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ABSTRACT 
 

The Shamir three-pass protocol lets two parties to communicate in a secure manner without the need of 
exchanging any secret keys. As with many other cryptographic protocols, the Shamir three-pass protocol 
needs an algorithm in order to work in a proper manner. The algorithms used in the three-pass protocol should 
belong to the class of symmetric algorithms and follows commutative-encryption system. Our study takes an 
unconventional approach: instead of using a symmetric algorithm, we use RSA, an asymmetric algorithm, in 
the three-pass protocol. RSA is a public key crypto-system that relies its security on the difficulty of factoring 
a big integer into two prime numbers. However, in this study, the RSA is not used as a public key algorithm, 
but rather as an asymmetric non-public key encryption algorithm. This is done by setting both encryption and 
decryption keys to private. The complete computation of this scheme is done in Python programming 
language. Our study shows that this scheme works conveniently in the three-pass protocol. 

Keywords: Cryptography, Commutative-Encryption, Asymmetric Non-Public Key, RSA, Shamir Three-Pass 
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1. INTRODUCTION  
 

Cryptography can be defined as the craft and 
science of using mathematical techniques to 
communicate in a secure manner. With a symmetric 
cryptography concept, a message in the forms of 
symbols or texts is transformed into numbers. Using 
an encryption algorithm (or cipher) and a key (or 
password), the numbers are then converted into other 
numbers whose meanings are absurd. These 
meaningless numbers (or ciphertext) are then sent to 
the recipient via a channel (which can be a secure or 
an insecure channel). Meanwhile, the key is also sent 
to the recipient by using a different and, preferably, 
securer channel. The recipient then uses a decryption 
algorithm (which is simply the “inverse” of the 
encryption algorithm) and the key in order to get the 
real message. Thus, in order to sent a message 
securely, there are at least two things that should be 
sent to the recipient: the ciphertext and the key.  

With the public key cryptography concept (as 
proposed by Diffie and Hellman [1]), the need to 
send the key to the recipient is reduced. This concept 
works as follows. Firstly, the recipient generates two 
kinds of keys: private key and public key. His public 
key is published in the public channel by uploading 

it to his key server or by other electronic means; 
while his private key is kept secret. Secondly, the 
sender of the message looks up for the recipient’s 
public key, encrypts her message with that key, and 
sends the ciphertext to the recipient. Thirdly, the 
recipient decrypts the ciphertext with his own private 
keys and gets the original message back. Since it uses 
two different keys for encryption and decryption, the 
public key cryptography is often called “asymmetric 
cryptography” but we will show later that this is not 
always the case. 

With the concept of public key cryptography, 
there is seemingly no need to send any keys. 
However, the public key itself still has to be 
published in some electronic ways, and that means 
everybody may know it. A savvy cryptanalyst may 
then use some mathematical methods to derive the 
private key from the public key. For example, if the 
public key cryptosystem being used is RSA [2] with 
public key n = 113053, then by understanding that n 
= pq (where p and q are RSA’s private keys) and 
using a factorization algorithm such as quadratic 
sieve [3], a cryptanalyst can easily derive that 
113053 = 131 * 863 and the RSA cryptosystem is 
compromised. Since RSA’s security depends on the 
hardness of factoring an integer, a sensible way to 
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increase RSA security is to use a larger public key n 
of around 2048-bit. However, Boneh and 
Venkatesan [4] shows some evidences that breaking 
RSA may be easier than factoring if the other RSA’s 
parameter (i.e., the RSA’s exponent e) is small, even 
though the public key n is very large. 

The Shamir three-pass protocol enables a 
sender to transmit a message without the need of 
sending, publishing, or distributing any keys. The 
protocol works as follows [5]. The sender encrypts 
the message using her own key. In the first pass, the 
encrypted message is sent to the recipient. Then, the 
recipient super-encrypts the encrypted message 
using his own key. In the second pass, the super-
encrypted message is sent to the sender. The sender 
decrypts the super-encrypted message. He then sends 
it to the recipient in the third pass. Using his own key, 
the recipient decrypts it, and the original message is 
recovered. 

