
Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6507

EMPIRICAL VALIDATION OF COUPLING METRICS FOR
OBJECT-ORIENTED SYSTEM

MUKESH BANSAL1, CHAITANYA PURUSHOTTAM AGRAWAL2

1Research Scholar, Makhanlal Chaturvedi National University of Journalism and Communication,

Bhopal, INDIA
2Professor, Dept of Computer Science & Applications, Makhanlal Chaturvedi National University of

Journalism and Communication, Bhopal, INDIA
* Corresponding author’s Email: mukeshbansal76@gmail.com

ABSTRACT

The Object oriented design metrics can be used to make quality management decisions. The objective
of this study is the examination of the connection among object-oriented design metrics. We made a
survey and analyzed various object oriented metrics available in literature. We have proposed three new
object oriented metrics viz. Attribute Interface Coupling, Method Interface Coupling (MIC) and Design
Complexity to measure coupling. The new metrics shall help in measuring complexity of design at early
stage based on coupling, designing object-oriented code as well as improve its quality by removing the
anomalies and redundancy from code. These metrics have been validated by using six java based
projects of different application areas. The empirical validation proves the significance of the proposed
metrics.

Keywords: Coupling Metrics, Object-Oriented System, MOOD, CK, Complexity, Interface Coupling

1. INTRODUCTION

The software metrics has significant role to
determine the software quality and the same is
accepted by the community of software engineers
[1][2], while the software quality engineers
underlined the usage of metrics to determine the
software quality [3]. Due to the growth of the
object oriented technology in today’s era of
software development makes object oriented
metrics highly useful. Object oriented metrics are
used to determine the software quality in terms of
complexity, reusability, maintainability,
testability and understand ability [4]. The
software metrics are generally applied at the early
stage of software to generate quality software [5].
The priority software quality parameter is decided
on the basis of application area of the software
[6]. This priority parameter maps to particular
software metrics for efficient results. Different
software metrics are designed to analyze the
software quality are Chidamber and Kemerer
(CK), Lorenz and Kidd and MOOD. These
metrics use different parameters to determine the
software quality. CK metrics suite involves
following metrics [7].

1.1 Weighted Methods per Class (WMC):
This is a type of CK metrics which is used to
measure the complexity of any particular class. In
this metric the weight of each method in a class is
evaluated on the basis of complexity of the
method. If all the methods in the class are equally
complex then the number of methods in each
class gives the WMC value. The effectiveness of
any software is inversely proportional to the
WMC i.e. lower the value of WMC results in
higher effectiveness. This concept doesn’t involve
friends operator as these operators are used to
evaluate the usability, quality and complexity of
software being monitored [8]. Mathematically it
can be given by equation (1)

𝑊𝑀𝐶 ൌ ∑ 𝑀௖
௡
௖ୀଵ (1)

Here, n is the number of methods with
M1,M2,…Mn as the complexity of the method.
1.2 Number of Children (NOC)
It represents the number of classes inherited from
any particular class. Higher number of children

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6508

enhances the reusability of code as well as the
testing efforts.
1.3 Depth of Inheritance Tree (DIT)
It demonstrates the length of inheritance tree in
terms of number of classes from root to the leaf
node [8][9].
1.4 Coupling between Objects (CBO)
It gives the relation (coupling) of any particular
class with other number of classes. The increase
in CBO results in decrease in the reusability of
the code. Moreover, this metric is used to
compute the complexity, reusability and the
quality[9].
1.5 Lack of Cohesion on Methods
(LCOM)
It denotes the number of methods present in the
class without any common instance variable
minus number of methods available with common
instance variable. The increase in LCOM value
denotes the lower cohesion [10].
1.6 Response for a class (RFC)
It denotes the number of methods to be executed
in response to the message received by the object.
It is directly proportional to the complexity of the
class i.e. Higher the number of methods to be
executed, greater is the complexity of the
software [9][10].
These metrics completes the CK metric suite,
similarly other metric suite like MOOD and
Lorenz and Kidd involves different metrics.
Different authors have worked on these metrics to
analyze the software quality. The author of [11]
presented a set of eleven well established object
oriented metrics that can be used to rank
programs on their complexity values, to assess
testability and maintainability of the programs.
While the author of [12] gave approach to assess
the design quality of internal and external
structure of a system at the class level which is
the most fundamental level of a system. In the
case study conducted by author of [13] design
measures to evaluate the software quality are
measured. The author computes the quality of six
different java based projects by using the CK
metric suite. The author of [14] reviewed MOOD
and QMOOD set of metrics. The author
demonstrated that these metrics are very useful to
analyze the software quality. The authors of [15]
defined cohesion and coupling metrics that works
on dependency graphs between software modules
and dependencies. In [16] a prediction model
consisting of ten OO metrics using statistical
analysis technique in order to derive relationship
between maintenance and metrics has been
proposed. NN based estimation of software

