0.216)^{2}}{(0.216 - 0.216)^{2} + (0.216 - 0.216)^{2}}$	$V_5 = \frac{D_5}{D_5^- + D_5^+}$	$-V_6 =$	$D_6^- + D_6^+$
$\begin{aligned} & b_{18} = -q_{1028-1336}^{-1}+(b_{27}-b_{27})^{+}+(b_{17}-4366)^{+}+(b_{27}-b_{27})^{+}+(b_{18}-4369)^{+}+(b_{27}-b_{27})^{+}+(b_{28}-b_{26})^{-}} \\ & b_{19} = -q_{1028-1336}^{-1}+(b_{27}-b_{27})^{+}+(b_{18}-4369)^{+}+(b_{27}-b_{27})^{+}+(b_{28}-b_{26})^{+}+(b_{28}-b_{26})^{-}} \\ & b_{10} = -q_{102}^{-1} - q_{102}^{-1}+(b_{21}-b_{27})^{+}+$	D1/	$\frac{1}{1000} + \frac{1}{1000} + 1$	$=\frac{6.044}{6.044}$	- =	5.356
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	D ₁₈ =	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (6.776 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2} = 6.440$	6.044 + 13.113	_	5.356+13.131
$\begin{aligned} \nabla_{7} &= \frac{D7}{D_{1}^{2} + D7^{2}} & \nabla_{8} &= \frac{D8}{D_{8}^{2} + D8^{2}} \\ \nabla_{7} &= \frac{D7}{D_{7}^{2} + D7^{2}} & \nabla_{8} &= \frac{D8}{D_{8}^{2} + D8^{2}} \\ \nabla_{7} &= \frac{D7}{D_{7}^{2} + D7^{2}} & \nabla_{8} &= \frac{D8}{D_{8}^{2} + D8^{2}} \\ \nabla_{9} &= \frac{C044}{6.044 + 13.113} &= \frac{4.676}{4.676+13.455} \\ \nabla_{9} &= \frac{D9}{D_{9}^{2} + D9^{2}} & \nabla_{10} &= \frac{D10^{2}}{D_{10}^{2} + D9^{2}} \\ \nabla_{10} &= \frac{D10^{2}}{D_{10}^{2} + D9^{2}} \\ \nabla_{10} &= \frac{D10^{2}}{D_{10}^{2} + D9^{2}} & \nabla_{10} &= \frac{D10^{2}}{D_{10}^{2} + D9^{2}} \\ \nabla_{11} &= \frac{D10^{2}}{D_{11}^{2} + D10^{2}} \\ \nabla_{12} &= \frac{D12^{2}}{D_{12}^{2} + D12^{2}} \\ \nabla_{12} &= \frac{D12^{2}}{D_{12}^{2} + D12^{2}} \\ \nabla_{12} &= \frac{D12^{2}}{D_{12}^{2} + D12^{2}} \\ \nabla_{11} &= \frac{D11^{2}}{D_{11}^{2} + D11^{2}} \\ \nabla_{12} &= \frac{D12^{2}}{D_{12}^{2} + D12^{2}} \\ \nabla_{13} &= \frac{D13^{2}}{D_{13}^{2} + D_{13}^{2} \\ \nabla_{13} &= \frac{D13^{2}}{D_{13}^{2} + D_{13}^{2}} \\ \nabla_{14} &= \frac{D14^{2}}{D_{14}^{2} + D14^{2}} \\ \nabla_{15} &= \frac{D16^{2}}{D_{15}^{2} + D13^{2}} \\ \nabla_{15} &= \frac{D15^{2}}{D_{15}^{2} + D13^{2}} \\ \nabla_{16} &= \frac{D16^{2}}{D_{16}^{2} + D16^{2}} \\ \nabla_{15} &= \frac{D16^{2}}{D_{15}^{2} + D17^{2}} \\ \nabla_{16} &= \frac{D16^{2}}{D_{16}^{2} + D16^{2}} \\ \nabla_{15} &= \frac{D17^{2}}{D_{15}^{2} + D17^{2}} \\ \nabla_{16} &= \frac{D16^{2}}{D_{16}^{2} + D18^{2}} \\ \nabla_{17} &= \frac{D17^{2}}{D_{15}^{2} + D17^{2}} \\ \nabla_{18} &= \frac{D16^{2}}{D_{16}^{2} + D18^{2}} \\ \nabla_{1$	D ₁₉ -	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (6.776 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$	- 0.313	_	0.290 D -
