
Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6041

TEST CASE PRIORITIZATION TECHNIQUE FOR EVENT
SEQUENCE TEST CASES BASED ON REDUNDANCY

FACTOR

1JOHANNA AHMAD, 2SALMI BAHAROM, 3MYZATUL AKMAM SAPAAT
1,2Department of Information System and Software Engineering, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia
3Malaysian Administrative Modernization and Management Planning Unit (MAMPU), Putrajaya, Malaysia

E-mail: 1anna_lee207@yahoo.co.uk, 2salmi@upm.edu.my, 3angahmyz@gmail.com

ABSTRACT
Software testing is often used to verify and validate the output of the system to confirm that no discrepancy
has taken place throughout the development phase. Test case prioritization (TCP) is one of the techniques
applied to modify the order of test cases based on best test scenarios and to prioritize them. The main
objectives of the TCP are to increase the effectiveness of the testing process, while reducing time and cost,
which would increase when the system reaches a certain level of complexity. Numerous TCP techniques
have been proposed in the past; however, only a handful of researches were truly focused on TCP techniques
for test cases involving the sequence of events. TCP technique for sequence of events is more complex
compared to the conventional code-based application due to the properties of the sequence of events. The
size of the sequence of events’ test cases can be infinite and large sized test cases have considerable degrees
of redundancy. This means that there is a possibility for these test cases to have combinations of events with
a large input parameter. Redundancy is one of the major issues that have been discussed by previous
researchers. This paper proposes a technique that can detect the redundancy within the test suites and produce
a unique weight value. This paper will also present how test cases were prioritized based on the obtained
unique weight value. The experiment results obtained indicates that the prioritized test suite is effective
compared with the original test suite. The effectiveness of the proposed approach is evaluated using Average
Percentage of Faults Detected (APFD).

Keywords: Test Case Prioritization, Software Testing, Unique Weight, Event Sequences.

1. INTRODUCTION

A large volume of published studies have
described the effectiveness of the TCP technique
compared to the execution of test cases in a non-
prioritized order [1]. Numerous approaches have
been developed to prioritize test cases based on code
coverage, function coverage, and requirement
coverage [1]. Furthermore, different researchers
have proposed different combinations of factors, but
with the same aims and goals. The primary goal of
the TCP is to maximize the rate of fault detections,
whereby it must be able to detect faults as early as
possible during the testing process [2]. Furthermore,
TCP should be able to reveal faults whenever
specific codes are changed, and to reveal high risk
faults during the early stage of the testing process.

A majority of the previous researches applied
TCP technique in single event test cases. Only a few

researches applied the TCP technique in event
sequence test cases. The flexibility of event
sequence test cases enables the combination of
interactions [3]. However, it is very tedious and
wastes time to test all the possible combinations of
events [4]. The size of the test cases can be larger
because of this reason. This characteristic makes the
application of event sequences even more complex
compared to traditional applications due to the
possibility of the former having infinite input
domain. Furthermore, previous researchers have
neglected to address several issues, such as not
considering the transitions between states and the
value of the internal data states. It is important to
consider the close connection between states and
events to avoid sensitivity problems and the state-
based execution of event sequences test case [5]. A
number of researchers have considered redundancy
as an important factor that can improve the

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6042

effectiveness of the TCP technique. Other factors
that could influence the effectiveness of the TCP
technique are fault matrix, complexity, execution
time, and permutation. According to [6], test cases
within a suite have been compared to determine the
redundancy inside the test suite. However, previous
researchers have not dealt with the value of data
state.

This study is a part of an on-going research
towards enhancing the existing TCP technique for
event sequences. This paper will present the
application of the redundancy factor in the TCP
process by considering the values of internal data
states. Two types of redundancies have been
defined; redundancy type 1, and redundancy type 2.
Redundancy type 1 is linked to the redundancy of
same data state, which may reoccur, but in different
positions within a test case. Meanwhile, redundancy
type 2 is for a scenario where some of date state in a
test case is a subset of another test case within the
test suite. Executing the same test case more than
once would be impractical and would be a waste of
time, efforts, and costs during the testing phase.
Furthermore, the weighting method will be applied
to all test cases to calculate the final priority value.
If similar priority values exist during the final weight
calculations, Jaccard Distance would be used to
break the ties. Meanwhile, the Average Percentage
of Faults Detected (APFD) would be used to
evaluate the effectiveness between prioritized and
original test suites.

The remainder of this paper is organized as
follows. Section 2 describes the previous works
related to TCP techniques. Section 3 contains the
proposed work, and its results are described in
Section 4. Conclusions are drawn in Section 5, and
finally, the acknowledgement is presented in Section
6.

2. RELATED WORKS

There are currently three common
techniques that have been developed to improve the
effectiveness of the testing phase, the test suite
minimization, the test case selection, and the test
case prioritization [7]. The test suite minimization is
used to remove redundant test cases, which would
reduce the size of the test suite. The test case
selection is used to select some of the test cases, and
to change some portion of the codes. The TCP
technique, as previously mentioned, schedules the
test case ordering to maximize the rate of fault
detection. The objective of the TCP is to detect
problems as early as possible, using its improved
fault detection rate and to deliver the application at

the shortest period of time [8]. Test cases with the
highest priorities will be executed earlier than test
cases with lower priorities [9].