quality has been done in [17]. They compared
parametric model and ANN model to estimate
accuracy. The author of [18] maintains
relationship between static metrics and software
fault proneness by computing static metrics
(Cyclomatic complexity) and dynamic metrics
(dataflow coverage). In [19], a model is devised
to predict faulty classes in java application. The
author of [20] studied on Comparing Complexity
in Accordance with Object Oriented Metrics. The
study highlighted the object-oriented software
metrics proposed in 90s’ by Chidamber, Kemerer
and several studies were conducted to validate the
metrics and discovered several deficiencies. A
study on Empirical Validation of Object-Oriented
Metrics on Open Source Software for Fault
Prediction has been done in [21]. This work uses
the code of the Mozilla web and email suite. The
study also used these modified metrics and added
one more object-oriented metric i.e. Lack of
cohesion on methods (LCOM) and the well-
known lines of code metric (LOC). The study
used logistic regression and machine learning
methods to predict the fault proneness of the
code. This study clearly shows that the existing
metric suite can be used to determine the software
quality. While the literature doesn’t cover any
metric that determines the coupling of the
attributes as well as the methods to determine the
complexity and maintainability of the software.
This paper defines a new set of metric to
determine the coupling [22][23] between the
attributes and the methods which calculates the
complexity as well as maintainability of software.
The rest paper is organized four more sections.
The next Section i.e. section 2 gives the new
metrics which are proposed. In section 3 we take
a case study to calculate the values of proposed
metrics. Then in the section 4 these metric are
used to evaluate the software complexity on
different projects. Then conclusions and future
research directions are given in Section 5.

2. PROPOSED OBJECT ORIENTED

METRICS

This section proposes object oriented metric for
the analysis of an object oriented software. This
suite has included 3 set of metric described
below.
2.1 Attribute Interface Coupling (AIC)
AIC may be used as a measure of coupling
between two classes. High value of AIC indicates
tight coupling and vice versa. This metric can be

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6509

defined as the sum of ratio of data as well as
control attribute parameters of all the classes

AIC=∑
୍ୢା୓ୢ

୍ୡା୓ୡ
୬
୧ୀ଴ (2)

Id = total number of input data parameters
Ic = total number of input control parameters
Od= total number of output data parameters
Oc= total number of output control parameters
 n= total number of classes
2.2 Method Interface Coupling (MIC)
MIC may be used as a measure of coupling
between methods within a class or different
classes. High value of MIC indicates higher
coupling and vice versa. This metric can be
defined as the sum of ratio of data as well as
control parameters of all the methods of the class.

MIC=∑
୍ୢା୓ୢ

୍ୡା୓ୡ
୫
୧ୀ଴ (3)

Id = total number of input data parameters to a
method
Ic = total number of input control parameters to a
method
Od= total number of output data parameters to a
method
Oc= total number of output control parameters to
a method
m= total number of methods in a class
2.3 Design Complexity
Design Complexity helps in measuring coupling
of overall design. Higher value of DC indicates
high coupling and Lower value of DC indicates
low coupling.
It can be defined as the sum of Attribute Interface
Coupling (AIC) and Method Interface Coupling
(MIC) of all the classes.

DC= AIC+∑ MICୡ
ଵ (4)

C= Total no of classes
The design complexity metric covers the AIC as
well as MIC metric. The behavior of the design
complexity is the result of the AIC and MIC
that’s why DC can be used to analyze the
software quality. These metric can be understood
by the case study done in the next section.

