USING THE RSA AS AN ASYMMETRIC NON-PUBLIC KEY ENCRYPTION ALGORITHM IN THE SHAMIR THREE-PASS PROTOCOL

1DIAN RACHMAWATI, 2MOHAMMAD ANDRI BUDIMAN
1,2Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara, Jl. Universitas No. 9-A, Kampus USU, Medan 20155, Indonesia
E-mail: 1dian.rachmawati@usu.ac.id, 2mandrib@usu.ac.id

ABSTRACT

The Shamir three-pass protocol lets two parties to communicate in a secure manner without the need of exchanging any secret keys. As with many other cryptographic protocols, the Shamir three-pass protocol needs an algorithm in order to work in a proper manner. The algorithms used in the three-pass protocol should belong to the class of symmetric algorithms and follows commutative-encryption system. Our study takes an unconventional approach: instead of using a symmetric algorithm, we use RSA, an asymmetric algorithm, in the three-pass protocol. RSA is a public key crypto-system that relies its security on the difficulty of factoring a big integer into two prime numbers. However, in this study, the RSA is not used as a public key algorithm, but rather as an asymmetric non-public key encryption algorithm. This is done by setting both encryption and decryption keys to private. The complete computation of this scheme is done in Python programming language. Our study shows that this scheme works conveniently in the three-pass protocol.

Keywords: Cryptography, Commutative-Encryption, Asymmetric Non-Public Key, RSA, Shamir Three-Pass Protocol

1. INTRODUCTION

Cryptography can be defined as the craft and science of using mathematical techniques to communicate in a secure manner. With a symmetric cryptography concept, a message in the forms of symbols or texts is transformed into numbers. Using an encryption algorithm (or cipher) and a key (or password), the numbers are then converted into other numbers whose meanings are absurd. These meaningless numbers (or ciphertext) are then sent to the recipient via a channel (which can be a secure or an insecure channel). Meanwhile, the key is also sent to the recipient by using a different and, preferably, secure channel. The recipient then uses a decryption algorithm (which is simply the “inverse” of the encryption algorithm) and the key in order to get the real message. Thus, in order to send a message securely, there are at least two things that should be sent to the recipient: the ciphertext and the key.

With the public key cryptography concept (as proposed by Diffie and Hellman [1]), the need to send the key to the recipient is reduced. This concept works as follows. Firstly, the recipient generates two kinds of keys: private key and public key. His public key is published in the public channel by uploading it to his key server or by other electronic means; while his private key is kept secret. Secondly, the sender of the message looks up for the recipient’s public key, encrypts her message with that key, and sends the ciphertext to the recipient. Thirdly, the recipient decrypts the ciphertext with his own private keys and gets the original message back. Since it uses two different keys for encryption and decryption, the public key cryptography is often called “asymmetric cryptography” but we will show later that this is not always the case.

With the concept of public key cryptography, there is seemingly no need to send any keys. However, the public key itself still has to be published in some electronic ways, and that means everybody may know it. A savvy cryptanalyst may then use some mathematical methods to derive the private key from the public key. For example, if the public key cryptosystem being used is RSA [2] with public key \(n = 113053 \), then by understanding that \(n = pq \) (where p and q are RSA’s private keys) and using a factorization algorithm such as quadratic sieve [3], a cryptanalyst can easily derive that \(113053 = 131 * 863 \) and the RSA cryptosystem is compromised. Since RSA’s security depends on the hardness of factoring an integer, a sensible way to
increase RSA security is to use a larger public key n of around 2048-bit. However, Boneh and Venkatesan [4] shows some evidences that breaking RSA may be easier than factoring if the other RSA’s parameter (i.e., the RSA’s exponent e) is small, even though the public key n is very large.

The Shamir three-pass protocol enables a sender to transmit a message without the need of sending, publishing, or distributing any keys. The protocol works as follows [5]. The sender encrypts the message using her own key. In the first pass, the encrypted message is sent to the recipient. Then, the recipient super-encrypts the encrypted message using his own key. In the second pass, the super-encrypted message is sent to the sender. The sender decrypts the super-encrypted message. He then sends it to the recipient in the third pass. Using his own key, the recipient decrypts it, and the original message is recovered.