However, some researchers have found that test
suite minimization and test case selection are capable
of reducing the duration of the testing phase, but both
can cause the increase of costs [10]. Meanwhile,
other researchers claimed that test suite
minimization can reduce fault detection capability
[11]. Several empirical studies have been conducted
to refute the statement that test suite minimization
can reduce fault detection capability [12]. This view
is supported by Wong, Horgan, Mathur, Lafayette, &
Pasquini (1997), who claimed that the impact of the
test suite minimization can be calculated based on
the percentage of reduction in the fault detection.

Generally, a test case selection would have the
same problem as the test suite minimization, which
is to choose a subset of test cases in the test suite
[11]. Processing a subset of test case is important
because the execution of repeated test cases would
be ineffective, especially for projects that have
limited time, resources, and cost. Instead of having
to choose a subset from the test case, the test
selection consists of how a specific technique is
defined and sought out, and how to identify the
modifications in the program being tested [11].
Previous researches have proposed a number of
approaches using different techniques and criteria,
such as the integer programming, data-flow analysis,
symbolic execution, dynamic slicing, and textual
difference in source code. Integer programming was
the first technique proposed in 1977.

A considerable amount of literature has been
published regarding the TCP technique since it was
first proposed in 1970. Most TCP researches have
provided clear evidence that these prioritization
techniques are beneficial for the testing phase
because of their capability to detect errors as early as
possible, which could reduce time, cost, and
resources [7][10][14]. Based on the literature review,
most researchers believed that apparently, the rate of
fault detection would be increased when various
factors and attributes interact with one another [15].
Furthermore, fault detection offers the highest
chance to break ties in cases of two or more test cases
with the same priority value. One of the main issues
is to prioritize test cases that may have the same
priority value during the TCP processes. The
reviewed literature indicated that cases will be
randomly picked if the case of a tie ever occurs.

According to the systematic literature review
(SLR) conducted for this study in 2016 [16], one of
the research questions was, how far had the previous
researches considered the issue of same priority

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6043

value? Based on the SLR analysis, it was concluded
that only two studies had considered this issue. In
2010, [17] reported that researchers have tried to
solve the issue of same priority value by proposing
four stages of factors, namely, the defect factors,
time factors, cost factors, and complex factors.
However, if the problem is not solved during the
fourth stage, the random technique will be
performed. Random technique is known as an
ineffective technique since it creates bias [1][18][2].
Meanwhile, [18] had successfully enhanced the
existing TCP technique, which uses five coverage
criteria; branch coverage, statement coverage, fault
coverage, function coverage, and path coverage. By
considering all five coverage, [18] had managed to
obtain unique values for each of the test case, by
delaying other test cases that have the same weight,
with the assumption that they cover the same
segment code.

Thus, a few studies have proposed that the TCP
technique should use the multiple criteria, with the
aim of avoiding tie cases from occurring. However,
the perfect combinations of criteria still need to be
investigated. Thus, throughout the years, a huge
number of TCP techniques have been proposed, with
a variety of combination factors to improve the
effectiveness of the test case generation
[1][18];[19];[17];[20];[21]. As mentioned in Section
1, this study was focused on the event sequence test
cases and the data state values. Based on the SLR
analysis conducted in 2016 [16], only 36 percent of
the previous researches have applied event sequence
test cases in their TCP technique. The main problem
with the event sequence test cases, in terms of the
length of the sequences, was that they can be
unbounded. The possible permutations of the event
sequences can cause the test case to become very
large [4]. Thus, the implementation of the TCP
technique for event sequence test cases may differ,
and more complex compared to single event test
cases.

This study had also conducted a second SLR in
2017 to find the perfect combinations of factors that
can influence the effectiveness of the TCP
technique. Based on 70 primary studies, which were
published between 2005 and 2016, this study had
managed to compose a list of the most utilized
factors. Based on this SLR analysis, the top-ranked
factors were fault matrix, redundancy, complexity,
frequency, and requirements. This study had applied
only one factor; redundancy. The detection of
redundancy was in terms of the data state value in
the test suite. [22] had proposed a redundancy
approach, whereby the calculations involved the
similarity degree of the identical transitions between

two test cases as paths. Meanwhile, [23] had
extended the existing redundancy by excluding any
repeated transitions, and had proposed an approach
that can calculate average path lengths and set the
distinction that occurred in both test cases. [23]
presented five more distance functions in their
research in order to detect any sequencing, matching,
or repetitions in the test suite.

[24] reported that by assigning weight to each of
the test case had helped to rank the test cases based
on their importance. The categories of the events
were grouped based on the sensitivity of the events,
as proposed by [25]. However, the proposed
approach did not consider data state values in the
event sequences. In this study, a weight-based
method was proposed, using the redundancy
detections. Next, the test cases were ranked based on
the final weight gained at the end of the experiment.

3. PROPOSED WORK

This study has proposed a TCP technique based
on the redundancy factor. The proposed technique
applied the weighted method, whereby it will
schedule the test cases based on their priority value.
In this study, there is no minimization or elimination
once redundancy is detected. Each of the test cases
will have its priority value based on previously
defined criteria. The highest priority value will be
ranked as the first test case to be executed, and
followed by other priority values. It is possible for
the test case to have combinations of events and
inputs parameter, which might affect the size of the
test suites. Therefore, there are the possibilities for
the test case to have redundant data state. When a test
case is marked as redundant type 1, it will be
checked for redundancy type 2 processes as well.
Fig. 1 shows an overview of the proposed approach.