3. CASE STUDY

This section explains the proposed metric given in
previous section by using an example.
3.1 Attribute Interface Coupling (AIC)

We assume that there are two classes, sample and
experiment. Class name sample having three
input data parameters as id1, id2, id3 and three
input control parameters as ic1, ic2, ic3 and there
are two output data parameters od1, od2 and one
output control parameter oc1.
Similarly class experiment having input data
parameters as id1, id2 and three input control
parameters as ic1, ic2, ic3 and there are no control
parameters in it. So AIC can be calculated as:
AIC= (3+2)/ (3+1) + (2+0)/ (3+0) =1.95
3.2 Method Interface Coupling (MIC)
We assume that there is one class sample having
two methods M1, M2.
M1 is having three parameters as input in which
two are input data parameter id1, id2 and one is
input control parameter ic1 and it is returning
only one control parameter oc1
M2 is having three parameters as input in which
two are input data parameter id1, id2 and one is
input control parameter ic1 and it is returning
only two control parameter oc1, oc2 and one data
parameter od1. So MIC can be calculated as:
MIC= (2+0)/ (1+1) + (2+1)/ (1+2) =2
We assume that there is one class experiment
having two methods M1, M2.
M1 is having three parameters as input in which
two are input data parameter id1,id2 and 1 is
input control parameter ic1 and it is returning
only 1 control parameter oc1
M2 is having three parameters as input in which
two are input data parameter id1, id2 and 1 is
input control parameter ic1 and it is returning
only 2 control parameter oc1, oc2 and one data
parameter od1.So MIC can be calculated as:
MIC= (2+0)/ (1+1) + (2+1)/ (1+2) =2

3.3 Design Complexity

DC= AIC+∑ MICୡ
ଵ

DC can be calculated as: DC=1.95+ (2+2) =5.95.
The value 5.95 denotes the design complexity.
Higher value of Design complexity shows the
higher coupling means high complex project
resulting high maintainability and testability cost.

4. RESULTS AND DISCUSSION

The analysis has been done on six java projects
downloaded from the internet. The six packages
used for analysis are
1. classifier package of Weka
2. Cluster Package of Weka
3. LibSvm
4. Minicopier
5. DependencyFinder
6. MYSQL Connector for Java-5.1.8.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6510

 The selected projects are from application field to
justify the application area of specified metric in
different fields. The classifier package of the
WEKA library covers different algorithms of
classification like C4.5 a decision tree based
classifier, RBF neural network based classifier.
This package is used for in the machine learning
for the classification purpose. While the cluster
package covers the clustering algorithms like K-
mean etc. These algorithms are used to cluster the
similar type of items and to separate the
dissimilar items. The libSVM is the SVM
classifier used for the classification purpose. The
libsvm covers different kernels used for the
classification purpose. These three packages are
useful in the machine learning. The minicopier is
used to copy the items from one location to
another. This project is downloaded from the
internet. This project is an example of general
purpose projects used in any type of application.
The dependency finder library is used to generate
the dependency among the different modules of a
project. This also shows the attributes and the
method of a class used by another class. This
package is used in the software metric evaluation.
The MYSQL connector is a driver to connect the
java with the mysql database. This covers the
application based connectivity among two
packages. The analysis on these projects covers
the machine learning, software metric evaluation,
database connectivity driver and the general
application. All the packages have been
downloaded from their respective website on
internet and analysis has been done only on the
classes available directly in the package.

These projects have been analyzed by using the
statistics to describe the data, descriptive statistics
that gives the CK metric as well as the proposed
metric statistic. This statistic covers the
minimum, maximum values as well as the mean
and standard deviation of the corresponding
metric for each project.

Table 1: CK Metric Statistic for LibSVM project

Metric Min Max Mean
Standard
Deviation

WMC 0 34 4.9474 7.6990

DIT 0 1 0.7368 0.4524

NOC 0 3 0.2632 0.7335

CBO 0 15 2.4737 3.5335

RFC 0 89 11.0526 20.0207

LCOM 0 543 30.2632 124.2693

Ca 1 7 2.4737 1.8669

NPM 0 18 1.3158 4.0832

Table 1 shows the statistics of total 8 metric
including the 6 CK metric and Coupling (Ca) and
number of public method per class (NPM) metric
for the libSVM project. This has been calculated
by evaluating the metric value using the CK
metric evaluation tool.

Table 2: Proposed Metric Statistic for LibSVM Project

Metric Min Max Mean
Standard
Deviation

CPP 0 24 0.987 3.338

MPC 0 206 13.187 34.863

AIC 0 822 13.006 69.130

MIC 0 11860 203.500 1243.256

DC 0 12682 216.506 1306.971

Table 2 describes the values for proposed metric
suite for the libSVM project. The values have
been calculated by using ‘dependency finder’
tool. A large variation can be found in the design
complexity of libSVM project due to large
variation in method interface coupling.