When Shamir developed the the idea of three-pass protocol in 1980, the speed of data transmission and the computation speed were very slow. Therefore, just about forty years ago, securing messages with three-pass protocol which uses two encryption-decryption processes and three transmission processes was arguably less popular than securing messages with an ordinary symmetric cryptographic algorithm which uses only one encryption-decryption process and one transmission process. However, an ordinary symmetric cryptography algorithm still has its own problem: its key has to be encrypted using asymmetric cryptography algorithm and then sent to the sender via a secure channel. The problem of sending secured messages without sending their corresponding encryption keys is exactly the problem that can be solved by the three-pass protocol.

Nowadays, the speed of data transmission is very fast due to the massive developments of computing and information technology devices. Thus, the problem of sending three different encrypted messages in the three-pass protocol is minimized since the transmission time is reduced due to the advancement of technologies. As a result, the three-pass protocol may take an important role in modern information security.

In order to be implemented for practical uses, the three-pass protocol needs an encryption algorithm to encrypt and decrypt the messages. The algorithm should belong to the class of symmetric cryptography [6]. The algorithm should also follow commutative principle, so that a message can be encrypted and decrypted using two different keys in any order.

Our study takes a quite different approach. Instead of using a symmetric algorithm, we use an asymmetric algorithm in the three-pass protocol. The asymmetric algorithm is the RSA encryption algorithm. The RSA relies its security on the hardness of factoring a big integer into two large prime numbers. This paper shows that the RSA works conveniently in the three-pass protocol.

2. SHAMIR THREE-PASS PROTOCOL

The three-pass protocol was formulated by Adi Shamir in 1980. This protocol allows two parties to exchange encrypted messages without exchanging any encryption keys. Since there are no keys being sent, exchanged, published, or distributed, this protocol is also known as Shamir no-key protocol. The protocol works as the following [5]:

1. The sender and the recipient choose a symmetric cryptography encryption algorithm to be used in the three-pass protocol. The chosen algorithm should follow commutative principle [6]. By following the commutative principle, encryption and decryption using two different keys can be done in any order.
2. The sender encrypts her message, m, using her own key, K_A, resulting in a ciphertext, c_1.
3. In the first pass, the sender sends c_1 to the recipient.
4. The recipient super-encrypts c_1 using his own key, K_B, resulting in another ciphertext, c_2.
5. In the second pass, the recipient sends c_2 to the sender.
6. The sender decrypts c_2 using her own key, K_A, resulting in another ciphertext, c_3.
7. In the third pass, the sender sends c_3 to the recipient.
8. The recipient decrypts c_3 using his own key, K_B, and therefore, he recovers the original message, m.

3. RSA ENCRYPTION SCHEME

The RSA public key cryptosystem was formulated by Ronald Rivest, Adi Shamir, and Leonard Adleman in 1978. RSA cryptosystem can be used for digital signature and encryption. RSA is
believed as the most widely used public key algorithm due to its simplicity.

When RSA is used as an encryption scheme (as in this work), there are three stages to follow, which are key generation, encryption, and decryption [2] [7] [8].

In the stage of key generation, the recipient does as follows:
1. Select two large and distinct prime numbers, \(p \) and \(q \).
2. Calculate \(n = pq \).
3. Calculate \(\Phi(n) = (p - 1)(q - 1) \).
4. Select an integer \(e \), so that \(\text{gcd}(\Phi(n), e) = 1 \) and \(1 < e < \Phi(n) \).
5. Calculate \(d \), so that \(ed \equiv 1 \pmod{\Phi(n)} \).
6. The private keys are \((p, q, \Phi(n), d)\). These keys have to be kept secret.
7. The public keys are \((n, e)\). These keys have to be published by some electronic ways so that anyone who wants to send a message to the recipient can use them in the encryption process.