3.1 Redundancy in Test Case (Type 1)

This paper proposes a 2-phase approach to solve
test case prioritization. In the first phase, the number
of data state (No.of ds, tcj) and the number of
redundant data state (No. of redundant ds, tcj) for
each of the test case were calculated. Both values
were used to calculate dissimilarity weight in the test
case (DWtcj). This type of redundancy was defined
as redundancy type 1. Dissimilarity in weight in a
test case is calculated as shown below:

DWtcj= (No ds tcj - No of redundant ds tcj)/10 (1)

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6044

Figure 1: Steps in Proposed Approach

3.2 Redundancy within Test Suite (Type 2)

When a test case is marked as redundant type 1,
it will be checked for redundancy type 2 processes
too. The second phase has been defined as
redundancy type 2, whereby the process of
redundancy detection is within the test suite. For this
phase, the total number of data state within a test
suite (No. of ds, tsj), the number of redundant data
state within test suite (No. of redundant ds, tsj), the
number of non-redundant data state within test suite
(No.of non-redundant ds, tsj), and the dissimilarity
weight within test suite (DWtsj) were calculated.
Finally, the values of DWtcj and DWtsj were used to
rank all the test cases. Higher values in DWtcj and
DWtsj were prioritized to be executed earlier than
others. Then, the redundancy matrix was developed
for a comprehensive report and to improve visibility.
With the redundancy matrix, it was easier to detect
and find redundancy that existed between test cases.
The following formulas were used to calculate the
dissimilarity weight in test suites.

No non redundant ds tsj = No ds tsj / No of
redundant ds tsj (2)

DWtsj =No non redundant ds tsj /No of ds tsj (3)

4. CASE STUDY

A total of 28 test cases were used as part of the
case study to evaluate the effectiveness of the
proposed technique. Table 1 shows the list of test

cases, which were taken from a simple circular
queue program, as the case study in this research. As
mentioned in Section 3, there were two types of
redundancy; type 1 and type 2. During the early
stage, five variables must be calculated before
moving to the second stage, which is redundancy
type 2. First, the data state value for each test case
was calculated. In addition to the data state value, a
list of test cases that have redundant data state values
were also identified. Then, two more variables were
calculated, namely, the number of data state, and the
number of redundant data state in the test case.
Dissimilarity weight in the test case became the final
value for redundancy type 1. Details of the
calculations are as shown in Section 3.1. Examples
of calculations that were involved in stage
redundancy type 1 are shown below.

4.1 Data State Value in Test Case

The case study is based on the circular queue
concept. The behaviour of the circular queue program
can be described by a constant QSIZE, which holds
the length of the array size. For this case study, the
QSIZE was 10. Meanwhile, other variables became
the front, rear, and len. For example, if the QSIZE
was set to 10, in case the QSIZE was equalled to 10,
the next value will be set to zero. The front and rear
would hold the first and final data. The data state
value would start with the initial value. The initial and
front event would not be considered as redundancy.
The front event would be known as the insensitive
access program, whereby it would only display the
output without causing any changes on the data
structure in any condition [26]. When the process of
adding data begins in the circular queue, the process
starts from the rear and the value would be increased
by 1. Nevertheless, the removal process would begin
from the front of a queue, and the value of the front
event would be increased by 1 [26]. The following
Eq. (4) and Eq. (5) were used to calculate values for
the front and rear:

front = (front + 1)% qSize (4)

rear = (rear + 1)% qSize (5)

Table 2 shows examples of the calculations of

data state values for TC1. Based on the table, the
redundancy had occurred in the array number of 1, 2,
and 3, whereby the front value was 0, the rear value
was 9, and the length value was 0. Furthermore,
redundancy was found in TC5, TC6, TC8, TC9, TC19
and TC21. Table 2 shows that TC1 was the subset of
other test cases in the test suite. Normally, previous

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6045

researchers would apply test suite minimization,
whereby they would eliminate the test case if it was a
subset in the test suite. However, as previously
mentioned, this paper does not feature any
elimination process, based on the concept that all test
cases may have the capability to detect errors.
However, the execution was ranked based on the
priority value.

Table 1: List of Test Cases.

Test
Case

Sequence of Events

TC1 _.remove().remove().remove().add(1).front()
TC2 _.add(1).add(1).add(1).add(1).remove().add(1).add(

1).add(1).add(1).remove().add(1). add(1).
add(1).add(1).front()

TC3 _.add(1).remove().add(1).remove().add(1).
remove().add(1).remove().add(1).remove().add(1).
remove().add(1).remove().add(1).remove().add(1).re
move().add(1).remove().add(1).add(1).
front()

TC4 _.add(1).add(1).add(1).add(1).front()

TC5 _.remove().add(1).remove().add(1).remove().add(1).
front()

TC6 _.remove().add(1).add(1).add(1).add(1).add(1).add(
1).add(1).add(1).add(1).add(1).front()

TC7 _.add(1).add(1).remove().add(1).add(1).remove().fro
nt()

TC8 _.remove().add(1).add(1).add(1).front()
TC9 _.remove().remove().add(1).remove().add(1).remove

().add(1).front()
TC10 _.add(1).add(1).add(1).add(1).add(1).remove().add(

1).add(1).add(1).add(1).add(1).remove().
remove().remove().remove().remove().remove().rem
ove().remove().remove().add(1).
add(1).front()

TC11 _.add(1).remove().remove().remove().front()

TC12 _.add(1).add(1).remove().remove().remove().remove
().front()

TC13 _.add(1).add(1).add(1).remove().remove().remove().
add(1).add(1).front()