When Shamir developed the the idea of three-
pass protocol in 1980, the speed of data transmission 
and the computation speed were very slow. 
Therefore, just about forty years ago, securing 
messages with three-pass protocol which uses two 
encryption-decryption processes and three 
transmission processes was arguably less popular 
than securing messages with an ordinary symmetric 
cryptographic algorithm which uses only one 
encryption-decryption process and one transmission 
process. However, an ordinary symmetric 
cryptography algorithm still has its own problem: its 
key has to be encrypted using asymmetric 
cryptography algorithm and then sent to the sender 
via a secure channel. The problem of sending 
secured messages without sending their 
corresponding encryption keys is exactly the 
problem that can be solved by the three-pass 
protocol. 

Nowadays, the speed of data transmission is 
very fast due to the massive developments of 
computing and information technology devices. 
Thus, the problem of sending three different 
encrypted messages in the three-pass protocol is 
minimized since the transmission time is reduced 
due to the advancement of technologies. As a result, 
the three-pass protocol may take an important role in 
modern information security.  

 In order to be implemented for practical uses, 
the three-pass protocol needs an encryption 
algorithm to encrypt and decrypt the messages. The 
algorithm should belong to the class of symmetric 
cryptography [6]. The algorithm should also follow 
commutative principle, so that a message can be 

encrypted and decrypted using two different keys in 
any order.  

 Our study takes a quite different approach. 
Instead of using a symmetric algorithm, we use an 
asymmetric algorithm in the three-pass protocol. The 
asymmetric algorithm is the RSA encryption 
algorithm. The RSA relies its security on the 
hardness of factoring a big integer into two large 
prime numbers. This paper shows that the RSA 
works conveniently in the three-pass protocol. 

 

2. SHAMIR THREE-PASS PROTOCOL  

The three-pass protocol was formulated by Adi 
Shamir in 1980. This protocol allows two parties to 
exchange encrypted messages without exchanging 
any encryption keys. Since there are no keys being 
sent, exchanged, published, or distributed, this 
protocol is also known as Shamir no-key protocol. 
The protocol works as the following [5]: 

1. The sender and the recipient choose a 
symmetric cryptography encryption 
algorithm to be used in the three-pass 
protocol. The chosen algorithm should 
follow commutative principle [6]. By 
following the commutative principle, 
encryption and decryption using two 
different keys can be done in any order. 

2.  The sender encrypts her message, m, using 
her own key, KA, resulting in a ciphertext, 
c1. 

3. In the first pass, the sender sends c1 to the 
recipient. 

4. The recipient super-encrypts c1 using his 
own key, KB, resulting in another 
ciphertext, c2. 

5. In the second pass, the recipient sends c2 to 
the sender.  

6. The sender decrypts c2 using her own key, 
KA, resulting in another ciphertext, c3. 

7. In the third pass, the sender sends c3 to the 
recipient. 

8. The recipient decrypts c3 using his own 
key, KB, and therefore, he recovers the 
original message, m. 
 

 
3. RSA ENCRYPTION SCHEME 
 
 The RSA public key cryptosystem was 
formulated by Ronald Rivest, Adi Shamir, and 
Leonard Adleman in 1978. RSA cryptosystem can be 
used for digital signature and encryption. RSA is 
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believed as the most widely used public key 
algorithm due to its simplicity. 

 When RSA is used as an encryption scheme (as 
in this work), there are three stages to follow, which 
are key generation, encryption, and decryption [2] 
[7] [8].  

 In the stage of key generation, the recipient 
does as follows: 

1. Select two large and distinct prime numbers, 
p and q.  

2. Calculate n = pq. 
3. Calculate Φ(n) = (p – 1)(q – 1). 
4. Select an integer e, so that gcd(Φ(n), e) = 1 

and 1 < e < Φ(n). 
5. Calculate d, so that ed ≡ 1 (mod Φ(n)). 
6. The private keys are (p, q, Φ(n), d). These 

keys have to be kept secret. 
7. The public keys are (n, e). These keys have 

to be published by some electronic ways so 
that anyone who wants to send a message to 
the recipient can use them in the encryption 
process. 
 