In the stage of encryption, the sender does as follows:
1. Obtain the recipient’s public key, \((n, e)\).
2. Prepare the message, \(m \).
3. Calculate the ciphertext, \(c = me \mod n \).
4. Send \(c \) to the recipient.

In the stage of encryption, the recipient does as follows:
1. Receive the ciphertext, \(c \) from the sender.
2. Calculate the original message, \(m = c^d \mod n \).

5. COMMUTATIVE ENCRYPTION ALGORITHM

Not every encryption algorithm can be implemented in three-pass protocol. The three-pass protocol needs an encryption algorithm that is commutative in nature [10]. A commutative encryption algorithm allows a message to be super-encrypted using two different keys in any order. If \(E(m, k) \) is an encryption function that takes a message \(m \) and a key \(k \) as the inputs and produces a ciphertext as the output, then a commutative encryption algorithm ensures that \(E(E(m, k_A), k_B) = E(E(m, k_B), k_A) \).

In favor of the three-pass protocol, a commutative encryption also allows a message to be encrypted twice and decrypted twice using two different keys, and the final decryption will definitely bring back the original message. If \(D(c, k) \) is a decryption function that takes ciphertext \(c \) and key \(k \) as the inputs and produces a message \(m \) as the output, then a commutative encryption algorithm ensures that \(D(D(E(E(m, k_A), k_B), k_A), k_B) = m \).

A commutative algorithm usually belongs to the class of symmetric encryption algorithm. However, as mentioned earlier, a public key algorithm can also be treated as an asymmetric non-public key encryption algorithm. The difference between a symmetric encryption algorithm and an asymmetric non-public key encryption algorithm is that the former uses the same key for the encryption and decryption while the latter uses two different keys: one for the encryption and one for the decryption. Therefore, an asymmetric non-public key encryption algorithm in reality works just like a symmetric scheme with different keys being used in the encryption and the decryption. In favor of the three-pass protocol, one may use an asymmetric non-public key encryption algorithm that has a commutative property.

6. THE RSA AS A COMMUTATIVE ENCRYPTION ALGORITHM

Ambika, et al. [11] suggests that the RSA has a commutative property. It can be proven as follows [12].
The RSA encryption function is \(E(m, e) = m^e \mod n \). Let \(m \) be the message to be encrypted. Suppose that \(e_A \) and \(e_B \) are two different RSA encryption keys. We are now going to super-encrypt \(m \) using \(e_A \) and \(e_B \). A super-encryption generally means combining two encryption algorithms in order to reinforce the security (according to [13], [14], and [15]) but in our study, a super-encryption simply means using two different keys with the same encryption algorithm (i.e., RSA) without the intention to reinforce the security.

In the first case, the message \(m \) is encrypted with \(e_A \), then with \(e_B \), the result is \(E(E(m, e_A), e_B) = E(m^{e_A} \mod n, e_B) = m^{e_A \cdot e_B} \mod n \).

In the second case, the message \(m \) is encrypted with \(e_B \), then with \(e_A \), the result is \(E(E(m, e_B), e_A) = E(m^{e_B} \mod n, e_A) = m^{e_B \cdot e_A} \mod n \).

Thus, it can be concluded that \(E(E(m, e_A), e_B) = E(E(m, e_B), e_A) \), so it is proven that the RSA is a commutative encryption algorithm, and, therefore, can be used as a candidate algorithm for the Shamir three-pass protocol.

7. USING THE RSA ENCRYPTION SCHEME IN THE SHAMIR THREE-PASS PROTOCOL

Since the Shamir three-pass protocol uses a symmetric algorithm, the RSA can be implemented in this protocol by setting both its encryption and decryption keys to private. The RSA algorithm is chosen since the algorithm has been widely used since 1978, its calculation is uncomplicated, and it is hard to break as long as: (1) very large prime numbers are being used for \(p \) and \(q \); and (2) the exponent \(e \) is large enough.