TC14 _.add(1).add(1).add(1).add(1).add(1).add(1).add(1).a
dd(1).remove().remove().add(1).add(1).
add(1).add(1).add(1).add(1).front()

TC15 _.add(1).add(1).add(1).add(1).add(1).add(1).add(1).a
dd(1).remove().remove().add(1).add(1).
add(1).add(1).add(1).add(1).front()

TC16 _.
add(1).remove().remove().remove().remove().add(1)
.add(1).front()

TC17 _. add(1).remove().front()
TC18 _. add(1).remove().remove().add(1).add(1).

add(1).add(1).remove().front()
TC19 _. remove().remove().add(1).add(1).

remove().front()
TC20 _.add(1).add(1).add(1).remove().add(1).add(1).add(

1). add(1).add(1).add(1). add(1).remove().
remove()
.remove().remove().remove().remove().remove().re
move().remove().add(1).add(1).
front()

TC21 _.remove().remove().remove().remove().remove().a
dd(1).front()

TC22 _. add(1).remove().remove().add(1).add(1). front()

TC23 _.
add(1).add(1).add(1).add(1).add(1).remove().remove
().remove().remove().remove().add(1) .
add(1).add(1).
add(1).add(1).remove().remove().remove().remove()
.remove().add(1).add(1).
front()

TC24 _.
add(1).add(1).add(1).add(1).add(1).add(1).add(1).ad
d(1).add(1).add(1).remove().remove().
remove()
.remove().remove().remove().remove().remove().re
move().remove().add(1).add(1).
remove().front()

TC25 _. add(1).add(1).add(1).add(1).add(1).front()
TC26 _. add(1).remove().add(1).front()
TC27 _. add(1).add(1).front()
TC28 _. add(1).remove().add(1).remove().front()

Table 2: Calculations of Data State in TC1.

Array
No

Events Data State Value Found in
Test Case

Front Rear Length
0 initial 0 9 0 Not

available
1 remove 0 9 0 5, 6, 8, 9,

19, 21
2 remove 0 9 0 5,6, 8, 9,

19, 21
3 remove 0 9 0 5,6, 8, 9,

19, 21
4 add 0 0 1 5,6, 8, 9,

19, 21
5 front 0 0 1 Not

available

4.2 Number of Data State in Test Case, Number

of redundant data state in Test Case and
Dissimilarity Weight in Test Case

Table 3 shows the values for the number of data

states in test cases (No. ds tcj), the number of
redundant data state in test cases (No. of redundant
ds, tcj) and the dissimilarity weight in test case
(DWtcj). According to the table, dissimilarity weight
of test case for TC1 was 0.00 because all the data
states were redundant. Meanwhile, for TC21, the
value for DWtcj was negative (-0.20) since the value
of the redundant data state in the test case was higher
than the number of data state in the test case.

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6046

Table 3: Calculations of Data State in Test Suite.

Test
Case
No

Number
of Data
State in

Test Case
(No ds

tcj)

Number of
Redundant
Data State

in Test
Case

(No of
redundant

ds tcj)

Dissimilarity
Weight of
Test Case
(DWtcj)

TC1 2 2 0.00
TC2 14 1 1.30
TC3 22 0 2.20
TC4 4 0 0.40
TC5 6 1 0.50
TC6 11 0 1.10
TC7 6 0 0.60
TC8 4 0 0.40
TC9 6 2 0.40
TC10 22 0 2.20
TC11 2 2 0.00
TC12 3 3 0.00
TC13 8 0 0.80
TC14 14 3 1.10
TC15 7 0 0.70
TC16 4 3 0.10
TC17 2 0 0.20
TC18 5 1 0.40
TC19 4 1 0.30
TC20 21 2 1.90
TC21 2 4 -0.20
TC22 4 1 0.30
TC23 22 3 1.90
TC24 23 3 2.00
TC25 5 0 0.50
TC26 3 0 0.30
TC27 2 0 0.20
TC28 4 0 0.40

4.3 Number of Data State in Test Suite, Number

of Redundant Data State in Test Suite and
Dissimilarity Weight in Test Suite

Table 4 shows the values of the number of

redundant data states in test suite, the number of non-
redundant data states in test suite, and dissimilarity
weight in test suite. The total number of data states
in the test suite was 219. The number of data state in
test suite was used to calculate the number of non-
redundant data state in test suite. For example, in
TC1, the number of redundant data state in test suite
showed that there were two redundant data state
values within the test suite. In this case, the data state
in the array number 1 and 3 were redundant with the
TC5, TC6, TC8, TC9, TC19 and TC21.

4.4 Final Weight Table

After the process of detecting redundancy type 1
and type 2, all the values were added to the final

weight table, to calculate the priority value for each
test case. According to Table 5, the test cases were
ranked based on their final weight value. However,
four cases have the same final weight.

Table 4: Calculations of Dissimilarity Weight in Test
Suite.