Table 3: 95% confidence interval of CK metric mean
for LibSVM project

Metric
Lower
Limit

Upper
Limit

WMC 30.289 37.711

DIT 0.782 1.218

NOC 2.646 3.354

CBO 13.297 16.703

RFC 79.350 98.650

LCOM 483.104 602.896

Ca 6.100 7.900

NPM 16.032 19.968

Table 4: 95% Confidence Interval of proposed Metric
for LibSVM project

Metric Lower Limit Upper Limit

CPP 23.479 24.521

MPC 200.557 211.443

AIC 811.206 832.794

MIC 11665.881 12054.119

DC 12477.933 12886.067

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6511

The table 3 and 4 describe the 95% confidence
interval value i.e. the range under which the 95%
of the total values falls. It can be analyzed that the
in table 3 the values of RFC and WMC is 79 and
30 respectively which signifies the reduced
testability and understandability. The high value
of LCOM denotes lower productivity i.e. high
design efforts required for the project. In the table
4 the design complexity is large i.e. 12477 which
denotes the complex design which also requires
high efforts.

Table 5: CK Statistics for Classification package
WEKA project

Metric Min Max Mean
Standard
Deviation

WMC 1 99 13.7241 18.8961

DIT 0 1 0.5862 0.5012

NOC 0 3 0.3793 0.8200

CBO 0 36 6.9655 7.2431

RFC 1 269 44.6207 54.9834

LCOM 0 2987 161.6207 554.7815

Ca 0 15 1.6552 3.1879

NPM 1 84 11.7241 16.1221

Table 5 denotes the metric statistic for the
classifier package of the WEKA project. While
the table 6 covers the proposed metric statistics of
same i.e. classifier package of WEKA project.
The table 5 shows that range of LCOM values
have more deviation as compared to the LCOM
value of the libSVM project.

Table 6: Proposed Metric Statistic for classification
package WEKA Project

Metric Min Max Mean
Standard
Deviation

CPP 0 10 0.963 2.124

MPC 0 99 12.049 20.273

AIC 0 412 11.741 47.685

MIC 0 4291 172.531 709.442

DC 0 4692 184.272 749.986

Table 6 describes the values for proposed metric
suite for the classification package of WEKA
project. The variation in the design complexity of
classifier package of WEKA project is less as
compared to the design complexity of the
LibSVM project. This is due to the less variation
in the method interface coupling. Moreover, this
clearly denotes that the classifier package of

WEKA project is less complex as compared to
the libSVM project. The identified ranges in the
table 5 and 6 may have outliers so to get accurate
range of value 95% confidence interval values has
been calculated shown in table 7 and 8 for CK
metric and proposed metric respectively. These
tables provides the actual range of the CK metric
and the proposed metric values.

Table 7: 95% confidence interval of CK metric mean
for classification package WEKA project

Metric
Lower
Limit

Upper
Limit

WMC 91.812 106.188

DIT 0.809 1.191

NOC 2.688 3.312

CBO 33.245 38.755

RFC 248.085 289.915

LCOM 2775.972 3198.028

Ca 13.787 16.213

NPM 77.867 90.133

The 95% confidence interval value presents that
the lower values of LCOM are the outliers while
actual value lies at the upper range i.e. around
2775. It means the LCOM value of the project is
very large. The high WMC and NPM values are
also identified in the project. This shows large of
public methods are available in the class which
can be used any other class in the project. These
values identify a complex design of classifier
package as compared to libSVM project.

Table 8: 95% Confidence Interval of proposed Metric
for classification package WEKA project

Metric Lower Limit Upper Limit

CPP 9.530 10.470

MPC 94.517 103.483

AIC 401.456 422.544

MIC 4134.129 4447.871

DC 4526.164 4857.836

The table 8 denotes the range of design
complexity values is large but less than the design
complexity value of the libSVM project due to
the similar variation in the MIC value. This
clearly denotes that the design of project is less
complex as compared to the design of libSVM
project. The table 9 is used to determine the CK
metric value of the clustering package of WEKA

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6512

project. In the similar fashion the table 10 denotes
the proposed metric value of the clustering
package of the WEKA project. The CK tool and
dependency finder tools are used to get the values
of corresponding metrics. The minimum,
maximum, mean and the standard deviation
values of the clustering package of WEKA
project for the CK metric suite is given in the
table 5.