Figure 1 illustrates how the RSA is used as an asymmetric non-public key algorithm to secure a message in the three-pass protocol. It can be figured out that the sender and the recipient have their own encryption and decryption keys. Unlike the typical RSA encryption scheme, the encryption keys are not published or transmitted to the other party. The encryption keys are set to private; only their respective owner has the information about their values. By default, the decryption keys are also set to private. By not transmitting any keys, the main objective of the three-pass protocol — i.e., sending messages securely without the need of sending, distributing, transmitting, or publishing any keys — is preserved.

The whole scheme works as follows (the signs * and ^ denote multiplication and exponentiation, respectively):

1. The sender generates the private keys for her own use as follows.
 (a) Generate two very large random prime numbers, \(p_{\text{sender}} \) and \(q_{\text{sender}} \). (This can be done with a primality test algorithm, such as Agrawal-Kayal-Saxena algorithm [16]).
 (b) Calculate \(n_{\text{sender}} = p_{\text{sender}} \cdot q_{\text{sender}} \).
 (c) Calculate \(\Phi(n_{\text{sender}}) = (p_{\text{sender}} - 1)(q_{\text{sender}} - 1) \).
 (d) Select an integer \(e_{\text{sender}} \), so that \(\gcd(\Phi(n_{\text{sender}}), e_{\text{sender}}) = 1 \) and \(1 < e_{\text{sender}} < \Phi(n_{\text{sender}}) \).
 (e) Calculate \(d_{\text{sender}} \), so that \(e_{\text{sender}} \cdot d_{\text{sender}} \equiv 1 \) (mod \(\Phi(n_{\text{sender}}) \)).
(f) All the parameters \((p_{sender}, q_{sender}, n_{sender}, \Phi_{sender}(n_{sender}), e_{sender}, d_{sender}) \) are set to private.

2. The recipient generates the private keys for his own use as follows.
 (a) Generate two very large random prime numbers, \(p_{recipient} \) and \(q_{recipient} \).
 (b) Calculate \(n_{recipient} = p_{recipient} * q_{recipient} \).
 (c) Calculate \(\Phi(n_{recipient}) = (p_{recipient} – 1)(q_{recipient} – 1) \).
 (d) Select an integer \(e_{recipient} \), so that \(gcd(\Phi(n_{recipient}), e_{recipient}) = 1 \) and \(1 < e_{recipient} < \Phi(n_{recipient}) \).
 (e) Calculate \(d_{recipient} \), so that \(e_{recipient} * d_{recipient} \equiv 1 \pmod{\Phi(n_{recipient})} \).
 (f) All the parameters \((p_{recipient}, q_{recipient}, n_{recipient}, \Phi(n_{recipient}), e_{recipient}, d_{recipient}) \) are set to private.

3. The sender encrypts her message, \(m \) by calculating the ciphertext, \(c_1 = m ^ {e_{sender}} \mod n_{sender} \).

4. As the first pass, the sender sends \(c_1 \) to the recipient.

5. The recipient super-encrypts \(c_1 \) by calculating \(c_2 = c_1 ^ {e_{recipient}} \mod n_{recipient} \).

6. As the second pass, the recipient sends \(c_2 \) to the sender.

7. The sender decrypts \(c_2 \) by calculating \(c_3 = c_2 ^ {d_{sender}} \mod n_{sender} \).

8. As the third pass, the sender sends \(c_3 \) to the recipient.

9. The recipient decrypts \(c_3 \) by calculating \(m = c_3 ^ {d_{recipient}} \mod n_{recipient} \). The \(m \), which is the original message, has been recovered.

8. EXPERIMENTS AND DISCUSSIONS

Consider a scenario that a sender wants to send a character ‘M’ to a recipient by using the RSA encryption scheme in three-pass protocol. She then looks into the ASCII table, and finds out that the corresponding number for the letter ‘M’ is 77. So, she lets the message \(m = 77 \).

