
Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6256 

 

A SOLUTION FOR TRAVELING SALESMAN PROBLEM 

USING GREY WOLF OPTIMIZER ALGORITHM 

1AMEEN SHAHEEN, 1AZZAM SLEIT, 1SALEH AL-SHARAEH 

1 Computer Science Department, King Abdullah II School for Information Technology, The University of 
Jordan, Amman 11942, Jordan 

E-mail: aminalshahin@gmail.com, azzam.sleit@ju.edu.jo, ssharaeh@ju.edu.jo 

ABSTRACT 

This paper presents an algorithm based on Grey Wolf Optimizer (GWO) for solving the Traveling 
Salesman Problem (TSP), which is called (GWO-TSP). Traveling Salesman Problem is a well-known NP-
Hard problem in optimization which aims at finding the shortest path between cities, where each city must 
be visited exactly once. The GWO is a recently established meta-heuristic algorithm for solving 
optimization problems which has successfully solved many optimization problems. GWO-TSP has been 
compared with well-regarded algorithms such as: Chemical Reaction Optimization (CRO) and Genetic 
algorithm (GA). In addition, GWO-TSP has been evaluated analytically and by using simulations in terms 
of error rate and execution time. The algorithms are tested on a number of benchmark problems. 
Experimental results show that GWO is promising in terms of optimal cost, error rate and standard 
deviation in comparison with other algorithms.   

Keywords: Grey Wolf Optimizer, Traveling Salesman Problem, Optimization Problems, Meta-Heuristic.

1. INTRODUCTION 

     While the number of cities has increased 
significantly, mobility has become one of the 
challenges of daily life because of the existence of 
many dissimilar ways to reach the same city [1]. 
Some Algorithms could be used to guide people 
who use any of transportation or movement 
methods like (car, walking, train, and bus) to reach 
its destination in the shortest path [2]. From the 
point of driving travel, we can discover that the 
driving travel problem can be classified as a kind 
of Travel Salesman Problem. 
 
     Traveling Salesman Problem (TSP) has 
received much consideration from computer 
researchers and mathematicians as it’s so easy to 
describe and so difficult to solve. The centrality of 
the TSP is that it is illustrative of a bigger class of 
problems known as combinatorial optimization 
problems (COP) [3]. The TSP problem has a place  
in the class of such problems known as NP-
complete as shown in Figure 1. Specifically, if one 
can find an efficient (polynomial-time) algorithm 

for the TSP, at that point efficient algorithms could 
be found for all others [4]. 

 
     The TSP is the problem of finding the shortest 
path between nodes or cities [3]. The problem is to 
create the shortest tour in aggregation manner to 
visit each node exactly once and then return to the 
starting node. 

 
     TSP is an NP-Complete problem, where it 
requires a considerably large amount of 
computational time and resources for solving it. 
Since it is a permutation problem. This class of 
problems is usually much harder to solve than 
subset problems as there are n! different 
permutations of n objects [6]. 

 

1.1 TSP Formulation: 

TSP is formulatized as follow: 



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6257 

 

 Let  V ൌ ሼ1, 2, … , nሽ be the vertices of 
graph G. 

 Then a permutation p ൌ  ሼpଵ, pଶ, … , p୬ሽ 
of vertices in V defines a unique tour 
consisting of edges ሺp୧ , p୧  1ሻ, 
where i ൌ  1, 2, … , n െ 1, and the 
edge ሺp୬, pଵሻ. 

 The cost of p, denoted as Cሺpሻ, is the sum 
of the cost of edges in the associated 
tour.The problem is to find a minimum 
cost permutation p, given the edge 
weights. 

     A tour is a simple cycle, which starts and ends 
at vertex 1. Every tour consists of an edge ሺ1, kሻ 
for some k inV െ ሼ1ሽ and a path from vertex k to 
vertex 1. The path from vertex k to vertex 1 goes 
through each vertex in V െ ሼ1, kሽ exactly once and 
if the tour is optimal then the path from k to 1 
must be the shortest path going through all vertices 
in V െ ሼ1, kሽ. Hence, the principle of optimality 
holds, so if we let gሺi, Sሻ be the length of the 
shortest path starting at vertex i going through all 
vertices in S and terminating at vertex 1 then 
gሺ1, V െ ሼ1ሽሻ is the length of an optimal salesman 
tour [7]. 

 

1.2 TSP Example: 

     From Figure 2, an optimal tour of this example 
(graph) has length 8 from node A, which follows 
the path of: 

𝐴 → 𝐶 → 𝐵 → 𝐷 → 𝐴 

     

 

Figure 2. TSP Example. 

     Due to the importance of the TSP, many 
researchers solve it using different approaches; 
such as Bee Colony [8], Genetic algorithm [9] and 
Chemical Reaction Optimization [10]. These 
methodologies do not generally locate the optimal 
solution. Rather; they will often find the near-
optimal solutions for the problem. Most of these 
algorithms called Swarm optimization (SO) [11] or 
Meta-Heuristic optimization mechanisms [12]. 
Swarm optimization is attempt to design 
algorithms or distributed problem-solving devices 
inspired by the collective behaviour of social 
insect colonies and other animal societies [11], 
which can be used to solve optimization problems. 
As an example in natural systems of Swarm 
optimization are Bird Flocking [13], Bacterial 
Growth [14], Ant Colonies [15], Fish Schooling 
[16] and Firefly [17]. 