Test
Case
No

Number
of

Redunda
nt Data
State in

Test
Suite

(No of
redundant

ds tsj)

Number of
Non

Redundant
Data State

in Test
Suite

(No non
redundant

ds tsj)

Dissimilarity
Weight

Within Test
Suite

(DWtsj)

TC1 4 215 0.98
TC2 4 215 0.98
TC3 8 211 0.96
TC4 4 215 0.98
TC5 6 213 0.97
TC6 11 208 0.95
TC7 3 216 0.99
TC8 4 215 0.98
TC9 7 212 0.97
TC10 8 211 0.96
TC11 4 215 0.98
TC12 3 217 0.99
TC13 3 216 0.99
TC14 8 211 0.96
TC15 7 212 0.97
TC16 4 215 0.98
TC17 2 217 0.99
TC18 5 214 0.98
TC19 0 219 1.00
TC20 9 210 0.96
TC21 6 213 0.97
TC22 5 214 0.98
TC23 9 210 0.96
TC24 14 205 0.94
TC25 5 214 0.98
TC26 3 216 0.99
TC27 2 217 0.99
TC28 4 215 0.98

As previously mentioned, if the same final

weight value exists, previous researchers would
often randomly pick the cases to break the ties. This
study applied the Jaccard Distance to solve the same
final weight value. In the first case, TC3 and TC10
have the same final weight value of 3.16. In the
second case, TC4, TC8, TC18, and TC28 shared the
same final weight of 1.38. The third case has a value
of 1.19, which was shared by TC17, and TC27. The
final case, TC1, TC11, and TC12 have the final
weight value of 0.99.

Jaccard Distance is also known as the Jaccard
Similarity Coefficient. The main objective for
applying the Jaccard Distance was to compare the
similarities and diversity of sample sets [27]. This

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6047

study proposed the Jaccard Distance to solve the
same priority value, to measure the similarities
among test cases. Once a test case has been detected
as having the same final weight value with other test
cases, they would be grouped together. Therefore, as
mentioned in Section 4.4, there were four cases,
which meant that there were four different groups. In
this context, the highest distance between the two
test cases would be executed first compared to
others. The Jaccard Distance was calculated using
the following Equation 6:

Jaccard Distance (𝑝௔ , 𝑝௕) = 1 െ
│௣ೌ ∩ ௣್│

│௣ೌ ∪ ௣್│
 (6)

Table 5: Calculations of Dissimilarity Weight in Test
Suite.

Test
Case
No

Dissimilarity
Weight in
Test Case

 (DWtcj)

Dissimilarity
Weight

Within Test
Suite

(DWtsj)

Final
Weight

TC3 2.20 0.96 3.16
TC10 2.20 0.96 3.16
TC24 2.00 0.94 2.94
TC23 1.90 0.96 2.86
TC20 1.90 0.95 2.85
TC2 1.30 0.96 2.28
TC14 1.10 0.96 2.06
TC6 1.10 0.95 2.05
TC13 0.80 0.98 1.78
TC15 0.70 0.97 1.67
TC7 0.60 0.99 1.59
TC25 0.50 0.98 1.48
TC5 0.50 0.97 1.47
TC4 0.40 0.98 1.38
TC8 0.40 0.98 1.38
TC18 0.40 0.98 1.38
TC28 0.40 0.98 1.38
TC9 0.40 0.97 1.37
TC19 0.30 1.00 1.30
TC26 0.30 0.99 1.29
TC22 0.30 0.98 1.28
TC17 0.20 0.99 1.19
TC27 0.20 0.99 1.19
TC16 0.10 0.99 1.09
TC1 0.00 0.99 0.99
TC11 0.00 0.99 0.99
TC12 0.00 0.99 0.99
TC21 -0.20 0.99 0.79

In this study, 𝑝௔ 𝑎𝑛𝑑 𝑝௕ represent test case

number, and it consists of different set of event
sequences. According to [27], the distance value
varies between range 0 and 1. If the distance value is
zero, meaning that 𝑝௔ 𝑎𝑛𝑑 𝑝௕ are same. However, if
the distance value is 1, it indicates that there is no
similarity between 𝑝௔ 𝑎𝑛𝑑 𝑝௕. The similarity will be
based on the data state value in the test case. For

group 1, TC3 is the highest but it has same final
weight with TC10. Through some observations, the
researchers found out that TC3 and TC10 have same
properties as follows:

 Number of data state in the test case.
 Number of redundant data state in the test

case.
 Dissimilarity weight in test case.
 Dissimilarity weight in test suite.
 Number of events in the test case.

Table 6 shows the distance weight table the four
groups. In group 1, TC3 and T10 will be measure
with TC 24 since final weight 3.16 which is owned
by TC3 and TC10. As can be seen from the Table 6,
Jaccard Distance for TC3 and TC24 is 0.98 and
Jaccard Distance for TC10 and TC24 is 0.82. As
mentioned earlier, if the Jaccard Distance is 1, means
there is no similarity between the two test cases.
Furthermore, since final weight for TC24 is the third
highest, then the highest Jaccard Distance will be the
highest priority based on the concept of less
similarity with TC24. For group 1, TC3 will be
executed first compared with TC10. This condition
is different with group 2, whereby based on Table 5;
final weight for TC5 is higher than all the test cases
in group 2. Therefore, the Jaccard Distance for each
of the test cases will be measured with TC5.
However, the sorting will be different with group 1,
whereby in group 2, test case that have Jaccard
Distance value near with 0 will be execute after TC5
with the concept of that test case have similarity with
TC5, therefore the capability to detect faults may
same with TC5. The final schedules after the Jaccard
Distance calculations are TC28, TC18, TC8 and
followed by TC4.