A. Key Generation (Sender)

The sender generates two large prime numbers, \(p_{sender} \) and \(q_{sender} \).

\[
\begin{align*}
p_{sender} &= 8738227201932281947 \\
q_{sender} &= 16588444808609115061
\end{align*}
\]

She then calculates \(n_{sender} \).

\[
\begin{align*}
n_{sender} &= p_{sender} * q_{sender} = 8738227201932281947 * 16588444808609115061 = 144953599664340515826441122412016103767
\end{align*}
\]

Next, she calculates \(\Phi(n_{sender}) \).

\[
\begin{align*}
\Phi(n_{sender}) &= (p_{sender} – 1)(q_{sender} – 1) = (8738227201932281947 – 1)(16588444808609115061 – 1) = 14495359966434051580111445040147470760
\end{align*}
\]

She selects an integer \(e_{sender} \), so that \(gcd(\Phi(n_{sender}), e_{sender}) = 1 \) and \(1 < e_{sender} < \Phi(n_{sender}) \).

\[
\begin{align*}
e_{sender} &= 4286486742281608350885748483625049
\end{align*}
\]

She calculates \(d_{sender} \), so that \(e_{sender} * d_{sender} \equiv 1 \pmod{\Phi(n_{sender})} \).

\[
\begin{align*}
d_{sender} &= 82340247294165221959414799758159976449
\end{align*}
\]

Since here RSA is treated as an asymmetric non-public key encryption algorithm, all of the above values are kept private by the sender.

B. Key Generation (Recipient)

The recipient generates two large prime numbers, \(p_{recipient} \) and \(q_{recipient} \).

\[
\begin{align*}
p_{recipient} &= 14646989093166241543 \\
q_{recipient} &= 15865985506086455321
\end{align*}
\]

He then calculates \(n_{recipient} \).

\[
\begin{align*}
n_{recipient} &= p_{recipient} * q_{recipient} = 14646989093166241543 * 15865985506086455321 = 232388916659981982113466262076963600303
\end{align*}
\]
Next, he calculates $\Phi(n_{recipient})$.

$$\Phi(n_{recipient}) = (p_{recipient} - 1)(q_{recipient} - 1) = (14649889093166241543 - 1) * (1586535606086453321 - 1) = 232388916659981982082953287477710903440$$

He selects an integer $e_{recipient}$, so that $\gcd(\Phi(n_{recipient}), e_{recipient}) = 1$ and $1 < e_{recipient} < \Phi(n_{recipient})$.

$$e_{recipient} = 84520271933157006197709213886246055657$$

He calculates $d_{recipient}$, so that $e_{recipient} * d_{recipient} \equiv 1 \pmod{\Phi(n_{recipient})}$.

$$d_{recipient} = 18999230382497840075252857695616448393$$

Because RSA is used as an asymmetric non-public key encryption algorithm, all of the above values are also kept private by the recipient.

C. Encryption Stage (Sender)

The sender encrypts her message, m, into the ciphertext, $c_1 = m^{esender} \pmod{n_{sender}}$.

$$c_1 = m^{esender} \pmod{n_{sender}} = 77^{428648674228166038350834784836525049} \pmod{14495359664340515826441122412016103767} = 43407676103642712012182824888305334714$$

In the first pass, the sender sends c_1 to the recipient.

D. Super-Encryption Stage (Recipient)

The recipient super-encrypts c_1 by calculating $c_2 = c_1^{e_{recipient}} \pmod{n_{recipient}}$.

$$c_2 = c_1^{e_{recipient}} \pmod{n_{recipient}} = 4340767610364271201218282488305334714^{84520271933157006197709213886246055657} \pmod{232388916659981982113466262076963600303} = 718490443386434929531943878290844096$$

In the second pass, the recipient sends c_2 to the sender.

E. Decryption Stage (Sender)

The sender decrypts c_2 by calculating $c_3 = c_2^{d_{sender}} \pmod{n_{sender}}$.

$$c_3 = c_2^{d_{sender}} \pmod{n_{sender}} = 718490443386434929531943878290844096^{82340247294165221959414799758159976449} \pmod{14495359664340515826441122412016103767} = 43407676103642712012182824888305334714$$

In the third pass, the sender sends c_3 to the recipient.

