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ABSTRACT 

Singular Value Decomposition (SVD) is one of the most factorization of the real or complex mathematical 
matrix problems. In this paper, one of the most significant applications of the Signa gular Value 
Decomposition (SVD) which is the Matrix decomposition is being selected to be described and explained 
as a regression model. The experimental results show that the SVD regression using Matrix-Pseudo Inverse 
results are more realistic and nearly as expected that the simple regression model when the results have 
been compared between the simple regression model and the SVD regression model based on the Matrix-
Pseudo Inverse model based on implement them on the same dataset (data points). In this paper, two main 
cases are discussed. The first one is the insertable matrix pseudo-inverse, and the non-invertible matrix 
pseudo-inverse. Both cases are mainly discussed with a relative example given which shows that main 
approach that is used to compute based on the Singular Value Decomposition.

Keywords: Singular Value Decomposition, SVD, Matrix Decomposition, Matrix-Pseudo Inverse, 
Regression.  

 
1. INTRODUCTION 
 
In a mathematical application such as data analysis, 
and particular linear algebra, there are different 
important techniques that are used mainly with 
matrixes. One of the most mathematical application 
is the matrix pseudoinverse. Matric pseudoinverse 
is defined as a generalization of the inverse matrix 
[1]. One of the most widely type of matrix 
pseudoinverse is the matrix pseudo-inverse using 
Singular Value Decomposition (SVD) [2] [3] [4] 
[5] which has been described by [6] [7] [8]. Earlier 
in 1903, Ivar Fredholm [9] had introduced the main 
concept of the matrix pseudoinverse of integral 
operation. That was when Ivar Fredholm [9] had 
referring to a matrix, and that was depending on the 
generalization aspect term of the pseudoinverse 
without basing on the further specification.  

The term generalization of matrix- inverse is 
sometimes as a synonym for matrix-pseudoinverse. 
There are many applications that the matrix pseudo-
inverse is mainly used. In general, a common 
technique of pseudoinverse is to compute a 'best fit' 

which means that the least square solution. In other 
word, it means that the least square solution that is 
generated as a solution to the linear equation 
system that has lacks for finding a unique solution 
[6]. Another mathematical application that the 
matrix-inverse is used for is to Euclidean solution. 
In this case, the matrix pseudo-inverse is used to 
find the minimum “Euclidean” norm solution to the 
linear equation system to generate multiple 
solutions [8]. 
In linear algebra, the matrix pseudo-inverse 
facilitates the  
statement and proof of results. Matrix pseudo-
inverse is defined for all matrixes that’s the entire 
components are real and/or complex number. It is 
tetchily can be computed by using the Singular 
Value Decomposition (SVD) [9]. 

2. BACKGROUND THEORY (SINGULAR 
VALUE DECOMPOSITION-SVD) 

Singular value decomposition (SVD) is defined 
as a one of the most popular unsupervised data 
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mining algorithms. It such a significant algorithm 
that is mainly used for higher dimensionality data 
(feature space) projection. It also, one of the most 
appropriate mapping tool that is used for mapping 
the higher dimensionality data space or (vector 
space) to another dimension. Moreover, Singular 
Value Decomposition (SVD) illustrate as the most 
useful method for analyzing and mapping the data 
(feature vector space) in one dimension (one vector 
space) into another space such as higher 
dimensionality space (with different dimension) 
[10].  

Most linear equations simulation systems rely on 
the Singular Value Decomposition (SVD) for 
analyzing and mapping data space. In this matter, 
the SVD allows the linear equations simulation 
systems to exact representation of any matrix and 
makes it easy to eliminate and simulate by based on 
the important parts of that representation. It based 
on produce an approximate matrix representation 
with any desired number of dimensions [11]. Of 
course, the fewer the dimensions that have been 
chosen, the less accurate will be the approximation.  
SVD is a technical useful of number application 
which includes the analysis trick of the two-way 
variables (tables) evaluation. Although, SVD in an 
experimental design, empirical fitting of any 
function, and regression [12].  

SVD defines a small number of “concepts” that 
connect the rows and columns of the matrix. We 
show how eliminating the least important concepts 
gives us a smaller representation that closely 
approximates the original matrix. Next, we see how 
these concepts can be used to query the original 
matrix 𝑚 [10]. 

 
2.1 SVD Mathematical Definition 

Let 𝑋 be an 𝑚 ൈ  𝑛 matrix and let the rank of 𝑋 
be 𝑟. By recalling that the rank of a matrix is the 
largest number of rows (or equivalently columns) 
we can choose for which no nonzero linear 
combination of the rows is the all-zero vector 0 (we 
say a set of such rows or columns is independent). 
Then we can find matrices 𝑈, 𝛴, and 𝑉 as shown in 
Figure 1 [13]. 

 

 
 

(a) (b) 
 
Figure. 1.  The form of singular-value decomposition, (a) 

regular based of the SVD algorithms, (b) and (c) 
evaluation Form-F [13] 

 
Singular value decomposition (SVD) is an 

eigenvalue/eigenvector mechanics which is similar 
process of finding the singular value (eigenvector). 
Although, it is used to find the corresponding 
singular vectors (Eigenvector) that are mainly 
yields on matrix decomposition term. This term is 
more general and flexible matrix decomposition 
factorization. The term ‘singular vector’ and 
‘Eigenvector’ will be used in an interchangeably 
where the Singular Value Decomposition (SVD) of 
matrix 𝐴 can be written as it is shown in equation 
(1) [13]. 