$\begin{array}{ll} = 5.708 \\ D_{21}^{-} = \frac{6.044}{(0.36 + 13.05^{+}(0.21 - 0.27)^{+}(0.04 - 0.355^{+}(0.36 - 0.316)^{+}(0.36 - 0.316)^{+}} \\ = 5.708 \\ D_{22}^{-} = \frac{(0.256 + 13.05^{+}(0.21 - 0.27)^{+}(0.04 - 0.355^{+}(0.36 - 0.316)^{+}(0.36 - 0.316)^{+}} \\ = 6.708 \\ D_{23}^{-} = \frac{(0.256 + 13.05^{+}(0.21 - 0.27)^{+}(0.04 - 0.355^{+}(0.36 - 0.316)^{+}(0.36 - 0.316)^{+}} \\ = 6.440 \\ D_{24}^{-} = \frac{(0.256 + 0.155^{+}(0.21 - 0.27)^{+}(0.36 - 0.355^{+}(0.36 - 0.316)^{+}(0.36 - 0.316)^{+}} \\ = 6.440 \\ D_{24}^{-} = \frac{(0.256 + 0.155^{+}(0.21 - 0.27)^{+}(0.36 - 0.355^{+}(0.36 - 0.316)^{+}(0.36 - 0.316)^{+}} \\ = 7.232 \\ D_{25}^{-} = \frac{(0.256 + 0.155^{+}(0.21 - 0.27)^{+}(0.36 - 0.355^{+}(0.36 - 0.316)^{+}(0.36 - 0.316)^{+}} \\ = 7.232 \\ D_{25}^{-} = \frac{(0.256 + 0.155^{+}(0.21 - 0.27)^{+}(0.36 - 0.355^{+}(0.36 - 0.316)^{+}(0.36 - 0.316)^{+}} \\ = 0.282 \\ = 0.282 \\ = 0.282 \\ = 0.282 \\ = 0.282 \\ = 0.282 \\ = 0.288 \\ D_{25}^{-} = \frac{(0.256 - 0.365^{+}(0.21 - 0.27)^{+}(0.36 - 0.356)^{+}(0.36 - 0.356)^{+}(0.36 - 0.356)^{+}} \\ = \frac{5.272}{5.272 + 13.442} \\ = \frac{5.272}{5.272 + 13.442} \\ = \frac{4.676}{4.676 + 13.455} \\ = 0.288 \\ = 0.288 \\ = 0.258 \\ D_{25}^{-} = \frac{(0.256 - 0.366^{+}(0.21 - 0.27)^{+}(0.36 - 0.356)^{+}(0.36 - 0.356)^{+}(0.36 - 0.356)^{+}} \\ = 0.258 \\ D_{25}^{-} = \frac{(0.256 - 0.366^{+}(0.21 - 0.27)^{+}(0.36 - 0.356)^{+}(0.36 - 0.356)^{+}(0.36 - 0.356)^{+}} \\ = 0.258 \\ D_{25}^{-} = \frac{(0.258 - 0.258 }{(0.258 + 0.258)} \\ = 0.258 \\ D_{25}^{-} = \frac{(0.258 - 0.258 }{(0.258 + 0.258)} \\ = 0.258 \\ D_{25}^{-} = \frac{(0.258 - 0.258 }{(0.258 + 0.258)} \\ = 0.282 \\ D_{25}^{-} = \frac{(0.264 - 0.366)^{+}(0.21 - 0.27)^{+}(0.36 - 0.366)^{+}(0.36 - 0.366)^{+}(0.36 - 0.366)^{+}} \\ = \frac{5.272}{5.272 + 13.442} \\ = 0.282 \\ D_{25}^{-} = \frac{5.272}{5.272 + 13.442} \\ = 0.282 \\ D_{25}^{-} = \frac{5.272}{5.272 + 13.442} \\ = 0.282 \\ D_{25}^{-} = \frac{5.272}{5.272 + 13.442} \\ = 0.282 \\ D_{25}^{-} = \frac{5.272}{5.272 + 13.442} \\ = 0.282 \\ D_{25}^{-} = \frac{5.272}{5.272 + 13.442} \\ = 0.282 \\ D_{25}^{-} = \frac{5.272}{5.272 + 13.442} \\ = 0.282 \\ D_{25}^{-} = \frac{5.272}{5.272 + 13.442} \\ = 0.282 \\ D$	D ₂₀ - =	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (6.044 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$	$V_7 = \frac{D_7}{D_7 + D_7^+}$	$-V_8 =$	$\frac{D_8}{D_8^- + D_8^+}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$: D ₂₁ - :	= 5.708 = $\sqrt{(0.316 - 0.316)^2 + (0.372 - 0.277)^2 + (6.044 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$	$=\frac{6.044}{6.044 + 12.112}$	- =	4.676
$D_{22}^{-} = (0.316^{-}0.316^{+}(0.27^{-}0.272)^{+}(0.34^{-}0.336)^{+}(0.34^{-}0.336)^{+}(0.34^{-}0.336)^{+}} = (0.316^{-})^{-} D_{1}^{-} D_{1}^$	21 :	= 5.708	6.044 + 13.113 = 0.315	_	4.6/6+13.455
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D ₂₂ - =	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (6.044 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$ = 5.708	0.515 D -		D -
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D ₂₃ ⁻ =	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (6.776 - 0.336)^2 + (0.376 - 0.376)^2 + (0.316 - 0.316)^2}$	$V_9 = \frac{D_9}{D_9^- + D_9^+}$	- V ₁₀ =	$\frac{D_{10}}{D_{10}^{-} + D_{10}^{+}}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D ₂₄ -	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^4 + (0.336 - 0.336)^2 + (7.608 - 0.376)^2 + (0.316 - 0.316)^2}$ = 7 2 3 2	$=\frac{5.272}{5.272+13.442}$	- =	4.676