F. Final Decryption Stage (Recipient)

The recipient decrypts c_3 by calculating $m = c_3^{d_{recipient}} \pmod{n_{recipient}}$.

$$m = c_3^{d_{recipient}} \pmod{n_{recipient}} = 4340767610364271201218282488305334714^{18999230382497840075252857695616448393} \pmod{232388916659981982113466262076963600303} = 77$$

Finally, the recipient has recovered the original message $m = 77$. He looks into the ASCII table, and finds the corresponding character for number 77 is ‘M’, which is the original character the sender wants him to read.

9. THE PYTHON CODES

The whole computation of our scheme is done in Python programming language. The development environment is Pythonista and the operating system is iOS 11.2.5 which runs in A10X Fusion chip with 64-bit architecture. The complete listing of the codes is provided as follows.

```python
#title: The RSA Cryptosystem in Shamir Three-Pass Protocol
#author: Mohammad Andri Budiman & Dian Rachmawati
#version: 4.7
```

Φ(nrecipient) = (precipient – 1)(qrecipient – 1) = (14649889093166241543 – 1) * (1586535606086453321 – 1) = 232388916659981982082953287477710903440

erecipient = 84520271933157006197709213886246055657
drecipient = 18999230382497840075252857695616448393

Because RSA is used as an asymmetric non-public key encryption algorithm, all of the above values are also kept private by the recipient.

C. Encryption Stage (Sender)

The sender encrypts her message, m into the ciphertext, c1 = m^esender mod nsender.

```
c1 = m^esender mod nsender = 77^428648674228166038350834784836525049 mod 14495359664340515826441122412016103767 = 43407676103642712012182824888305334714
```

In the first pass, the sender sends c1 to the recipient.

D. Super-Encryption Stage (Recipient)

The recipient super-encrypts c1 by calculating c2 = c1^erecipient mod nrecipient.

```
c2 = c1^erecipient mod nrecipient = 4340767610364271201218282488305334714^84520271933157006197709213886246055657 mod 232388916659981982113466262076963600303 = 718490443386434929531943878290844096
```

In the second pass, the recipient sends c2 to the sender.

E. Decryption Stage (Sender)

The sender decrypts c2 by calculating c3 = c2^dsender mod nsender.

```
c3 = c2^dsender mod nsender = 718490443386434929531943878290844096^82340247294165221959414799758159976449 mod 14495359664340515826441122412016103767 = 43407676103642712012182824888305334714
```

In the third pass, the sender sends c3 to the recipient.

F. Final Decryption Stage (Recipient)

The recipient decrypts c3 by calculating m = c3^drecipient mod nrecipient.

```
m = c3^drecipient mod nrecipient = 4340767610364271201218282488305334714^18999230382497840075252857905616448393 mod 232388916659981982113466262076963600303 = 77
```

Finally, the recipient has recovered the original message m = 77. He looks into the ASCII table, and finds the corresponding character for number 77 is ‘M’, which is the original character the sender wants him to read.

9. THE PYTHON CODES

The whole computation of our scheme is done in Python programming language. The development environment is Pythonista and the operating system is iOS 11.2.5 which runs in A10X Fusion chip with 64-bit architecture. The complete listing of the codes is provided as follows.

```python
#title: The RSA Cryptosystem in Shamir Three-Pass Protocol
#author: Mohammad Andri Budiman & Dian Rachmawati
#version: 4.7
```
import math, random, sys
sys.setrecursionlimit(10000)
class RSA(object):
 def __init__(self):
 maxi = pow(2, 64) # 2^72
 self.p, self.q = self.getPrivateKeys(maxi)
 self.n = self.p * self.q
 self.totient = (self.p - 1) * (self.q - 1)
 self.e = self.compute_e(self.totient)
 self.d = self.compute_d(self.e, self.totient)
 self.plaintext = plaintext
 length = len(self.plaintext)
 plainchar = self.text2char(self.plaintext)
 plainnum = self.char2num(plainchar)
 ciphernum = self.encrypt(plainnum, self.e, self.n)
 for i in range(length):
 print repr(plainchar[i]).ljust(7), '	', repr(plainnum[i]).ljust(7), '	', repr(ciphernum[i]).ljust(7)
 return ciphernum