𝐴 ൌ 𝑈𝑆𝑉்  (1) 

where 𝑈 is the orthogonal1 𝑚 ൈ 𝑚 matrix and 
the columns of the 𝑈 are the eigenvectors of 𝐴𝐴். 
Moreover, 𝑉 is the orthogonal of 𝑛 ൈ 𝑛  matrix and 
the columns of the 𝑉 are the eigenvector s of the 
𝐴𝐴் matrix. However, 𝑆 is the diagonal 
eigenvalues (entities) which also called the 
diagonal sigma’s values  𝜎ଵ, … , 𝜎ଶ which are 
computed based on the square roots of the nonzero 
eigenvalues of the 𝐴𝐴் and 𝐴்𝐴 matrix. Both of 
them are the singular values of matrix 𝐴 and they 
fill the first 𝑟 places on the main diagonal of 𝑆 
where 𝑟 is defined as the rank of 𝐴 [14]. 

Based on equation (1), the connections with 
𝐴𝐴்and 𝐴்𝐴 can be described and written as the 

𝑋 𝑈 

𝑉் ෍  

െ𝑚

𝑛 𝑟 𝑟 𝑛

𝑟
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equation (2) shows [14]. 

𝐴𝐴் ൌ ሺ𝑈𝑆𝑉்ሻሺ𝑉𝑆்𝑈்ሻ ൌ 𝑈𝑆𝑆்𝑈்  (2) 

similarly, 𝐴்𝐴 can be written as equation (3) 
shows. 

𝐴𝐴் ൌ ሺ𝑈𝑆𝑉்ሻሺ𝑉𝑆்𝑈்ሻ ൌ 𝑈𝑆𝑆்𝑈்  (3) 

By relying on equation (2), 𝑈 must be the 
eigenvector matrix 𝐴𝐴், where the 𝑆𝑆்is the 
eigenvalue matrix that is placed in the middle and it 
is defined as the 𝑚 ൈ 𝑚 matrix with the 
eigenvalues 𝜆ଵ ൌ 𝜎ଵ

ଶ, … , 𝜆௥ ൌ 𝜎௥
ଶ. Although, based 

on the same way and using equation (3) 𝑈 is 
defined as the eigenvector matrix for 𝐴்𝐴. The 
diagonal matrix 𝑆்𝑆 has the same property 𝜆ଵ ൌ
𝜎ଵ

ଶ, … , 𝜆௥ ൌ 𝜎௥
ଶ which is also is defined as the 𝑛 ൈ 𝑛 

matrix [14]. 
Singular-Value Decomposition (SVD) algorithm 

steps are described in the algorithm (1) below [15]. 
 
Where the most important properties of the 

Singular Value Decomposition (SVD) can be 
described as the following [15]: 

1) 𝑈 is an 𝑥 ൈ  𝑟 column-orthonormal matrix; 
that is, each of its columns is a unit vector and 
the dot product of any two columns is 0.  

2) 𝑉 is an 𝑛 ൈ  𝑟 column-orthonormal matrix, 
note that we always use 𝑉 in its transposed 
form, so it is the rows of 𝑉் that are 
orthonormal.  

3) 𝛴 is a diagonal matrix; that is, all elements not 
on the main diagonal are 0. The elements of 𝛴 
are called the singular values of 𝑋. 

2.2 SVD Mathematical Example 
This section provides such a mathematical 

example about the Singular Value Decomposition 
(SVD). In this case, let’s assume that we want to 
find the Find the singular value decomposition of 
the next matrix which we called matrix A below. 

𝐴 ൌ ቂ 2 2
െ1 െ1

ቃ 

 
To find the Singular Value Decomposition 

(SVD) value first we need to compute the 
eigenvalues by based on using matrix 𝐴 times the 
transpose of the matrix A based on the next 
formula: 

𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 ሺ𝐴ሻ ൌ 𝐴 ൈ 𝐴் 
 
After that, it is generally preferred to put them 

into a (decreasing order) and then find the 
corresponding unit eigenvectors based on the next 
formula: 

First Find the 𝐴 ൈ 𝐴் by using: 
 

𝑨𝑨𝑻 ൌ ቂ 2 2
െ1 െ1

ቃ ൈ ቂെ1 2
െ1 2

ቃ ൌ ቂ8 0
0 2

ቃ 

 
Put them into a decreasing order by using  
 

𝑨𝑨𝑻 ൌ ቂ8 0
0 2

ቃ ⟹ 𝑑𝑒𝑡ሺ𝑨𝑨𝑻 െ 𝜆𝑰ሻ

ൌ 𝑑𝑒𝑡 ቂ8 െ 𝜆 0
0 8 െ 𝜆

ቃ ൌ 0 

ሺ8 െ 𝜆ሻሺ2 െ 𝜆ሻ ൌ 0 ⟹ 𝜆ଵ ൌ 8 ,  𝜆ଶ ൌ 2 
 
Find the corresponding unit eigenvectors which 

are: 
 

𝑨𝑨𝑻𝑢ଵ ൌ 𝜆ଵ𝑢ଵ ⟹ ቂ8 0
0 2

ቃ ቂ
𝑢ଵଵ
𝑢ଵଶ

ቃ ൌ 8 ቂ
𝑢ଵଵ
𝑢ଵଶ

ቃ

⟹
8 ൈ 𝑢ଵଵ ൌ 8𝑢ଵଵ ⟹ 𝑢ଵଵ ൌ 1
2 ൈ 𝑢ଵଶ ൌ 2𝑢ଵଶ ⟹ 𝑢ଵଶ ൌ 0 

 
8 ൈ 𝑢ଵଵ ൌ 8𝑢ଵଵ ⟹ 𝑢ଵଵ ൌ 1
2 ൈ 𝑢ଵଶ ൌ 2𝑢ଵଶ ⟹ 𝑢ଵଶ ൌ 0 ⟹ 𝑢ଵ ൌ ቂ1

0
ቃ 

 