Table 9: Clustering-WEKA project

Metric Min Max Mean
Standard
Deviation

WMC 1 89 20.4194 19.0801

DIT 0 1 0.4194 0.5016

NOC 0 8 0.5484 1.6899

CBO 0 24 10.7742 7.7705

RFC 1 192 64.5161 57.5615

LCOM 0 3546 290.6774 656.4888

Ca 0 17 2.1935 3.5536

NPM 1 58 14.6129 14.1508

Table 9 shows the statistics of total 8 metric
including the 6 CK metric and Coupling (Ca) and
number of public method per class (NPM) metric
for the clustering package of WEKA project. The
result shown in table includes the minimum,
maximum, mean and standard deviation value of
each metric.

Table 10: Proposed Metric Statistic for clustering
package WEKA Project

Metric Min Max Mean Standard
Deviation

CPP 0 12 0.954 2.225

MPC 0 107 12.161 21.095

AIC 0 435 11.828 48.661

MIC 0 4763 176.391 752.200

DC 0 5079 188.218 793.132

Table 10 describes the values for proposed metric
suite for the clustering package of WEKA project.
A variation similar to the variation found in
classification package of the WEKA project is
found in this project.

Table 11: 95% confidence interval of CK metric mean
for clustering package WEKA project

Metric Lower Limit Upper Limit

WMC 82.001 95.999

DIT 0.816 1.184

NOC 7.380 8.620

CBO 21.150 26.850

RFC 170.886 213.114

LCOM 3305.198 3786.802

Ca 15.697 18.303

NPM 52.809 63.191

Table 12: 95% Confidence Interval of proposed Metric
for clustering package WEKA project

Metric Lower Limit Upper Limit

CPP 11.526 12.474

MPC 102.504 111.496

AIC 424.629 445.371

MIC 4602.684 4923.316

DC 4909.961 5248.039

The table 11 and 12 describe the 95% confidence
interval value i.e. the range under which the 95%
of the total values falls. The range of values
doesn’t show any major difference between the
values obtained in the classification package and
clustering package of the WEKA project. It
means the clustering packages exhibits same
complexity as of the classification package of the
WEKA project.

Table 13: CK Metric of Minicopier project

Metric Min Max Mean
Standard
Deviation

WMC 0 40 9.0000 10.6344

DIT 1 3 1.5833 0.7930

NOC 0 0 0.0000 0.0000

CBO 0 11 2.4167 3.2602

RFC 0 116 25.4167 31.2190

LCOM 0 574 50.9167 164.8897

Ca 1 4 1.8333 1.1146

NPM 0 38 8.3333 10.1115

Table 13 denotes the metric statistic for the
minicopier project and the table 14 denotes the
proposed metric statistics of same i.e. minicopier
project. The table 13 shows that range of LCOM
values is less as compared to the WEKA projects.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6513

Table 14: Proposed Metric Statistic for Minicopier
Project

Metric Min Max Mean
Standard
Deviation

CPP 0 12 0.968 2.277

MPC 0 113 12.645 23.381

AIC 0 480 12.301 51.983

MIC 0 5125 174.462 768.349

DC 0 5239 186.763 811.415

Table 14 presents the values for proposed metric
suite for the minicopier project. The variation in
the design complexity of minicopier project is
same as of the WEKA projects while less than the
variation in design complexity of the LIBSVM
projects. This is due to the less variation in the
method interface coupling. Moreover, this clearly
denotes that minicopier project is less complex as
compared to the LIBSVM project. The identified
ranges in the table 13 and 14 may have outliers so
to get accurate range of value 95% confidence
interval values has been calculated shown in table
15 and 16 for CK metric and proposed metric
respectively.

Table 15: 95% confidence interval of CK metric mean
for Minicopier project

Metric Lower Limit Upper Limit

WMC 33.243 46.757

DIT 2.496 3.504

NOC 0.000 0.000

CBO 8.929 13.071

RFC 96.164 135.836

LCOM 469.234 678.766

Ca 3.292 4.708

NPM 31.575 44.425

The 95% confidence interval value presents that
the lower values of LCOM are the outliers while
actual value lies at the upper range i.e. around
469. The less values of metric LCOM as well as
CBO and RFC as compared to LIBSVM project
shows the less complex project.