 def isCoprime(self, p, q):
 if self.gcd(p, q) == 1:
 return True
 return False

def gcd(self, m, n):
 if n == 0:
 return m
 return self.gcd(n, m % n)

 def compute_e(self, totient):
 e = self.rnd(2, totient - 1)
 while not self.isCoprime(e, totient):
 e = self.rnd(2, totient - 1)
 return e

 def compute_d(self, e, totient):
 d, _ = self.extended_gcd(e, totient)
 return d % totient

 def doEncrypt(self, plaintext):
 print "Encryption"
 self.plaintext = plaintext
 length = len(self.plaintext)
 plainchar = self.text2char(self.plaintext)
 plainnum = self.char2num(plainchar)
 ciphernum = self.encrypt(plainnum, self.e, self.n)
 for i in range(length):
 print repr(plainchar[i]).ljust(7), '	', repr(plainnum[i]).ljust(7), '	', repr(ciphernum[i]).ljust(7)
 return ciphernum

 def doDecrypt(self, ciphernum):
 print "Decryption"
 m = self.decrypt(ciphernum, self.p, self.q, self.d)
 for i in range(len(ciphernum)):
 print repr(ciphernum[i]).ljust(7), '	', repr(m[i]).ljust(7), '	', repr(chr(m[i])).ljust(7)
 return m

 def doBoth(self, plaintext):
 ciphernum = self.doEncrypt(plaintext)
 m = self.doDecrypt(ciphernum)

 def doTPP(self, message):
 plaintext = message
 print "plaintext =", plaintext
 alice = RSA()
 bob = RSA()
 print "alice.p =", alice.p
 print "alice.q =", alice.q
 print "alice.n =", alice.n
 print "alice.totient =", alice.totient
 print "alice.e =", alice.e
 print "alice.d =", alice.d

```python
print "bob.p =", bob.p
print "bob.q =", bob.q
print "bob.n =", bob.n
print "bob.totient =", bob.totient
print "bob.e =", bob.e
print "bob.d =", bob.d
print
length = len(plaintext)
plainchar = self.text2char(plaintext)
plainnum = self.char2num(plainchar)

print "*********************************
***************"
(Encryption by Alice): plaintext => c1
print "*********************************
***************

c1 = self.encrypt(plainnum, bob.e, bob.n)
self.printFirstEncrypt(plainnum, c1)
print
print "*********************************
***************"
(Encryption by Bob): c1 => c2
print "*********************************
***************
c2 = self.encrypt(c1, alice.e, alice.n)
self.printEncrypt(c1, c2)
print
print "*********************************
***************"
(Decryption by Alice): c2 => c3
print "*********************************
***************
c3 = self.decrypt(c2, alice.p, alice.q, alice.d)
self.printDecrypt(c2, c3)
print
print
print (Decryption by Bob): c3 => plaintext
pt = self.decrypt(c3, bob.p, bob.q, bob.d)
self.printFinalDecrypt(c3, pt)
print
```

def printFinalDecrypt(self, ciphernum, plainnum):
 for i in range(len(ciphernum)):
 print repr(ciphernum[i]).ljust(7), '=>	', repr(plainnum[i]).ljust(7), '=>	', repr(chr(plainnum[i])).ljust(7)

def rnd(self, mini, maxi): # get random number between mini and maxi (and including mini and maxi)
 return random.randint(mini, maxi)

def AKS(self, n):
 z = random.randint(2, n - 2)
 return True if pow(1 + z, n, n) == (1 + pow(z, n, n)) % n
else False

def getRandomPrime(self, mini, maxi):
 p = self.rnd(mini, maxi) // 2 * 2 + 1 # make sure it's odd
 while not self.AKS(p):
 p = self.rnd(mini, maxi) // 2 * 2 + 1
 return p

def getPrivateKeys(self, maxi):
 p = 1
 q = 1
 while(p * q < maxi or p == q):
 p = self.getRandomPrime(1, maxi)
 q = self.getRandomPrime(p + 1, maxi)
 return p, q

