
Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5663

USING THE RSA AS AS AN ASYMMETRIC NON-PUBLIC
KEY ENCRYPTION ALGORITHM IN THE SHAMIR THREE-

PASS PROTOCOL

1DIAN RACHMAWATI, 2MOHAMMAD ANDRI BUDIMAN
1,2Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera

Utara, Jl. Universitas No. 9-A, Kampus USU, Medan 20155, Indonesia

E-mail: 1dian.rachmawati@usu.ac.id, 2mandrib@usu.ac.id

ABSTRACT

The Shamir three-pass protocol lets two parties to communicate in a secure manner without the need of
exchanging any secret keys. As with many other cryptographic protocols, the Shamir three-pass protocol
needs an algorithm in order to work in a proper manner. The algorithms used in the three-pass protocol should
belong to the class of symmetric algorithms and follows commutative-encryption system. Our study takes an
unconventional approach: instead of using a symmetric algorithm, we use RSA, an asymmetric algorithm, in
the three-pass protocol. RSA is a public key crypto-system that relies its security on the difficulty of factoring
a big integer into two prime numbers. However, in this study, the RSA is not used as a public key algorithm,
but rather as an asymmetric non-public key encryption algorithm. This is done by setting both encryption and
decryption keys to private. The complete computation of this scheme is done in Python programming
language. Our study shows that this scheme works conveniently in the three-pass protocol.

Keywords: Cryptography, Commutative-Encryption, Asymmetric Non-Public Key, RSA, Shamir Three-Pass
Protocol

1. INTRODUCTION

Cryptography can be defined as the craft and
science of using mathematical techniques to
communicate in a secure manner. With a symmetric
cryptography concept, a message in the forms of
symbols or texts is transformed into numbers. Using
an encryption algorithm (or cipher) and a key (or
password), the numbers are then converted into other
numbers whose meanings are absurd. These
meaningless numbers (or ciphertext) are then sent to
the recipient via a channel (which can be a secure or
an insecure channel). Meanwhile, the key is also sent
to the recipient by using a different and, preferably,
securer channel. The recipient then uses a decryption
algorithm (which is simply the “inverse” of the
encryption algorithm) and the key in order to get the
real message. Thus, in order to sent a message
securely, there are at least two things that should be
sent to the recipient: the ciphertext and the key.

With the public key cryptography concept (as
proposed by Diffie and Hellman [1]), the need to
send the key to the recipient is reduced. This concept
works as follows. Firstly, the recipient generates two
kinds of keys: private key and public key. His public
key is published in the public channel by uploading

it to his key server or by other electronic means;
while his private key is kept secret. Secondly, the
sender of the message looks up for the recipient’s
public key, encrypts her message with that key, and
sends the ciphertext to the recipient. Thirdly, the
recipient decrypts the ciphertext with his own private
keys and gets the original message back. Since it uses
two different keys for encryption and decryption, the
public key cryptography is often called “asymmetric
cryptography” but we will show later that this is not
always the case.

With the concept of public key cryptography,
there is seemingly no need to send any keys.
However, the public key itself still has to be
published in some electronic ways, and that means
everybody may know it. A savvy cryptanalyst may
then use some mathematical methods to derive the
private key from the public key. For example, if the
public key cryptosystem being used is RSA [2] with
public key n = 113053, then by understanding that n
= pq (where p and q are RSA’s private keys) and
using a factorization algorithm such as quadratic
sieve [3], a cryptanalyst can easily derive that
113053 = 131 * 863 and the RSA cryptosystem is
compromised. Since RSA’s security depends on the
hardness of factoring an integer, a sensible way to

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5664

increase RSA security is to use a larger public key n
of around 2048-bit. However, Boneh and
Venkatesan [4] shows some evidences that breaking
RSA may be easier than factoring if the other RSA’s
parameter (i.e., the RSA’s exponent e) is small, even
though the public key n is very large.

The Shamir three-pass protocol enables a
sender to transmit a message without the need of
sending, publishing, or distributing any keys. The
protocol works as follows [5]. The sender encrypts
the message using her own key. In the first pass, the
encrypted message is sent to the recipient. Then, the
recipient super-encrypts the encrypted message
using his own key. In the second pass, the super-
encrypted message is sent to the sender. The sender
decrypts the super-encrypted message. He then sends
it to the recipient in the third pass. Using his own key,
the recipient decrypts it, and the original message is
recovered.