𝑨𝑨𝑻𝑢ଶ ൌ 𝜆ଶ𝑢ଶ ⟹ ቂ8 0
0 2

ቃ ቂ
𝑢ଶଵ
𝑢ଶଶ

ቃ ൌ 8 ቂ
𝑢ଶଵ
𝑢ଶଶ

ቃ

⟹
8 ൈ 𝑢ଶଵ ൌ 8𝑢ଶଵ ⟹ 𝑢ଶଵ ൌ 0
2 ൈ 𝑢ଶଶ ൌ 2𝑢ଶଶ ⟹ 𝑢ଶଶ ൌ 1 

 

Algorithm (1) Singular-Value Decomposition (SVD) 

Input: Generate Data matrix 𝑿 
Output: New Dimensions 𝑪 
1. Repeat 
2.       Applying SVD to the matrix 𝑋 as 𝑋 ൌ 𝑈𝑆𝑉்      
3.            𝑋 → is an 𝑚 ൈ 𝑛 matrix 
4.             𝑚 → no. of vectors. 
5.             𝑛 → no. of attributes.  
6.             𝑈 ← 𝑋𝑋்matrix of the eigenvectors. 
7.             𝑆 ←  is matrix which is diagonal. 
8.             𝑉 ← is matrix the eigenvectors. 
9. Construct the covariance matrix from this 

decomposition by 
10.  𝑋𝑋் 𝑋𝑋் ← ሺ𝑈𝑆𝑉்ሻሺ𝑈𝑆𝑉்ሻ்  ൌ ሺ𝑈𝑆𝑉்ሻሺ𝑉𝑆𝑈்ሻ 
11.  𝑉 → an orthogonal matrix ሺ𝑉்𝑉 ൌ 𝐼ሻ, 𝑋𝑋் ൌ

𝑈𝑆2𝑈் 
12.       Compute the square roots of the eigenvalues of 

𝑋𝑋் are the singular values 
13. Until 𝐑𝐞 𝑥ሺ𝑡ሻ௜ 
14. Represent every transaction over the time interval as 

a vector 𝑥ሺ𝑡ሻ௜ 
15. Return 𝑈்𝑋
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8 ൈ 𝑢ଶଵ ൌ 8𝑢ଶଵ ⟹ 𝑢ଶଵ ൌ 0
2 ൈ 𝑢ଶଶ ൌ 2𝑢ଶଶ ⟹ 𝑢ଶଶ ൌ 1 ⟹ 𝑢ଶ ൌ ቂ0

1
ቃ 

 
Then, compute the matrix 𝑈 based on: 

𝑼 ൌ ሾ𝑢ଵ 𝑢ଶሿ ൌ ቂ1 0
0 1

ቃ 

 
Since, the eigenvalues of the 𝑨𝑻𝑨 are the same as 

the eigenvalues of the𝑨𝑨𝑻, then the eigenvectors of 
the 𝑨𝑻𝑨 is computed based on the following 
formula: 

 

𝑨𝑻𝑨 ൌ ቂെ1 2
െ1 2

ቃ ൈ ቂ 2 2
െ1 െ1

ቃ ൌ ቂ5 3
0 2

ቃ 

 
Find the corresponding unit eigenvectors 𝑣ଵ 

which are: 
 

𝑨𝑻𝑨𝑣ଵ ൌ 𝜆ଵ𝑣ଵ ⟹ ቂ5 3
3 5

ቃ ቂ
𝑢ଵଵ
𝑢ଵଶ

ቃ ൌ 8 ቂ
𝑢ଵଵ
𝑢ଵଶ

ቃ

⟹
5𝑣ଵଵ ൅ 3𝑣ଵଶ ൌ 8𝑣ଵଵ ൌ 𝑣ଵଶ
3𝑣ଵଵ ൅ 5𝑣ଵଶ ൌ 8𝑣ଵଶ ൌ 𝑣ଵଵ

 

 
In general, we will define the choice of 𝑣ଵଵ, 

define of 𝑣ଵଶ as a vice versa. In this case 𝑣ଵଵ and 
𝑣ଵଶ can be any numbers, but since the vector 𝑣ଵ 
should have length of 1, in this condition the 𝑣ଵଵ 
and 𝑣ଵଶ are chosen as follows: 

 

ฮ𝑣ଵฮ ൌ 1 ⟹ ට𝑣ଵଵ
ଶ ൅ 𝑣ଵଶ

ଶ ൌ 1 ⟹ 𝑣ଵଵ ൌ 𝑣ଵଶ ൌ
1

√2

⟹ 𝑣ଵ ൌ

⎣
⎢
⎢
⎡

1

√2
1

√2⎦
⎥
⎥
⎤
 

 
Then by using the unit eigenvector 𝑣ଶ  is: 
 

𝑨𝑻𝑨𝑣ଶ ൌ 𝜆ଶ𝑣ଶ ⟹ ቂ5 3
3 5

ቃ ቂ
𝑢ଶଵ
𝑢ଶଶ

ቃ ൌ 2 ቂ
𝑢ଶଵ
𝑢ଶଶ

ቃ

⟹
5𝑣ଶଵ ൅ 3𝑣ଶଶ ൌ 2𝑣ଶଵ ൌ 𝑣ଶଶ ൌ 0
3𝑣ଶଵ ൅ 5𝑣ଶଶ ൌ 2𝑣ଶଶ ൌ 𝑣ଶଵ ൌ 1 

 