def dec2bin(self, d):
 binary = []
 while d != 0:
 binary.append(d % 2)
 d = d // 2
 binary.reverse()
 return binary

def bin2dec(self, b):
 b.reverse()
 d = 0
 for i in range(len(b)):
 d = d + i * pow(2, k)
 k = k + 1
 return d

def bin2str(self, b):
 s = ""
 for bin in b:
 s = s + str(bin)
 return s

def extended_gcd(self, a, b):
 if b == 0:
 return 1, 0
 k = a / b
 r = a % b
 m, n = self.extended_gcd(b, r)
 return n, m - k * n

def text2char(self, text):
 char = {}
 for i in range(len(text)):
 char[i] = text[i]
 return char

def char2num(self, char):
 num = {}
 for i in range(len(char)):
 num[i] = ord(char[i])
 return num

def num2char(self, num):
 char = {}
 for i in range(len(num)):
 char[i] = chr(num[i])
 return char
def encrypt(self, plainnum, e, n):
 ciphernum = {}
 for i in range(len(plainnum)):
 b = self.dec2bin(plainnum[i])
 p = self.bin2dec(b)
 ciphernum[i] = pow(p, e, n)
 return ciphernum

def inverse(self, m, n):
 a, b = self.extended_gcd(m, n)
 return a % n

def decrypt(self, ciphernum, p, q, d):
 plainnum = {}
 n = p * q
 for i in range(len(ciphernum)):
 plainnum[i] = pow(ciphernum[i], d, n)
 print "plainnum[", i,
 print return plainnum

andri = RSA()
andri.doTPP("ANDRI")

In Figure 2, we show the experimental result of using the RSA as an asymmetric non-public key encryption algorithm in the Shamir three-pass protocol in Pythonista development environment. In this scenario, Alice (the sender) would like to securely send her message (plaintext) “ANDRI” to Bob (the recipient). Both parties generate their own encryption and decryption keys. In Process 1, Alice encrypts the plaintext into \(c_1 \) using her public key and sends it to Bob. In Process 2, Bob super-encrypts \(c_1 \) into \(c_2 \) using his public key, and sends it to Alice. In Process 3, Alice decrypts \(c_2 \) with her private key, resulting in \(c_3 \); \(c_3 \) is then sent to Bob. In Process 4, Bob decrypts \(c_3 \) with his own private key, resulting in the plaintext “ANDRI” which Alice wants Bob to read in the first place. Since the plaintext is thoroughly recovered, one may deduce that the experiment has been finished successfully.

10. CONCLUSIONS

This work shows that the RSA can be used as an encryption algorithm for the Shamir three-pass protocol since the RSA has a commutative property that is essential to the three-pass protocol. The stages and the computations being carried out in each stage in order to use the RSA encryption in the Shamir three-pass protocol have been shown thoroughly. The Python source code for the whole system has also been provided.

It should be noted that the RSA encryption used in this work does not follow the conventional public key encryption where the encryption keys \((n, e)\) are set to public, but here the these encryption keys (and also the decryption keys) are set to private and the one who does the encryption is the one who generates the keys him/herself. Thus, here we have treated the RSA as an asymmetric non-public key encryption algorithm. An asymmetric non-public key encryption algorithm is an encryption algorithm.
that uses different keys for encryption and decryption but none of the keys are set to public.

In the final decryption stage, it can be seen that the original message can be recovered back by this scheme. Therefore, we conclude that the RSA asymmetric non-public key encryption algorithm works conveniently in the Shamir three-pass protocol.

Since the robustness of this scheme is beyond the scope of this work, more studies are needed to prove that this scheme is secure enough against all kinds of cryptanalyst attacks. If it is proven to be secure, then it may be expected that some other public key encryption algorithms can also be treated as asymmetric non-public key encryption algorithms to be used in the three-pass protocol.

ACKNOWLEDGEMENTS

We gratefully acknowledge that this research is funded by Lembaga Penelitian Universitas Sumatera Utara. The support is under the research grant TALENTA USU of Year 2017 Contract Number: 5338/UN5.1.R/PPM/2017.

REFERENCES