 

1.3 Grey Wolf Optimizer (GWO)  

     In Meta-Heuristic optimization mechanisms, 
the primary categories of these techniques are 
Single-Solution-Based and Population-Based; in 
the first category, the search begins with a single 
elect solution [18]. This unique elect solution is 
enhanced over several iterations. In the second 
category, it represents the optimization by starting 
with a set of random solutions; this population is 
enhanced over the course of iterations. The main 
advantage that characterizes the population-based 
meta-heuristic over the single-based algorithms is 
its' high exploration power. This power is attained 
as it works to find a global solution rather than 
local ones. These solutions are ordinarily thought 
to be good enough in light of the fact that they are 
as well as can be expected to be found in a 
reasonable amount of time (Polynomial time). In 
this way, optimization often takes the role of 
finding the best solution possible in a reasonable 

A

D

B

C

1 

3

5 

2

2

1



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6258 

 

amount of time [19]. The Grey Wolf Optimizer 
(GWO) is also Swarm Optimization and Meta-
Heuristic algorithms where there many researchers 
used it to solve many optimization problems, 
where it obtained good results, such like: 
Scheduling problem [21], Economic Emission 
Dispatch[22] and Parameter Estimation in Surface 
Waves [23].  

     The inspiration for GWO is from a species of 
wolves called the Grey Wolf (Canis lupus), by 
imitating its hunting methods and hierarchical 
pack distribution, which are referred to as; Alpha 
(α), Beta (β), Delta (δ), and Omega (ω); these are 
used to imitate the series of commands as shown 
in Figure 3 [20]. As seen, sovereignty reclines 
from top to bottom. The first level is Alpha (α), 
which is the leader, which is not necessary to be 
the most robust wolf but the superior to other 
wolves in managing the pack. Thus it is 
responsible for the decision making. The second 
level is Beta (β), which helps Alpha in decision 
making. Thus, it represents as the mentor to Alpha 
and an educator to the pack. The third level is 
Delta (δ) which controls Omega (ω). This category 
could be Scouts, sentinels, elders, hunters, and 
caretakers. Finally, the fourth level is Omega (ω) 
that acts as the scapegoat and gives up to all 
dominant wolves.  

 
 
 
     The main contributions of this study are 
outlined as follows: 

 This study adapted GWO to solve TSP 
problem and it’s executed sequentially on 
a number of different size datasets of TSP 
taken from the World TSP [44] and 
measure performance in terms of 
execution time, optimal cost, error rate 
and standard deviation. 

 In order to compare the results of GWO 
with other meta-heuristic algorithms, GA 
(Genetic algorithm) and CRO (Chemical 
reaction optimization) are chosen and 
adapted to solve TSP. The performance 
metrics in terms of execution time, 

optimal cost, error rate and standard 
deviation are computed. 

 A comparison between GWO, CRO, and 
GA in terms of all performance metrics. 
The GWO shows better performance 
results than alternative algorithms in 
terms of optimal cost, error rate and 
standard deviation. 

 

     The remaining of this paper is structured as 
follows: in Section II, a work related to this paper 
is illustrated. Then in section III, we address our 
proposed model for GWO algorithm for solving 
TSP. Section IV shows the experimental results 
and discussions. Finally, conclusions and future 
work are presented in section V.  
 
2. RELATED WORKS 

     Several researchers have been conducting 
research on solving TSP and apply their algorithm 
on different topologies; below are some of these 
very recent studies. 
 
     One of the approaches, which is used as a 
solution for the TSP, is based on dynamic 
programming by the study described in [24]. The 
authors describe how to use dynamic programming 
to solve the TSP, where they explained that TSP 
needs O(n!) to find all possible path in brute force 
approach, where the goal from using dynamic 
programming to minimize complexity to reach 
non-polynomial time less than O(n!).   The main 
idea they follow is to divide TSP to sub-problems, 
each one presents a partial solution, then at the end 
of each sub-solution, the algorithm starts searching 
for next node to extend the tour, which is started as 
a sub-solution. Depends on their approach there is 
at most 2n× n sub-problems and each one takes 
linear time to be solved, then the total time would 
be O (n2 * 2n). Another approach for solving TSP 
is a genetic algorithm. The authors in [25] 
proposed a heuristic method to solve TSP. Based 
on a combination of genetic algorithm and an 
improvement to local tour; they used traditional 
GA with up to 41 sets and symmetric distance and 
up to 442 cities. They reported that their approach 
to find the optimal solution in most cases within 
10 seconds, they don’t use mutation step but they 
use immigration step, which is conduct to produce 
new generation from scratch. In [26], the authors 
proposed a novel Practical Swarm Optimization 
(PSO) for solving the TSP. They used a search 
strategy and crossover elimination technique to 
speed up the convergence, they reported that a 

Figure 3. Hierarchy Of Grey Wolf [20]. 