Table 16: 95% Confidence Interval of proposed Metric
for Minicopier project

Metric Lower Limit Upper Limit

CPP 11.531 12.469

MPC 108.185 117.815

AIC 469.294 490.706

MIC 4966.760 5283.240

DC 5071.891 5406.109

The table 16 denotes the range of design
complexity values is same as of the design
complexity range of the classifier and clustering
package of the WEKA project but less than the
design complexity value of the libSVM project
due to the similar variation in the MIC value. This
clearly denotes that the design of project is less
complex as compared to the design of libSVM
project while the minicopier project has same
complexity as of the classifier and clustering
package of WEKA project.

The table 17 is used to determine the CK metric
value of the MYSQL connector project. In the
similar fashion the table 10 denotes the proposed
metric value of the MYSQL connector project.
The CK tool and dependency finder tools are used
to get the values of corresponding metrics.

Table 17: Statisitcs of MYSQL Connector project for
CK Metric Suite

Metric Min Max Mean
Standard
Deviation

WMC 1 536 26.9181 74.9505

DIT 0 6 0.9123 0.9570

NOC 0 17 0.3041 1.4104

CBO 0 59 5.5205 7.6238

RFC 1 1069 58.4561 134.7769

LCOM 0 143374 2487.5205 14042.3461

Ca 0 66 5.2339 9.7909

NPM 0 535 21.6608 71.1266

Table 17 shows the statistics of total 8 metric
including the 6 CK metric and Coupling (Ca) and
number of public method per class (NPM) metric
for the MYSQL connector project. The range of
almost LCOM metric is highest in this project as
compared to all other projects being analyzed till
now. It means the complexity of the project is
high as compared other projects analyzed till
now.

Table 18: Proposed Metric Statistic for MYSQL
connector Project

Metric Min Max Mean
Standard
Deviation

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6514

CPP 0 22 0.985 3.066

MPC 0 148 11.843 28.900

AIC 0 612 11.687 56.691

MIC 0 9805 196.627 1105.508

DC 0 10417 208.313 1158.602

Table 18 describes the values for proposed metric
suite for the MYSQL connector project. A large
variation can be found in the design of MYSQL
connector project due to large variation in method
interface coupling. The distinguished ranges in
the table 17 and 18 may have exceptions so to get
exact scope of significant worth 95% certainty
interim qualities has been ascertained appeared in
table 19 and 20 for CK metric and proposed
metric individually.

Table 19: 95% confidence interval of CK metric mean
for MYSQL Connector project

Metric Lower Limit Upper Limit

WMC 524.686 547.314

DIT 5.856 6.144

NOC 16.787 17.213

CBO 57.849 60.151

RFC 1048.655 1089.345

LCOM 141254.212 145493.788

Ca 64.522 67.478

NPM 524.263 545.737

Table 20: 95% Confidence Interval of proposed Metric
for MYSQL Connector project

Metric Lower Limit Upper Limit

CPP 21.476 22.524

MPC 143.062 152.938

AIC 602.313 621.687

MIC 9616.102 9993.898

DC 10219.030 10614.970

The table 19 and 20 describe the 95% confidence
interval value i.e. the range under which the 95%
of the total values falls. The range of values
shows that the design complexity of the project is
higher than the minicopier and classification and
clustering package of WEKA project but
somewhat lower than the libSVM project. It
means the project exhibits high complexity as of
the classification, clustering package of the
WEKA project and minicopier project.

Table 21: CK Metric Statistic for Dependency Finder
Project

Metric Min Max Mean
Standard
Deviation

WMC 0 69 6.6412 11.6004

DIT 0 2 0.8015 0.4710

NOC 0 7 0.2290 0.8732

CBO 0 65 4.1221 9.4836

RFC 0 274 13.9771 30.1770

LCOM 0 2340 76.7099 334.5154

Ca 0 29 3.9389 4.5989

NPM 0 61 5.7023 10.6379

Table 22: Proposed Metric Statistic for Dependency
Finder Project

Metric Min Max Mean
Standard
Deviation

CPP 0 24 0.988 3.338

MPC 0 206 13.188 34.863

AIC 0 822 13.006 69.131

MIC 0 11860 203.500 1243.257

DC 0 12682 216.506 1306.971

Table 22 depicts the qualities for proposed metric
suite for the dependency finder venture. The
variety in the design complexity of dependency
finder venture is in the range of the values given
by the LibSVM venture. This is because of the
similar variation in the method interface coupling.
The recognized ranges in the table 21 and 22 may
have exceptions so to get exact scope of
significant worth 95% certainty interim qualities
has been ascertained appeared in table 23 and 24
for CK metric and proposed metric individually