$\begin{array}{ll} & = 0.104 \\ & = 7.232 $	D ₂₅ =	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.480 - 0.376)^2 + (0.316 - 0.316)^2} = 0.2104$	= 0.282	=	0.258
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D ₂₆ =	= 8.104 = $\sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{4} + (0.336 - 0.336)^{2} + (7.608 - 0.376)^{4} + (0.316 - 0.316)^{4}}$ = 7 2 3 2	$V_{11} = \frac{D_{11}}{D_{11} + D_{11}}$	- V ₁₂ =	$\frac{D_{12}}{D_{12}} + D_{12}^{+}$
$ = 7.232 = 5.272 + 13.442 = 4.676 + 13.455 $ $ D_{28}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.372 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.282 = 0.258 $ $ D_{29}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.282 = 0.258 $ $ D_{13}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.258 = 0.258 $ $ D_{30}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.258 = 0.258 $ $ D_{31}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.258 = 0.258 $ $ D_{32}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.258 = 0.258 $ $ D_{32}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.258 = 0.258 $ $ D_{33}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.258 = 0.258 $ $ D_{33}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.258 = 0.258 $ $ D_{33}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.282 = 0.282 $ $ D_{34}^{-} = \sqrt{(8.36 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} = 0.282 = 0.282 $ $ e) Calculates the preference value for each alternative. $ $ V_{17} = \frac{D_{17}^{-}}{D_{17}^{-} + D_{17}^{+}} $ $ V_{18} = \frac{D_{18}^{-}}{D_{18}^{-} + D_{18}^{+}} = \frac{4.676}{0.440} = \frac{6.440}{0.186 - 0.186$	D ₂₇ - :	$ = \sqrt{(0.316 - 0.316)^{6} + (0.272 - 0.272)^{7} + (0.336 - 0.336)^{6} + (7.608 - 0.376)^{7} + (0.316 - 0.316)^{7} } $	5.272		4.676
$\begin{array}{llllllllllllllllllllllllllllllllllll$: D ₂₀ - :	= 7.232 = Jm 316 - 0 316 ¹⁰ + 10 177 - 0 2771 ⁰ + 10 336 - 0 3361 ⁰ + 10 376 - 0 3761 ⁰ + 16400 - 0 3161 ⁰	- 5.272+13.442	_	4.676+13.455
$\begin{aligned} D_{29}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.00 - 0.316)^{2}} \\ &= 4.740 \\ D_{30}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.708 - 0.316)^{2}} \\ &= 5.392 \\ D_{31}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.400 - 0.316)^{2}} \\ &= 6.084 \\ D_{32}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.400 - 0.316)^{2}} \\ &= 6.084 \\ D_{33}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.400 - 0.316)^{2}} \\ &= 6.084 \\ D_{33}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.400 - 0.316)^{2}} \\ &= 6.084 \\ D_{33}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.400 - 0.316)^{2}} \\ &= 6.084 \\ D_{33}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.400 - 0.316)^{2}} \\ &= 6.084 \\ D_{34}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.400 - 0.316)^{2}} \\ &= 6.084 \\ D_{34}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.708 - 0.316)^{2}} \\ &= 6.084 \\ D_{34}^{-} &= \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.708 - 0.316)^{2}} \\ &= 6.0282 \\ &= 0.282 \\ &= 0.282 \\ &= 0.282 \\ &= 0.282 \\ \\ e^{-} &= 0.282 \\ e^$	D 28	= 6.084	= 0.282	=	0.258
$\begin{array}{l} D_{30}^{-} = \sqrt{[0.316 - 0.316]^{2} + [0.272 - 0.272]^{2} + [0.336 - 0.336]^{2} + [0.376 - 0.376]^{2} + [5.708 - 0.316]^{2}} \\ = 5.392 \\ D_{31}^{-} = \sqrt{[0.316 - 0.316]^{2} + [0.272 - 0.272]^{2} + [0.336 - 0.336]^{2} + [0.376 - 0.376]^{2} + (5.400 - 0.316]^{2}} \\ = 6.084 \\ D_{32}^{-} = \sqrt{[0.316 - 0.316]^{2} + [0.272 - 0.272]^{2} + [0.336 - 0.336]^{2} + [0.376 - 0.376]^{2} + (5.400 - 0.316]^{2}} \\ = 6.084 \\ D_{33}^{-} = \sqrt{[0.316 - 0.316]^{2} + [0.272 - 0.272]^{2} + [0.336 - 0.336]^{2} + [0.376 - 0.376]^{2} + (5.400 - 0.316]^{2}} \\ = 6.084 \\ D_{33}^{-} = \sqrt{[0.316 - 0.316]^{2} + [0.272 - 0.272]^{2} + [0.336 - 0.336]^{2} + (0.376 - 0.376]^{2} + (5.400 - 0.316]^{2}} \\ = 6.084 \\ D_{34}^{-} = \sqrt{[0.316 - 0.316]^{2} + [0.272 - 0.272]^{2} + [0.336 - 0.336]^{2} + (0.376 - 0.376]^{2} + (5.708 - 0.316]^{2}} \\ = 5.392 \\ \end{array}$ $\begin{array}{l} V_{15} = \frac{D_{15}^{-}}{D_{15}^{-} + D_{15}^{+}} \\ = \frac{5.272}{5.272 + 13.4422} \\ = 0.282 \\ \end{array}$ $\begin{array}{l} V_{16} = \frac{D_{16}^{-}}{D_{16}^{-} + D_{16}^{+}} \\ = \frac{5.272}{5.272 + 13.4422} \\ = 0.282 \\ \end{array}$ $\begin{array}{l} e_{0.282} \\ V_{17} = \frac{D_{17}^{-}}{D_{17}^{-} + D_{17}^{+}} \\ V_{18} = \frac{D_{18}^{-}}{D_{18}^{-} + D_{18}^{+}} \\ = \frac{4.676}{4.676 + 13.455} \\ \end{array}$	D ₂₉ - =	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^4 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (5.056 - 0.316)^2} = 4.740$	$V_{13} = \frac{D_{13}}{D_{13} + D_{13}^{+}}$	- V ₁₄ =	$\frac{D_{14}}{D_{14}} + D_{14}^{+}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D ₃₀ =	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (5.708 - 0.316)^2}$ = 5 3.92	= 4.676	- =	4.676
= 6.084 = 0.238 = 0.238 $ = 0.238 = 0.238 $ $ = 0.238 = 0.238 $ $ = 0.238 = 0.238 $ $ = 0.238 = 0.238 $ $ = 0.2438 = 0.238 $ $ = 0.2438 = 0.238 $ $ = 0.2438 = 0.238 = 0.238 $ $ = 0.2438 = 0.2438 $ $ = 0.241 = 0.258 = 0.241 $ $ = 0.258 = 0.258 = 0.258 $ $ = 0.258 = 0.258 = 0.258 $ $ = 0.258 = 0.258 = 0.258 $ $ = 0.258 = 0.258 = 0.258 $ $ = 0.258 = 0.258 = 0.258 $ $ = 0.258 = 0.258 = 0.258 $ $ = 0.258 = 0.258 = 0.258 $ $ = 0.258 = 0.258 = 0.258 $ $ = 0.282 = 0.282 = 0.282 $ $ = 0.282 = 0.282 = 0.282 $ $ = 0.282 = 0.282 = 0.282 $ $ = 0.282 = 0.282 = 0.282 $ $ = 0.282 = 0.282 = 0.282 $ $ = 0.282 = 0.282 = 0.282 = 0.282 $ $ = 0.282 =$	D ₃₁ - =	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (6.400 - 0.316)^2}$	4.676+13.455	_	4.676+13.455