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6259 

 

large scale of nodes could be solved using their 
approach compared with another swarm algorithm. 
They also proposed another PSO-algorithm to 
solve the TSP by generalizing chromosome, which 
is used in GA. This time they used two search 
techniques to speed up convergence. The study 
presented in [27], proposed a solution for the TSP 
presuming that cities represent a directed graph 
and the cost between every two cities is cij> 0, the 
goal was to find G. G is a directed cycle tour 
includes all vertex in V, where V is set of vertices. 
In addition, to find G it should be the minimum 
cost tour. They used a matrix to point all edges 
between cities then calculate costs for each city to 
reach any other city in the matrix directly or 
through other connected pairs. At last, they merge 
costs that they calculated and find the minimum 
one and name it as the optimal tour. They reported 
an analytical result supported by example showing 
that the time needed to solve the TSP using his 
proposed approach would be O (n * 2n). Also, they 
were very clear that this solution is not that 
efficient even for a modest number of cities. A 
recent meta-heuristic algorithm used to solve TSP 
is in [28], where the authors used the Firefly 
Algorithm to solve TSP. The experimental results 
obtained on standard TSP instances show that 
Firefly Algorithm (FA) provides better results than 
ACO, GA, and SA in most of the instances. In 
[29], authors used approximation algorithms to 
find the near-optimal solution, the approximation 
algorithm used for maximization or minimization 
based on the problem, when it comes to TSP it is 
minimization. They focused on a special case of 
TSP, which is Metric TSP (the distance between 
two cities is the same in each opposite direction). 
Then they proposed a parallel two-approximation 
algorithm for metric TSP. Finally, they reported 
that the algorithm found near optimal solution with 
a significant reduction in runtime. Also, authors in 
[30] proposed an algorithm based on Chemical 
Reaction Optimization and Lin-Kernighan local 
search for the Traveling Salesman Problem as a 
sequential approach. Experimental results show 
that the proposed algorithm is efficient. In [31], 
authors utilized Grey Wolf Algorithm to solve the 
Capacitated Vehicle Routing Problem, authors 
present a hybrid algorithm ‘K-GWO’ based on 
GWO and the traditional K-means clustering 
algorithm. Then they are developing two new 
clustering heuristics. The resulting algorithm is 
used in the clustering phase of the cluster-first 
route-second method to solve the CVR problem. 
The algorithm is tested on a number of benchmark 
problems. Better results are obtained using the 

hybrid model K-GWO. The study presented in 
[32] present a hybrid algorithm based on CRO and 
Greedy algorithms called Greedy Chemical 
Reaction Optimization (GCRO) for solving TSP 
problem, authors firstly solve the TSP problem 
using the basic version of CRO then the solution 
enhanced  by hybridizing it with a greedy strategy. 
The proposed approach obtained better results than 
CRO and GA in term of quality of the solution. 
 
     Because of the importance of TSP and its 
applications [33], this study presents a solution to 
the TSP by using the GWO, where GWO is a 
recent establish meta-heuristic optimization 
mechanisms and its success in solving many 
optimization problems with good results. In order 
to compare the result of GWO with other meta-
heuristic algorithms, GWO will be compared with 
GA and CRO. GA regardless of achieving great 
success in solving many optimization problems, it 
is also used for comparison in most meta-heuristic 
optimization research like [34, 35, 36, 37, 38]. 
Also, CRO used to compared with GWO because 
it is one of the newest meta-heuristic algorithms 
where it also obtained good results in solving NP 
problems as [39, 40, 41, 42, 43]. 
 

3. PROPOSED APPROACH “GWO-TSP 
ALGORITHM” 

     In this study, we employed the concept of 
GWO to solving TSP. The proposed solution is 
implemented sequentially using standard JAVA 
language. 

     GWO is a new nature-inspired meta-heuristic 
(Swarm intelligence), where this type of 
algorithms are inspired by natural systems [20]. 
GWO gets its name from the nature of the social 
hierarchy of wolves, as well as their hunting 
behaviour. The Hunting behaviour of Grey Wolves 
is split into four procedures: (1) Chasing, (2) 
Encircling, (3) Hunting and (4) attacking the 
victim. In chasing phase, the Algorithm considers 
that α is the best solution; β is the second best 
solution and δ is the third best solution. However, 
ω represents the rest of the candidate solutions. 
Thus the hunting is led by the dominant wolves (α, 
β, and δ). In other words, Grey Wolves could 
recognize the position of the prey through an 
iteration process and surround it, where in the 
encircling phase; Grey Wolves bounded the victim 
through the hunt (optimization) by calculating the 
distance between the locations of the prey. In the 
hunting phase, the hunt generally is led be the 
leader (α). However, sometimes β and δ contribute 



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6260 

 

in hunting. In another hand, there is no idea about 
the position of the prey that represents the 
optimum. Therefore, the algorithm assumes that α, 
β, and δ has preferable knowledge about the 
position of prey. Thus, the algorithm saves the first 
three best solutions then update the locations of the 
rest wolves (ω) depending on the position of the 
dominant wolves (best search agent) and in 
attacking phase where it’s the final phase, the 
hunting proceeding obtained the optimization 
solution the prey stops proceeding.  

     In GWO, there are four types of the wolf: 
Alpha (α), Beta (β), Delta (δ), and Omega (ω) and 
the prey. Wolfs applied the hunting methods to 
hunt prey, this is being implemented in a 
hierarchical way until Alpha wolf take the decision 
to attack.  