When Shamir developed the the idea of three-
pass protocol in 1980, the speed of data transmission
and the computation speed were very slow.
Therefore, just about forty years ago, securing
messages with three-pass protocol which uses two
encryption-decryption processes and three
transmission processes was arguably less popular
than securing messages with an ordinary symmetric
cryptographic algorithm which uses only one
encryption-decryption process and one transmission
process. However, an ordinary symmetric
cryptography algorithm still has its own problem: its
key has to be encrypted using asymmetric
cryptography algorithm and then sent to the sender
via a secure channel. The problem of sending
secured messages without sending their
corresponding encryption keys is exactly the
problem that can be solved by the three-pass
protocol.

Nowadays, the speed of data transmission is
very fast due to the massive developments of
computing and information technology devices.
Thus, the problem of sending three different
encrypted messages in the three-pass protocol is
minimized since the transmission time is reduced
due to the advancement of technologies. As a result,
the three-pass protocol may take an important role in
modern information security.

 In order to be implemented for practical uses,
the three-pass protocol needs an encryption
algorithm to encrypt and decrypt the messages. The
algorithm should belong to the class of symmetric
cryptography [6]. The algorithm should also follow
commutative principle, so that a message can be

encrypted and decrypted using two different keys in
any order.

 Our study takes a quite different approach.
Instead of using a symmetric algorithm, we use an
asymmetric algorithm in the three-pass protocol. The
asymmetric algorithm is the RSA encryption
algorithm. The RSA relies its security on the
hardness of factoring a big integer into two large
prime numbers. This paper shows that the RSA
works conveniently in the three-pass protocol.

2. SHAMIR THREE-PASS PROTOCOL

The three-pass protocol was formulated by Adi
Shamir in 1980. This protocol allows two parties to
exchange encrypted messages without exchanging
any encryption keys. Since there are no keys being
sent, exchanged, published, or distributed, this
protocol is also known as Shamir no-key protocol.
The protocol works as the following [5]:

1. The sender and the recipient choose a
symmetric cryptography encryption
algorithm to be used in the three-pass
protocol. The chosen algorithm should
follow commutative principle [6]. By
following the commutative principle,
encryption and decryption using two
different keys can be done in any order.

2. The sender encrypts her message, m, using
her own key, KA, resulting in a ciphertext,
c1.

3. In the first pass, the sender sends c1 to the
recipient.

4. The recipient super-encrypts c1 using his
own key, KB, resulting in another
ciphertext, c2.

5. In the second pass, the recipient sends c2 to
the sender.

6. The sender decrypts c2 using her own key,
KA, resulting in another ciphertext, c3.

7. In the third pass, the sender sends c3 to the
recipient.

8. The recipient decrypts c3 using his own
key, KB, and therefore, he recovers the
original message, m.

3. RSA ENCRYPTION SCHEME

 The RSA public key cryptosystem was
formulated by Ronald Rivest, Adi Shamir, and
Leonard Adleman in 1978. RSA cryptosystem can be
used for digital signature and encryption. RSA is

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5665

believed as the most widely used public key
algorithm due to its simplicity.

 When RSA is used as an encryption scheme (as
in this work), there are three stages to follow, which
are key generation, encryption, and decryption [2]
[7] [8].

 In the stage of key generation, the recipient
does as follows:

1. Select two large and distinct prime numbers,
p and q.

2. Calculate n = pq.
3. Calculate Φ(n) = (p – 1)(q – 1).
4. Select an integer e, so that gcd(Φ(n), e) = 1

and 1 < e < Φ(n).
5. Calculate d, so that ed ≡ 1 (mod Φ(n)).
6. The private keys are (p, q, Φ(n), d). These

keys have to be kept secret.
7. The public keys are (n, e). These keys have

to be published by some electronic ways so
that anyone who wants to send a message to
the recipient can use them in the encryption
process.

 In the stage of encryption, the sender does as
follows:

1. Obtain the recipient’s public key, (n, e).
2. Prepare the message, m.
3. Calculate the ciphertext, c = me mod n.
4. Send c to the recipient.

 In the stage of encryption, the recipient does as
follows:

1. Receive the ciphertext, c from the sender.
2. Calculate the original message, m = cd mod

n.

4. ASYMMETRIC NON-PUBLIC KEY
ENCRYPTION ALGORITHM

Asymmetric cryptography is a cipher or
cryptography algorithm that uses different keys for
encryption and decryption. The encryption key is
usually set to public while the decryption key is set
to private. Therefore, it has been widely believed that
the term ‘asymmetric cryptography’ is synonymous
with the term ‘public key cryptography’.

 However, this opinion is proven to be untrue
since there is an asymmetric algorithm called Pohlig-
Hellman whose encryption and decryption keys are
both set to private [9]. Therefore, Pohlig-Hellman is
still an asymmetric algorithm, but it is not a public
key algorithm. It can easily be figured out that some

(if not all) public key cryptography algorithms can
also be treated as ‘asymmetric non-public key
encryption algorithms’ by setting both encryption
and decryption keys to private [8].

5. COMMUTATIVE ENCRYPTION
ALGORITHM

Not every encryption algorithm can be
implemented in three-pass protocol. The three-pass
protocol needs an encryption algorithm that is
commutative in nature [10]. A commutative
encryption algorithm allows a message to be super-
encrypted using two different keys in any order. If
E(m, k) is an encryption function that takes a
message m and a key k as the inputs and produces a
ciphertext as the output, then a commutative
encryption algorithm ensures that E(E(m, kA), kB) =
E(E(m, kB), kA).

 In favor of the three-pass protocol, a
commutative encryption also allows a message to be
encrypted twice and decrypted twice using two
different keys, and the final decryption will
definitely bring back the original message. If D(c, k)
is a decryption function that takes ciphertext c and
key k as the inputs and produces a message m as the
output, then a commutative encryption algorithm
ensures that D(D(E(E(m, kA), kB), kA), kB) = m.

 A commutative algorithm usually belongs to
the class of symmetric encryption algorithm.
However, as mentioned earlier, a public key
algorithm can also be treated as an asymmetric non-
public key encryption algorithm. The difference
between a symmetric encryption algorithm and an
asymmetric non-public key encryption algorithm is
that the former uses the same key for the encryption
and decryption while the latter uses two different
keys: one for the encryption and one for the
decryption. Therefore, an asymmetric non-public
key encryption algorithm in reality works just like a
symmetric scheme with different keys being used in
the encryption and the decryption. In favor of the
three-pass protocol, one may use an asymmetric
non-public key encryption algorithm that has a
commutative property.

6. THE RSA AS A COMMUTATIVE
ENCRYPTION ALGORITHM

 Ambika, et al. [11] suggests that the RSA has
a commutative property. It can be proven as follows
[12].

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5666

 The RSA encryption function is E(m, e) = me
mod n. Let m be the message to be encrypted.
Suppose that eA and eB are two different RSA
encryption keys. We are now going to super-encrypt
m using eA and eB. A super-encryption generally
means combining two encryption algorithms in
order to reinforce the security (according to [13],
[14], and [15]) but in our study, a super-encryption
simply means using two different keys with the same
encryption algorithm (i.e., RSA) without the
intention to reinforce the security.

 In the first case, the message m is encrypted
with eA, then with eB, the result is E(E(m, eA), eB)
= E(meA mod n, eB) = meA.eB mod n.

 In the second case, the message m is encrypted
with eB, then with eA, the result is E(E(m, eB), eA)
= E(meB mod n, eA) = meB.eA mod n.

 Thus, it can be concluded that E(E(m, eA), eB)
= E(E(m, eB), eA), so it is proven that the RSA is a
commutative encryption algorithm, and, therefore,
can be used as a candidate algorithm for the Shamir
three-pass protocol.

7. USING THE RSA ENCRYPTION SCHEME
IN THE SHAMIR THREE-PASS
PROTOCOL

Since the Shamir three-pass protocol uses a
symmetric algorithm, the RSA can be implemented
in this protocol by setting both its encryption and
decryption keys to private. The RSA algorithm is
chosen since the algorithm has been widely used
since 1978, its calculation is uncomplicated, and it is
hard to break as long as: (1) very large prime
numbers are being used for p and q; and (2) the
exponent e is large enough.

 Figure 1 illustrates how the RSA is used as an
asymmetric non-public key algorithm to secure a
message in the three-pass protocol. It can be figured
out that the sender and the recipient have their own
encryption and decryption keys. Unlike the typical
RSA encryption scheme, the encryption keys are not
published or transmitted to the other party. The
encryption keys are set to private; only their
respective owner has the information about their
values. By default, the decryption keys are also set
to private. By not transmitting any keys, the main
objective of the three-pass protocol — i.e., sending
messages securely without the need of sending,
distributing, transmitting, or publishing any keys —
is preserved.

Figure 1 Using the RSA in the three-pass protocol

 The whole scheme works as follows (the signs
* and ^ denote multiplication and exponentiation,
respectively):

1. The sender generates the private keys for her own
use as follows.
(a) Generate two very large random prime

numbers, psender and qsender. (This can be
done with a primality test algorithm, such
as Agrawal-Kayal-Saxena algorithm [16]).

(b) Calculate nsender = psender * qsender.
(c) Calculate Φsender(nsender) = (psender – 1)(

qsender – 1).
(d) Select an integer esender, so that

gcd(Φsender(nsender), esender) = 1 and 1 < esender
< Φsender(nsender).

(e) Calculate dsender, so that esender * dsender ≡ 1
(mod Φsender(nsender)).

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5667

(f) All the parameters (psender, qsender, nsender,
Φsender(nsender), esender, dsender) are set to
private.

2. The recipient generates the private keys for his
own use as follows.
(a) Generate two very large random prime

numbers, precipient and qrecipient.
(b) Calculate nrecipient = precipient * qrecipient.
(c) Calculate Φ(nrecipient) = (precipient – 1)(

qrecipient – 1).
(d) Select an integer erecipient, so that

gcd(Φ(nrecipient), erecipient) = 1 and 1 < erecipient
< Φ(nrecipient).

(e) Calculate drecipient, so that erecipient * drecipient
≡ 1 (mod Φ(nrecipient)).

(f) All the parameters (precipient, qrecipient, nrecipient,
Φ(nrecipient), erecipient, drecipient) are set to
private.

3. The sender encrypts her message, m by
calculating the ciphertext, c1 = m ^ esender mod
nsender.

4. As the first pass, the sender sends c1 to the
recipient.

5. The recipient super-encrypts c1 by calculating c2
= c1 ^ erecipient mod nrecipient.

6. As the second pass, the recipient sends c2 to the
sender.

7. The sender decrypts c2 by calculating c3 = c2 ^
dsender mod nsender.

8. As the third pass, the sender sends c3 to the
recipient.

9. The recipient decrypts c3 by calculating m = c3 ^
drecipient mod nrecipient. The m, which is the original
message, has been recovered.

8. EXPERIMENTS AND DISCUSSIONS

 Consider a scenario that a sender wants to send
a character ‘M’ to a recipient by using the RSA
encryption scheme in three-pass protocol. She then
looks into the ASCII table, and finds out that the
corresponding number for the letter ‘M’ is 77. So,
she lets the message m = 77.

A. Key Generation (Sender)

The sender generates two large prime numbers,

psender and qsender.

She then calculates nsender.

Next, she calculates Φ(nsender).

She selects an integer esender, so that

gcd(Φ(nsender), esender) = 1 and 1 < esender < Φ(nsender).

She calculates dsender, so that esender * dsender ≡ 1

(mod Φ(nsender)).

 Since here RSA is treated as an asymmetric non-
public key encryption algorithm, all of the above
values are kept private by the sender.

B. Key Generation (Recipient)

The recipient generates two large prime
numbers, precipient and qrecipient.

He then calculates nrecipient.

 psender = 8738227201932281947
qsender = 16588444808609115061

nsender = psender * qsender = 8738227201932281947
* 16588444808609115061 =

144953599664340515826441122412016103767

Φ(nsender) = (psender – 1)(qsender – 1) =
(8738227201932281947 – 1) *

(16588444808609115061 – 1) =
144953599664340515801114450401474706760

esender =
42864867422816608383508854784836525049

dsender =
82340247294165221959414799758159976449

nrecipient = precipient * qrecipient =
14646989093166241543 *
15865985506086455321 =

232388916659981982113466262076963600303

precipient = 14646989093166241543
qrecipient = 15865985506086455321

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5668

 Next, he calculates Φ(nrecipient).

He selects an integer erecipient, so that

gcd(Φ(nrecipient), erecipient) = 1 and 1 < erecipient <
Φ(nrecipient).

He calculates drecipient, so that erecipient * drecipient ≡

1 (mod Φ(nrecipient)).

 Because RSA is used as an asymmetric non-
public key encryption algorithm, all of the above
values are also kept private by the recipient.

C. Encryption Stage (Sender)

The sender encrypts her message, m into the
ciphertext, c1 = m ^ esender mod nsender.

In the first pass, the sender sends c1 to the

recipient.

D. Super-Encryption Stage (Recipient)

The recipient super-encrypts c1 by calculating
c2 = c1 ^ erecipient mod nrecipient.

In the second pass, the recipient sends c2 to the
sender.

E. Decryption Stage (Sender)

The sender decrypts c2 by calculating c3 = c2 ^
dsender mod nsender.

In the third pass, the sender sends c3 to the

recipient.

F. Final Decryption Stage (Recipient)

 The recipient decrypts c3 by calculating m = c3 ^
drecipient mod nrecipient.

Finally, the recipient has recovered the original

message m = 77. He looks into the ASCII table, and
finds the corresponding character for number 77 is
‘M’, which is the original character the sender wants
him to read.

9. THE PYTHON CODES

 The whole computation of our scheme is done
in Python programming language. The development
environment is Pythonista and the operating system
is iOS 11.2.5 which runs in A10X Fushion chip with
64-bit architecture. The complete listing of the codes
is provided as follows.

#title: The RSA Cryptosystem in
Shamir Three-Pass Protocol
#author: Mohammad Andri Budiman &
Dian Rachmawati
#version: 4.7

Φ(nrecipient) = (precipient – 1)(qrecipient – 1) =
(14646989093166241543 – 1) *
(15865985506086455321 – 1) =

232388916659981982082953287477710903440

erecipient =
84520271933157006197709213886246055657

drecipient =
189992303824978400795252857905616448393

c1 = m ^ esender mod nsender = 77 ^
42864867422816608383508854784836525049

mod
144953599664340515826441122412016103767
= 43407676103642712012182828488305334714

c2 = c1 ^ erecipient mod nrecipient =
43407676103642712012182828488305334714 ^
84520271933157006197709213886246055657

mod
232388916659981982113466262076963600303

=
71849044338644349295319438782908444096

c3 = c2 ^ dsender mod nsender =
71849044338644349295319438782908444096 ^
82340247294165221959414799758159976449

mod
144953599664340515826441122412016103767

=
43407676103642712012182828488305334714

m = c3 ^ drecipient mod nrecipient =
43407676103642712012182828488305334714 ^
189992303824978400795252857905616448393

mod
232388916659981982113466262076963600303

= 77

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5669

#date: Nov 12th 2017
#time: 07:00

import math, random, sys

sys.setrecursionlimit(10000)

class RSA(object):

 def __init__(self):
 maxi = pow(2, 64) # 2^72
 self.p, self.q =
self.getPrivateKeys(maxi)
 self.n = self.p * self.q
 self.totient = (self.p - 1)
* (self.q - 1)
 self.e =
self.compute_e(self.totient)
 self.d =
self.compute_d(self.e,
self.totient)

 def isCoprime(self, p, q):
 if self.gcd(p, q) == 1:
 return True
 return False

 def gcd(self, m, n):
 if n == 0:
 return m
 return self.gcd(n, m % n)

 def rnd(self, min, max):
 return random.randint(min,
max)

 def compute_e(self, totient):
 e = self.rnd(2, totient -
1)
 while not self.isCoprime(e,
totient):
 e = self.rnd(2, totient
- 1)
 return e

 def compute_d(self, e,
totient):
 d, _ = self.extended_gcd(e,
totient)
 return d % totient

 def doEncrypt(self, plaintext):
 print "\nEncryption"
 self.plaintext = plaintext
 print "plaintext = ",
self.plaintext

 length =
len(self.plaintext)
 plainchar =
self.text2char(self.plaintext)
 plainnum =
self.char2num(plainchar)
 ciphernum =
self.encrypt(plainnum, self.e,
self.n)

 for i in range(length):
 print
repr(plainchar[i]).ljust(7),
'=>\t',
repr(plainnum[i]).ljust(7),
'=>\t',
repr(ciphernum[i]).ljust(7)
 return ciphernum

 def doDecrypt(self, ciphernum):
 print "\nDecryption"
 m = self.decrypt(ciphernum,
self.p, self.q, self.d)

 for i in
range(len(ciphernum)):
 print
repr(ciphernum[i]).ljust(7),
'=>\t', repr(m[i]).ljust(7),
'=>\t', repr(chr(m[i])).ljust(7)
 return m

 def doBoth(self, plaintext):
 ciphernum =
self.doEncrypt(plaintext)
 m =
self.doDecrypt(ciphernum)

 def doTPP(self, message):
 plaintext = message
 print "plaintext =",
plaintext
 print

 alice = RSA()
 bob = RSA()

 print "alice.p =", alice.p
 print "alice.q =", alice.q
 print "alice.n =", alice.n
 print "alice.totient =",
alice.totient
 print "alice.e =", alice.e
 print "alice.d =", alice.d
 print

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5670

 print "bob.p =", bob.p
 print "bob.q =", bob.q
 print "bob.n =", bob.n
 print "bob.totient =",
bob.totient
 print "bob.e =", bob.e
 print "bob.d =", bob.d
 print
 print

 length = len(plaintext)
 plainchar =
self.text2char(plaintext)
 plainnum =
self.char2num(plainchar)

 print
"*********************************
***************"
 print "Process 1
(Encryption by Alice): plaintext
=> c1"
 print
"*********************************
***************"
 print
 c1 = self.encrypt(plainnum,
bob.e, bob.n)

 self.printFirstEncrypt(plainnum
, c1)
 print
 print

 print
"*********************************
***************"
 print "Process 2
(Encryption by Bob): c1 => c2"
 print
"*********************************
***************"
 print
 c2 = self.encrypt(c1,
alice.e, alice.n)
 self.printEncrypt(c1, c2)
 print
 print

 print
"*********************************
***************"
 print "Process 3
(Decryption by Alice): c2 => c3"

 print
"*********************************
***************"
 print
 c3 = self.decrypt(c2,
alice.p, alice.q, alice.d)
 self.printDecrypt(c2, c3)
 print
 print

 print
"*********************************
***************"
 print "Process 4
(Decryption by Bob): c3 =>
plaintext"
 print
"*********************************
***************"
 print
 pt = self.decrypt(c3,
bob.p, bob.q, bob.d)
 self.printFinalDecrypt(c3,
pt)
 print
 print

 def printEncrypt(self,
plainnum, ciphernum):
 for i in
range(len(plainnum)):
 print
repr(plainnum[i]).ljust(7),
'=>\t',
repr(ciphernum[i]).ljust(7)

 def printDecrypt(self,
ciphernum, plainnum):
 for i in
range(len(ciphernum)):
 print
repr(ciphernum[i]).ljust(7),
'=>\t', repr(plainnum[i]).ljust(7)

 def printFirstEncrypt(self,
plainnum, ciphernum):
 plainchar =
self.num2char(plainnum)
 for i in
range(len(plainnum)):
 print
repr(plainchar[i]).ljust(7),
'=>\t',
repr(plainnum[i]).ljust(7),
'=>\t',
repr(ciphernum[i]).ljust(7)

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5671

 def printFinalDecrypt(self,
ciphernum, plainnum):
 for i in
range(len(ciphernum)):
 print
repr(ciphernum[i]).ljust(7),
'=>\t',
repr(plainnum[i]).ljust(7),
'=>\t',
repr(chr(plainnum[i])).ljust(7)

 def rnd(self, mini, maxi): #get
random number between mini and
maxi (and including mini and maxi)
 return random.randint(mini,
maxi)

 def AKS(self, n):
 z = random.randint(2, n -
2)
 return True if pow(1 + z,
n, n) == (1 + pow(z, n, n)) % n
else False

 def getRandomPrime(self, mini,
maxi):
 p = self.rnd(mini, maxi) //
2 * 2 + 1 # make sure it's odd
 while not self.AKS(p):
 p = self.rnd(mini,
maxi) // 2 * 2 + 1
 return p

 def getPrivateKeys(self, maxi):
 p = 1
 q = 1
 while(p * q < maxi or p ==
q):
 p =
self.getRandomPrime(1, maxi)
 q =
self.getRandomPrime(p + 1, maxi)
 return p, q

 def dec2bin(self, d):
 binary = []
 while d != 0:
 binary.append(d % 2)
 d = d // 2
 binary.reverse()
 return binary

 def bin2dec(self, b):
 b.reverse()
 d = 0

 k = 0
 for i in b:
 d = d + i * pow(2, k)
 k = k + 1
 return d

 def bin2str(self, b):
 s = ""
 for bin in b:
 s = s + str(bin)
 return s

 def extended_gcd(self, a, b):
 if b == 0:
 return 1, 0
 k = a / b
 r = a % b
 m, n = self.extended_gcd(b,
r)
 return n, m - k * n

 def text2char(self, text):
 char = {}
 for i in range(len(text)):
 char[i] = text[i]
 return char

 def char2num(self, char):
 num = {}
 for i in range(len(char)):
 num[i] = ord(char[i])
 return num

 def num2char(self, num):
 char = {}
 for i in range(len(num)):
 char[i] = chr(num[i])
 return char

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5672

 def encrypt(self, plainnum, e,
n):
 ciphernum = {}
 for i in
range(len(plainnum)):
 b =
self.dec2bin(plainnum[i])
 p = self.bin2dec(b)
 ciphernum[i] = pow(p,
e, n)
 return ciphernum

 def inverse(self, m, n):
 a, b = self.extended_gcd(m,
n)
 return a % n

 def decrypt(self, ciphernum, p,
q, d):
 plainnum = {}
 n = p * q
 for i in
range(len(ciphernum)):
 plainnum[i] =
pow(ciphernum[i], d, n)
 print "plainnum[", i,
"] = ", plainnum[i]
 print
 return plainnum

andri = RSA()
andri.doTPP("ANDRI")

 In Figure 2, we show the experimental result of
using the RSA as an asymmetric non-public key
encryption algorithm in the Shamir three-pass
protocol in Pythonista development environment. In
this scenario, Alice (the sender) would like to
securely send her message (plaintext) “ANDRI” to
Bob (the recipient). Both parties generate their own
encryption and decryption keys. In Process 1, Alice
encrypts the plaintext into c1 using her public key
and sends it to Bob. In Process 2, Bob super-encrypts
c1 into c2 using his public key, and sends it to Alice.
In Process 3, Alice decrypts c2 with her private key,
resulting in c3; c3 is then sent to Bob. In Process 4,
Bob decrypts c3 with his own private key, resulting
in the plaintext “ANDRI” which Alice wants Bob to
read in the first place. Since the plaintext is
thoroughly recovered, one may deduce that the
experiment has been finished successfully.

Figure 2 Experimenting the scheme in Pythonista

development environment

10. CONCLUSIONS

This work shows that the RSA can be used as
an encryption algorithm for the Shamir three-pass
protocol since the RSA has a commutative property
that is essential to the three-pass protocol. The stages
and the computations being carried out in each stage
in order to use the RSA encryption in the Shamir
three-pass protocol have been shown thoroughly.
The Python source code for the whole system has
also been provided.

It should be noted that the RSA encryption used
in this work does not follow the conventional public
key encryption where the encryption keys (n, e) are
set to public, but here the these encryption keys (and
also the decryption keys) are set to private and the
one who does the encryption is the one who
generates the keys him/herself. Thus, here we have
treated the RSA as an asymmetric non-public key
encryption algorithm. An asymmetric non-public
key encryption algorithm is an encryption algorithm

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5673

that uses different keys for encryption and
decryption but none of the keys are set to public.

In the final decryption stage, it can be seen that
the original message can be recovered back by this
scheme. Therefore, we conclude that the RSA
asymmetric non-public key encryption algorithm
works conveniently in the Shamir three-pass
protocol.

Since the robustness of this scheme is beyond
the scope of this work, more studies are needed to
prove that this scheme is secure enough against all
kinds of cryptanalyst attacks. If it is proven to be
secure, then it may be expected that some other
public key encryption algorithms can also be treated
as asymmetric non-public key encryption algorithms
to be used in the three-pass protocol.

ACKNOWLEDGEMENTS

We gratefully acknowledge that this research is
funded by Lembaga Penelitian Universitas Sumatera
Utara. The support is under the research grant
TALENTA USU of Year 2017 Contract Number :
5338/UN5.1.R/PPM/2017.

REFERENCES

[1] Diffie, Whitfield, and Martin Hellman. “New

directions in cryptography.” IEEE
transactions on Information Theory 22.6
(1976): 644-654.

[2] Rivest, Ronald L., Adi Shamir, and Leonard
Adleman. “A method for obtaining digital
signatures and public-key cryptosystems.”
Communications of the ACM 21.2 (1978):
120-126.

[3] Pomerance, Carl. “The quadratic sieve
factoring algorithm.” Workshop on the
Theory and Application of Cryptographic
Techniques. Springer, Berlin, Heidelberg
(1984).

[4] Boneh, Dan, and Ramarathnam Venkatesan.
“Breaking RSA may not be equivalent to
factoring.” Advances in Cryptology—
EUROCRYPT'98 (1998): 59-71.

[5] Katz, Jonathan, A. J. Menezes, P. C. Van
Oorschot, and S. A. Vanstone. Handbook of
applied cryptography. CRC press. (1996).

[6] Yang, Li, Ling-An Wu, and Songhao Liu.
"Quantum three-pass cryptography
protocol." Quantum Optics in Computing
and Communications. Vol. 4917.

International Society for Optics and
Photonics (2002).

[7] Smart, Nigel P. “Cryptography made
simple”. Springer International Publishing,
(2016).

[8] Rachmawati, Dian, and Mohammad Andri
Budiman. “An implementation of the H-
Rabin algorithm in the Shamir three-pass
protocol.” 2nd International Conference on
Automation, Cognitive Science, Optics,
Micro Electro-Mechanical System, and
Information Technology (ICACOMIT) IEEE
(2017): 28-33.

[9] Schneier, Bruce. Applied cryptography:
protocols, algorithms, and source code in C.
Indianapolis, IN. Wiley (2015).

[10] Carlsen, Ulf. "Cryptographic protocol flaws:
know your enemy." Computer Security
Foundations Workshop VII. Proceedings.
IEEE (1994).

[11] Ambika, R., S. Ramachandran, and K. R.
Kashwan. "Securing Distributed FPGA
System using Commutative RSA Core."
Global Journal of Research In Engineering
(2013).

[12] Hsu, Jen-Chieh, Raylin Tso, Yu-Chi Chen,
and Mu-En Wu. "Oblivious Transfer
Protocols Based on Commutative
Encryption." International Conference on
New Technologies, Mobility and Security
(NTMS), 2018 9th IFIP. IEEE (2018).

[13] Budiman, Mohammad Andri, Dian
Rachmawati, and M. R. Parlindungan. “An
implementation of super-encryption using
RC4A and MDTM cipher algorithms for
securing PDF Files on android.” Journal of
Physics: Conference Series. Vol. 978. No. 1.
IOP Publishing (2018).

[14] Rachmawati, Dian, Mohammad Andri
Budiman, and Indra Aulia. “Super-
Encryption Implementation Using
Monoalphabetic Algorithm and XOR
Algorithm for Data Security.” Journal of
Physics: Conference Series. Vol. 979. No. 1.
IOP Publishing (2018).

[15] Budiman, Mohammad Andri, Amalia, and N.
I. Chayanie. “An Implementation of RC4+
Algorithm and Zig-zag Algorithm in a Super
Encryption Scheme for Text Security.”
Journal of Physics: Conference Series. Vol.
978. No. 1. IOP Publishing (2018).

[16] Agrawal, Manindra, Neeraj Kayal, and Nitin
Saxena. “PRIMES is in P.” Annals of
mathematics (2004): 781-793.