$\begin{aligned} &= 6.084 \\ D_{33}^{-} = \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (6.400 - 0.316)^{2}} \\ &= 6.084 \\ D_{34}^{-} = \sqrt{(0.316 - 0.316)^{2} + (0.272 - 0.272)^{2} + (0.336 - 0.336)^{2} + (0.376 - 0.376)^{2} + (5.708 - 0.316)^{2}} \\ &= 5.392 \end{aligned}$ $\begin{aligned} V_{15} &= \frac{D_{15}^{-}}{D_{15}^{-} + D_{15}^{+}} \\ &= \frac{5.272}{5.272 + 13.442} \\ &= 0.282 \end{aligned}$ $\begin{aligned} e) \text{ Calculates the preference value for each alternative.} \end{aligned}$ $V_{17} &= \frac{D_{17}^{-}}{D_{17}^{-} + D_{17}^{+}} \end{aligned}$ $V_{18} &= \frac{D_{18}^{-}}{D_{18}^{-} + D_{18}^{+}} \\ V_{18} &= \frac{0.282}{0.282} \end{aligned}$	D ₃₂ - =	= 6.084 = $\sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (6.400 - 0.316)^2}$	- 0.238	_	0.238
$D_{33} = \sqrt{(0.310 - 0.310)^2 + (0.272 - 0.272)^2 + (0.330 - 0.330)^2 + (0.370 - 0.370)^2 + (0.400 - 0.310)^2} = \frac{5.272}{5.272 + 13.442} = \frac{5.272}{5.272 + 13.442} = \frac{5.272}{5.272 + 13.442} = 0.282$ e) Calculates the preference value for each alternative. $V_{17} = \frac{D_{17}}{D_{17} + D_{17}^{+}} V_{18} = \frac{D_{18}}{D_{18} + D_{18}^{+}} = \frac{4.676}{4.676} = \frac{6.440}{6.440}$: 		$V_{15} = \frac{D_{15}}{D_{15} + D_{15}^{+}}$	$-V_{16} =$	$\frac{D_{16}}{D_{16}} + D_{16}^{+}$
$\begin{array}{rcl} D_{34}^{-} &= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (5.706 - 0.316)^2} & 5.272 + 13.442 & 5.272 + 13.442 \\ &= 5.392 & = 0.282 & = 0.282 \\ \end{array}$ e) Calculates the preference value for each alternative. $V_{17} &= \frac{D_{17}^{-}}{D_{17}^{-} + D_{17}^{+}} & V_{18} &= \frac{D_{18}^{-}}{D_{18}^{-} + D_{18}^{+}} \\ V_{1} &= \frac{D_{1}^{-}}{D_{17}^{-} + D_{1}^{+}} & V_{2} &= \frac{D_{2}^{-}}{D_{2}^{-} + D_{2}^{+}} &= \frac{4.676}{4.676} &= \frac{6.440}{6.440} \end{array}$	D33 ·	= 6.084	=5.272	- =	5.272
e) Calculates the preference value for each alternative. $V_{17} = \frac{D_{17}}{D_{17} + D_{17}^{+}} \qquad V_{18} = \frac{D_{18}}{D_{18} + D_{18}^{+}}$ $V_{18} = \frac{D_{18}}{D_{18} + D_{18}^{+}} = \frac{4.676}{1.676} = \frac{6.440}{1.676}$	D ₃₄ =	$= \sqrt{(0.316 - 0.316)^2 + (0.272 - 0.272)^2 + (0.336 - 0.336)^2 + (0.376 - 0.376)^2 + (5.708 - 0.316)^2}$ = 5 392	5.272+13.442	_	5.272+13.442
e) Calculates the preference value for each $V_{17} = \frac{D_{17}}{D_{17} + D_{17}}$ $V_{18} = \frac{D_{18}}{D_{18} + D_{18}}$ $V_1 = \frac{D_1}{D_1 + D_1}$ $V_2 = \frac{D_2}{D_2 + D_2}$ $= \frac{4.676}{1.676 + 12.425}$ $= \frac{6.440}{1.676 + 12.022}$			- 0.282	=	U.202
$V_1 = \frac{D_1}{D_1 + D_1}$ $V_2 = \frac{D_2}{D_2 + D_2}$ $= \frac{4.676}{4.676}$ $= \frac{6.440}{6.440}$	e) Ca	acculates the preference value for each ternative.	$V_{17} = \frac{D_{17}}{D_{17} + D_{17}^{+}}$	- V ₁₈ =	$\frac{D_{18}}{D_{18}} + D_{18}^{+}$
	V1 =	$= \frac{D_1}{D_1 + D_1} V_2 = \frac{D_2}{D_2 + D_2}$	$=\frac{4.676}{4.676+12.455}$	- =	6.440