TSP contains a number of cities. While there is a 
cost of traveling between each pair of cities, the 
objective is to find the shortest path going through 
all cities. This means a simple cycle tour, which 
starts and ends at city 1. By applying GWO to find 
the possible solution for TSP, Figure 4 presents the 
pseudo-code for the proposed "GWO_TSP" 
algorithm. Table 1 shows the main attributes and 
their meaning related to the proposed algorithm 
"GWO_TSP" in comparison with wolfs meaning 
in GWO.  

Figure 4. The Pseudo Code Of GWO For Solving TSP. 

Algorithm1: "GWO-TSP" 
Input: TSP problem. 
Output : Shortest tour among all cities 
1//Initialization phase 
2 Population size []. 
3 Preys : Initial and next preys selection size = 3;  
4 Population [ ].  
5 Select 3 random preys from city map and added as initial 
population.   
6 While Population.size < Population [ ] and   
`   FullTour (Population [ ])// Iteration phase 
7    { 
8     For each Population [i]  
9        Calculate the destination of all wolfs  
10        Xα = next best wolf from city map. 
11        Xβ = next second wolf from city map. 
12        Xδ= next third wolf from city map.  
13        Update Population as: 
14        Population [i]  = Population [i] + Xα. 
15        Population [i+1] + Xβ // New population 
16     Population [i+2] + Xδ//  New population 
17        Calculate fitness for each Population.  
18     End for 
19   If Population> Population.size  
20        Remove most costly tour.  
21   End if 
22   } 
23   return X alpha // final stage 

Table 1: The PROFILE of GWO-TSP 

GOW meaning GWO-TSP meaning 
Grey wolf individual Candidate solution: a tour 
Prey Start city 
Grey wolfs The remaining cities 
Alpha (α) wolf Nearest city to the start city. 
Beta (β) wolf Second nearest city to the start 

city. 
Delta (δ) wolf Third nearest city to the start 

city. 
Number of iterations Number of solutions. 
Fitness function Current optimal TSP solution. 
 

     As in [20], GWO has three main stages:  

1) Initialization stage. 

2) Iterations stage. 

3) Final stage. 

     The GWO-TSP algorithm, as shown in Figure 4 
(see lines 1, 6 and 23, present these three stages). 
First, the initialization stage can be shown in 
Figure 4 (see lines 1-5) to assign initial values for 
the algorithm parameters. Each individual in the 
Population is an array, which represents the 
maximum number of candidate solutions. While 
each of them consists a full tour as in Table 1. 
Next, initialize and assign the value of three preys, 
this is because as the concept of GWO, its assumes 
that first three wolves (α, β, and δ) has preferable 
knowledge about the position of prey and as Table 
1 each prey represent a city from the city map. 
Population (see line 4) is an empty array used to 
constructing the candidate solutions. In order to 
start building solutions, three preys (or cities) will 
selected randomly from the city map (data-set) and 
added as an initial population where all towns that 
surrounding them are considered the grey wolves 
which is the final step in the initialization stage. 

     The goal of the Iteration stage is to generate 
and build the candidate solutions (or tours) until 
reaching the best solution. Iteration stage is shown 
in Figure 4 (see lines 6-22). After generating the 
three required population as in the initialization 
stage, each of them will contain a prey that 
surrounded by a group of wolves. The function 
(see line 9) used to calculate the destination of all 
wolfs from the prey then returns the nearest three 
wolfs from the prey and added to X α, Xβ, and Xδ 
respectively. Now, based on the positions of the 
three best wolves, the  Xα will be added to the 
original population and two new population will 
be created and added the prey in each one plus Xβ 
and Xδ respectively. That's mean, each population 



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6261 

 

will generate two new populations and each of 
them will contain two preys. In other words, after 
the first iteration, the number of population will be 
equal nine and each of them will contain two 
preys. Next, the algorithm will calculate the fitness 
for each population, which means, the cost of 
traveling between cities. While increasing of 
number of population, the function (see line 20) 
used to remove the most costly tour. This will 
happen when the number of the population is 
larger than the allowed population size. Iteration 
stage keeps working until reaches the stopping 
criteria, two stopping criteria used to stop the 
iteration stage. Firstly, the number of the 
population must be larger than the allowed 
population size, and each population should be 
contained a full solution. Which means, as equal as 
the number of cities, this is done through FullTour 
function.  

     In the final stage, the best solution found will 
be retrieved. 

 

3.1 GWO-TSP Example 

     To understand how this study uses GOW to 
optimize TSP problem, by referring to Figure 2. It 
shows a simple TSP problem as in Figure 5.a 
which is an undirected graph of four cities and six 
edges, each edge has its own traveling cost. This 
example will be used to represent the possible 
solutions by GWO-TSP. Based on TABLE 1, each 
element in GWO represents what its mean in 
GWO-TSP. For instance, Grey wolf population in 
GWO represented in  GWO-TSP as a candidate 
solution of TSP. By adapting the elements in 
GWO to our proposed algorithm, The example that 
was displayed in Figure 2 and Figure 5.a  will 
become as shown in Figure 5.b. 

 
Figure 5. Solving TSP problem using GWO. a) TSP 
example. b) TSP-GWO example. 

     In this example, city A selected as the start city, 
which means the prey. In the Initialization stage, 
and as the pseudo-code shown in Figure 4 , the 
population size equals three where the prey is city 
A. So, city A will be added to population array as: 

Population [0] = [A]. 