 In the stage of encryption, the sender does as 
follows: 

1. Obtain the recipient’s public key, (n, e). 
2. Prepare the message, m. 
3. Calculate the ciphertext, c = me mod n. 
4. Send c to the recipient. 

 
 In the stage of encryption, the recipient does as 
follows: 

1. Receive the ciphertext, c from the sender. 
2. Calculate the original message, m = cd mod 

n. 
 

4. ASYMMETRIC NON-PUBLIC KEY 
ENCRYPTION ALGORITHM 

Asymmetric cryptography is a cipher or 
cryptography algorithm that uses different keys for 
encryption and decryption. The encryption key is 
usually set to public while the decryption key is set 
to private. Therefore, it has been widely believed that 
the term ‘asymmetric cryptography’ is synonymous 
with the term ‘public key cryptography’.  

 However, this opinion is proven to be untrue 
since there is an asymmetric algorithm called Pohlig-
Hellman whose encryption and decryption keys are 
both set to private [9]. Therefore, Pohlig-Hellman is 
still an asymmetric algorithm, but it is not a public 
key algorithm. It can easily be figured out that some 

(if not all) public key cryptography algorithms can 
also be treated as ‘asymmetric non-public key 
encryption algorithms’ by setting both encryption 
and decryption keys to private [8]. 

5. COMMUTATIVE ENCRYPTION 
ALGORITHM 

Not every encryption algorithm can be 
implemented in three-pass protocol. The three-pass 
protocol needs an encryption algorithm that is 
commutative in nature [10]. A commutative 
encryption algorithm allows a message to be super-
encrypted using two different keys in any order. If 
E(m, k) is an encryption function that takes a 
message m and a key k as the inputs and produces a 
ciphertext as the output, then a commutative 
encryption algorithm ensures that E(E(m, kA), kB) =  
E(E(m, kB), kA).  

 In favor of the three-pass protocol, a 
commutative encryption also allows a message to be 
encrypted twice and decrypted twice using two 
different keys, and the final decryption will 
definitely bring back the original message. If D(c, k) 
is a decryption function that takes ciphertext c and 
key k as the inputs and produces a message m as the 
output, then a commutative encryption algorithm 
ensures that D(D(E(E(m, kA), kB), kA), kB) = m.  

 A commutative algorithm usually belongs to 
the class of symmetric encryption algorithm. 
However, as mentioned earlier, a public key 
algorithm can also be treated as an asymmetric non-
public key encryption algorithm. The difference 
between a symmetric encryption algorithm and an 
asymmetric non-public key encryption algorithm is 
that the former uses the same key for the encryption 
and decryption while the latter uses two different 
keys: one for the encryption and one for the 
decryption. Therefore, an asymmetric non-public 
key encryption algorithm in reality works just like a 
symmetric scheme with different keys being used in 
the encryption and the decryption.  In favor of the 
three-pass protocol, one may use an asymmetric 
non-public key encryption algorithm that has a 
commutative property. 

  

6. THE RSA AS A COMMUTATIVE 
ENCRYPTION ALGORITHM 

 Ambika, et al. [11] suggests that the RSA has 
a commutative property. It can be proven as follows 
[12]. 
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 The RSA encryption function is E(m, e) = me 
mod n. Let m be the message to be encrypted.  
Suppose that eA and eB are two different RSA 
encryption keys. We are now going to super-encrypt 
m using eA and eB. A super-encryption generally 
means combining two encryption algorithms in 
order to reinforce the security (according to [13], 
[14], and [15]) but in our study, a super-encryption 
simply means using two different keys with the same 
encryption algorithm (i.e., RSA) without the 
intention to reinforce the security.  

 In the first case, the message m is encrypted 
with eA, then with eB, the result is E(E(m, eA), eB) 
= E(meA mod n, eB) = meA.eB mod n. 