=

0.258

0.333

=

6.044

6.044+13.113

= -

5.356

 $=\frac{5.000}{5.356+13.131}$

15th October 2018. Vol.96. No 19 © 2005 – ongoing JATIT & LLS

=

=

 $V_{33} = \frac{D_{33}}{D_{33}} + D_{33}^{+}$

6.084

6.084+13.095

0.317

		© 2000 – 011g	oling SATT & EES	TITAL	
ISSN: 1992-8645		www.	jatit.org E-ISSN: 1817		
$V_{19} = \frac{D_{19}}{D_{19}} + D_{19}$ $= \frac{6.440}{6.440 + 12.92}$	$- V_{20} =$ $\overline{3} =$	$\begin{array}{r} D_{20}{}^{-} \\ D_{20}{}^{-} + D_{20}{}^{+} \\ \hline 5.708 \\ \hline 5.708{+}12.944 \end{array}$	highest or maximum on V_{25} , so the "Qual the dominant aspect determinants.	value amount of 0.404 found lity Oriented" aspect is called the computer learning quality	
= 0.333	=	0.306	3.2 Discussion		
$V_{21} = \frac{D_{21}}{D_{21}} + D_{21} +$	$ V_{22} =$ 	$\begin{array}{r} D_{22}{}^{-} \\ D_{22}{}^{-} + D_{22}{}^{+} \\ \hline 5.708 \\ \hline 5.708{+}12.944 \end{array}$	The design of based on TOPSIS wa an evaluation model of ANEKA model with evaluation model of	ANEKA evaluation model as shown in Figure 1 above is design that is a combination of h TOPSIS method. ANEKA consists of five evaluation	
= 0.306	=	0.306	components, such as	s accountability, nationalism,	
$V_{23} = \frac{D_{23}}{D_{23} + D_{23}}$ $= \frac{6.440}{6.440 + 12.92}$	$- V_{24} =$	$\frac{D_{24}}{D_{24}} + D_{24} + \frac{1}{2}$ 7.232 7.232+11.982	public ethics, qual corruption. In each A there are several asp measure the compu <i>accountability</i> compo	ity commitment, and anti- NEKA evaluation component, ects can be used as a tool to ter learning quality. In the onent, has several evaluation	
= 0.333	=	0.376	aspects, such as clar	rity of target, responsibilities,	
$V_{25} = \frac{D_{25}}{D_{25} + D_{25}}$ $= \frac{8.104}{8.104 + 11.95}$	$- V_{26} =$ $\overline{0} =$	$\begin{array}{r} \underline{D_{26}}^{-} \\ \overline{D_{26}}^{+} + \underline{D_{26}}^{+} \\ \hline 7.232 \\ \hline 7.232 + 11.982 \end{array}$	transparent, tolerant, ethic, self-confidence mutual help, and un	ic interest. In the <i>nationalism</i> ral evaluation aspects, such as , mutual cooperation, work e, deliberation, wise, kinship, i-greedy. In the <i>public ethics</i>	
$= 0.404$ $V_{27} = \frac{D_{27}}{D_{27} + D_{27}}$ $= \frac{7.232}{7.232 + 11.08}$	$=$ $V_{28} =$ $=$ $=$	0.376 D_{28}^{-} $D_{28}^{-} + D_{28}^{+}$ 6.084 $6.084 + 13.005$	component, has seven obey in the laws and high integrity, polite the <i>quality commitm</i> evaluation aspects, oriented, effectiveness	ral evaluation aspects, such as d regulations, respect, careful, , and obey on commands. In <i>nent</i> component, has several such as efficiency, quality as, and innovation. In the <i>anti</i> -	
$= 0.376$ $V_{29} = \frac{D_{29}}{D_{29}^{-} + D_{29}^{+}}$	$=$ $V_{30} =$	$\begin{array}{r} 0.034^{+}13.093^{-}\\ 0.317^{-}\\ \hline D_{30}^{-} + D_{30}^{+} \end{array}$	<i>corruptions</i> component aspects, such as courageous, fair, hard measurement data fr evaluation model th	ent has several evaluation discipline, independent, work, simple, and care. The om every aspect of ANEKA en processed using TOPSIS	
$= \frac{4.740}{4.740+13.16}$ $= 0.265$	= 	5.392 5.392+13.113 0.291	method calculation minimum preference maximum preference for searching the d	so that the maximum and e values are obtained. The values are used as the basis ominant aspect of computer	
$V_{31} = \frac{D_{31}}{D_{31}} + D_{31}$ $= \frac{6.084}{(.084 + 12.00)}$	$-V_{32} =$	$\frac{D_{32}}{D_{32}} + D_{32}^{+}$ 6.084	learning quality deter that hasn't get the m there are still const Therefore that recom	minants, while the preference aximum value, then meaning raints on evaluation aspects. mendation should be given to aspects in ANEVA such states	
= 0.084 + 15.09	5 =	0.084713.093	model.	aspects in AINERA Evaluation	
0.01/		U.U. I I I			

Based on preliminary field test conducted by the four experts toward the design of ANEKA evaluation model based on TOPSIS that was shown in table 4, obtained the average percentage of the evaluation model quality amount of 89.00%. That results are compared with the table of conversion of the quality level with scales' five that shown in Table 1, it can be interpreted that the design of ANEKA evaluation model based on TOPSIS is

Based on the calculation of the preference values for each of the alternatives shown above, the

V₃₄ = --

=

=

 $\frac{D_{34}}{D_{34}} + D_{34} + D_{34}$

5.392

5.392+13.113

0.291

© 2005 - ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

included in the good quality category, so there is no need to revise that evaluation model design.

The simulation data used to test the accuracy of TOPSIS method as indicated earlier in Table 5 was the average scoring score entered by all four experts. The score ranges entered by each expert are between 1 until 5. Score "5" means excellent, score "4" means good, score "3" means moderate, score "2" means less, and score "1" means poor or not given score by experts.

The results of this study are the answer or solution to the constraints found from several studies that have been done before by some researchers, including Divayana et al. and Oktarina which in principle have not been able to show the dominant aspects that become the priority or the determinants of learning quality overall. Through the results of this study, those constraints can be solved by the discovery of an evaluation model capable of showing the accurate calculation process in determining the dominant aspects of learning quality determinants (especially those implemented in computer learning).

Although the results of this research have become an innovation and the answer to other research constraints, in this study also found the obstacle that has not explained in detail about aspects that need serious attention to improve. Based on the constraints found in this study, it is necessary to do future work in the form of evaluation model development that can determine the evaluation measurement aspects that need to be optimized its performance from the lowest level to the highest level.

4. CONCLUSIONS

The results of this research have been able to show the design of ANEKA evaluation model based on TOPSIS with good category and ready to be used because it is proven from the result of the preliminary field test and simulation test of TOPSIS calculation which has shown the accurate calculation result in determining the most dominant aspect as the determinants of computer learning quality. The inovation that can be done to overcome obstacles in this research is to make the development or evaluation model in the form of artificial intelligence based application that is able to determine the optimization of the evaluation aspects that rising from the lowest value to the highest value.