𝑣ଶଵ ൌ െ𝑣ଶଶ ⟹  𝑣ଶ ൌ

⎣
⎢
⎢
⎡
െ1

√2
1

√2⎦
⎥
⎥
⎤
 

Compute the matrix 𝑉 which is: 
 

𝑽 ൌ ሾ𝑣ଵ 𝑣ଶሿ ൌ

⎣
⎢
⎢
⎡

1

√2

1

√2
െ1

√2

1

√2⎦
⎥
⎥
⎤

 𝑎𝑛𝑑 𝑽𝑻 ൌ

⎣
⎢
⎢
⎡

1

√2

1

√2
െ1

√2

1

√2⎦
⎥
⎥
⎤
 

 
 Then the matrix 𝑆 is: 
 

𝑺 ൌ ൤
𝜎ଵ 0
0 𝜎ଶ

൨ ൌ ቈ
ඥ𝜆ଵ 0

0 ඥ𝜆ଶ

቉ ൌ ൤2√2 0
0 2√2

൨ 

 
Finally, the SVD of the matrix 𝐴 is: 

𝑨 ൌ 𝑼𝑺𝑽𝑻 ൌ ቂ1 0
0 1

ቃ ൌ ൤2√2 0
0 2√2

൨

⎣
⎢
⎢
⎡

1

√2

െ1

√2
1

√2

1

√2⎦
⎥
⎥
⎤

்

 

 

𝑨 ൌ ቂ1 0
0 1

ቃ ൌ ൤2√2 0
0 2√2

൨

⎣
⎢
⎢
⎡

1

√2

െ1

√2
1

√2

1

√2⎦
⎥
⎥
⎤

்

 

 

3. MATRIX (PSEUDO) INVERSE 

Matrix pseudo inverse is one the most popular 
operation of the matrix operations. In additional to 
that there are many other matrix operations such as 
matrix inversion, Eigen value decomposition, 
singular value decomposition which are mainly 
used in the real -world applications. Some matrix 
operations are very expensive in time and memory 
especially when they used to scale the data in a 
large scale [15].  

Matrix pseudo inverse is one of the main 
techniques of the Matrix decomposing which plays 
a key role in the modern data. In other world, 
Matrix pseudo inverse based on the matric 
decomposing theorem such as SVD (Eigen value 
decomposition) that is used to make the large-scale 
matrix computation is possible as much as it could 
[16].   

 
3.1 Inverted Matrix Pseudo-Inverse 

Computation 
Mathematically, for any square matrix 𝐴 with 

size 𝑛 ൈ 𝑛, the matrix inverse is existing if the 
matrix 𝐴 is in non-singular rank. In other word, the 
matrix 𝐴 with non-singular rank as it shown below 
in equation (4) [16]: 

𝑟𝑎𝑛𝑘ሺ𝐴ሻ ൌ 𝑛  (4) 

In this case, let’s assume that the inverse matrix 
𝐴 is 𝐴ିଵ which be inverted. Then 𝐴𝐴ିଵ is 
technically equates and be equivalent to the 
following formula that is defined in equation (5) 
[17]: 
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𝐴𝐴ିଵ ൌ 𝐴ିଵ𝐴 ൌ 𝐼௡  (5) 

That means only the squared matrix with full 
rank can be inverted. In this case, for general 
rectangle matrix 𝐴௡ൈ௡ with the deficient rank 
matrix, matrix-inverse is mainly used as a 
generalization mathematical approach for matrix 
inverse [15].  

The Moore-Penrose matrix inverse is one of the 
most widely used pseudo-inverse, which is 
mathematically defined by [17]: 

𝐴⸶ ൌ 𝑉஺ ෍ 𝑈஺
்

ିଵ

஺

  (6) 

In this case, let 𝐴 be any matrix with size 𝑚 ൈ 𝑛 
with the rank 𝑝 matrix. Then,  

𝐴𝐴⸶ ൌ 𝑈஺ ෍ 𝑉஺
்𝑉஺ถ

ୀூ೛
஺

෍ 𝑈஺
் ൌ 𝑈஺ด

௠ൈ௣

𝑈஺
்ด

௣ൈ௠

ିଵ

஺
  (7) 

This presents an orthogonal projection. That 
because for any matrix 𝐵 the nain formula of the 
Moore-Penrose matrix inverse is defined as [17]: 

𝐴𝐴⸶ ൌ 𝑈஺𝑈஺
்𝐵  (8) 

Which is projected of the matrix 𝐵 onto the 
column space of the matrix 𝐴. 

In this case, let’s assume that we have a squared 
matrix 𝐴 with size 2 ൈ 2 

 

𝐴 ൌ ቂ0 0
0 0

ቃ 

 
Then the pseudoinverse of the matrix 𝐴 is:  
 

𝐴ା ൌ ቂ0 0
0 0

ቃ 

 
Generally, the pseudoinverse of the matrix 𝐴 

which is a zero matrix its transposed. In this case, 
the uniqueness of the pseudoinverse matrix can be 
written as: 

 
𝐴ା ൌ 𝐴ା𝐴𝐴ା 

Then, sine multiplication it’s by a zero matrix 
would be always produce a zero matrix as it is 
shown: 

 

 𝐴 ൌ ቂ1 0
1 0

ቃ   the pseudoinverse is 𝐴ା ൌ

ቈ
ଵ

ଶ

ଵ

ଶ
0 0

቉ 

 

 Indeed 𝐴𝐴ା ൌ ൥

ଵ

ଶ

ଵ

ଶ
ଵ

ଶ

ଵ

ଶ

൩ and thus  

 

 𝐴𝐴ା𝐴 ൌ ቂ1 0
1 0

ቃ ൌ 𝐴 

 

 Similarly, 𝐴ା𝐴 ൌ ቂ1 0
0 0

ቃ and thus  

 

 𝐴ା𝐴𝐴ା ൌ ቈ
ଵ

ଶ

ଵ

ଶ
0 0

቉ ൌ 𝐴ା 

 

 For 𝐴 ൌ ቂ 1 0
െ1 0

ቃ, 𝐴ା ൌ ቈ
ଵ

ଶ

ଵ

ଶ
0 0

቉ 

 

 For 𝐴 ൌ ቂ1 0
2 0

ቃ, 𝐴ା ൌ ቈ
ଵ

ହ

ଵ

ଶ
0 0

቉, then the 

denominators  
are 5 ൌ 1ଶ ൅ 2ଶ. 