 In the second case, the message m is encrypted 
with eB, then with eA, the result is E(E(m, eB), eA) 
= E(meB mod n, eA) = meB.eA mod n. 

 Thus, it can be concluded that E(E(m, eA), eB) 
= E(E(m, eB), eA), so it is proven that the RSA is a 
commutative encryption algorithm, and, therefore, 
can be used as a candidate algorithm for the Shamir 
three-pass protocol.   

7. USING THE RSA ENCRYPTION SCHEME 
IN THE SHAMIR THREE-PASS 
PROTOCOL 

Since the Shamir three-pass protocol uses a 
symmetric algorithm, the RSA can be implemented 
in this protocol by setting both its encryption and 
decryption keys to private. The RSA algorithm is 
chosen since the algorithm has been widely used 
since 1978, its calculation is uncomplicated, and it is 
hard to break as long as: (1) very large prime 
numbers are being used for p and q; and (2) the 
exponent e is large enough.  

 Figure 1 illustrates how the RSA is used as an 
asymmetric non-public key algorithm to secure a 
message in the three-pass protocol. It can be figured 
out that the sender and the recipient have their own 
encryption and decryption keys. Unlike the typical 
RSA encryption scheme, the encryption keys are not 
published or transmitted to the other party. The 
encryption keys are set to private; only their 
respective owner has the information about their 
values. By default, the decryption keys are also set 
to private. By not transmitting any keys, the main 
objective of the three-pass protocol — i.e., sending 
messages securely without the need of sending, 
distributing, transmitting, or publishing any keys — 
is preserved. 

 

Figure 1 Using the RSA in the three-pass protocol 

  

 The whole scheme works as follows (the signs 
* and ^ denote multiplication and exponentiation, 
respectively): 

1. The sender generates the private keys for her own 
use as follows. 
(a) Generate two very large random prime 

numbers, psender and qsender. (This can be 
done with a primality test algorithm, such 
as Agrawal-Kayal-Saxena algorithm [16]). 

(b) Calculate nsender = psender * qsender. 
(c) Calculate Φsender(nsender) = (psender – 1)( 

qsender – 1). 
(d) Select an integer esender, so that 

gcd(Φsender(nsender), esender) = 1 and 1 < esender 
< Φsender(nsender). 

(e) Calculate dsender, so that esender * dsender ≡ 1 
(mod Φsender(nsender)). 
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(f) All the parameters (psender, qsender, nsender, 
Φsender(nsender), esender,  dsender) are set to 
private. 

2. The recipient generates the private keys for his 
own use as follows. 
(a) Generate two very large random prime 

numbers, precipient and qrecipient. 
(b) Calculate nrecipient = precipient * qrecipient. 
(c) Calculate Φ(nrecipient) = (precipient – 1)( 

qrecipient – 1). 
(d) Select an integer erecipient, so that 

gcd(Φ(nrecipient), erecipient) = 1 and 1 < erecipient 
< Φ(nrecipient). 

(e) Calculate drecipient, so that erecipient * drecipient 
≡ 1 (mod Φ(nrecipient)). 

(f) All the parameters (precipient, qrecipient, nrecipient, 
Φ(nrecipient), erecipient,  drecipient) are set to 
private. 

3. The sender encrypts her message, m by 
calculating the ciphertext, c1 = m ^ esender mod 
nsender. 

4. As the first pass, the sender sends  c1 to the 
recipient. 

5. The recipient super-encrypts c1 by calculating c2 
= c1 ^ erecipient mod nrecipient. 

6. As the second pass, the recipient sends  c2 to the 
sender. 

7. The sender decrypts c2 by calculating c3 = c2 ^ 
dsender mod nsender. 

8. As the third pass, the sender sends  c3 to the 
recipient. 

9. The recipient decrypts c3 by calculating m = c3 ^ 
drecipient mod nrecipient. The m, which is the original 
message, has been recovered. 
 