     Next, for each population, the destination of all 
wolfs will be calculated. Which will be: The cost 
of traveling from A to B, the cost of traveling from 
A to C and the cost of traveling from A to D. 

     From this, Xα is city B, Xβ is city D and Xδ is 
city C. After that, the population will be updated 
based on these new values and new two 
populations will be created. The total will be three 
populations as : 

 Population [0] = [A,B]. 

 Population [1] = [A,D]. 

 Population [2] = [A,C]. 

     In this example, city A selected as the start city, 
which means the prey. In the Initialization stage, 
and as the pseudo-code shown in Figure 4, the 
population size equals three where the prey is city 
A. So, city A will be added to the population array 
as: 

Population [0] = [A]. 

     Next, for each population, the destination of all 
wolfs will be calculated. This will be: The cost of 
traveling from A to B, the cost of traveling from A 
to C and the cost of traveling from A to D. 

     From this, Xα is city B, Xβ is city D and Xδ is 
city C. After that, the population will be updated 
based on these new values and new two 
populations will be created. The total will be three 
populations as: 

 Population [0] = [A,B]. 

 Population [1] = [A,D]. 

 Population [2] = [A,C]. 

     That’s mean, in the next iteration, for each 
population, new two populations will be created. 
Then the number of population will equal nine. 
For that, before the next iteration start, the most 
costly tour are removed from the population array. 
This is in case of the population array is larger 
than the population size which is equal to five in 
this example. So, population in the next iteration 
will be as : 

 Population [0] = [A,B,D] → which has a 
cost of 3. 

 Population [3] = [A,B,C] → which has a 
cost of 2. 



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6262 

 

 Population [1] = [A,D,B] → which has a 
cost of 4. 

 Population [4] = [A,D,C] → which has a 
cost of 7. 

 Population [2] = [A,C,B] → which has a 
cost of 4. 

 Population [6] = [A,C,B] → which has a 
cost of 8. 

     While the population size is equal 5 and the 
population array are contained 6 Populations, then 
the most costly Population which is Population [6] 
will be removed. Iteration will keep work until 
reach the stopping criteria. Population at the end of 
Iteration stage will be as : 

 Population [0] = [A,B,D,C,A] → which 
has a cost of 11. 

 Population [3] = [A,B,C,D,A] → which 
has a cost of 9. 

 Population [1] = [A,D,B,C,A] → which 
has a cost of 8. 

 Population [4] = [A,D,C,B,A] → which 
has a cost of 9. 

 Population [2] = [A,C,B,D,A] → which 
has a cost of 8. 

     In the final stage, the minimum tour cost 
solution will be returned, in this example, 
Population [1] and Population [2] provide the best 
tour solutions, which have a cost of eight to visit 
each city exactly once, and then return to the 
starting city. So, one of them will be returned 
where it’s the optimal tour for this example. Figure 
6 presents the best solutions steps provided by the 
GWO-TSP algorithm. 

Figure 6. Steps of Solving TSP using TSP-GWO 
algorithm. 

 

 

3.2 Analytical Evaluation of GWO-TSP 
Algorithm 

    As it is described before, GWO-TSP consists of 
multiple steps, where initially creates initial 
population then creates a new generation by 
calculating the destination between cities. 

    All the terms that precede (see line 6) are 
constants. As shown in Figure 4 (lines 1-5), the 
outer while loop is expected to run until reach the 
population size where each population must 
contain a Full solution, as shown in Figure 4 (lines 
2-8). In the worst case, the number of population is 
equal to the number of cities which means O (n). 
Inside the main loop, another loop runs equal to 
population size as shown in Figure 4 (lines 8-18), 
where in each iteration, three cities are picked and 
updated the population O(n). The function in line 9 
which used to Calculate the destination of all wolfs 
is require O(n) while line 10 to 16 are constants. In 
line 17, the time complexity for the function of 
Calculate the fitness value for each Population is 
O(n). Variables in lines 17 to 19 are constants. 

    The total time complexity of sequential GWO-
TSP is shown in Equation 1 where T is the time 
complexity, N is the number of population and C 
is constants: 

T (N) = O( C + N * ( N + C + N + C + N) + C…… (1) 

Equation 1 can be reduced to Equation 2 

T (N)  = O(2C + 3N2 + 2NC) … ..(2) 

    The largest term of equation 2 is n2, Thus, the 
final time complexity will be O (n2). 

    In order to give the efficiency of the GWO-TSP 
algorithm, a comparison is performed with other 
meta-heuristic algorithms. GA and CRO are 
chosen because as we mentioned in the related 
work section. GA is used for comparison in most 
meta-heuristic optimization where CRO is one of 
the recently published meta-heuristic algorithms 
and it obtained good results in solving NP 
problems. 

4. EXPERIMENTAL RESULTS 

     For our experiments, we used a computer with 
Intel Core i5-3317U CPU 1.70GHz with 8 GB of 
RAM. The simulation for GWO, CRO, and GA 
has implemented in Java JDK 8 programming 
language. The algorithms were tested by 6 
different size TSP problems taken from the World 
TSP [44]; XQF131, XQG237, PMA343, PKA379, 



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6263 

 

PBL395, and PBN423. The parameters are fixed 
on follows: number of wolves equals the number 
of cities in each TSP instance and the maximum 

number of solutions equals 70% from the number 
of cities in the dataset, this value is selected to 
make the algorithm more scalable and to reduce 

Table 2. The experimental results of GWO, CRO, and GA in terms of fitness value, quality of solution and the execution 
time. 