 

 For 𝐴 ൌ ቂ1 1
1 1

ቃ, 𝐴ା ൌ ൥

ଵ

ସ

ଵ

ସ
ଵ

ସ

ଵ

ସ

൩ 

 

 For 𝐴 ൌ ൥
1 0
0 1
0 1

൩, where the pseudoinverse of 

the matrix is  𝐴 ൌ ቈ
1 0 0
0

ଵ

ଶ

ଵ

ଶ
቉ 

 

 Then, the 𝐴ାin indeed to 𝐴ା𝐴 ൌ ቂ1 0
0 1

ቃ 

 
3.2 Non-Inverted Matrix Pseudo-Inverse 

Computation 
In In this part we discuss such a different 

situation where the matrix cannot be inverted 
because it is singular then in in this case, we use the 
SVD to get the pseudo-inverse of tis matrix. In 
order to compute the singular value decomposition 
(SVD) and the pseudo-inverse of the non-inverted 
matrix, first we need to define such a complex 
matrix (non-inverted) where it is defined as a 
matrix 𝐴 that has a complex dimension such as 𝑚 ൈ
𝑛. In this case, we assume that the convenient 
matrix decomposition should be defined. We 
assume that the matrix dimension which is 
described by 𝑚 ൒ 𝑛.  

In this case, let 𝐴 be defined as any matrix with 
𝑚 ൈ 𝑛 that contains complex elements. In this case, 
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the matrix 𝐴 can be decomposed as the following 
formula that is described in Equation (9): 

𝐴 ൌ 𝑃𝐽𝑄∗  (9) 

Where here 𝑃 and 𝑄 are the unitary matrix and 
also 𝐽 is defined as a matrix with 𝑚 ൈ 𝑛 dimensions 
which is called a (bidiagonal matrix) and it is 
mathematically described in the following form. 
 

𝐽 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛼ଵ 𝛽ଵ 0 . . . 0
0 𝛼ଶ 𝛽ଶ 0 . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . 𝛽௡ିଵ
0 . . . . . 𝛼௡ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
To proof that, let assume that 𝐴 ൌ 𝐴ሺଵሻ and also 
let’s assume that 𝐴ሺଷ/ଶሻ, 𝐴ሺଷሻ, 𝐴ሺ௡ሻ, 𝐴ሺ௡ାଵ/ଶሻ which 
will be defined as the following formula in 
Equation (10) based on Householder transformation 
[18] [19] [20].  

𝐴ሺ௞ାଵ/ଶሻ ൌ 𝑃ሺ௞ሻ𝐴ሺ௞ሻ  (10) 

Where 𝑘 ൌ 1,2, … , 𝑛, and also be defined as in 
the following Equation (11): 

𝐴ሺ௞ାଵሻ ൌ 𝐴ሺ௞ାଵ/ଶሻ𝑄ሺ௞ሻ  (11) 

Where 𝑘 ൌ 1,2, … , 𝑛 െ 1. Also, 𝑃ሺ௞ሻ and 𝑄ሺ௞ሻ 
are Hermitian and also unitary matrices where are 
define in the following form that are described in 
Equations (12) and (13):   

𝑃ሺ௞ሻ ൌ 𝐼 െ 2𝑥ሺ௞ሻ𝑥ሺ௞ሻ,     𝑥ሺ௞ሻ ൈ 𝑥ሺ௞ሻ ൌ 1  (12) 

𝑄ሺ௞ሻ ൌ 𝐼 െ 2𝑦ሺ௞ሻ𝑦ሺ௞ሻ,     𝑦ሺ௞ሻ ൈ 𝑦ሺ௞ሻ ൌ 1  (13) 

 Then, the unitary transformation 𝑃ሺ௞ሻ is 
determine as it is defined by the Equation (14): 

𝛼௜,௞
ሺ௞ାଵ/ଶሻ ൌ 0    𝑤𝑒𝑟𝑒   𝑖 ൌ 𝑘 ൅ 1, … , 𝑚  (14) 

 Where 𝑄ሺ௞ሻ is determined based on the following 
formula in Equation (15): 

𝛼௜,௞
ሺ௞ାଵ/ଶሻ ൌ 0    𝑤𝑒𝑟𝑒   𝑖 ൌ 𝑘 ൅ 2, … , 𝑛  (15) 

 And then 𝐴ሺ௞ାଵሻ has the mathematical form 
 

𝐴ሺ௞ାଵሻ

ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼ଵ 𝛽ଵ 0 . . 0
0 𝛼ଶ 𝛽ଶ 0 .
. 0 . .
. . . .

𝛼௞ 𝛽௞

𝑥 𝑥 . . .
𝑥 𝑥 . . .