 
8. EXPERIMENTS AND DISCUSSIONS  
 
  Consider a scenario that a sender wants to send 
a character ‘M’ to a recipient by using the RSA 
encryption scheme in three-pass protocol. She then 
looks into the ASCII table, and finds out that the 
corresponding number for the letter ‘M’ is 77. So, 
she lets the message m = 77. 
 
A. Key Generation (Sender) 

 
The sender generates two large prime numbers, 

psender and qsender.  

 

She then calculates nsender. 

 
Next, she calculates Φ(nsender). 

 
She selects an integer esender, so that 

gcd(Φ(nsender), esender) = 1 and 1 < esender < Φ(nsender). 

 
She  calculates dsender, so that esender * dsender ≡ 1 

(mod Φ(nsender)). 

 
 Since here RSA is treated as an asymmetric non-
public key encryption algorithm, all of the above 
values are kept private by the sender. 
 
B. Key Generation (Recipient ) 
 

The recipient generates two large prime 
numbers, precipient and qrecipient.  
 

 
He then calculates nrecipient. 

  psender = 8738227201932281947 
qsender = 16588444808609115061 

nsender = psender * qsender = 8738227201932281947 
* 16588444808609115061 = 

144953599664340515826441122412016103767 

Φ(nsender) = (psender – 1)( qsender – 1) = 
(8738227201932281947 – 1) * 

(16588444808609115061 – 1) = 
144953599664340515801114450401474706760 

esender = 
42864867422816608383508854784836525049 

dsender = 
82340247294165221959414799758159976449 

nrecipient  = precipient * qrecipient = 
14646989093166241543 * 
15865985506086455321 = 

232388916659981982113466262076963600303 

precipient = 14646989093166241543 
qrecipient = 15865985506086455321 
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 Next, he calculates Φ(nrecipient). 

 
He selects an integer erecipient, so that 

gcd(Φ(nrecipient), erecipient) = 1 and 1 < erecipient < 
Φ(nrecipient). 

 
He calculates drecipient, so that erecipient * drecipient ≡ 

1 (mod Φ(nrecipient)). 

 
 Because RSA is used as an asymmetric non-
public key encryption algorithm, all of the above 
values are also kept private by the recipient. 
 
C. Encryption Stage (Sender) 
 

The sender encrypts her message, m into the 
ciphertext, c1 = m ^ esender mod nsender. 

 
In the first pass, the sender sends c1 to the 

recipient. 
 
D.  Super-Encryption Stage (Recipient) 
 

The recipient super-encrypts c1 by calculating 
c2 = c1 ^ erecipient mod nrecipient. 

In the second pass, the recipient sends c2 to the 
sender. 
 
E. Decryption Stage (Sender) 
 

The sender decrypts c2 by calculating c3 = c2 ^ 
dsender mod nsender. 

 
In the third pass, the sender sends c3 to the 

recipient. 
 
F. Final Decryption Stage (Recipient) 

 
 The recipient decrypts c3 by calculating m = c3 ^ 
drecipient mod nrecipient. 
 

 
Finally, the recipient has recovered the original 

message m = 77. He looks into the ASCII table, and 
finds the corresponding character for number 77 is 
‘M’, which is the original character the sender wants 
him to read. 
 
 
9. THE PYTHON CODES 
 
 The whole computation of our scheme is done 
in Python programming language. The development 
environment is Pythonista and the operating system 
is iOS 11.2.5 which runs in A10X Fushion chip with 
64-bit architecture. The complete listing of the codes 
is provided as follows. 
 