Table 6: Distance Weight Table

Group Test
Case
No

Final Weight Jaccard Index Jaccard
Distanc

e
1 TC3 3.16 0.02 0.98

TC10 3.16 0.18 0.82
2 TC4 1.38 0.00 1.00

TC8 1.38 0.20 0.80
TC18 1.38 0.36 0.64
TC28 1.38 0.40 0.60

3 TC17 1.19 0.50 0.50
TC27 1.19 0.17 0.83

4 TC1 0.99 0.00 1.00
TC11 0.99 0.67 0.33
TC12 0.99 0.14 0.86

Group 3 had applied the same concept as in group

2 since the final weight for TC22 was higher than

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6048

1.19. With the 0.09 difference, TC22 was used to
measure the Jaccard Distance for TC17 and TC27.
Then, TC17 was executed first compared to TC27
since the value of Jaccard Distance for TC17 was
close to 0. Meanwhile, for group 4, after comparing
with TC16, the schedule for this group began with
TC11, TC12, and followed by TC1. Table 7
illustrates the final test case prioritization process for
all test cases after the Jaccard Distances have been
calculated. As mentioned in Section 3, this study has
no minimization process. Once the same priority
value exists, the test cases will be grouped according
to their final weight value. The final schedule was
within the group only, for example in group 1. Once
TC3 was detected as having the highest Jaccard
distance, TC10 was queued after TC3. TC10 was not
queued as the last test case because the concept of ‘at
the beginning of the prioritization process’ was
implemented; TC10 still held the highest value
compared to other test cases.

Table 7: Final Test Case Prioritization Table.

Queue No
Before
Jaccard
Distance
Process

Queue No
After

Jaccard
Distance
Process

Test
Case
No

Final
Weig

ht

Jaccard
Distance

1 1 TC3 3.16 0.98
2 2 TC1

0
3.16 0.82

3 3 TC2
4

2.94 Not
available

4 4 TC2
3

2.86 Not
available

5 5 TC2
0

2.85 Not
available

6 6 TC2 2.28 Not
available

7 7 TC1
4

2.06 Not
available

8 8 TC6 2.05 Not
available

9 9 TC1
3

1.78 Not
available

10 10 TC1
5

1.67 Not
available

11 11 TC7 1.59 Not
available

12 12 TC2
5

1.48 Not
available

13 13 TC5 1.47 Not
available

17 14 TC2
8

1.38 0.60

16 15 TC1
8

1.38 0.64

15 16 TC8 1.38 0.80
14 17 TC4 1.38 1.00
18 18 TC9 1.37 Not

available
19 19 TC1

9
1.30 Not

available

20 20 TC2
6

1.29 Not
available

21 21 TC2
2

1.28 Not
available

22 22 TC1
7

1.19 0.50

23 23 TC2
7

1.19 0.83

24 24 TC1
6

1.09 Not
available

26 25 TC1
1

0.99 0.33

27 26 TC1
2

0.99 0.86

25 27 TC1 0.99 1.00
28 28 TC2

1
0.79 Not

available

4.5 Redundancy Matrix

Matrix is widely used in software metrics.
[28]had applied weight matrix and joint entropy
matrix to represent the structural complexity of a
class diagram. Meanwhile, [9] applied the adjacency
matrix to show the composite control of flow graph
for bank ATM systems. In this study, the redundancy
matrix was used as a comprehensive report that
shows the occurrence of redundancy type 1 and
redundancy type 2 within the test suite. Compared to
a structural report, the redundancy matrix would be
easier to understand, especially for a large test suite.
The proposed redundancy matrix consisted of X-axis
(rows) and Y-axis (columns). It can be read starting
from the X-axis (rows) and followed by the Y-axis
(columns). Both the row and column indicated the
relationship between two test cases. Three types of
marks can be inserted in each cell, as shown in the
following Table 8:

Table 8: Descriptions for the Redundancy Matrix.

Type Descriptions

0 Test case (X) is compared with Test
case (Y) and no redundancy detected

1 Exists redundancy TYPE 1 in the test
case

2 Exists redundancy TYPE 2 within the
test suite

The redundancy matrix is as shown in the

annexure. From the redundancy matrix, for TC1, it
can be summarised that there was a redundancy type
1 or there were redundancies of data state in the test
case itself. Meanwhile, redundancy type 2 existed
between TC1 and TC5, TC6, TC8, TC9, TC19 and
TC21. The redundancy matrix can save a lot of time
in terms of the process of verifying any redundancy
within the test suite.

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6049

4.6 Measuring Effectiveness
The prioritized test cases were measured to prove

their effectiveness to detect faults. In this study, the
Average Percentage of Fault Detected (APFD) was
applied. APFD represents the weighted average of
the percentage of faults detected during the
execution of the test suite [29]. The APFD values can
range between 0 and 100, and the higher APFD value
shows a higher fault detection capability [30]. A
large number of researchers had chosen the APFD as
a metric to measure the effectiveness of their
proposed techniques[29];[21];[20];[9];[31]. Based
on the systematic literature review (SLR) conducted
for this study in 2016 [16], the most frequently used
evaluation metric is the APFD with 58 percent. The
SLR was conducted using 50 primary studies, which
were selected after a few stages, as proposed by [32].
However, some of the previous researchers had
applied more than one metric to achieve the same
objective. According to [29],the APFD can be
calculated as follows:

APFD = 1 െ
∑ ி೘

భ

௠௡
 ൅

ଵ

ଶ௡
 ሺ7ሻ

The variable m refers to the number of faults,

while the variable F belongs to the position of the
first test case that detects fault m. The variable n
refers to the total number of test cases in the test
suite. In this study, one subject program, which was
implemented in Java Language, namely Circular
Queue was selected. Jester was used to create
mutants for each of these subject programs. The
number of mutants was varied when injected in the
subject program. Table 9 shows the details of the
mutants that were generated by the Jester using the
mutation operators.

