
Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6444

AN IMPROVED RESCHEDULING AND FAULT TOLERANCE
WITH TCSA FOR PERFORMANCE IMPROVEMENT IN

COMPUTATIONAL GRID
1S GOKULDEV, 2ANAGHA P, 3SUJANA SAGAR S J, 4AKSHATHA TANTRY H

1,2,3,4 Department of Computer Science, Amrita Vishwa Vidyapeetham,

Mysuru, Karnataka, India

E-mail: 1gokuldevs@gmail.com, 2anaghapramesh6@gmail.com , 3sujanasagar.j68@gmail.com,
4akshathatantry19@gmail.com

ABSTRACT

Fault tolerance is one of the major challenges during fault occurrence in any computational environment.
Since, computational grids provide access to huge pool of shared processing power, the chances of fault
occurrence are high. The proposed system is focused on performing job scheduling using Two Choices
Scheduling Algorithm (TCSA) with tolerating the faults that occur during the process. Job allocation is
done with the help of grid system consisting of resource broker and GIS. Once, the faulty resources are
identified, scheduler analyses the load of remaining idle resources and reschedules the faulty jobs to the
new set of resources which currently has the least load. A comparison is done between Round Robin
algorithm and TCSA before and after incorporating fault tolerance. It is observed that the time taken for the
completion of allocated tasks has been minimized after the implementation of improvised TCSA
incorporating fault tolerance. The work focuses on tolerating the faults that are occurred during task
allocation and performs rescheduling by reallocating the tasks to different resources which helped the
system to obtain significant results while the system is exposed to high loads.

Keywords: Average Utilization, Computational grid, Fault Tolerance, Improvised TCSA, Rescheduling

1. INTRODUCTION

 Computational grid is a network of nodes
in which a particular task is assigned among
individual resources, which runs calculations in
parallel and returns the results. The grid system
contributes in coordinating, sharing, computing,
network resources across organizations that are
dynamic in nature and distributed geographically. A
grid technology tackles complex computational
issues. In grid computing, the job is controlled by a
master node which acts as a resource broker. The
job is equally divided in to multiple tasks and it will
be distributed to all other computing elements for
processing. Grid environment is extremely
heterogeneous and dynamic because of the reason
that its components are joining and leaving the
system all the time. So possibility of occurring
faults is high. Therefore, it is essential to perform
fault identification and tolerance mechanism among
the resources in grid. The proposed work mainly
focuses on identifying and tolerating the faults that
occurs during job scheduling. Fault tolerance can be
defined as the property which helps the system to
carry out its operation efficiently even if faults

occur in its components. Figure 1 depicts the
overall working mechanism of the system.

Figure 1: System Model

User
Grid

Portal

Resource Broker

Scheduler

Timer Task
Controller

Resource
allocator

GIS Fault
Handler

C1

R1 R3

C2 Cn

R4 Rn
R2

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6445

 In Figure 1, the user input the jobs to the
scheduler through grid portal. The TCSA algorithm
gets invoked within the resource broker at once,
when the scheduler receives the input jobs. The
coordination between resources and resource broker
is established by Grid Information Server (GIS) and
fault handler [12]. The fault handler identifies the
faulty resources in grid. GIS also enables frequent
updation of the status of the resources. The copy of
the status will be send to resource allocator.
 Once the user submits jobs to the
scheduler, it splits the job into small tasks and send
to task controller. The task distribution among
available idle resources is coordinated by the task
controller with the help of resource allocator. Task
controller takes the information regarding the idle
resources with the help of resource allocator from
GIS and allocates these tasks to the resources in the
order of their arrival. The TCSA [2] allocate tasks
to resources in a dynamic manner for reducing the
time of task execution and maximizing the
utilization of resources.
 The resource allocator contains all
information and updated status regarding grid
resources sent by GIS. The function of the timer is
to allocate the time to each task assigned to grid
resources. When the assigned task is finished, timer
will calculate the time taken for the completion of
that particular task and pass the results back to the
scheduler. Once any fault is identified among any
one of the assigned resources, scheduler analyses
the load of remaining available resources and
rescheduling is performed by reallocating the task
of faulty resource to the resource that have the least
load. Timer keeps identifying the faulty instance
along with the maintainance of execution time.
 The organization of the work is as follows:
Section 1 deals with the system model along with
the problem statement. Existing works about fault
tolerance methods in computational grids, job
scheduling with resource broker are discussed in
section 2. Methodology is described in Section 3
and Section 4, brings out the experimental results.
Finally, conclusion of paper is given by section 5.

2. RELATED WORK

 Many researches have been performed
from the former period of time to study the
problems in identification and tolerance of faulty
resources in grid.

2.1. Review on Job Scheduling
 Aparna et al. (2013) implemented an
Adaptive Scoring Job Scheduling (ASJS) [3]

algorithm where user has to mention whether the
job is concentrated more on computations or data.
Because of this issue, the jobs are not been
completed on time. To overcome this problem, an
Enhanced Adaptive Scoring Job Scheduling
algorithm (EASJS) is introduced with a method of
duplication strategy. In the above work, cluster
score is considered which can be enhanced by using
other properties of clusters such as latency and
bandwidth.
 Maryam et al. (2014) proposed an
Improvement Hierarchy Load Balancing (IHLBA)
algorithm [5] and it has been compared with other
four scheduling algorithm called On-line Mode
Heuristic Scheduling Algorithm, Most Fit Job
Scheduling Algorithm (MFTF), Dynamic Load
Balancing Algorithm (DLBA) and the Hierarchical
Load Balancing Algorithm (HLBA) based on
correlation of load along with its hierarchical
structure were explored. In future, these algorithms
can be enhanced by testing them on heterogeneous
processors and heterogeneous computing
environment.
 Ying L et al. (2015) described that the
number of tails sampled can be minimized highly
with the help of the fact that the tasks come as
batches (called jobs). The authors focused more on
taking the samples from a subset of queues such
that the size of the subset is little larger than the
size of the batches. A subset of the tails is sampled
at random. The proposed method of load balancing
called batch filling [8] tried for equalizing the load
between the sampled servers. The algorithm
drastically minimizes the sample complexity when
compared to other algorithms. In future,
mechanisms that deals with the faults during load
balancing can be incorporated with the batch filling
method.
 AlEbrahim et al. (2016) proposed a
scheduling algorithm [1] which dispatches the tasks
and minimizes the total time of execution of the
interaction between the processors. This is attained
in two main steps: (a) the computational priority of
all tasks will be analyzed individually and (b) the
processor which processes each task will be chosen.
The future work focuses on considering task
duplication in the part of processor selection to
further reduce the makespan by making the
interaction of processors low.
 Attiya I et al. (2016) introduced a fruitful
algorithm called Two Choices Scheduling
Algorithm (TCSA) [2] to allocate jobs in a dynamic
manner to resources for reducing the job execution
time and for maximizing the utilization of resources
there by performing the user’s work successfully

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6446

and make use of the distributed resources. The data
transmission rate and total time of execution during
the task scheduling can be explored as future
enhancement.
 Manishankar S et al. (2016) introduced a
security platform [29] along with the security-
approaches for obtaining high-performance
computing clusters. Scheduling is performed
implementing ALPHA scheduler approach. In
future, incorporating fault tolerance mechanism
along with security features may help in increasing
the efficiency.
 Bharathi P. D et al. (2017) proposed a
scheduling model [4] for the cloud in two-level.
The load is equalized for the utilization of resources
in an effective manner and efficiency of energy is
attained that contributes to the green cloud
computing. The Quality of Service (QoS) with a
minimized Service Level Agreement (SLA)
negligence is also attained. Future work could focus
on the possibility of occurring faults during the load
balancing and its solutions.
 Banerjee S et al. (2017) used a computer
approach, which is decentralized, [6] in order to
assign and arrange tasks in grid which is dispersed
on a vast scale. With the help of multi-agent
systems’ properties, this approach generates and
disassociates the clusters in a dynamic way, in
order to meet the global task queue resource
demands which are continuously changing.
Comparison of algorithm is performed with the
standard FIFO. Experiments performed shows that
the Distributed Resource Allocation Protocol
(DRAP) algorithm overcomes the FIFO in terms of
empty queue and CPU utilization. The future work
may should be designed to improve version of
DRAP for attaining more CPU utilization and
minimized execution time.
 Suresh S et al. (2017) presented a suitable
formulation for a wireless network with effective
rate [7] which have the ability of transmitting
sensor data responsive to time through the network
of transmission line along with obstruction and
bandwidth restrictions. In future, steps to overcome
the faults that occur during the sensor data
transmission can be incorporated with the
formulation.

2.2. Review on Load Balancing
 Sarmila G P et al. (2015) compared the
efficiency of load-balancing algorithms [17] that
are fault-tolerant. If any algorithm is weak in any of
the parameters such as throughput, response time
etc. then it points out that a fault-tolerant load-
balancing algorithm which is efficient and

autonomic in nature have to be made. The scope is
to design an algorithm with efficiency that can
provide solutions for the mentioned limitations.
 Oueis J et al. (2015) proposed an advanced
algorithm [15] developed for formulating the
clusters and balancing of load in fog computing. It
has two benefits. First, its design is modifiable.
Second, it has an optimization method of
minimized complexity multi-parameter. Fault
tolerant mechanisms can be incorporated with the
three variants of this algorithm such as EDF-PC and
EDF-LAT which helps for attaining more
efficiency as future improvement.
 Dave et al. (2016) provided a detailed
abstract of the optimization methods of load
balancing [11] based on evolution and group
algorithms, which permits to overcome the
problems of optimization or utilization of resources.
The main problems facing the cloud are discovery
of resource, load balancing and security. Load
balancing is one of the major test to be dealt with
along with the key issues and the average role of
assigning workloads or tasks on nodes or servers.
Further studies can be done on the issues of
discovery of resource and fault tolerance in order to
examine its suitable solution techniques.
 Rahul Singh Chawhan et al. (2016)
introduced a mobile agent technology [10] that acts
like an alternative for equalizing the load and
arranging it in dispersed systems. The protocol of
load balancing leverages the Java Complaints
Mobile Agent platform named AgletsTM. It allows
the development and implementation of mobile
agents. In the future enhancements, studies can be
performed on the alternative methods for attaining
the maximum utilization of existing cluster
resources.
 Parwekar P et al. (2016) implemented a
routing algorithm [13] based on fuzzy texture of
network which is reliable for wireless network of
sensors. The RSSI, LQI and the number of jumps to
destination are used for the estimation of the route
from the source to the destination. The simulation
results in huge delivery of packets along with the
network reliability. In future, an improved version
of this algorithm has all the chances to attain more
efficiency and reliability.
 Chauhan A et al. (2016) presented a novel
improvised scheduling algorithm (IDSA) [9] with
time limit. Equalizing the full load of the system
model, along with making an attempt to reduce the
make span of a set of available tasks, was the major
result of this work. In future, this algorithm can be
implemented for the resources having

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6447

computational latency. Comparison can also be
done with other scheduling algorithms.
 Manishankar S et al. (2016) implemented
an algorithm [28] to equalize the load that is
dynamically efficient. Based on various aspects of
cloud environment, the load is distributed and best
optimal cloud partition is obtained for the job
completion. It also helps in reducing the cost of
processing. In future, focus shall be more on
performance issues.
 Jia Zhao et al. (2016) introduced a task
implementation approach, Load Balancing based on
Bayes and Clustering (LB-BC), [14] for the effect
of load equalization for a long period of time and
has used an idea based on Bayes' theorem. The
simulation experiments demonstrated that the
system is able to implement speedy tasks in a fast
manner in data centers of cloud. The data centers
attain a load balance for a long period of time.
Future work may include the LB-BC in a real cloud
computing environment. The performance and
efficiency can be evaluated.
 Das N. K et al. (2017), incorporated the
weighted Round Robin algorithm with Honeybee
algorithm [12] in order to attain a reduced cost of
processing and response cost. For the prioritized
tasks, Honeybee Inspired Algorithm is used by
allocating weights to virtual machine individually.
The non-prioritized tasks were made to run using
the Weighted Round Robin algorithm. In the future,
more QoS parameters like waiting time and rate can
be taken into consideration.
 Khan Z et al. (2017) has proposed a new
architecture [16] for load balancing. The results
indicate that the combination based job scheduling
algorithm, which is dynamic in nature, effectively
plan tasks in dispersed systems, equalizes the load
and minimizes the execution time, which helps in
high performance. The analysis in the performance
indicates that this algorithm exceeds FCFS and
ACO performance. In future, the mechanism for
dealing with the faults that occur during the
dynamic job allocation may be introduced.
 Manishankar S et al. (2017) introduced
several improvements [27] stating that, networks,
that are energy-efficient, are always a necessary
requirement of communication model in this
competitive world along with the technical
advancement. Wi-Fi is a simple example which can
cover only a certain distance. The only solution for
this is the improvement of Wi-Fi with the help of
QoS parameters. But, there are some elements that
can’t be compromised with this. In future, more
efficient network technologies can be studied and

analyzed along with the associated QoS parameters
like loss of packets and jitter.

2.3. Review on Fault Identification and Fault

Tolerance
 Cirne et al. (2003) conducted a survey on
the faults in grid and came to the conclusion that
the grid users are not pleased with the situation of
occurring faults [26]. There are two basic
difficulties in the system that are identified in the
management of faults in grid. First is the available
solution for the analysis of faults. Second, among
the fault tolerance plans that are put into effect,
grids only permit crash failures. As grids are
susceptible to more composite faults, like those
generated by heisenbugs, a person should be able to
bear more severe faults. A detailed survey about
these failures can bring out more clarifications in
future.
 Narale et al. (2011) focused on factual
time system and the available techniques of fault
tolerance [22] used in the domain of cloud
computing along with its implementation. The
authors also discussed an additional significant
issue, fault tolerance model and procedure model.
The future scope of this study is the implementation
of these fault tolerance techniques to obtain
different measurements of robust cloud. Also using
these algorithms, how various problems and
challenges of the cloud computing can be solved.
 Nasir et al. (2015) performs testing of
Partial Key Grouping (PKG) [19] on several large
datasets by studying the load balancing problem in
the distributed stream processing engine and
classifies the key grouping PKG into the distributed
flow settings by using two novel techniques. One,
classifies the packets into two categories and
second divides the process into two options,
namely, grouping and assessment of local load. It
attains a load balancing which is finer than the key
grouping. Future work can be done in finding
whether it is considerable or not to think about
attaining good load balance without the predefined
atomicity of key processing.
 Hannache O et al. (2015) implemented a
proactive approach of fault tolerance [24] based on
the preventive migration of virtual machines. The
research had a main objective of modelling an
effective cloud environment in which the fault
tolerance approach was evaluated. The system
becomes more dynamic in nature with the use of
simulated Lm sensor. The results clearly indicated
that the cloud availability can be supported using
this approach. Introduction of fault recovery to this
approach may make it more efficient in future.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6448

 Lee J S et al. (2015) proposed a Three-
Level Switching Oriented (3LSO) tolerance control
[25], which is beneficial with respect to the
efficiency of Sx2 and Sx3 open breaker failures of
type T rectifier. In particular, the intermediate
circuit wavelet of voltage and the switching losses
of the above mentioned controls are determined
through the use of simulation and results. Since the
above mentioned controls have advantages that are
different from each other, it need to be selected
depending upon the specific requirements of
applications. In future, a mechanism that reduces
the execution time can be introduced to this
approach.
 Kaur P et al. (2015) proposed a method for
enhancing the fault tolerance [21] of the most
suitable algorithm of job scheduling, by arranging
the work along with work duplication when the
reliability of the resource is low. The results show
that, execution time of the tasks is reduced
comparatively with this algorithm using the real-
time approach instead of simulator. The future
scope would be to test the algorithm for other
faults.
 Indhumathi et al. (2016) designed a new
architecture to reduce the implementation time in
computing grid. The Load Balancing Fault
Tolerance (LBFT) architecture along with the use
of SOA, [18] focused on a new algorithm which is
dynamic and complementary in nature, that helps in
attaining load balancing and fault tolerance
successfully. In future, the algorithm can be
incorporated with other grid simulators like
SimGrid, which helps in determining the efficiency
of algorithm in obtainable simulators.
 J Pinto et al. (2016) described the Hadoop
architecture [20], it is needed to predict node failure
at a fairly initial phase so that rescheduling work is
not expensive when time and efficiency are
considered as parameters. The final results
indicated that the existence of a fault is predictable
with the help of existing acquired knowledge with a
minimum delay of time. Future enhancements can
be done by replacing neural networks in place of
Support Vector Machine (SVM) that have good
accuracy in classification, when computational
complexity is considered.
 Goyal N et al. (2018) proposed a Fault
Detection and Recovery Technique (FDRT) [23]
for a network, based on clusters. A Backup Cluster
Head (BCH) is selected, while selecting Cluster
Head (CH), using the fuzzy logic technique based
on parameters such as residual energy, load, node
density, distance to the sink and link quality. In the
future, work could be done to further improve the

delivery relationship of FDRT with a greater
number of faults.
 Most of the existing systems provide vast
number of ways for fault identification occurring
within the grid environment. Among the available
fault tolerance methods, the existing system lacks in
a fault tolerance method that can be performed with
reduced makespan.

3. METHODOLOGY

 The system proposes a new method of
fault tolerance with the help of TCSA algorithm.
The primary step is resource allocation which helps
to reduce the makespan and load balancing among
resources effectively. Job allocation is done
dynamically along with minimized job execution
time and maximized resource utilization time.
During the job allocation, if any faulty resources
are identified, then the tasks allocated to those
faulty resources are reassigned to some other
resources with the least load.

3.1. Round Robin Algorithm
 Round robin algorithm is a preemptive
algorithm designed for time-sharing system. In this
algorithm, a predefined quantum is maintained for
preemption. This can be defined as the fixed time
allocated to all the tasks for execution. If the task is
not completed within the given quantum, it will get
interrupted. The task is resumed next time a time
slot is assigned to that process. If, during the
attributed time quantum of process, if its state is
changed to waiting, then the scheduler selects the
first process in the ready queue to execute. The
states of preempted tasks are stored using the
mechanism of context switching. In most of the
grid scenarios, the round robin algorithm has shown
a better makespan and hence this algorithm is
compared with that of the proposed system
considering the fault tolerance.

3.2. Implementation of TCSA Algorithm with
Fault Tolerance.

According to TCSA algorithm which
incorporates fault tolerance, there exists an
independent user task set, T = {T1, T2… Tn} to a set
of heterogeneous grid nodes N = {N1, N2… Nm}.
Makespan, load balancing and flow time are the
three popular criteria used to evaluate the job
scheduling effectiveness and efficiency. Improvised
TCSA, using load balancing and makespan,
optimizes the process of task scheduling in
diversely scattered computing systems.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6449

 The term makespan can be used as a
metrics in order to measure the excellence of a
scheduling process in grid computing environment.
Makespan is the finishing time of the last task
assigned. The finishing time of the schedule is
analyzed with the help of grid node which have the
maximum processing cost for all tasks allocated to
it. So, the formulation of makespan is as follows:

 Timei = Ʃ Eij + Wi
 (j|Aj i) (1)

 makespan=max{Timei} (2)

where ‘Timei’ is the duration of time needed for
each node ‘i’ to finish all the tasks allocated to it;
‘{j|Aj i}’ indicates the tasks allocated to the node
‘i’; ‘Eij’ is the time duration taken by ‘Ni’ to finish
the task ‘Tj’; i 1,2 … , m; j 1,2,… , n, and ‘Wi’
is the waiting time of task ‘j’ till the resource ‘i’
gets ready.
 The individual utilization of resources and
average resource utilization of the improvised
TCSA is provided as follows:

 Ui = Timei/makespan (3)

 m
 Avg-utilization = (Ʃ Ui)/m (4)
 i=1

where ‘Ui’ indicates the utilization of resource ‘i’;
‘Avg-utilization’ indicates the average utilization of
resources. ‘m’ represents the total number of
existing resources.

Algorithm: TCSA with fault tolerance.
Input: Tasks and resources.
Output: Makespan and resource utilization.

Initialize the resource-list [No. of resources]
Initialize the task-list [No. of tasks]
while task-list is not empty do
task ‘T’ from front of the task-list is taken
for each task ‘T’ do
d random nodes are selected uniformly.
 N1 (T), N2 (T)… Nd (T)
Query nodes N1 (T), N2 (T)…Nd(T) for current load
Allocate task T to the node with the less load
if there is a tie for the least loaded node
then
Allocate task T to randomly chosen among them
end if
Fault-list is initialized [No. of faulty resources]
Allocated task ‘T’ is taken from faulty resource.

if idle resources available
Query nodes for current load
Reallocate task T to the node with less load
if there is a tie for the least loaded node
then
Reallocate task T to randomly chosen among them
end if
else
Wait until idle resources with least load are
available.
end if
end for
end while

 When the user submits the job, the primary
step done by the scheduler is splitting the job in to
small tasks. Task controller will be having a task-
list from where, each task, which is ready for
execution, is taken from front of the list. The
resource allocator will be maintaining a resource-
list from where ‘d’ grid nodes are randomly
selected from available nodes. Scheduler sends a
query message to each of the ‘d’ grid nodes. As a
result, scheduler gets the current load information
of each of the d nodes. Finally, the scheduler
allocates the task to the least loaded of d randomly
selected nodes.
 During the process of task allocation, there
will be situations where the resources will not be
able to execute the tasks that are assigned to it. This
can be because of the reason that the assigned
resources are already loaded with tasks. In such a
case, the occurred fault prevents the scheduler from
proper task scheduling. So, task allocator identifies
the faulty resources and a list of faulty resources is
made with the help of fault handler. Scheduler
checks for the idle resource in resource list. Once
the resource is available, the task is taken from the
faulty resource of the fault-list and fault tolerance is
performed by reallocating that particular task to the
available resource with the least load. This helps in
proper scheduling and all the tasks are executed
successfully with minimum execution time.

4. RESULTS AND ANALYSIS

 In order to compute the execution time, a
set of observations are performed using number of
resources and number of tasks. From the obtained
output, it is observed that the time taken for the
completion of tasks has been minimized after
implementing TCSA algorithm. Fault tolerance has
been done after implementing TCSA algorithm and
it is observed that the task execution is getting done

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6450

successfully by tolerating the occurred faults along
with keeping the execution time minimized.
 A comparison in the execution time is
done between TCSA algorithm and Round Robin
algorithm (i) with fault tolerance and (ii) without
incorporating fault tolerance.
 The execution time after implementing
Round Robin Algorithm and TCSA without fault
tolerance is depicted in Table 1 keeping the number
of resources as constant to thousand.

Table 1: Execution Time After Implementing Round
Robin Algorithm and TCSA without fault tolerance.

Number of
Tasks

Round Robin
(milliseconds)

TCSA
(milliseconds)

100000 10531 6548
200000 11632 7240
300000 13012 7984
400000 13998 8154
500000 15765 9246
600000 17398 10230
700000 18837 11090
800000 20326 14304
900000 21485 17305
1000000 23567 18980

 The graphical representation of Table 1 is
depicted in Figure 2. In this graph, X-axis
represents number of tasks along with keeping the
number of resources constant to thousand and Y-
axis represents the execution time in milliseconds.
It can be observed that the execution time of TCSA
is less when compared to the execution time of RR
without fault tolerance.

Figure 2: Comparison Between RR and TCSA Algorithm

Without Fault Tolerance.

 Figure 3 displays the result of makespan
and average utilization of RR algorithm and TCSA
without fault tolerance. It is observed that TCSA

have the minimum makespan of 18980.031
milliseconds and average-utilization of 0.00585
milliseconds when compared to that of Round
Robin algorithm which have a makespan of
23567.12 milliseconds and average-utilization of
0.00763 milliseconds.

Figure 3: Screenshot that displays the makespan and

average-utilization without fault tolerance.

 The execution time taken after
implementing Round Robin Algorithm and TCSA
with fault tolerance is depicted in Table 2 keeping
the number of resources as constant to thousand.

Table 2: Execution Time After Implementing Round
Robin Algorithm with fault tolerance.

Number of
Tasks

Round Robin
(milliseconds)

TCSA
(milliseconds)

100000 9630 5934
200000 10120 6765
300000 12306 7146
400000 12740 7945
500000 14562 8790
600000 16224 9357
700000 17433 10703
800000 19320 13568
900000 20143 16850
1000000 21989 18362

 The graphical representation of Table 2 is
depicted in Figure 4. X-axis represents number of
tasks along with keeping the number of resources
constant to thousand and Y-axis represents the
execution time in milliseconds. It is observed that
the execution time of TCSA with fault tolerance is
less when compared to the execution time of RR
with fault tolerance.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6451

Figure 4: Comparison Between RR and TCSA Algorithm
with Fault Tolerance.

 The graphical representation of table 4 is
shown in Figure 5 using the graph keeping number
of resources constant as thousand and a decrease in
execution time is observed. The process of fault
tolerance helps in making the task allocation
process fast and efficient. In this graph, X-axis
represents number of tasks along with the number
of resources as thousand and Y-axis represents the
execution time in milliseconds.

Figure 5: Representation of Minimized Execution Time.

 Figure 6 displays the result of makespan
and average utilization of RR algorithm and TCSA
with fault tolerance. It is observed that TCSA have
the minimum makespan of 18362.21 milliseconds
and average-utilization of 0.00490 milliseconds
when compared to that of Round Robin algorithm
which have a makespan of 21898.03 milliseconds
and average-utilization of 0.00683 milliseconds.

Figure 6: Screenshot that displays the makespan and

average-utilization without fault tolerance.

 It is very clearly evident that, TCSA with
fault tolerance shows better performance with more
number of resources and also the varying workload
assigned. The efficiency is more when the incoming
jobs are high. This helped the system to improve its
overall performance by incorporating rescheduling
with TCSA and in turn achieving high fault
tolerance.

5. CONCLUSION

In any global computing environment, as
the number of jobs to be executed increases, the
failure rate of jobs also increases due to various
faults with the systems. In order to efficiently deal
with this issue, a suitable method for tolerating the
faults has been proposed by incorporating fault
tolerance with TCSA algorithm. The system had
overcome the problems such as rescheduling of
faulty jobs during task scheduling. Identification of
faulty jobs and rescheduling of those jobs are
internally done with the scheduler with the help of
fault handler by the resource broker. The system
focused on the comparison of the algorithms such
Round Robin with fault tolerance with that of
TCSA algorithm incorporating rescheduling with
fault tolerance. It is observed that TCSA algorithm
with fault tolerance is able to minimize the
execution time by tolerating faults that occurs
during scheduling than RR algorithm. Since the
rescheduling of tasks is done internally with the
scheduling mechanisms in TCSA, a significant
improvement is observed as the system showed a
better execution time than RR and with a better
fault tolerance rate and hence the overall system
performance are found to be enhanced .

Further studies in future can explore
different ways of efficient fault tolerance
mechanisms for other faults that occurs during job
scheduling.

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6452

REFERENCES:
[1] AlEbrahim. S, and Ahmad. I, “Task

scheduling for heterogeneous computing
systems”, The Journal of Supercomputing,
Vol. 73, No. 6, 2017, pp. 2313-2338.

[2] Attiya. I, Zhang. X and Yang. X, “TCSA:
A dynamic job scheduling algorithm for
computational grids.”, In Computer
Communication and the Internet (ICCCI),
IEEE International Conference, October,
2016, pp. 408-412.

[3] Aparna. S.K, K. Kousalya, “An Enhanced
Adaptive Scoring Job Scheduling
Algorithm with replication strategy in Grid
Environment”, International Journal of
Research in Engineering and Technology
(IJRET), eISSN: 2319-1163, pISSN: 2321-
7308, vol.3, No. 4, 2013, pp. 680-684.

[4] Bharathi. P.D, Prakash. P and Kiran. M.V.
K, “Energy efficient strategy for task
allocation and VM placement in cloud
environment”, In Power and Advanced
Computing Technologies (i-PACT),
Innovations in IEEE, pp. 1-6, April, 2017.

[5] Maryam Masouding Khorsand, Shahram
Jamali and Morteza Analoui, “A Survey of
Job Scheduling Algorithms Whit
Hierarchical Structure to Load Balancing
in Grid Computing Environments”,
International Journal of Computer
Application Technology and Research
(IJCATR), ISSN: 2319-8656, vol.3, No. 1,
2014, pp. 68-72.

[6] Banerjee. S, Hecker. J. P, “A Multi-Agent
System Approach to Load-Balancing and
Resource Allocation for Distributed
Computing”, First Complex Systems
Digital Campus World E-Conference
2015, Springer, Cham, 2017, pp. 41-54.

[7] Suresh. S, Nagarajan. R, Sakthive. L,
Logesh. V, Mohandass. C and
Tamilselvan. G, “Transmission Line Fault
Monitoring and Identification System by
Using Internet of Things”, International
Journal of Advanced Engineering
Research and Science (IJAERS), April,
2017, Vol. 4, pp. 9-14.

[8] Ying. L, Srikant. R and Kang. X, “The
power of slightly more than one sample in
randomized load balancing”, In Computer
Communications (INFOCOM), 2015 IEEE
Conference, April, 2015, pp. 1131-1139.

[9] Chauhan. A, Singh. S, Negi. S and Verma.
S.K,” Algorithm for deadline based task
scheduling in heterogeneous grid

environment”, In Next Generation
Computing Technologies (NGCT), 2nd
International Conference, October, 2016,
pp. 219-222.

[10] Chowhan. R.S, Mishra. A. and Mathur. A,
“Aglet and kerrighed as a tool for load
balancing and scheduling in distributed
environment”, In Recent Advances and
Innovations in Engineering (ICRAIE),
2016 International Conference, December,
2016, pp. 1-6.

[11] Dave. A, Patel. B, and Bhatt. G, “Load
balancing in cloud computing using
optimization techniques: A study”, In
Communication and Electronics Systems
(ICCES), International Conference,
October 2016, pp. 1-6.

[12] Das. N.K, George. M.S and Jaya. P,
“Incorporating weighted round robin in
honeybee algorithm for enhanced load
balancing in cloud environment”,
In Communication and Signal Processing
(ICCSP), 2017 International Conference,
April, 2017, pp. 0384-0389.

[13] Parwekar. P, and Rodda. S, “Fault
Tolerance in Wireless Sensor Networks:
Finding Primary Path”, In Proceedings of
the Second International Conference on
Computer and Communication
Technologies, Springer(New Delhi), 2016,
pp. 593-604.

[14] Zhao. J, Yang. K, Wei. X, Ding. Y, Hu. L
and Xu. G, “A heuristic clustering-based
task deployment approach for load
balancing using bayes theorem in cloud
environment”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 27,
No. 2, pp.305-316.

[15] Oueis. J, Strinati. E.C and Barbarossa. S,
“The fog balancing: Load distribution for
small cell cloud computing”, In Vehicular
Technology Conference (VTC Spring),
2015 IEEE 81st, May, 2015, pp. 1-6.

[16] Khan. Z.F, “Novel architecture for
effective load balancing and dynamic
group scheduling in grid computing
topology”, In Circuit, Power and
Computing Technologies (ICCPCT), 2017
International Conference, April, 2017, pp.
1-7.

[17] Sarmila. G.P, Gnanambigai. N and
Dinadayalan. P, “Survey on fault
tolerant—Load balancing algorithmsin
cloud computing”, In Electronics and
Communication Systems (ICECS), 2015

Journal of Theoretical and Applied Information Technology
15th October 2018. Vol.96. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6453

2nd International Conference, February,
2015, pp. 1715-1720.

[18] Indhumathi. V and Nasira. G.M, “Service
oriented architecture for load balancing
with fault tolerant in grid computing”, In
Advances in Computer Applications
(ICACA), IEEE International Conference,
October, 2016, pp. 313-317.

[19] Nasir. M.A.U, Morales. G.D, García-
Soriano. D, Kourtellis. N and Serafini. M,
“The power of both choices: Practical load
balancing for distributed stream processing
engines”, In Data Engineering (ICDE),
2015 IEEE 31st International Conference,
2015, April, 2015, pp. 137-148.

[20] Pinto. J, Jain. P and Kumar. T, “Hadoop
distributed computing clusters for fault
prediction”, Computer Science and
Engineering Conference (ICSEC), 2016
International, December, 2016, pp. 1-6.

[21] Kaur. P and Aggarwal. D, “Analysis of
Fault Tolerance on Grid Computing in
Real Time Approach”, World Academy of
Science, Engineering and Technology,
International Journal of Computer and
Information Engineering, 2015, Vol. 2,
No. 11.

[22] Narale. S.A and Butey. P.K, “Fault-
Tolerance Techniques and its
Accomplishment in Cloud Computing
Environment: A Study”, International
Journal of Computer Applications (IJCA),
2011, pp. 0975-8887.

[23] Goyal. N, Dave. M and Verma. A.K, “A
novel fault detection and recovery
technique for cluster-based underwater
wireless sensor networks”, International
Journal of Communication Systems, 2018,
Vol. 3, No. 4.

[24] Hannache. O, Batouche. M, “Probabilistic
model for evaluating a proactive fault
tolerance approach in the cloud”,
In Service Operations and Logistics, And
Informatics (SOLI), 2015 IEEE
International Conference, November,
2015, pp. 94-99.

[25] Lee. J.S, Choi. U.M and Lee. K.B,
“Comparison of tolerance controls for
open-switch fault in a grid-connected T-
type rectifier”, IEEE Transactions on
Power Electronics, 2015, Vol. 30, No. 10,
5810-5820.

[26] Medeiros. R, Cirne. W, Brasileiro. F and
Sauvé. J, “Faults in Grids: Why are they so
bad and What can be done about it?”,

In Grid Computing, 2003. Proceedings.
Fourth International Workshop,
November, 2003, pp. 18-24.

[27] Manishankar. S, Srinithi. C.R and Joseph.
D, “Comprehensive study of wireless
networks qos parameters and comparing
their performance based on real time
scenario”, In Innovations in Information,
Embedded and Communication Systems
(ICIIECS), International Conference,
March, 2017, pp. 1-6.

[28] Manishankar. S, Sandhya. R. and
Bhagyashree. S, “Dynamic load balancing
for cloud partition in public cloud model
using VISTA scheduler algorithm”,
Journal of Theoretical and Applied
Information Technology, May, 2016,
Vol.87, No. 2, pp. 285-290.

[29] Manishankar. S, Indrajith. A.N and
Monika B.R, “Alpha scheduler approach
to enhance security and high performance
in cluster environment”, Journal of
Theoretical and Applied Information
Technology, 2016, Vol. 87, No. 1, pp.
138-145.