#title: The RSA Cryptosystem in 
Shamir Three-Pass Protocol 
#author: Mohammad Andri Budiman & 
Dian Rachmawati 
#version: 4.7 

Φ(nrecipient) = (precipient – 1)( qrecipient – 1) = 
(14646989093166241543 – 1) * 
(15865985506086455321 – 1) = 

232388916659981982082953287477710903440 

erecipient = 
84520271933157006197709213886246055657

drecipient = 
189992303824978400795252857905616448393

c1 = m ^ esender mod nsender = 77 ^ 
42864867422816608383508854784836525049 

mod 
144953599664340515826441122412016103767 
= 43407676103642712012182828488305334714 

 

c2 = c1 ^ erecipient mod nrecipient = 
43407676103642712012182828488305334714 ^ 
84520271933157006197709213886246055657 

mod 
232388916659981982113466262076963600303 

= 
71849044338644349295319438782908444096 

c3 = c2 ^ dsender mod nsender = 
71849044338644349295319438782908444096 ^ 
82340247294165221959414799758159976449 

mod 
144953599664340515826441122412016103767 

= 
43407676103642712012182828488305334714 

m = c3 ^ drecipient mod nrecipient = 
43407676103642712012182828488305334714 ^ 
189992303824978400795252857905616448393 

mod 
232388916659981982113466262076963600303 

= 77 
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#date: Nov 12th 2017 
#time: 07:00 
 
import math, random, sys 
 
sys.setrecursionlimit(10000) 
 
class RSA(object): 
  
 def __init__(self): 
  maxi = pow(2, 64) # 2^72 
  self.p, self.q = 
self.getPrivateKeys(maxi) 
  self.n = self.p * self.q 
  self.totient = (self.p - 1) 
* (self.q - 1) 
  self.e = 
self.compute_e(self.totient) 
  self.d = 
self.compute_d(self.e, 
self.totient) 
   
 def isCoprime(self, p, q): 
  if self.gcd(p, q) == 1: 
   return True 
  return False 
   
 def gcd(self, m, n): 
  if n == 0: 
   return m 
  return self.gcd(n, m % n) 
   
 def rnd(self, min, max): 
  return random.randint(min, 
max) 
   
 def compute_e(self, totient): 
  e = self.rnd(2, totient - 
1) 
  while not self.isCoprime(e, 
totient): 
   e = self.rnd(2, totient 
- 1) 
  return e 
   
 def compute_d(self, e, 
totient): 
  d, _ = self.extended_gcd(e, 
totient) 
  return d % totient 
   
 def doEncrypt(self, plaintext): 
  print "\nEncryption" 
  self.plaintext = plaintext 
  print "plaintext = ", 
self.plaintext 

 
  length = 
len(self.plaintext) 
  plainchar = 
self.text2char(self.plaintext) 
  plainnum = 
self.char2num(plainchar) 
  ciphernum = 
self.encrypt(plainnum, self.e, 
self.n) 
 
  for i in range(length): 
   print 
repr(plainchar[i]).ljust(7), 
'=>\t', 
repr(plainnum[i]).ljust(7), 
'=>\t', 
repr(ciphernum[i]).ljust(7) 
  return  ciphernum 
 
 def doDecrypt(self, ciphernum): 
  print "\nDecryption" 
  m = self.decrypt(ciphernum, 
self.p, self.q, self.d) 
   
  for i in 
range(len(ciphernum)): 
   print 
repr(ciphernum[i]).ljust(7), 
'=>\t', repr(m[i]).ljust(7), 
'=>\t', repr(chr(m[i])).ljust(7)  
  return m 
   
 def doBoth(self, plaintext): 
  ciphernum = 
self.doEncrypt(plaintext) 
  m = 
self.doDecrypt(ciphernum) 
   
 def doTPP(self, message): 
  plaintext = message 
  print "plaintext =", 
plaintext 
  print 
   
  alice = RSA() 
  bob = RSA() 
   
  print "alice.p =", alice.p 
  print "alice.q =", alice.q 
  print "alice.n =", alice.n 
  print "alice.totient =", 
alice.totient 
  print "alice.e =", alice.e 
  print "alice.d =", alice.d 
  print 



Journal of Theoretical and Applied Information Technology 
15th September 2018. Vol.96. No 17 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
5670 