ACKNOWLEDGMENTS

All authors express their highest gratitude to Institute for Research and Community Service, Universitas Pendidikan Ganesha that has provided the opportunity and funding so that this research can be completed. In particular, the first author, sixth author, and correspondence author also express profound thanks to Prof. Wakhinuddin Simatupang, Dr. I Wayan Kertih, Dr. Suratmin, and Mrs. Ni Nyoman Parmithi who have provided guidance in the completion of this paper and have conducted the judge's test towards all instruments that used in preliminary field test.

REFERENCES

- [1] C.H. Prinsloo, and J.C. Harvey, "The Viability of Individual Oral Assessments for Learners: Insights Gained from Two Intervention Evaluations", Perspectives in Education, Vol. 34, No. 4, 2016, pp. 1-14.
- I.B.P. Arnyana, I.W. Sadia, I.K. Suma, and [2] D.G.H. Divayana, "Determination of Effectiveness of Evaluation Results on School Culture and Character of Junior High School Students Using Character Assessment Instruments with The Local Wisdom of Bali Based on Mobile Phone", Journal of Theoretical and Applied Information Technology, Vol. 95, No. 20, 2017, pp. 5348-5359.
- E. Toyoda, "Evaluation of Computerised [3] Reading-Assistance Systems for Reading Japanese Texts--From a Linguistic Point of View", Australasian Journal of Educational Technology, Vol. 32, No. 5, 2016, pp. 94-107.
- D.G.H. Divayana, and D.B. Sanjaya, "Mobile [4] Phone-Based CIPP Evaluation Model in Evaluating the Use of Blended Learning at School in Bali", International Journal of Interactive Mobile Technologies, Vol. 11, No. 4, 2017, pp. 149-159.
- M. Brink, and D.E. Bartz, "Effective Use of [5] Formative Assessment by High School Teachers", Practical Assessment, Research & Evaluation, Vol. 22, No. 8, 2017, pp. 1-10.
- G.A. Mahayukti, N. Dantes, I.M. Candiasa, [6] A.A.I.N. Marhaeni, I.N. Gita, and D.G.H. "Computer-based Portfolio Divayana, Assessment to Enhance Students' Self-Regulated Learning", Journal of Theoretical and Applied Information Technology, Vol. 96, No. 8, 2018, pp. 2351-2360.
- J.C. Chow, and A. Hollo, "Language Ability [7] of Students with Emotional Disturbance: Discrepancies between Teacher Ratings and

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

Direct Assessment", Assessment for Effective Intervention, Vol. 43, No. 2, 2018, pp. 90-95.

- [8] D.G.H. Divayana, A. Adiarta, and I.B.G.S. Abadi, "Initial Draft of CSE-UCLA Evaluation Model Based on Weighted Product in Order to Optimize Digital Library Services in Computer College in Bali", *IOP Conference Series: Materials Science and Engineering*, Vol. 296, 2018, pp. 12-17.
- [9] H. Põldoja, E. Duval, and T. Leinonen, "Design and Evaluation of an Online Tool for Open Learning with Blogs", *Australasian Journal of Educational Technology*, Vol. 32, No. 2, 2016, pp. 64- 81.
- [10] D.G.H. Divayana, A.A.I.N. Marhaeni, N. Dantes, I.B.P. Arnyana, and W. Rahayu, "Evaluation of Blended Learning Process of Expert System Course Program by Using CSE-UCLA Model Based on Mobile Technology", *Journal of Theoretical and Applied Information Technology*, Vol. 95, No. 13, 2017, pp. 3075-3086.
- [11] K. Wotela, "A Proposed Monitoring and Evaluation Curriculum Based on A Model That Institutionalizes Monitoring and Evaluation", *African Evaluation Journal*, Vol. 5, No.1, 2017, pp. 1-8.
- [12] D.G.H. Divayana, B.I. Sappaile, I.G.N. Pujawan, I.K. Dibia, L. Artaningsih, I.M. Sundayana, and G.A.D. Sugiharni, "An Evaluation of Instructional Process of Expert System Course Program by Using Mobile Technology-based CSE-UCLA Model", *International Journal of Interactive Mobile Technologies*, Vol. 11, No. 6, 2017, pp. 18-31.
- [13] P.R. Saucier, B.R. McKim, J.E. Muller, and D.M. Kingman, "Assessing Performance and Consequence Competence in a Technology-Based Professional Development for Agricultural Science Teachers: An Evaluation of the Lincoln Electric Welding Technology Workshop", *Career and Technical Education Research*, Vol. 39, No. 2, 2014, pp. 103-118.
- [14] I.N. Jampel, I.W. Lasmawan, I.M. Ardana, I.P.W. Ariawan, I.M. Sugiarta, and D.G.H. Divayana, "Evaluation of Learning Programs and Computer Certification at Course Institute in Bali Using CSE-UCLA Based on SAW Simulation Model", *Journal of Theoretical and Applied Information Technology*, Vol. 95, No. 24, 2017, pp. 6934-6949.
- [15] S. Liu, X. Xu, and J.H. Stronge, "Chinese Middle School Teachers' Preferences Regarding Performance Evaluation

Measures", *Educational Assessment, Evaluation and Accountability*, Vol. 28, No. 2, 2016, pp. 161-177.