 

 

both of computation time and the required space. 
For fairness, the same specifications and same 
stopping criteria are used in our simulations for all 
algorithms.  

     Since GWO, CRO, and GA are meta-heuristics, 
the results obtained in different runs may be 
different. We repeat the simulation 25 times and 
we record the results as shown in Table 2. 

In Table 2, the first column shows the name of the 
instance (the numbers in the names denote the 
nodes of each instance). The second column shows 
the known optimal solution for each instance taken 
from the World TSP [44]. For each algorithm there 
are four columns, Best column shows the best 
fitness value of the best run. The mean column 
shows the average quality of the 25 runs of the 
algorithm. The error column shows the error value 
of the fitness function (minimum) of the best 
individual that algorithm provide and the TSPLIB 
optimum. The error is calculated as in equation 3, 
finally, the time column shows the time taken to 
run the entire program in seconds. 

𝐸𝑟𝑟𝑜𝑟 ൌ ቀ
௦௧ௌ௨௧ିை௧ௌ௨௧

ை௧ௌ௨௧
ቁ ∗ 100 … ሺ3ሻ     

     Where Error is the relative value of the 
difference from the optimum tour, Best Solution is 
the tour length obtained by the experiment and 
Optimal Solution is the tour length of the optimum 
solution. 

     From Figure 7, it is clear that GOW always 
gives the highest solution quality (minimum 
traveling cost) for all TSP instances tested. This is 
followed by CRO and GA algorithms. However, 
the quality of solution reduces as the size of 

instance increase with an increasing in execution 
time for all algorithms. 

Figure 8 shows the percentage of deviation from 
the known optimal solution concerning problems 

 

 

Figure 7.Quality of solutions for GWO, CRO, and GA. 

 

Figure 8. Deviation From Known Optimal Solution. 

in the world TSP. It shows that GWO is superior 
than CRO and GA where the results of GWO 
always gives deviation less than (3%) from the 
optimal solution for all instances. CRO gives 

0
0.5
1

1.5
2

2.5
3

GWO

CRO

GA

1
.4
2
3

1
.6
5
2

2
.8
0
9

1
.8
7
3

2
.4
3
2

2
.6
8
3

2
.6
7
3

3
.5
3

2
.9
8
6

3
.0
8
4

3
.7
4
5

3
.8
3
2

2
.8
6
4

3
.3
4
5

3
.9
3
2

3
.3
5
6

3
.9
4
3

3
.4
3
5

0

1

2

3

4

5

D
e
vi
at
io
n
 (
%
)

GWO

CRO

GA

      GWO      CRO GA 

Instance 
name 

Optimal  Best 
optimal 

Mean 
optimal 

Error 
rate(%) 

Time(Sec) Best
optimal 

Mean
optimal 

Error
rate(%) 

Time(Sec) Best 
optimal 

Mean 
optimal 

Error
rate(%) 

Time(Sec)

XQF131  564  569  575  0.886  22.254 573 580 1.595 17.784 574  591  1.773 18.854

XQG237  1019  1030  1033  1.079  54.985 1033 1037 1.668 44.624 1036  1038  1.766 42.241

PMA343  1368  1385  1387  1.242  68.854 1385 1398 2.119 52.325 1400  1399  2.339 56.745

PKA379  1332  1347  1349  1.126  82.325 1347 1360 1.726 74.365 1358  1361  1.951 72.251

PBL395  1281  1296  1300  1.170  95.254 1296 1312 2.107 83.521 1311  1315  2.341 84.214

PBN423  1365  1383  1386  1.318  112.542 1383 1395 1.831 88.124 1398  1405  2.417 92.248



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6264 

 

better results than GA for all size of problems 
tested. 

     From Figure 9, we can observe that the runtime 
for all algorithms is almost the same with a 
slightly different but the best runtime comes from 
CRO for some data instance such like PMA343 
and PBN423. Also, it is clear that the experimental 
and theoretical time converge. 

 

5. CONCLUSION AND FUTURE WORK 

This paper introduces a Grey wolf optimization 
algorithm (GWO), which is called GWO-TSP to 
solve the Traveling salesman problem (TSP). 
GWO-TSP is presented, implemented, and tested 
on different size of datasets. The theoretical time 
complexity of GWO-TSP is O (n2). GWO-TSP 
algorithm is compared with CRO and GA 
algorithm. For fairness, same stopping criteria are 
used in our simulations for all algorithms. The 
experiments show that the GWO-TSP algorithm 
performed well in solving the TSP problem in term 
of the quality of solutions and the computational 
effort when compared to the alternative 
algorithms. 

For future work, GWO-TSP can be improved to 
acquire better performance by implementing it 
using the parallel approach. Also, a comparison 
between GWO-TSP algorithm and other meta-
heuristics which are used to solve the TSP problem 
could be investigated. 

REFERENCES 

[1] Vukmirović Si, Pupavac D (2013), The                                       
Travelling Salesman Problem in the Function 

of Transport Network Optimization, 
Osijek:Interdisciplinary Management 
Research IX, University in Osijek, Faculty of 
Economics. 