 

   
  print "bob.p =", bob.p 
  print "bob.q =", bob.q 
  print "bob.n =", bob.n 
  print "bob.totient =", 
bob.totient 
  print "bob.e =", bob.e 
  print "bob.d =", bob.d 
  print 
  print 
   
  length = len(plaintext) 
  plainchar = 
self.text2char(plaintext) 
  plainnum = 
self.char2num(plainchar) 
 
  print 
"*********************************
***************" 
  print "Process 1 
(Encryption by Alice): plaintext 
=> c1" 
  print 
"*********************************
***************" 
  print  
  c1 = self.encrypt(plainnum, 
bob.e, bob.n) 
 
 self.printFirstEncrypt(plainnum
, c1) 
  print 
  print 
   
  print 
"*********************************
***************" 
  print "Process 2 
(Encryption by Bob): c1 => c2" 
  print 
"*********************************
***************" 
  print  
  c2 = self.encrypt(c1, 
alice.e, alice.n) 
  self.printEncrypt(c1, c2) 
  print 
  print 
   
  print 
"*********************************
***************" 
  print "Process 3 
(Decryption by Alice): c2 => c3" 

  print 
"*********************************
***************" 
  print  
  c3 = self.decrypt(c2, 
alice.p, alice.q, alice.d) 
  self.printDecrypt(c2, c3)  
  print 
  print 
   
  print 
"*********************************
***************" 
  print "Process 4 
(Decryption by Bob): c3 => 
plaintext" 
  print 
"*********************************
***************" 
  print  
  pt = self.decrypt(c3, 
bob.p, bob.q, bob.d) 
  self.printFinalDecrypt(c3, 
pt) 
  print 
  print   
  
 def printEncrypt(self, 
plainnum, ciphernum): 
  for i in 
range(len(plainnum)): 
   print 
repr(plainnum[i]).ljust(7), 
'=>\t', 
repr(ciphernum[i]).ljust(7) 
   
 def printDecrypt(self, 
ciphernum, plainnum): 
  for i in 
range(len(ciphernum)): 
   print 
repr(ciphernum[i]).ljust(7), 
'=>\t', repr(plainnum[i]).ljust(7) 
  
 def printFirstEncrypt(self, 
plainnum, ciphernum): 
  plainchar = 
self.num2char(plainnum) 
  for i in 
range(len(plainnum)): 
   print 
repr(plainchar[i]).ljust(7), 
'=>\t', 
repr(plainnum[i]).ljust(7), 
'=>\t', 
repr(ciphernum[i]).ljust(7) 
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 def printFinalDecrypt(self, 
ciphernum, plainnum): 
  for i in 
range(len(ciphernum)): 
   print 
repr(ciphernum[i]).ljust(7), 
'=>\t', 
repr(plainnum[i]).ljust(7), 
'=>\t', 
repr(chr(plainnum[i])).ljust(7)  
  
 def rnd(self, mini, maxi): #get 
random number between mini and 
maxi (and including mini and maxi) 
  return random.randint(mini, 
maxi) 
 
 def AKS(self, n): 
  z = random.randint(2, n - 
2) 
  return True if pow(1 + z, 
n, n) == (1 + pow(z, n, n)) % n 
else False 
 
 def getRandomPrime(self, mini, 
maxi): 
  p = self.rnd(mini, maxi) // 
2 * 2 + 1 # make sure it's odd 
  while not self.AKS(p): 
   p = self.rnd(mini, 
maxi) // 2 * 2 + 1 
  return p 
   
 def getPrivateKeys(self, maxi): 
  p = 1 
  q = 1 
  while(p * q < maxi or p == 
q): 
   p = 
self.getRandomPrime(1, maxi) 
   q = 
self.getRandomPrime(p + 1, maxi) 
  return p, q 
 
 def dec2bin(self, d): 
  binary = [] 
  while d != 0: 
   binary.append(d % 2) 
   d = d // 2 
  binary.reverse() 
  return binary 
 
 def bin2dec(self, b): 
  b.reverse() 
  d = 0 

  k = 0 
  for i in b: 
   d = d + i * pow(2, k) 
   k = k + 1 
  return d 
  
 def bin2str(self, b): 
  s = "" 
  for bin in b: 
   s = s + str(bin) 
  return s 
 
 def extended_gcd(self, a, b): 
  if b == 0: 
   return 1, 0 
  k = a / b 
  r = a % b 
  m, n = self.extended_gcd(b, 
r) 
  return n, m - k * n 
 
 def text2char(self, text): 
  char = {} 
  for i in range(len(text)): 
   char[i] = text[i] 
  return char 
 
 def char2num(self, char): 
  num = {} 
  for i in range(len(char)): 
   num[i] = ord(char[i]) 
  return num 
 
 def num2char(self, num): 
  char = {} 
  for i in range(len(num)): 
   char[i] = chr(num[i]) 
  return char 
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 def encrypt(self, plainnum, e, 
n): 
  ciphernum = {} 
  for i in 
range(len(plainnum)): 
   b = 
self.dec2bin(plainnum[i]) 
   p = self.bin2dec(b) 
   ciphernum[i] = pow(p, 
e, n) 
  return ciphernum 
  
 def inverse(self, m, n): 
  a, b = self.extended_gcd(m, 
n) 
  return a % n 
 
 def decrypt(self, ciphernum, p, 
q, d): 
  plainnum = {} 
  n = p * q  
  for i in 
range(len(ciphernum)): 
   plainnum[i] = 
pow(ciphernum[i], d, n)  
   print "plainnum[", i, 
"] = ", plainnum[i] 
  print  
  return plainnum 
   
andri = RSA() 
andri.doTPP("ANDRI") 
 
 
 In Figure 2, we show the experimental result of 
using the RSA as an asymmetric non-public key 
encryption algorithm in the Shamir three-pass 
protocol in Pythonista development environment. In 
this scenario, Alice (the sender) would like to 
securely send her message (plaintext) “ANDRI” to 
Bob (the recipient). Both parties generate their own 
encryption and decryption keys. In Process 1, Alice 
encrypts the plaintext into c1 using her public key 
and sends it to Bob. In Process 2, Bob super-encrypts 
c1 into c2 using his public key, and sends it to Alice. 
In Process 3, Alice decrypts c2 with her private key, 
resulting in c3; c3  is then sent to Bob. In Process 4, 
Bob decrypts c3 with his own private key, resulting 
in the plaintext “ANDRI” which Alice wants Bob to 
read in the first place. Since the plaintext is 
thoroughly recovered, one may deduce that the 
experiment has been finished successfully.  
 
 
 
 

 
Figure 2 Experimenting the scheme in Pythonista 

development environment 
 
 
10. CONCLUSIONS 
 

This work shows that the RSA can be used as 
an encryption algorithm for the Shamir three-pass 
protocol since the RSA has a commutative property 
that is essential to the three-pass protocol. The stages 
and the computations being carried out in each stage 
in order to use the RSA encryption in the Shamir 
three-pass protocol have been shown thoroughly. 
The Python source code for the whole system has 
also been provided.  

It should be noted that the RSA encryption used 
in this work does not follow the conventional public 
key encryption where the encryption keys (n, e) are 
set to public, but here the these encryption keys (and 
also the decryption keys) are set to private and the 
one who does the encryption is the one who 
generates the keys him/herself. Thus, here we have 
treated the RSA as an asymmetric non-public key 
encryption algorithm. An asymmetric non-public 
key encryption algorithm is an encryption algorithm 
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that uses different keys for encryption and 
decryption but none of the keys are set to public. 
 

In the final decryption stage, it can be seen that 
the original message can be recovered back by this 
scheme. Therefore, we conclude that the RSA 
asymmetric non-public key encryption algorithm 
works conveniently in the Shamir three-pass 
protocol. 
 

Since the robustness of this scheme is beyond 
the scope of this work, more studies are needed to 
prove that this scheme is secure enough against all 
kinds of cryptanalyst attacks. If it is proven to be 
secure, then it may be expected that some other 
public key encryption algorithms can also be treated 
as asymmetric non-public key encryption algorithms 
to be used in the three-pass protocol. 
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