Table 23: 95% confidence interval of CK metric mean
for Dependency Finder project

Metric Lower Limit Upper Limit

WMC 66.995 71.005

DIT 1.919 2.081

NOC 6.849 7.151

CBO 63.361 66.639

RFC 268.784 279.216

LCOM 2282.178 2397.822

Ca 28.205 29.795

NPM 59.161 62.839

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6515

The table 23 is used to determine the 95%
confidence interval value of CK metric value for
the dependency finder project. In the similar
fashion the table 24 denotes the 95% confidence
interval value of proposed metric value of the
dependency finder project.

Table 24: 95% Confidence Interval of proposed Metric
for Dependency Finder project

Metric Lower Limit Upper Limit

CPP 23.479 24.521

MPC 200.557 211.443

AIC 811.206 832.794

MIC 11665.881 12054.119

DC 12477.933 12886.067

The table 24 denotes the range of design
complexity values is large and has same range as
the complexity value range of the libSVM project
due to the similar variation in the MIC value. This
clearly denotes that the design of project is
complex and complexity is almost same as
complexity of the libSVM project. It means the
project has more complexity as compared to the
minicopier project and clustering, classification
package of the WEKA project.

Table 25: Correlation of CK metric With Proposed Metric

Proposed/CK
Metric

WMC DIT NOC CBO RFC LCOM Ca NPM

CPP -0.191 -0.029 0.301 -0.165 -0.214 -0.173 0.040 -0.196

MPC -0.110 0.016 0.152 -0.116 -0.158 -0.035 0.380 -0.109

AIC -0.099 0.159 -0.089 -0.105 -0.142 -0.054 0.805 -0.092

MIC 0.764 0.145 -0.056 0.710 0.733 0.791 -0.107 0.755

DC 0.768 0.164 -0.032 0.710 0.729 0.808 -0.084 0.759

In the table 25 the correlation between the CK
metric and the proposed metric is found. The
design complexity correlation with the CK metric
determines the significance of the proposed
metric. The design complexity is highly
correlated i.e. 0.768, 0.710, 0.729, 0.808, 0.759
with the WMC, CBO, RFC, LCOM and NPM
respectively. It means the high design complexity
shows the high complex model which is also
determined by the WMC, DIT, LCOM, CBO and
the NPM factors. This is already seen in the
analysis of the six projects. It means the design
complexity metric can be used to find the
complexity of any project.

5. CONCLUSIONS

This paper designs a coupling metric to
determine the complexity of software. These
different proposed metrics can be used to check
the complexity of design at an early stage to
remove the anomalies as well as redundancy of
the code and hence will be helpful in better
design of object-oriented system. The metric uses
the method and the attribute coupling to
determine the complexity of the project. The
metric is understood with the help of a case
study. The validation of the metric is done by

determining the correlation of the metric with the
CK metric. Moreover, the analysis is done on six
java projects. The high correlation of the design
complexity metric with the CK metric and
accurate results of proposed metric on six java
projects proves the significance of the metric.
The future research work aims at reviewing as to
how methodically tool applied on these metrics
to escort the designing of difficult systems.

REFERENCES

[1] Singh S, Kaur S. A systematic literature
review: Refactoring for disclosing code
smells in object oriented software. Ain
Shams Engineering Journal. 2017 Mar 22.

[2] Roger S. Pressman, “Software Engineering:
A Practitioner’s Approach”, 6th ed.,
McGraw Hill International, 2005.

[3] N. Fenton and S. Lawrence Pfleeger,
“Software Metrics: A Rigorous
Approach”, 2nd ed., International
Thomson Press, London, 1996.

[4] Preeti Gulia et al.”Design based Object-
Oriented Metrics to Measure Coupling
and Cohesion”, International Journal of
Engineering Science and Technology

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6516

(IJEST), ISSN: 0975-5462 Vol. 3 No. 11
November 2011.