. . . . . .
0 . . . . . . ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
So, in this case, to distribute the 𝑥 elements, the 

new set has been defined which: 

𝑥௜
ሺ௞ሻ ൌ 0, 𝑤𝑒𝑟𝑒 𝑖 ൌ 1,2, … , 𝑘 െ 1  (16) 

In this situation, since 𝑃ሺ௞ሻ is a unitary 
transformation matrix, then the length is preserved 
and called consequently as it is defined in Equation 
(17):  

|𝛼௞|ଶ ൌ ෍ห𝛼௜,௞
ሺ௞ሻห

ଶ
௠

௜ୀ௞

  (17) 

 Although, since 𝑃ሺ௞ሻ is a Hermitian, then  

𝑃ሺ௞ሻ𝐴ሺ௞ାଵ/ଶሻ ൌ 𝐴ሺ௞ሻ  (18) 

That is equivalent to: 

൫1 െ 2|𝑥௞
ሺ௞ሻ|ଶ൯𝛼௞ ൌ 𝛼௞,௞

ሺ௞ሻ
 

െ2𝑥௜
ሺ௞ሻ𝑥௞

ሺ௞ሻ𝛼௞ ൌ 𝛼௞,௞
ሺ௞ሻ 𝑤ℎ𝑒𝑟𝑒  𝑖 ൌ 𝑘 ൅ 1, … , 𝑚 

 

(19) 

 By based on Equations (16), (17), and (19) the 
possible 𝑥ሺ௞ሻ is defined. In this case, as a 
summarization we have: 

𝐴ሺ௞ାଵ/ଶሻ ൌ 𝐴ሺ௞ሻ െ 𝑥ሺ௞ሻ. 2൫𝑥ሺ௞ሻ ൈ 𝐴ሺ௞ሻ൯  (20) 

With the following:  

𝑠௞ ൌ ൭෍ห𝛼௜,௞
ሺ௞ሻห

ଶ
௠

௜ୀ௞

൱

ଵ/ଶ

  (21) 

𝛼௞ ൌ െ𝑠௞ ൭
𝛼௜,௞

ሺ௞ሻ

ห𝛼௜,௞
ሺ௞ሻห

൱  (22) 

𝑥௞
ሺ௞ሻ ൌ ൥

1
2

൭1 ൅
ห𝛼௜,௞

ሺ௞ሻห

𝑠௞
൱൩

ଵ/ଶ

  (23) 

𝑐௞ ൌ ൭2𝑠௞

𝛼௜,௞
ሺ௞ሻ

ห𝛼௜,௞
ሺ௞ሻห

𝑥௞
ሺ௞ሻ൱

ିଵ

  (24) 

𝑥௜
ሺ௞ሻ ൌ 𝑐௞𝛼௜,௞

ሺ௞ሻ 𝑓𝑜𝑟 𝑖 ൐ 𝑘  (25) 

Then the final formula will be described in the 
Equation (26): 
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𝐴ሺ௞ାଵሻ ൌ 𝐴ሺ௞ାଵ/ଶሻ െ 2 ൬𝐴ቀ௞ା
ଵ
ଶቁ𝑦ሺ௞ሻ൰ . 𝑦ሺ௞ሻ  (26) 

In case of the non-invertible matrix is defined as 
a matrix that has one side (left or right is 
invertible). In other word, no-square matrix of full 
rank is a matrix that has several one-side inverses. 
For instance: 

 𝐴 is matrix with size 𝑚 ൈ 𝑛 where 𝑚 ൐ 𝑛 
in this case, we have a left inverse that is 
define as the following formula shows: 

ሺ𝐴்𝐴ሻିଵ𝐴்𝐴ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
஺೗೐೑೟

షభ

ൌ 𝐼௡ 

 𝐴 is matrix with size 𝑚 ൈ 𝑛 where 𝑚 ൏ 𝑛 
in this case, we have a right inverse that is 
define as the following formula shows: 

𝐼௠ ൌ ሺ𝐴்𝐴ሻିଵ𝐴்𝐴ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
஺೗೐೑೟

షభ

 

In this case, the left inverted side can be used to 
determine the least norm solution. That means it is 
originally used as a least square formula for 
regression matrix, which has any even-one-
inverted-side. Although, the Pseudo-inverse 
approach using SVD can be used for both sides 
either left or right to find the exists invested side. 

 For such an example, let’s assume and 
consider that an inverted matrix 𝐴 is defined as: 
 

𝐴: 2 ൈ 3 ൌ ቂ1 2 3
4 5 6

ቃ 

 
So, in this case, 𝑚 ൏ 𝑛, and for this reason we 

have right inverse, which is defined as: 
 

𝐴௥௜௚௛௧
ିଵ ൌ 𝐴்ሺ𝐴𝐴்ሻିଵ 

 
Based on that and by computing the matrix 

component, we have: 

𝐴𝐴் ൌ ቂ1 2 3
4 5 6

ቃ ൈ ൥
1 4
2 5
3 6

൩ ൌ ቂ14 32
32 77

ቃ 

 

ሺ𝐴𝐴்ሻିଵ ൌ ቂ14 32
32 77

ቃ
ିଵ

ൌ
1

54
ቂ 77 െ32
െ32 14

ቃ 

 

𝐴்ሺ𝐴𝐴்ሻିଵ ൌ
1

54
൥
1 4
2 5
3 6

൩ ൈ ቂ 77 െ32
െ32 14

ቃ 

 
 

ൌ
1

18
൥
െ17 8
െ2 2
13 െ4

൩ ൌ 𝐴௥௜௚௛௧
ିଵ  

 
While the left side does not exist because: 
 

𝐴்𝐴 ൌ ൥
1 4
2 5
3 6

൩ ൈ ቂ1 2 3
4 5 6

ቃ ൌ ൥
17 22 27
22 29 36
27 36 45

൩ 

 
This shows that the singular matrix cannot be 
inverted. 
3.3 Algorithm Complexity  

In this section, we want to discuss and showing 
the relational between the algorithm complexity as 
a function of the matrix size in this case, if the 
matrix is invertible and has complex values, then 
it’s just the inverse matrix. Finding the pseudo-
inverse in this case takes 𝑂ሺ𝑛ఠሻ time, where 𝑤 is 
the matrix size (multiplication constant) [Theorem 
28.2 in Introduction to Algorithms 3rd Edition]. 