- [16] I.N. Suandi, I.B. Putrayasa, and D.G.H. Divayana, "Compiling a Dictionary of Loan Words in Balinese: The Evaluation Result of Effectiveness Testing in The Field Aided by Mobile Technology", *Journal of Theoretical* and Applied Information Technology, Vol. 95, No. 14, 2017, pp. 3186-3195.
- [17] J.D. Harris-Packer, and G. Ségol, "An Empirical Evaluation of Distance Learning's Effectiveness in the K-12 Setting", *American Journal of Distance Education*, Vol. 29, No. 1, 2015, pp. 4-17.
- [18] D.G.H. Divayana, D.B. Sanjaya, A.A.I.N. Marhaeni, and I.G. Sudirtha, "CIPP Evaluation Model Based on Mobile Phone in Evaluating the Use of Blended Learning Platforms at Vocational Schools in Bali", *Journal of Theoretical and Applied Information Technology*, Vol. 95, No. 9, 2017, pp. 1983-1995.
- [19] S. Schwab, "Evaluation of a Short Version of the Illinois Loneliness and Social Satisfaction Scale in a Sample of Students with and without Special Educational Needs--An Empirical Study with Primary and Secondary Students in Austria", *British Journal of Special Education*, Vol. 42, No. 3, 2015, pp. 257-278.
- [20] D.G.H. Divayana, I.M. Ardana, and I.P.W. Ariawan, "Measurement of Effectiveness of A Lecturer in Transferring Algebra Knowledge Through of Multimedia Facilities by Using Certainty Factor-Formative-Summative Model", Journal of Theoretical and Applied Information Technology, Vol. 95, No. 9, 2017, pp. 1963-1973.
- [21] S. Arnold, and P. Reed, "Reading Assessments for Students with ASD: A Survey of Summative Reading Assessments Used in Special Educational Schools in the UK", *British Journal of Special Education*, Vol. 43, No. 2, 2016, pp. 122-141.
- [22] D.G.H. Divayana, A. Adiarta, and I.B.G.S. Abadi, "Conceptual and Physical Design of Evaluation Program for Optimizing Digital Library Services at Computer College in Bali Based on CSE-UCLA Model Modification with Weighted Product", Journal of Theoretical and Applied Information Technology, Vol. 95, No. 16, 2017, pp. 3767-3782.

ISSN: 1992-8645

<u>www.jatit.org</u>

- [23] S. Mengoni, J. Bardsley, and J. Oates, "An Evaluation of Key Working for Families of Children and Young People with Special Educational Needs and Disabilities", *British Journal of Special Education*, Vol. 42, No. 4, 2015, pp. 355-373.
- [24] D.G.H. Divayana, "Utilization of CSE-UCLA Model in Evaluating of Digital Library Program Based on Expert System at Universitas Teknologi Indonesia: A Model for Evaluating of Information Technology-Based Education Services", Journal of Theoretical and Applied Information Technology, Vol. 95, No. 15, 2017, pp. 3585-3596.
- [25] E. Climie, and L. Henley, "A Renewed Focus on Strengths-Based Assessment in Schools", *British Journal of Special Education*, Vol. 43, No. 2, 2016, pp. 108-121.
- [26] E.R.V. Norman, and D.C. Parker, "A Comparison of Common and Novel Curriculum-Based Measurement of Reading Decision Rules to Predict Spring Performance for Students Receiving Supplemental Interventions", Assessment for Effective Intervention, Vol. 43, No. 2, 2018, pp. 110-120.
- [27] D.G.H. Divayana, A.A.G. Agung, B.I. Sappaile, W. Simatupang, Y. Sastrawijaya, I. M. Sundayana, and G.A.D. Sugiharni, "Utilization of Open Source Technology in Determining of Validity and Reliability of Evaluation Model Instruments Based on ANEKA Values in Order to Evaluate the Quality of Computer Learning", *Journal of Theoretical and Applied Information Technology*, Vol. 95, No. 20, 2017, pp. 5517-5534.
- [28] P.S. Oktarina, "Aktualisasi Nilai ANEKA Pada Profesi Dosen IHDN Denpasar Sebagai Dasar Komitmen Mutu Pelayanan Publik", *Jurnal Penjaminan Mutu*. Vol. 2, No.1, 2016, pp.28-33.
- [29] M. Subana, and Sudrajat. Dasar-Dasar Penelitian Ilmiah. Bandung: CV. Pustaka Pelajar, 2001.
- [30] D.G.H. Divayana. Penerapan Konsep Sistem Pakar & Sistem Pendukung Keputusan Dalam Bidang Pendidikan. Singaraja: Undiksha Press, 2017.