[5] Alenezi M, Zarour M. Modularity
measurement and evolution in object-
oriented open-source projects.
InProceedings of the The International
Conference on Engineering & MIS 2015
2015 Sep 24 (p. 16). ACM.

[6]. Basili, V., Briand, L., & Melo, W. (1996) A
Validation of Object-Oriented Design
Metrics as Quality Indicators. IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 22, NO. 10,
OCTOBER 1996

[7]. Chidamber, S. R. and Kemerer, C. F (1994),
A Metrics Suite for Object-Oriented
Design, IEEE Transactions on Software
Engineering, vol. 20 no. 6, pp. 476–493

[8]. K.P. Srinivasan, Dr. T.Devi (2014). A
Complete and Comprehensive Metrics
Suite for Object-Oriented Design Quality
Assessment. International Journal of
Software Engineering and Its Applications
8(2), 2014, 173-188.

[9]. Vanitha N, “A Report on the Analysis of
Metrics and Measures on Software Quality
Factors – A Literature Study”, IJCSIT,
Vol. 5, 2014

[10]. Bansal Mukesh, Agarwal CP, Sasikala P
(2012). Predict Software Fault Proneness
Using Object Oriented Metrics.
International journal of computing,
intelligent an communication technology,
ISSN 2319-748X

[11] Chiller R S, Chhikara Arti (2012).
Analyzing the complexity of java
programs using Object Oriented Software
Metrics. IJSCI, ISSN (online):1694-0814,
Vol.9, No. 3, January 2012.

[12] Gupta Deepali,Kumar Rakesh(2012) .
Heuristics Based on Object Oriented (OO)
Metrics. International Journal of Emerging
Technology and Advanced
Engineering,ISSN 2250-2459, Volume
2,Issue 5, May 2012

[13] Kulkarni et.al (2010) .Validation of CK
metrics for object oriented design
environment. Third International Journal
of Emerging trends in Engineering and
Technology, 978-0-7695-4246-1/10,2010
IEEE.

[14] Chawala Sonia (2013) .Review of MOOD
and QMOOD metric set. IJARCSSE,
ISSN-2277-128x, Volume 3, Issue 3,
March 2013

[15]. J. Zhao and B. Xu (2004). Measuring
aspect cohesion, Proceedings of 7th
International Conference on Fundamental
Approaches to Software Engineering
(FASE’04), Lecture Notes in Computer
Science, Volume 2984, Springer-Verlag,
pp. 54– 68, 2004.

[16]. Li and Henry (1993), Object-Oriented
Metrics that Predict Maintainability‖,
Journal of Systems and Software, vol 23,
no.2, pp.111-122, 1993.

[17]. Khoshgaftaar T.M, Allen, Hudepohl J and
S.J. Aud (1997). Application of neural
networks to software quality modeling of
a very large telecommunications system."
IEEE Transactions on Neural Networks,
Vol. 8, No. 4, pp. 902--909, 1997.

[18]. Giovanni (2000). Estimating Software
Fault-Proneness for Tuning Testing
Activities‖ Proceedings of the 22nd
International Conference on Software
Engineering (ICSE2000), Limerick,
Ireland, Jun.2000

[19]. E.L. Emam, W. Melo and C.M. Javam
(2001) ―The Prediction of Faulty Classes
Using Object-Oriented Design Metrics‖,
Journal of Systems and Software, Elsevier
Science, pp. 63-75, 2001

[20]. Kumar Rakesh and Kaur Gurvinder
(2011). Comparing Complexity in
Accordance with Object Oriented Metrics.
International Journal of Computer
Applications, Published by Foundation of
Computer Science. BibTeX 15(8):42–45,
February 2011

[21]. Gyimothy, T., Ferenc, R., & Siket, I.
(2005) Empirical Validation of Object-
Oriented Metrics on Open Source
Software for Fault Prediction. IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 31, NO. 10,
OCTOBER 2005

 [22] Farooq A, Braungarten R, Dumke RR. An
empirical analysis of object-oriented
metrics for java technologies. In9th
International Multitopic Conference, IEEE
INMIC 2005 2005 Dec 24 (pp. 1-6).
IEEE.

[23] Singh G, Ahmed MD. Effect of coupling
on change in open source Java systems.
InProceedings of the Australasian
Computer Science Week Multiconference
2017 Jan 30 (p. 22). ACM.