In the other case, if the matrix 𝐴 has a linearly 
independent matrix size such as rows or columns 
and also complex value, then the pseudoinverse 
matrix can be computed as shown in equation (29). 

𝐴∗ሺ𝐴𝐴∗ሻିଵ  (27) 

Where 𝐴∗ is the conjugate transpose of 𝐴. In 
particular, this implies an 𝑂ሺ𝑛ఠሻ time for finding 
the pseudoinverse of 𝐴. 

In the mean while. Matrix size (𝜔) is an 
infimum. Whenever it is written by𝑂ሺ𝑛ఠሻ, which 
means that for all 𝛾 ൐ 𝜔 where in case, algorithm 
running in time of 𝑂ఊሺ𝑛ఊሻ. For example, if 𝐴  is the 
matrix of 𝑟 and size2 ൈ 2. In this case, a normal 
rank of 𝐴 is: 

𝑆 ൌ ቀ𝐼௥ 0
0 0

ቁ 𝑇 

 
For some cases, the invertible 𝑆 and 𝑇 of the 

appropriate dimensions [21] has normal rank form 
which is similar to the rank decomposition 
mentioned in the equation (28) [Wikipedia article]. 

𝐴 ൌ 𝑋𝑌  (28) 

Where in this case, 𝑋 has a matrix size 𝑟 
columns, and in the same way 𝑌 has also a matrix 
size 𝑟 rows. For indeed, the matrix 𝑋 can be taken 
as the first 𝑟 column of the matrix 𝑆, also, in the 
same way, the matrix 𝑌 can be taken as the first 𝑟 
rows of the matrix 𝑇. In this case, given the 
decomposition, the formal formula of the 
pseudoinverse using only the Hermitian adjoint, 
matrix multiplication and matrix inverse. Therefore, 
the pseudoinverse can be computed in time 𝑂ሺ𝑛ఠሻ 
[21]. 
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4. SVD APPLICATION OF REGRESSION 

Linear regression mathematically defined as the 
way that attacking the certain prediction. More 
clearly, by considering such a model that define in 
Equation (29) as it is shown below [21]: 

𝑌 ൌ 𝛽଴ ൅ 𝛽ଵ𝑒ఉమ௑ ൅ 𝜖  (29) 

Although, linear regression aims to model the 
main relationship between two variables. It is 
mainly based on the fitting linear equation that 
allows us to observe the data. Technically, one 
variable is considered to be such some explanatory 
variable while the other variable is considered to be 
a dependent variable.  

For instance, to represent such a model that 
wants to relate the weights of individuals to their 
heights. In this case, a linear regression is mainly 
used to do build the main model. In this case, 
before attempting data fitting using linear model to 
observe the data. A model should determine the 
main relationship between the variables in the area 
of interest. For example, the highest data in the 
SAT scoring example do the cause higher college 
grades. In this case, there is some significant 
association (relationship-predicted) between those 
two variables [22].  

The most significant tool that is mainly used for 
regression is the SCATTERPLOT. Scatterplot is 
often used to identify the main protentional 
relationship (association) between two variables. 
For instance, Figure (2) shows an example of plot 
demonstrations that appearance of the relationship 
between the Size and Age of the paired data [23]. 

 
Figure 2.  An Example of Scatterplot Regression 

Demonstrations [23] 

 

For an example of liner regression relationship 
prediction that is shown in Figure (3) [23].  
 

 
Figure 3.  An Example of The Median Scatter Plotting 
(Line Prediction-Regression) Between Price and Size 

[23]. 

 

In this figure, the median trace (predicted line) 
clarifies the positive association between both size 
and price. However, the predicted line is nothing 
but is plotting of the horizontal x-value (presents 
size) which is divided into equally spaced segment. 
In this case, the median of the corresponding y-
values (presents price) is plotting in the midpoint of 
each line segment as in shown in Figure (3). 

5. MATRIX BASED SVD-PSEUDO 
INVERSE LINEAR REGRESSION  

The linear regression line fitting or 
(relation1ship-association prediction) has an 
equation that formally define as Equation (30) 
shows below [24]. 

𝑌 ൌ 𝑎 ൅ 𝑏𝑋  (30) 

Were 𝑋 is the explanatory variable, while 𝑌 is 
the dependent variable. 𝑏 is the slop of the 
predicted line, and 𝑎 is the intercept which means 
that the value of 𝑦 when 𝑥 ൌ 0. 

Let assume that we have such a matrix 𝐴 where 
the dimension of it is 𝑚, and it is mathematically 
represented as 
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𝐴 ൌ

⎣
⎢
⎢
⎢
⎢
⎡
1 𝑡ଵ
1 𝑡ଶ
. .
. .
. .
1 𝑡௠⎦

⎥
⎥
⎥
⎥
⎤

 

 
While the slop 𝑏 is also mathematically 

represented as: 
 

𝑏 ൌ

⎣
⎢
⎢
⎢
⎢
⎡

𝑦ଵ
𝑦ଶ
.
.
.