Table 9: Jester Mutation Operators.

Type Descriptions

No Mutation Operator
1. Change numerical constants

 Mutate 0 to 1
 Mutate 5 to 6

Mutate 9 to 0
2. Flip Boolean values

Mutate true to false and vice versa
3. Mutate if (condition) to if (true ||

condition)
4. Mutate if (condition) to if (false &&

condition)
5. Mutate ++ to – and vice versa
6. Mutate != to == and vice versa

The comparison is drawn between prioritized test

suite and original test suite. As mentioned earlier,
this study applied weighted method to produce a

unique weight for each test case. Most of the
previous TCP technique applied random technique
once same priority exists during the prioritization
process [17], [19]. From the Fig. 2, it is observed that
the prioritized test suite managed to identify faults
earlier. The results shows the abilities of the 28 test
cases detect faults in early stage after the Circular
Queue program has been injected by 16 faults. The
APFD value for the prioritized test suite was 0.81,
while the APFD value for the original test suite was
0.74. The results proved that the prioritized test suite
had yielded better fault detections compared to the
original test suite. Thus the prioritized test suite will
reduce execution time by prioritizing the most
important test case. In this study, the main
observation is to measure the effectiveness of the
proposed method. In future work, the researchers
will try to apply the same method with case study
from the industry. The APFD values for the
prioritized test suite either higher or similar with the
original test suite.

Figure 2: APFD Values for Prioritized Test Suite and
Original Test Suite

5. CONCLUSIONS

This study has proposed a weight-based method
based on the redundancy factor. The execution of the
test case was sorted based on the weight value. The
highest weight was executed earlier than the others,
with the concept of the highest weight is more
important, and more faults could be detected as early
as possible. There were two types of redundancy;
redundancy that occurred in the test case itself and
redundancy that occurred within the test suite. The
redundancy matrix was represented in this study as a
summary and a comprehensive report, especially for
large test suites. Then, when more than one test case
shared the same weight, all test cases were grouped
together, and would go through to the next stage,
using the Jaccard Distance approach. The concept of

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6050

when the Jaccard Distance value is close to 0 was
used. Thus, the test case would be ranked as the first
test case in the group, and then, followed by the
others. This approach can break ties and solve the
same priority value issue. For the experiments, 28
test cases have been chosen. Meanwhile, Jester and
Circular Queue program written in Java language
was selected for the process of fault detection. The
Circular Queue program was injected by mutants
that have already been identified by the Jester.
Finally, the effectiveness of the proposed technique
was measured using the APFD. This evaluation was
conducted between the prioritized test suite and the
original test suite. The final results were positive,
and suggestions for future work would be to include
more combinations of factors, which were listed as
the top-ranked factors in the SLR of this study.
However, one limitation has been found during the
experiment; the program consists of one class only.
Thus, we believed that there would be more steps
involved during the prioritization process if the
program consists of more than one class.

6. ACKNOWLEDGEMENTS

The authors would like to acknowledge the
Universiti Putra Malaysia for the financial support
under the Journal Publication Fund, Research
Management Centre, Universiti Putra Malaysia.

REFRENCES:

[1] S. Gupta, H. Raperia, E. Kapur, H. Singh,

and A. Kumar, “A NOVEL APPROACH
FOR TEST CASE,” Int. J. Comput. Sci.
Eng. Appl., vol. 2, no. 3, pp. 53–60, 2012.

[2] P. Tonella, P. Avesani, and A. Susi, “Using
the Case-Based Ranking Methodology for
Test Case Prioritization,” 22nd IEEE Int.
Conf. Softw. Maint., pp. 123–132, 2006.

[3] C. Klammer, R. Ramler, and H. Stummer,
“Harnessing Automated Test Case
Generators for GUI Testing in Industry,”
2016 42th Euromicro Conf. Softw. Eng. Adv.
Appl., pp. 227–234, 2016.

[4] S. Chaudhury, A. Singhal, and O. P.
Sangwan, “Event- Driven Software Testing
– An Overview,” Int. J. Adv. Res. Comput.
Eng. Technol., vol. 5, no. 4, pp. 1189–1193,
2016.

[5] X. Yuan, M. B. Cohen, and A. M. Memon,
“GUI interaction testing: Incorporating
event context,” IEEE Trans. Softw. Eng.,
vol. 37, no. 4, pp. 559–574, 2011.

[6] P. A. Brooks and A. M. Memon,

“Introducing a test suite similarity metric for
event sequence-based test cases,” IEEE Int.
Conf. Softw. Maintenance, ICSM, pp. 243–
252, 2009.

[7] C. Catal and D. Mishra, “Test case
prioritization: a systematic mapping study,”
Softw. Qual. J., vol. 21, no. 3, pp. 445–478,
2013.

[8] C. P. Indumathi and K. Selvamani, “Test
Cases Prioritization Using Open
Dependency Structure Algorithm,”
Procedia Comput. Sci., vol. 48, no. Iccc, pp.
250–255, 2015.

[9] V. Panthi and D. P. Mohapatra, “Generating
and evaluating effectiveness of test
sequences using state machine,” Int. J. Syst.
Assur. Eng. Manag., no. Jorgensen 2008,
2016.