[2] Zhan F, Noon C (1996) "Shortest Path 
Algorithms: An Evaluation Using Real Road 
Networks", Transportation Science. 

[3]  Gutin G, Yeo A, and Zverovich A (2002)     
“Traveling salesman should not be greedy: 
domination analysis of greedy-type heuristics 
for the TSP,” Discrete Applied Mathematics, 
vol. 117, pp. 81–86. 

[4]  Karla L. Hoffman , Manfred P and Giovanni R 
(2016)“Traveling Salesman 
Problem”Encyclopedia of Operations 
Research and Management Science ,Springer 
,pp 1573-1578. 

[5]  A. Al-Shaikh, H. Khattab, A. Shariehand A. 
Sleit, "Resource Utilization in Cloud 
Computing as an Optimization Problem," 
International Journal of Advanced Computer 
Science and Applications (IJACSA), vol. 7, 
no. 6, pp. 336-342, 2016. 

[6] Shaheen A, Al-Sayyed R, and Sleit A 
(2017). Improving visual analyses and 
communications of ontology by dynamic tree 
(case study: computer system). International 
Journal of Advanced and Applied Sciences, 
4(5): 62-66. 

[7] Jonathan Francis O‟Connell (2017)”A 
Dynamic Programming Model To Solve 
Optimization Problems Using GPUs” Doctor 
of Philosophy thesis. 

[8]Wong, L., Chong, C.S.: An Efficient Bee 
Colony Optimization Algorithm for 
Travelling Salesman Problem Using 
Frequency-Based Pruning. In: Proceedings of 
7th IEEE International Conference on 
Industrial Informatics, pp. 775–782 (2009) 

[9] Alok Singh, Anurag Singh Baghel. (2009) A 
new grouping genetic algorithm approach to 
the multiple traveling salesperson 
problem. Soft Computing 13:1, 95-101. 
Online publication date: 1-Jan-2009.  

[10]5. A.Y.S. Lam, V.O.K. Li, "Chemical reaction 
optimization: a tutorial", Memetic 
Computing 4, 2012, pp. 3–17. 

[11] R. Poli, J. Kennedy, T. Blackwell, "Particle 
swarm optimization. An overview", Swarm 
Intell., vol. 1, no. 1, pp. 33-57, 2007. 
[12] Bianchi, Leonora; Marco Dorigo; Luca 
Maria Gambardella; Walter J. Gutjahr 
(2009). "A survey on metaheuristics for 

16
26
36
46
56
66
76
86
96

106
116
126

X
Q
F1
3
1

X
Q
G
2
3
7

P
M
A
3
4
3

P
K
A
3
7
9

P
B
L3
9
5

P
B
N
4
2
3

Ti
m
e
(S
e
c)

GWO

CRO

GA

Figure 9. Runtime chart for GWO, CRO and GA. 



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6265 

 

stochastic combinatorial 
optimization". Natural Computing: an 
international journal. 8 (2): 239–287. 

[13] Reynolds, Craig W. (1987). "Flocks, herds 
and schools: A distributed behavioral 
model.". ACM SIGGRAPH Computer 
Graphics. 21. pp. 25–34. 

[14] Zwietering MH, Jongenburger I, Rombouts 
FM, Van „T Riet K. (1990). Modeling of the 
bacterial growth curve. Appl Environ 
Microbiol 56(6):1875–81. 

[15] Colorni, Alberto & Dorigo, Marco & 
Maniezzo, Vittorio. (1991). Distributed 
Optimization by Ant Colonies. Proceedings 
of the First European Conference on 
Artificial Life. 

[16]Bastos-Filho C, Lima N, Lins A, Nascimento 
A, Lima M (2008) "A Novel Search 
Algorithm based on Fish School Behavior", 
Proceedings of the IEEE International 
Conference on Systems Man and 
Cybernetics, pp. 682-687 

[17] Yang X.S (2010), “Firefly algorithm, 
stochastic test functions and design 
optimization,” International Journal of Bio-
Inspired Computation, vol. 2, no. 2, pp. 78–
84. 

[18] Kirkpatrick S, Jr D, and Vecchi M (1983) 
"Optimization by imitated annealing," 
science, vol. 220, pp. 671-680. 

[19] Cook, Damon. (2000). Evolved and Timed 
Ants: Optimizing the Parameters of a Time-
Based Ant System Approach to the Traveling 
Salesman Problem Using a Genetic 
Algorithm. Honors Undergraduate Thesis, 
Computer Science Department, New Mexico 
State University,USA. 

[20] Mirjalili S, Mirjalili S, Lewis A (2014) "Grey 
wolf optimizer", Adv. Eng. Softw., vol. 69, 
pp. 46-61. 

[21] Komaki GM, Kayvanfar. (2015) “Grey Wolf 
Optimizer algorithm for the two-stage 
assembly flow shop scheduling problem with 
release time”.Journal of Computational 
Science. 8(8):109–20. 

[22] Song HM, Sulaiman MH, Mohamed MR 
(2014) “An application of Grey wolf 
optimizer for solving combined economic 
emission dispatch problems”.International 
Review on Modelling and Simulations; 
7(5):838–44 

[23] Song X, Tang L, Zhao S, Zhang X, Li L, 
Huang J, Cai W. Grey Wolf Optimizer for 
parameter estimation in surface waves. Soil 
Dynamics and Earthquake Engineering. 2015 
Aug; 75(5):147–57. 

[24] Sleit A, Al-Nsour E. Corner-based splitting: 
An improved node splitting algorithm for R-
tree. Journal of Information Science. 2014 
Apr;40(2):222-36. 

[25] Snyder, L.V. and Daskin, M.S., (2006). “A 
random-key genetic algorithm for the 
generalized traveling salesman 
problem”.European Journal of Operational 
Research, 174(1), pp.38-53. 

[26] Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C. and 
Wang, Q.X., (2007). “Particle swarm 
optimization-based algorithms for TSP and 
generalized TSP”. Information Processing 
Letters, 103(5), pp.169- 176. 

[27] Baase S., (2009).“Computer algorithms: 
introduction to design and analysis”. Pearson 
Education India. 

[28] S.N. Kumbharana, G. M. Pandey. “Solving 
Travelling Salesman Problem using Firefly 
Algorithm”. International Journal for 
Research in science & advanced 
Technologies. Issue-2, Volume-2, 053-057. 
ISSN 2319-2690, 2013. 

[29] Anjaneyulu, G. S. G. N., Dashora, R., 
Vijayabarathi, A., &Rathore, B. S. (2014) 
“Improving the performance of 
approximation algorithm to solve travelling 
salesman problem using parallel algorithm” 
International Journal of Scientific 
Engineering and Technology,3(4), 334-337. 

[30]  J. Sun, Y. Wang, J. Li, and K. Gao. Hybrid 
algorithm based on chemical reaction 
optimization and lin-kernighan local search 
for the traveling salesman problem. In 
Natural Computation (ICNC), 2011 Seventh 
International Conference on, volume 3, pages 
1518-1521, july 2011. 

[31] L. Korayem, M. Khorsid, and S. S. Kassem, 
“Using Grey Wolf Algorithm to Solve the 
Capacitated Vehicle Routing Problem,” IOP 
Conf. Ser. Mater. Sci. Eng., vol. 83, no. 1, p. 
12014, 2015. 

[32] Shaheen, Ameen & Sleit, Azzam & Al-
Sharaeh, Saleh. (2018). An improved 
chemical reaction optimization algorithm for 
solving traveling salesman problem. 37-42. 
10.1109/IACS.2018.8355438. 



Journal of Theoretical and Applied Information Technology 
30th September 2018. Vol.96. No 18 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6266 

 

[33] Applegate D. L., Bixby R. E., Chvátal V., 
Cook W. J.The Traveling Salesman Problem. 
A Computational Study (2007) (Princeton 
University Press, Princeton, NJ). 

[34] Shaheen, Ameen & Sleit, Azzam. (2016). 
Comparing between different approaches to 
solve the 0/1 Knapsack problem. 
International Journal of Network Security. 
16. 1-10. 

[35] P.M. Ross and D. Corne, Comparing genetic 
algorithms, stochastic hillclimbing and 
simulated annealing. In T.C. Fogarty 
(ed), Evolutionary computing, Springer-
Verlag, 94–102 (1995). 

[36] Ingber, L. and Rosen, B. (1992), Genetic 
Algorithms and Very Fast Simulated 
Reannealing: A Comparison, J. of 
Mathematical and Computer 
Modeling16(11), 87–100. 

[37] Sleit A, Salah I, Jabay R. Approximating 
images using minimum bounding rectangles. 
InApplications of Digital Information and 
Web Technologies, 2008. ICADIWT 2008. 
First International Conference on the 2008 
Aug 4 (pp. 394-396). IEEE. 

[38] Sleit A. On using B+-tree for efficient 
processing for the boundary neighborhood 
problem. WSEAS transactions on systems. 
2008 Jul 1;11(11):711-20. 

[39] Barham, Reham & Sharieh, Ahmad & Sleit, 
Azzam. (2016). Chemical Reaction 
Optimization for Max Flow Problem. 
International Journal of Advanced Computer 
Science and Applications. 7. 189-196. 
10.14569/IJACSA.2016.070826. 

[40] Shaheen, Ameen & Sleit, Azzam & Al-
Sharaeh, Saleh. (2018). Chemical Reaction 
Optimization for Traveling Salesman 
Problem Over a Hypercube Interconnection 
Network. 432-442. 10.1007/978-3-319-
91192-2_43. 

[41] Sleit, Azzam Salah, Imad Jabay, Rahmeh, 
"Approximating images using minimum 
bounding rectangles" ICADIWT 2008, pp 
394-396, 10.1109/ICADIWT.2008.4664379 

[42] Yi Sun, Albert Y.S. Lam, Victor O.K. Li, Jin 
Xu, James J.Q. Yu, "Chemical Reaction 
Optimization for the optimal power flow 
problem", Evolutionary Computation (CEC) 
2012 IEEE Congress on, pp. 1-8, 2012. 

[43] Sleit A, Al-Akhras M, Juma I, Alian M. 
Applying ordinal association rules for 

cleansing data with missing values. Journal 
of American Science. 2009;5(3):52-62. 

[44] TSP website (2009), a collection of 
worldwide benchmark datasets, 
“http://www.math.uwaterloo.ca/tsp/world/co
untries.html” [Access date 05/13/2018]. 

 