𝑦௠⎦
⎥
⎥
⎥
⎥
⎤

 

 
Then the predicted line is mathematically 

represented based on the formula that is shown 
above in Equation (28): 

 

min
௫భ௫మ

෍ሺ𝑥ଵ ൅ 𝑡௜ ൈ 𝑥ଵ െ 𝑦௜ሻଶ

௠

௜ୀଵ

 

 
Based on that the matrix 𝐴 will be computed as: 
 

𝐴 ൌ

⎣
⎢
⎢
⎢
⎡
1 1
1 2
1 3
1 4
1 5⎦

⎥
⎥
⎥
⎤

 and  𝑏 ൌ

⎣
⎢
⎢
⎢
⎡
1.4501
1.7311
3.1068
3.9860
5.3913⎦

⎥
⎥
⎥
⎤

 

 
Then SVD Pseudo-Inverse matrix decomposition 

will be computed as: 

𝐴்𝐴 ൌ ቂ 5 15
15 55

ቃ 

 
Then, the regression coefficient is also be 

computed as: 
 

𝑐 ൌ 𝐴்𝑏 ൌ ቂ16.0620
58.6367

ቃ 

 
And based on the main regression formula: 
 

5𝑥ଵ ൅ 15 𝑥ଶ   ൌ 16.0620
15𝑥ଵ ൅ 55 𝑥ଶ ൌ 58.6367 

 
Then, the regression value (relationship 

predicted) are: 
 

𝑥ଵ ൌ 0.0772
𝑥ଶ ൌ 1.0451 

 

Finally, by using the scatter plotting of the 
predicted value the main egression values will be 
appear as the blue line between the green circles 
which are the real values as they shown in Figure 
(4) [24]. 

 
Figure 4.  Matrix Pseudo-Inverse Linear Regression 

Example [20]. 

 

6. EXPERIMENTAL RESULTS 

It is being clear that the SVD can be used in 
regression to analysis the data and determine 
(predict) the relationship between the data 
variables. The experimental results have been 
implemented using python and it has been based on 
the open source python code that has been 
implemented by Austin [24]. The data point that 
has been used in these experimental results are 
shown in Table (1). 

 
Table 1:The Original data points 

Original x Original y 

0 2.2 

1 2.2 

2 1 

3 3 

4 3 

5 4 

6 3 

7 6 

8 6 

9 7 

10 11 

11 12 

12 14 

13 10 

14 11 
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In this case, we will do both ways of determining 
the linear regression to determine and identical the 
results. 

 
6.1 Linear Regression Experiential Results 

The simple linear regression prediction results 
for the input data is shown in Table (2) and Figure 
(5).   

 
Table 2:Simple Linear Regression Results 

Original x Original y Linear fit x Linear fit y 

0 2.2 0 0.138108004 

1 2.2 1 1.039831482 

2 1 2 1.941554966 

3 3 3 2.843278437 

4 3 4 3.745001915 

5 4 5 4.646725393 

6 3 6 5.544844887 

7 6 7 6.450172348 

8 6 8 7.351589582 

9 7 9 8.253619303 

10 11 10 9.155342781 

11 12 11 10.05706626 

12 14 12 10.95878974 

13 10 13 11.86051321 

14 11 14 12.76223669 

 

 
Figure 5.  Simple Linear Regression Experimental 

Results [21]. 

 

It is clearly seen that the difference between the 
original points and the predicted line using simple 
linear regression as it shown in Figure (6). 

 
Figure 6.  Different between the Original Points and the 

Predicted Lines using Simple Regression [24]. 

 
6.2 Linear Regression Experiential Results 

To compare the simple regression results and the 
SVD regression using matrix-pseudo inverse, we 
take the same input data and used the SVD 
regression. The results shown in Table (3) and 
Figure (7) as well.   

 
 

Table 3:SVD-Pseudo-Inverse Regression Results 

Original x Original y Linear fit x Linear fit y 

0 2.2 0.13810800 0.115676843 

1 2.2 1.03938314 1.024566326 

2 1 1.94155496 1.933455809 

3 3 2.84327843 2.842345292 

4 3 3.74500191 3.751234776 

5 4 4.64672539 4.660124259 

6 3 5.54844887 5.569013742 

7 6 6.45017234 6.477903225 

8 6 7.35189582 7.386792708 

9 7 8.25361930 8.295688219 

10 11 9.15534278 9.204571674 

11 12 10.0570662 10.11346116 

12 14 10.9587897 11.02235064 

13 10 11.8605132 11.93`24012 

14 11 12.7622366 12.84012961 
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Figure 7.  SVD- Regression Experimental Results based 

on the Matrix-Pseudo Inverse Approach [24]. 

 
It is easily to notice that the SVD regression 

based on Matrix-Pseudo-Inverse approach 
prediction results are nearly identical that the 
simple regression results as expected. 

7. CONCLUSION 

In this paper, we present such a mathematical 
description of one of the most significant 
application of the Singular Value Decomposing 
Approach (SVD). Matrix-Pseudo Inverse of SVD 
regression has been selected as one application of 
the SVD. The mathematical examples show that the 
SVD regression approach based on the Matrix-
Pseudo Inverse is more realistic than the simple 
regression approach when it has been tested and 
compared with the simple regression. The SVD 
regression approach mainly based on the Matrix-
Decomposition which makes the regression of such 
a real complex problem more realistic and expected 
than the simple approach which is the simple 
regression approach. However, main significant 
case which the pseudo-inverse of the non-invertible 
matrix based on the Singular Value Decomposition 
(SVD) is discussed in this paper to show how the 
pseudo-inverse of the non-squared matrix can be 
computed based on using the component of the 
SVD. 
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