[10] H. Do, S. Mirarab, L. Tahvildari, and G.
Rothermel, “The Effects of Time
Constraints on Test Case Prioritization: A
Series of Controlled Experiments Software
Engineering,” IEEE Trans. Softw. Eng., vol.
36, no. 5, pp. 593–617, 2010.

[11] J. Frolin S. Ocariza, G. Li, K. Pattabiraman,
and A. Mesbah, “Automatic fault
localization for client-side JavaScript,”
Softw. Testing, Verif. Reliab., vol. Volume
21, no. Issue 3, pp. 195–214, 2015.

[12] W. Lafayette, “Effect of Test Set
Minimization on Fault Detection
Effectiveness,” J. Softw. Pract. Exp., vol. 28,
no. July 1996, pp. 347–369, 1998.

[13] W. E. Wong, J. R. Horgan, A. P. Mathur, W.
Lafayette, and A. Pasquini, “Test Set Size
Minimization and Fault Detection
Effectiveness : A Case Study in a Space
Application *,” IEEE Comput. Soc. Int.
Comput. Softw. Appl. Conf., no. 1, pp. 522–
528, 1997.

[14] H. Do, G. Rothermel, and A. Kinneer,
“Prioritizing JUnit Test Cases : An
Empirical Assessment and Cost-Benefits
Analysis,” pp. 33–70, 2006.

[15] Y. T. Yu and M. F. Lau, “Fault-based test
suite prioritization for specification-based
testing,” Inf. Softw. Technol., vol. 54, no. 2,
pp. 179–202, Feb. 2012.

[16] J. Ahmad and S. Baharom, “A Systematic
Literature Review of the Test Case
Prioritization Technique for Sequence of
Events,” Int. J. Appl. Eng. Res., vol. 12, no.
7, pp. 1389–1395, 2017.

[17] S. Roongruangsuwan and J. Daengdej, “Test
case prioritization techniques,” J. Theor.

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6051

Appl. Inf. Technol., pp. 45–60, 2010.
[18] A. Ammar, S. Baharom, A. A. A. Ghani, and

J. Din, “Enhanced Weighted Method for
Test Case Prioritization in Regression
Testing Using Unique Priority Value,” 2016.

[19] C.-Y. Huang, C.-S. Chen, and C.-E. Lai,
“Evaluation and analysis of incorporating
Fuzzy Expert System approach into test suite
reduction,” Inf. Softw. Technol., vol. 79, pp.
79–105, 2016.

[20] R. Pradeepa and K.VimalaDevi,
“Effectiveness of Testcase Prioritization
using APFD Metric : Survey,” Int. J.
Comput. Appl., vol. 0975–8887, pp. 1–4,
2013.

[21] S. Sampath and R. C. Bryce, “Improving the
effectiveness of test suite reduction for user-
session-based testing of web applications,”
Inf. Softw. Technol., vol. 54, no. 7, pp. 724–
738, Jul. 2012.

[22] E. G. Cartaxo, D. L. Machado, and F. G. O.
Neto, “On the use of a similarity function for
test case selection in the context of model-
based testing,” no. July 2009, pp. 75–100,
2011.

[23] B. Coutinho, E. Gadelha, and A. Emı,
Analysis of distance functions for similarity-
based test suite reduction in the context of
model-based testing. 2014.

[24] C. Y. Huang, J. R. Chang, and Y. H. Chang,
“Design and analysis of GUI test-case
prioritization using weight-based methods,”
J. Syst. Softw., vol. 83, no. 4, pp. 646–659,
2010.

[25] M. Memon, M. E. Pollack, and L. Soffa,
“Using a Goal-driven Approach to Generate
Test Cases for GUIs,” Proc. 1999 Int. Conf.
Softw. Eng., pp. 257–266, 1999.

[26] M. A. Sapaat and S. Baharom, “A
Preliminary Investigation Towards Test
Suite Optimization Approach for Enhanced
State-Sensitivity Partitioning,” no.
November, pp. 40–45, 2011.

[27] A. B. Sanchez, S. Segura, and A. Ruiz-
Cortes, “A Comparison of Test Case
Prioritization Criteria for Software Product
Lines,” Softw. Testing, Verif. Valid. (ICST),
2014 IEEE Seventh Int. Conf., pp. 41–50,
2014.

[28] Y. Zhou and B. Xu, “Measuring structural
complexity for Class Diagrams : An
Information Theory Approach,” Proc. ACM
Symp. Appl. Comput., vol. 2, pp. 1679–1683,
2005.

[29] S. Elbaum, A. Malishevsky, and G.

Rothermel, “Incorporating varying test costs
and fault severities into test case
prioritization,” Proc. 23rd Int. Conf. Softw.
Eng. ICSE 2001, pp. 329–338, 2001.

[30] H. Srikanth, C. Hettiarachchi, and H. Do,
“Requirements based test prioritization
using risk factors: An industrial study,” Inf.
Softw. Technol., vol. 69, pp. 71–83, 2016.

[31] H. Srikanth, M. Cashman, and M. B. Cohen,
“Test case prioritization of build acceptance
tests for an enterprise cloud application: An
industrial case study,” J. Syst. Softw., vol.
119, pp. 122–135, 2016.

[32] B. Kitchenham and S. Charters, “Guidelines
for performing Systematic Literature
Reviews in Software Engineering,” 2007.

Journal of Theoretical and Applied Information Technology
30th September 2018. Vol.96. No 18

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6052

 ANNEXURE 1:

