
Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5635

AN OPTIMIZED ATTACK TREE MODEL FOR SECURITY
TEST CASE PLANNING AND GENERATION

*HABEEB OMOTUNDE1, ROSZIATI IBRAHIM1 MARYAM AHMED2

1Department of Software Engineering, FSKTM, UTHM

Batu Pahat, Malaysia

hi130033@siswa.uthm.edu.my, rosziati@uthm.edu.my
2College of Computer Science and Information Technology, IAU

Dammam, KSA

mtahmed@iau.edu.sa

ABSTRACT

Securing software assets via efficient test case management is an important task in order to realize business
goals. Given the huge risks web applications face due to incessant cyberattacks, a proactive risk strategy
such as threat modeling is adopted. It involves the use of attack trees for identifying software vulnerabilities
at the earliest phase of software development which is critical to successfully protect these applications.
Although, many researches have been dedicated to security testing with attack tree models, test case
redundancy using this threat modeling technique has been a major issue faced leading to poor test coverage
and expensive security testing exercises. This paper presents an attack tree modeling algorithm for deriving
a minimal set of effective attack vectors required to test a web application for SQL injection vulnerabilities.
By leveraging on the optimized attack tree algorithm used in this research work, the threat model produces
efficient test plans from which adequate test cases are derived to ensure a secured web application is
designed, implemented and deployed. The experimental result shows an average optimization rate of
41.67% from which 7 test plans and 13 security test cases were designed to mitigate all SQL injection
vulnerabilities in the web application under test. A 100% security risk intervention of the web application
was achieved with respect to preventing SQL injection attacks after applying all security recommendations
from test case execution report.

Keywords: Security Testing, SQL injection, Attack trees, Threat Modeling, MOTH.

1.0 INTRODUCTION

The overwhelming dependence of
organizations and individuals on real-time and
fault-tolerant web applications demand that service
providers adopt critical risk management
approaches to ensure these software assets not only
work correctly and safely but also guarantee that
they do not execute tasks they are not designed for
[1]. Although, the huge demand for these
applications have triggered a rapid evolution of web
technologies with huge gains, unfortunately content
developers focus more on functionality while
treating security as a system feature rather than an
intrinsic property the application must possess
throughout its life cycle [2]. Evidently, this is
responsible for the wide adoption of reactive

software security measures as a remedy for
inexistent built-in security. Symantec’s Website
and Internet Security Threat Reports [3, 4] between
2014 and 2017 continues to reveal huge data
breaches due to vulnerabilities in web applications.
A 36.4% rise in unauthorized access to private data
between 2014 and 2016 was recorded among other
attacks to IoT and mobile devices, cloud computing
infrastructure and in particular instances, the
sabotage of nation states to mention a few. This
was corroborated by WhiteHat security report [5] in
2016 with organizations such as IT, Education,
Retail and Health care having the most unresolved
vulnerabilities. Given this premise, it is important
to review the way these application are being
developed with more emphasis on preventing
further rise in web application attacks by resolving

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5636

these vulnerabilities in the earliest phases of the
Software Development Life-Cycle (SDLC) using a
proactive risk-based approach called threat
modeling.

Many researchers have adopted the use of
attack trees (a threat modeling technique) for
providing security specification but the challenge
remains optimizing the attack paths derived from
these trees [6, 7] in order to reduce redundancy in
the derived test cases. A test case is said to be
redundant if the software requirements it exercises
are also exercised by another test case. This means
given any two test-cases TC1 and TC2 such that
any fault that can be detected by TC1 is also
identified by TC2, then these identical test cases are
redundant. This redundancy adds to the cost of
software testing, maintenance, processing time as
well as the size of the test suite making the testing
process tedious and uneconomical [8]. Though
many methods have been proposed to extract an
optimal subset of test cases from a test-suite [9-11]
however while these methods do reduce the number
of test-cases in the target test-suite, experiments
have shown a drastic drop in the overall quality of
the test suite while attempting to reduce the test
case redundancy [12]. While the security
requirement being tested might be exercised by the
remaining test cases after reduction, the test-suite’s
capability to detect software vulnerabilities is
significantly reduced. This might prove really
hazardous and costly if safety or mission critical
systems are affected. Therefore, while threat
modeling with attack trees, the attack path
optimization process must improve the quality of
test cases hence reducing redundancy and achieving
high coverage. This will aid the elicitation of
effective security requirements needed to fortify the
security of the web application. It is important that
the attack tree design effort takes advantage of
existing graphical or textual design data from
repositories such as SVRS or CAPEC [13, 14], if
available, and adapt to the requirement of the
current case study. This research work intends to
answer two main research questions as follows:

 RQ1: How effective is Threat Modeling in
reducing the redundancy of test cases?

 RQ2: Does reduction in test case redundancy
improve software quality from a security
standpoint?

In this paper, the proposed methodology
attempts to answer these research questions using a
novel attack tree optimization algorithm to detect
every attack path liable to exploit a database-driven
web application leading to a successful SQL

injection attack. With these paths, test plans and
security test cases can be designed. The mitigation
strategies to avoid these vulnerabilities are derived
from test case execution reports.

A significant contribution of this paper is
the optimization of attack paths which contributes
to an improved SQL injection vulnerability
detection. The algorithm removes the redundant
attack vectors before test cases are planned and
generated. Secondly, this paper demonstrates how
effective attack trees are in deriving test cases
contrary to positions held in [7]. Being an informal
threat model, it facilitates communication and
inclusiveness among all stakeholders while
deliberating about the security of the application
under test (AUT). This will immensely help the
development and security team to provide the best
set of security requirements which will guide the
design, implementation and deployment of a secure
web application.

The rest of this paper is organized as
follows. Section 2 discusses the background of the
study and the related works. In section 3, the
methodology is presented along with the attack tree
optimization algorithm used in deriving optimized
attack paths for minimal and effective test plans
and security test cases. A case study is presented in
section 4 along with the experimental results to
verify improvement in security of the web
application under test. Discussion of result is
presented in section 5 while section 6 details the
study’s significance. Section 7 concludes the paper
with a brief mention of the future work.

2.0 BACKGROUND OF STUDY AND
RELATED WORKS

As web application vulnerabilities

continues to increase, previous studies carried out
have shown that it is very rare to have unauthorized
access to half a billion records without
compromising the database in question via SQL
injection attacks [15-17]. This has been a major
influence in selecting SQL Injection as the main
attack vector to be studied in this research paper
with a view to mitigating its threat using the
proposed threat model. By focusing on the
prominent SQL injection types namely: Tautology,
Union Based and Boolean Based Blind SQL
injection from which other types could be derived
[18], we threat model an application named the
BodgeIt Store downloaded from GitHub [19] as our
case study. After this exercise we have 3 SQL
injection attack trees on which the algorithm is
executed. Attack trees have the ability to

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5637

systematically break down high-level threats into a
detailed set of steps to execute a potential attack.
They are therefore useful for identifying and
linking low-level threats to security issues that are
applicable to many types of systems.

Many researchers have adopted the use of
attack trees in resolving many software security
issues. Earlier in 2007, Edge et al [20] proposed
attack and protection trees for the purpose of
analyzing online banking system security issues.
This method attempts to increase the cost of attacks
so as to discourage attackers from exploiting the
system while on the other hand reduces the cost of
protection as a means to encourage the
implementation of security measures to protect the
bank's customers. Using metrics such as the
probability of a successful attack and the cost of
executing such attack, the impact of a successful
attack is quantified as the risk value of every attack
path extracted from the trees. This makes it easier
for businesses to make the best decision on where
to invest their security budget.

A variant of the attack and protection trees
is the attack-defense tree proposed by Kordy et al
as a method to analyze complex security and
privacy problems [21]. This technique was applied
in managing complex attack and defense
mechanism required by web applications to prevent
attacks as the application grows in size. Unlike
attack and protection trees, this tree model presents
the activities of both attacker and defenders on the
same tree thereby making the model complex but
comprehensive using a newly developed formal
model. It allows the system’s security needs to be
understood as it evolves over time from the
perspective of both pre-existing defensive measures
and newer attacks [21]. By exposing the interaction
between the opposing tree structures in one single
model, countermeasures against impending threats
can be elicited. Due to the complexity of the model,
it was difficult to implement this idea without a tool
built for this purpose. This was a major limitation
in adopting this idea. Attack and defense trees, on
the other hand, are compact and subject to
continuous iterations while the security metrics are
determined for the purpose of deterring future
attacks.

Generally, researches in the field of
graphical security modeling can be subdivided into
2 namely: Unification and Specification [22]. The
first approach, unification, focuses on developing a
set of methodologies that unifies all existing
approaches for improving the security posture of
software assets. These models usually have sound
formal foundations and are extensively studied

from a theoretical point of view. They are
augmented with formal semantics and a general
mathematical framework for quantitative analysis
[23, 24]. The attack–defense trees and Bayesian
attack graphs are good examples of such models in
this category.

On the other hand, the specification
category develops methodologies to solve security
problems peculiar to a domain just as intended in
this research where attack tree models are adopted
for planning, generating and executing security test
cases. Other domains in this category could
include:
 intrusion detection using attack and protection

trees [20],
 secure software development through the use

of security activity graphs, finite state
machines [25] and

 security requirements engineering via misuse
cases [26].

Formalisms developed within this trend are often
based on empirical studies and practical needs.
Although, graphical security modeling in the
specification category continues to receive wide
attention and adoption, of particular interest are the
works of Wang et al [27], Marback et al [6, 28] and
Xu et al [7] with respect to test case generation
from security models. Xu et al [7] and Marback et
al [6] used petri nets and attack trees respectively
in deriving attack paths while Wang et al [27] used
sequence diagram in modeling threat traces which
was also similar to attack paths. These attack paths
are central to the core of these research efforts as
the software security testing exercise depended on
security test cases generated from the paths.
However, few problems were identified in their
methodologies.

 Firstly was the lack of optimization of
attack paths which could lead to the creation of
redundant security test cases. This invariably leads
to the need for huge computation resources in the
event that the threat model is large. Secondly, the
assumptions on which Marback [6] designed the
attack trees do not mimic real-world scenarios. In
this approach, the researchers assumed that the
siblings of a branch must have the same operators
and they must be ordered. These assumptions are
neither necessary nor valid as attackers do not
conform to this kind of conditions. The attacker's
approach involves a mixture of every possible
attack steps with a goal of reaching the root of the
attack tree. This is a reality that must be captured
by an effective system as evident in the attack trees
used in this research paper. Finally, Wang used the

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5638

attack paths derived at runtime to monitor for
suspicious activities after the web application has
been deployed. This could pose significant
overhead and also expose the application to denial
of service attacks if system resources get used up.
Also, attack paths not captured during design
cannot be patched easily without substantial
changes to the application's source code which
would defeat the purpose of using threat modeling
in the first place. The threat model is expected to
guide the elicitation of security requirements,
secure design and implementation of the AUT.

3.0 THREAT MODELING PROCESS

Threat modeling is a software security
practice utilized by software developers, architects
and security experts at the design phase of software
development to document the key assets found in a
software application and intentionally expose risks
to those assets in a thorough and disciplined
manner. The goal of a threat modeling exercise is to
discover hidden security risks or software
vulnerabilities regarded as "entry points" [29] that
may elude the application developers using threat
modeling procedures. This information can then be
used to develop risk management and mitigation
strategies and provide a roadmap for proactive
security plans [30]. In order to design attack tree
models for the purpose of securing web
applications from SQL injection attacks, it is
important to have an idea of what SQL injection is.

3.1. SQL Injection

SQL injection involves the insertion of
specially crafted string input or encoded SQL query
into the web forms or HTTP requests sent to web
servers in order to alter the logic of the original
SQL query for malicious intent such as bypassing
authentication, gaining unauthorized access to
confidential data etc. This attack type exploits input
validation flaws, use of dynamically generated SQL
statement which mixes SQL code and user data
together, violation of the principle of least privilege
and poor exception handling [15]. The attack comes
in many forms which can be summarized into 3
types namely: Tautology, Union Based and
Boolean Based Blind SQL injection attacks.

3.1.1. Tautology SQL injection attack
This attack vector exploits the vulnerability in the
conditional clause of SQL statements by injecting
code construct which will always evaluate to true
[31]. In most cases, an in-line comment is appended
to the code so as to ensure the remaining portion of

the SQL statement is ignored by the database
engine at runtime transforming the statement into
something of this nature:

select * from tablename where username=
'username' or 1=1 -- and password=’’

This is commonly adopted for the purpose of
bypassing authentication, verifying web application
vulnerability and identifying injectable form
variables.

3.1.2. Union-based SQL injection attack
Union-Based SQL injection attack is a

form of Server-Side Error-Based SQLIA. It relies
on the deficiencies of input validation flaws and
improper error handling in the DBMS (Database
Management System) which tries to return more
query outputs using the UNION operator [32]. As
mentioned in the previous section, this comes after
an attacker has successfully established that some
form parameters are vulnerable to SQLIA. By
appending the UNION operator with SELECT
queries to the vulnerable parameter, the attacker can
fetch data from any part of the back-end database
far from the desired usecase. This is mainly
employed in data extraction asides from bypassing
authentication. A sample input including a union
query takes this form:

' or 1=1 union select 1,2,3,4,5,database() -- '

produces this query:

select * from tablename where uname=
'username' union select 1,2,3,4,5,database() from

tablename - -' and password=''

3.1.3. Boolean-based blind SQL injection attack

Boolean-Based Blind SQL injection is a type of
SQLIA which is resorted to when the web
application is configured to report generic error
messages. This is one of the best practices expected
on any organization's production system. This
configuration hides many useful information
thereby making exploitation difficult however not
impossible [31]. Attackers tend to ask the database
true or false questions and carefully monitor the
variation in application response as a means of
stealing information from the database [33]. In the
event that the malicious statement parsed by the
database engine is true, the web application will
continue to function properly but if false, there's a
noticeable deviation from a normal behaviour. In
some cases, the server response causes the web
page to appear deformed as the HTML (Hypertext
Mark-up Language) response is rendered poorly.
This is mostly because such response was neither

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5639

planned for nor styled for the sake of presentation
at the client side. This is a viable indication of
vulnerability to SQLIAs and an avenue for
extracting meta-data about the database. Though
difficult, however, by carefully noting the subtle
behaviour of the site in response to different inputs
and function calls, the attacker can correctly infer
the vulnerable parameters and useful information
from the database. A sample input including a
boolean-based blind query takes this form:

' username' and substring(@@version,1,1) = 4 - - '

produces this query:

select * from tablename where uname=
'username' and substring(@@version,1,1) = 4 - - ''

and pass=''

In the event that the web application loads
normally, this is an indication that the version of
the back-end database starts with 4 otherwise the
page throws an error. This indicates the form
variable in vulnerable to SQL injection and liable to
be exploited.

3.2. Designing the SQL Injection Attack Trees

Attack trees are informal in nature hence
difficult to define accurately in formal terms.
However, being a tree data structure, it bears huge
similarities with a directed acyclic graph[22] which
make it easier to formally define it and understand
its properties as seen in Definition 1.

Definition1:

Let Attack Tree T represent a finite set of
steps an attacker would perform to exploit a web
application W. Then T is a 4-tuple digraph defined
as

ሺ𝑛଴, 𝐵, 𝐿, 𝐸ሻ
Where

1. Vertices 𝑉 ൌ ሺ𝑛଴ 𝑈 𝐵 𝑈 𝐿ሻ is the set of all
Branches B, leaves L and the root node, 𝑛଴.

2. The root node, n0 represents the main goal of
the attack tree.

3. The set of leaves 𝐿 ൌ ሼ𝐿ଵ, … , 𝐿ேሽ represents
attacks which could be true or false if the
attack was successful or not.

4. The set of branches 𝐵 ൌ ሼ𝐵ଵ, … , 𝐵ெሽ
represents special nodes with logical
functions ∧ 𝑎𝑛𝑑 ∨ i.e. and / or functions.
The function ∧ evaluates to true if all of its
children evaluate to true and function ∨
evaluates to true, if any of its children
evaluate to true. A branch connects leaves, L
together and it could be a sub-goal of the
root node, 𝑛଴

5. E = ሼሺ𝑖, 𝑗ሻ: 𝑖, 𝑗 ∈ 𝑉ሽ is the set of all directed
edges connecting all adjacent nodes.

A successful attack only occurs if there exist a set
of events that create a path through a set of leaves
to the root node, 𝑛଴

With this definition, the three attack trees are
designed as seen in Figures 1, 2 and 3 with respect
to the web application being tested. Each attack tree
is represented in a table called the Tree
Implementation Matrix (TIM). Table 1 represents a
TIM which was derived by extracting all
information from the attack tree model of Figure 1.

The TIM captures all properties and characteristics
of the SQL injection attack tree showing actions
executed by the adversary to exploit the SQL
injection vulnerability.

The information in this table is key to detecting
unique attack paths using the analyze tree model
algorithm. These unique paths represent route from
the leaf nodes to the root node which serves as a
guide to a successful security testing process. Given
the research scope, each SQL injection type studied
will have a TIM.

In the TIM of Table 1, the Tautology attack tree is
described. Each node is identified based on its type,
trust level (malicious or general) and capacity to
invoke SQL statement. Mapping the description
from Table 1 to the attack tree, some leaves will
implicitly have a true value because they are
completely harmless and do not trigger or invoke
any SQL commands. These are general activities
accessible to every user who can access the system.
Therefore, our concern is sand-boxing only the
malicious activities whose node type is a leaf that
invokes SQL command and monitoring them to
ensure that they do not evaluate to true.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5640

Figure 2: Union-Based SQLIA Attack Tree

Figure 1: Tautology SQLIA Attack Tree

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5641

3.3 Attack Path Detection and Optimization
algorithm

Algorithm 1 showcases the analyze tree model
algorithm for traversing the attack trees in Figures 1
to 3. The algorithm crawls the attack tree
recursively using the depth first search technique in
order to identify all possible attack paths. As stated
earlier in Table 1 (Annex1), leaves marked general
are not considered harmful in the attack paths
except the malicious leaf nodes that invoke SQL

commands. This helps in reducing the time to
compute all paths to the root node and guarantees
efficient test cases are designed using the optimized
attack paths.

Algorithm 1: Attack Path Detection via MOTH's
Depth First Search Algorithm

Input: AT: [Attack tree composed of Nodes with
'AND'/'OR' operators]
Output: Attack Path: [A set of Optimized Attack
Paths to the Root Node,𝑛଴]
1: Initialize AT: Digraph AT ⇐ new Digraph()
2: Create Nodes: Nodes[] ⇐ new Node(name, flag,
fxn, nodeType)
3: Add Nodes to Machine: Machine[]⇐ Nodes[]
4: Add Edges to Nodes: AT.addEdges(Nodei,
Nodej)
5: Set Start Machine: M1 = 𝑛଴
6: Set End Machine: End[] ⇐
getInvokeSQLMachines(Machine[])
7: Initialize Visited Node: Visited[] ⇐ 𝑛଴
8: Start Search
9: while End[] ് 0 do
10: Nodes[] =
AT.adjacentNodes[Visited.getLast()]
11: MDFS(AT, Visited)
12: for each node ∈ Nodes[] do
13: if Visited.contains(node) then
14: continue
15: end if
16: if node.equals(End[i]) then
17: Visited.add(node)
18: print(Attack Path)

Table 1: Tree Implementation Matrix (TIM) for Tautology Attack Tree Model

Label Node Type Action Activity Invoke
SQL

M1 root, n଴ Tautology malicious Yes

M2 leaf Open Target Web App in Web Browser general No

M3 branch Exploit App malicious No

M4 leaf Append single quote to URL if GET is Form
Method else start from M5

malicious No

M5 leaf Open any page with or without web forms and
perform injection

malicious No

M6 branch Execute Exploit malicious No

M7 leaf Perform Tautology Injection manually malicious Yes

M8 leaf Use SQL Injection automation tools malicious Yes

M9 leaf Intercept Server Response if POST is Form
Method using automation tools

malicious No

M10 leaf Perform Encoding manually and Inject single
quote in hidden field

malicious No

M11 leaf Replay Client Request and capture server
response with tool

malicious Yes

M12 leaf Inject hidden field with tautology and database
functions while extracting all useful information

malicious Yes

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5642

19: end if
20: end for
21: for each node ∈ Nodes[] do
22: if Visited.contains(node) OR
node.equals(End[i]) then
23: Visited.addLast(node)
24: MDFS(AT, Visited)
25: Visited.removeLast()
26: end if
27: end for
28: AttackPathOptimization.optimizer(Attack
Path)
29: end while

3.4 Attack Path Optimization for SQL Injection
Attack Trees.

This algorithm was designed as a feature in a
Hybrid Threat Modeling tool called MOTH which
was implemented in Eclipse using Java
programming language.

A summary of the results obtained from the 3 attack
trees are listed below including the optimized attack
paths.
3.4.1 Tautology SQLIA attack paths

1. Attack Path, 𝐴𝑃௧ଵ from M1M7 :
M1.(M2.M3).B1.(M4.M5.M6).M7

2. Attack Path, 𝐴𝑃௧ଶ from M1 M8 :
M1.(M2.M3).B1.(M4.M5.M6).M8

3. Attack Path, 𝐴𝑃௧ଷ from M1 M11 :
M1.(M2.M3).B2.(M9.M10.M11.M12)

4. Attack Path, 𝐴𝑃௧ସ from M1 M12 :
M1.(M2.M3).B2.(M9.M10.M11.M12)

Therefore,
𝐴𝑃௧ ൌ ሼ𝐴𝑃௧ଵ, 𝐴𝑃௧ଶ, 𝐴𝑃௧ଷ, 𝐴𝑃௧ସሽ

is optimized to

𝐴𝑃௧
ᇱ ൌ ሼ𝐴𝑃௧ଵ, 𝐴𝑃௧ଶ, 𝐴𝑃௧ଷሽ

3.4.2 Union-based SQLIA attack paths

1. Attack Path, 𝐴𝑃௨ଵ from M1M5 :
M1:(M2:M3:B1:M4):B2:(M5:M6:M7)

2. Attack Path, 𝐴𝑃௨ଶ from M1 M7 :
M1:(M2:M3:B1:M4):B2:(M5:M6:M7)

3. Attack Path, 𝐴𝑃௨ଷ from M1 M8 :
M1:(M2:M3:B1:M4):B3:(M8:M9)

4. Attack Path, 𝐴𝑃௨ସ from M1 M9 :
M1:(M2:M3:B1:M4):B3:(M8:M9)

Therefore,

𝐴𝑃௨ ൌ ሼ𝐴𝑃௨ଵ, 𝐴𝑃௨ଶ, 𝐴𝑃௨ଷ, 𝐴𝑃௨ସሽ

is optimized to

 𝐴𝑃௨

ᇱ ൌ ሼ𝐴𝑃௨ଵ, 𝐴𝑃௨ଷሽ

3.4.3. Boolean-Based Blind SQLIA Attack Paths

1. Attack Path, 𝐴𝑃௕ଵ from M1M4 :
M1:(M2:M3:B1):B2:(M4:M5:M6:M7)

2. Attack Path, 𝐴𝑃௕ଶ from M1 M6 :
M1:(M2:M3:B1):B2:(M4:M5:M6:M7)

3. Attack Path, 𝐴𝑃௕ଷ from M1 M9 :
M1:(M2:M3:B1):B3:(M8:M9:M10)

4. Attack Path, 𝐴𝑃௕ସ from M1 M10 :
M1:(M2:M3:B1):B3:(M8:M9:M10)

Therefore,

𝐴𝑃௕ ൌ ሼ𝐴𝑃௕ଵ, 𝐴𝑃௕ଶ, 𝐴𝑃௕ଷ, 𝐴𝑃௕ସሽ

is optimized to

 𝐴𝑃௕

ᇱ ൌ ሼ𝐴𝑃௕ଵ, 𝐴𝑃௕ଷሽ

4.0 CASE STUDY

 The web application being considered in
this research is The Bodgeit Store downloaded from
GitHub [19]. It was designed by security experts
from OWASP for benchmarking security tools.
Bodgeit store is a vulnerable web application with
many security bugs especially SQL injection
amongst others however focus is given to SQL
injection being the scope of the studies. This
vulnerability affects many of the services provided
by the application under test (AUT) such as login,
registration, search, account management and
basket functionalities as seen in Table 2 which
shows a total number of 15 vulnerable SQL
statements in the web application. An overview of
the web application is summarized in Table 3 while
its services are shown in its use case diagram in
Figure 4.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5643

Table 2: Distribution of SQL injection
Vulnerabilities across the AUT

L
ogin

.jsp

B
ask

et.jsp

R
egister.jsp

A
d

van
ce.jsp

P
assw

ord
.jsp

T
otal

Select 1 3 1 1 1 6

Update 2 1 2 0 1 6

Insert 0 2 1 0 0 3

Total 3 6 4 1 1 15

Figure 4: BodgeIT Store UseCase Diagram

4.1. Security Test Plan Derivation

In order to execute security tests on the
AUT, adequate test plans (TP) must be prepared.
These test plans are designed using optimized
attack paths, AP, derived in section 3.4. Table 4
shows a mapping of the attack paths to vulnerable
assets in order to create effective test plans from
which security test cases will be designed.

Table 3: Overview of bodgeit store web application
modules

Module(.jsp) #LOC Use case
1 about 18 about app
2 admin 92 manage users
3 advanced 193 search product

catalog

4 contact 134 contact us
5 footer 9 Page Footer
6 header 117 Page header
7 home 74 Home page
8 init 280 web application

initialization
9 login 149 Authentication
10 logout 11 Authentication
11 password 106 manage account
12 product 137 view product

catalog
13 register 161 Add new user
14 score 78 Rate achievements
15 search 102 search product

catalogue

Table 4: Mapping Attack Paths to Assets vulnerable
to SQL Injection

L
ogin

B
ask

et

R
egister

A
d

van
ced

P
assw

ord

Tautology
SQLIA
Test Suite

TP1:
𝐴𝑃௧ଵ, 𝐴𝑃௧ଷ

TP4:
𝐴𝑃௧ଶ, 𝐴𝑃௧ଷ

 TP6:

𝐴𝑃௧ଷ

TP7:

𝐴𝑃௧ଵ

Union
Based
SQLIA
Test Suite

TP2:
𝐴𝑃௨ଵ, 𝐴𝑃௨ଷ

 TP5:

𝐴𝑃௨ଷ

Union
Based
Blind
SQLIA
Test Suite

TP3: 𝐴𝑃௕ଵ

4.2. Security Test Case Generation from Test
Plan

A total of 13 security test cases were
generated from the 7 test plans in Table 4. After
executing these test cases, some security
recommendations were specified. These
recommendations were implemented and the
security improvement of the AUT was measured
again to determine the effectiveness of the test
cases derived from the threat model.

Table 5 (Annex 1) shows the test case report which
contains the test cases, status of the test case
execution before security recommendations and
proposed security requirement specifications for
resolving the SQL injection vulnerabilities detected
in the AUT.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5644

5. EXPERIMENTAL RESULTS AND
DISCUSSION

The experiment was conducted on a Core
i5 PC running 64bits Windows 7 OS with 16GB
Ram. Firstly, the setup includes deploying the web
application (bodgeit.war) to apache tomcat server
before simulating SQL injection attacks by
executing test cases TC1-TC13 with selenium and
other SQL injection attack tools such as SQL Map
and Tamper Data. As seen in Figure 5, the 3 SQL
injection attacks trees were designed using a Hybrid
threat modeling tool called MOTH, which was built
during the course of this research. MOTH offers
other features apart from attack path detection and
optimization, however, this is not the subject of
discussion.

Table 6 shows the rate of optimization
while the value was quantified using the stated
formula. An average optimization rate of 41.6%
was achieved. This answers the first research
question (RQ1) which seeks to determine the
effectiveness of threat modeling approach in
reducing test case redundancy. It is worthy of
mention that the new test suite is not only effective,
the overall quality and coverage of the test suite
remains unchanged.

Table 6: Attack Path Optimization of Attack Trees

Attack

Tree (AT)

Type

Before Path

Optimization

After Path

Optimization

%

Optimization

Tautology

AT

4 3 25

Union

Based AT

4 2 50

Boolean-

Based

Blind AT

4 2 50

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛஺௩௚

ൌ
∑ 𝐵𝑒𝑓𝑜𝑟𝑒 𝑂𝑝𝑡. െ ∑ 𝐴𝑓𝑡𝑒𝑟 𝑂𝑝𝑡.஺௉ ஺௉

∑ 𝐵𝑒𝑓𝑜𝑟𝑒 𝑂𝑝𝑡.஺௉
 ൈ 100%

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛஺௩௚ ൌ
12 െ 7

12
 ൈ 100% ൌ 41.67%

Figure 5: Optimized Attack Path Detection using Analyze Tree Model Algorithm

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5645

Figure 6: Attack Path Optimization

Furthermore, after all security
recommendations of Table 7 (Annex 2) were
implemented, the test cases were executed again on
the vulnerable assets in order to quantify security
improvement. This table also summarizes the result
before and after security recommendations were
applied. After this process, security improvement
of the AUT is quantified using the formula below,

where,

𝐼𝑀𝑃𝑉௦௘௖௨௥௜௧௬

ൌ
𝑁𝑜. 𝑜𝑓 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑓𝑖𝑥𝑒𝑑

𝑁𝑜. 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
 ൈ 100%

𝐼𝑀𝑃𝑉௦௘௖௨௥௜௧௬ ൌ
15
15

 ൈ 100% ൌ 100%

Figure 7: Improvement in security after Applying
Security Recommendations

This evidently answers the second
research question (RQ2) showing that the reduction
in test case redundancy actually improves software
security. The chart in Figure 7 show that all SQL
injection vulnerabilities found in each software
module were completely resolved hence a 100%
improvement in security. This is make threat

modeling a viable option for eliciting security
requirements for any application of any size as
threat models provide every attack paths through
which the application can be exploited. With this
information at hand at the early stages of
requirement gathering and design in the SDLC,
both business and the development team are better
equipped with information on what risks to
mitigate, ignore or transfer. Furthermore the test
plan serves as a viable document to measure
compliance with security policies set by the
software quality assurance team. With this guide,
content developers and security teams know exactly
what security requirement to implement and where
to implement them as the web application evolves.

6. SIGNIFICANCE OF STUDY

 Defining and verifying security
requirements of web applications are an important
process in the earlier phase of the SDLC. With the
new concept presented in this paper, it is feasible to
test those requirements with a minimal test suite at
an affordable cost while managing scarce resources
efficiently. Given the ease of setting up this test
environment, several iterations of attack tree
models can be prepared to exploit found
vulnerabilities, design the test suite and finally
improve the security of the AUT.

 Given this premise, the significance of the analyze
tree model algorithm over Marback's breadth first
search technique are its capacity to process a
mixture of operations between a group of siblings
connected by a branch. The algorithm efficiently
processes unordered siblings irrespective of their
branch operators thereby representing real world
conditions. In addition to this, it further truncates
redundant test cases without sacrificing the quality
of the test suite which is absent in previous threat
modeling research efforts targeted at deriving test
cases from security models.

 Furthermore, while designing the attack
trees, all leaf nodes that represent potential SQL
injection attacks were identified using the tree
implementation matrix. This makes attack path
derivation faster as the focus on security testing is
separated from functional testing. It is worth
mentioning that [6, 7, 27] execute security test via

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5646

tainting and security mutants. These mutants are
copies of the tested programs deliberately corrupted
with vulnerabilities by the researchers which are
subject to bias.

 It is worthy of mention that the
contribution of this research paper is in two folds.
Firstly, our approach can generate test plans from
which executable security tests cases can be derived
from attack tree threat models dedicated to SQL
injection attacks. Since these test plans are
dependent on the size of the attack trees, optimizing
the attack paths for the purpose of minimizing test
case redundancy is a plus and a major task achieved
in this paper. Secondly, this research work was able
to demonstrate the capacity of threat modeling with
attack trees as a viable and feasible method of
improving software security contrary to previous
assertion in other research efforts.

7. CONCLUSION AND FUTURE WORK

In this paper, we have shown the importance of
threat modeling web applications using an
optimized attack tree algorithm to derive minimal
test plans. This is necessary to generate effective
test cases in order to elicit adequate security
requirements needed to prevent SQL injection
attacks. Although, this technique has proved
effective, it is however important to extend the
attack vector considered as the threat scape is very
large. A major strength in the use of attack trees is
the ease of reuse of these models. They can be
easily adapted with minimal effort while
considering other attack vectors.

Although the results are promising, this study has
few limitations. One limitation involves how the
threat trees are designed. There's a direct
correlation between the quality of the threat models
and the technical competence of the individuals
developing the attack trees. Furthermore, the scope
of SQL injection attacks covered might look narrow
though it's very possible to derive the rest of the
SQL injection types from the base types treated in
this paper.

Furthermore, this testing technique can be extended
to other applications such as those running on
mobile and IoT devices as they have also been

reported to suffer huge attacks in recent threat
reports by software security organizations.

REFERENCES

[1] M. Paul. (2014). Software Security: Being
Secure in an Insecure World [White paper].
Available:
https://www.isc2.org/uploadedFiles/(ISC)2_P
ublic_Content/Certification_Programs/CSSLP
/CSSLP_WhitePaper_3B.pdf

[2] G. McGraw, Software security: building
security in vol. 1: Addison-Wesley
Professional, 2006.

[3] Symantec. (2014, Web Security Threat
Report. WSTR Volume 19.

[4] C. Kavitha, C. Gillian, C. Orla, L. Hon, N.
Benjamin, O. Brigid, et al. (2017, Symantec
Internet Security Threat Report. ISTR Volume
22.

[5] WhiteHat-Security. (2014, 06/09/2016). Web
Application Security Statictics Report.
Available:
https://info.whitehatsec.com/rs/675-YBI-
674/images/WH-2016-Stats-Report-
FINAL.pdf

[6] A. Marback, H. Do, K. He, S. Kondamarri,
and D. Xu, "A threat model-based approach to
security testing," Software-Practice &
Experience, vol. 43, pp. 241-258, Feb 2013.

[7] D. Xu, M. Tu, M. Sanford, L. Thomas, D.
Woodraska, and W. Xu, "Automated security
test generation with formal threat models,"
IEEE Transactions on Dependable and
Secure Computing, vol. 9, pp. 526-540, 2012.

[8] H. Omotunde, R. Ibrahim, M. Ahmed, R. F.
Olanrewaju, N. Ibrahim, and H. Shah, "A
framework to reduce redundancy in android
test suite using refactoring," Indian Journal of
Science and Technology, vol. 9, 2016 2016.

[9] G. Raj, D. Singh, and I. Tyagi, "Test Case
Optimization and Prioritization of Web
Service Using Bacteriologic Algorithm," in
Intelligent Computing and Information and
Communication, Singapore, 2018, pp. 731-
744.

[10] J. Ahmad and S. Baharom, "Factor
Determination in Prioritizing Test Cases for
Event Sequences: A Systematic Literature
Review," Journal of Telecommunication,
Electronic and Computer Engineering
(JTEC), vol. 10, pp. 119-124, 2018.

[11] S. P. R. Asaithambi and S. Jarzabek,
"Towards Test Case Reuse: A Study of
Redundancies in Android Platform Test

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5647

Libraries," Berlin, Heidelberg, 2013, pp. 49-
64.

[12] G. Fraser and F. Wotawa, "Redundancy based
test-suite reduction," in International
Conference on Fundamental Approaches to
Software Engineering, 2007, pp. 291-305.

[13] MITRE. (2017, 24/06/2017). Common Attack
Pattern Enumeration and Classification.
Available: https://capec.mitre.org/index.html

[14] S. LiU and E. Rios, "D2. 2 Initial Modelling
Methods and Prototype Modelling Tools,"
2008.

[15] OWASP. (2015, 03-06-2015). Testing for
SQL Injection. Available:
https://www.owasp.org/index.php/Testing_for
_SQL_Injection

[16] L. K. Shar and H. B. K. Tan, "Predicting SQL
injection and cross site scripting
vulnerabilities through mining input
sanitization patterns," Information and
Software Technology, vol. 55, pp. 1767-1780,
10// 2013.

[17] V. Shanmughaneethi and S. Swamynathan,
"Detection of SQL Injection Attack in web
applications using web services," IOSR
Journal of Computer Engineering
(IOSRJCE), vol. 1, pp. 13-20, 2012.

[18] H. Omotunde and R. Ibrahim, "Mitigating
SQL Injection Attacks via Hybrid Threat
Modelling," in Information Science and
Security (ICISS), 2015 2nd International
Conference on, 2015, pp. 1-4.

[19] S. Bennetts. (2014). The BodgeIt Store.
Available: https://github.com/psiinon/bodgeit

[20] K. Edge, R. Raines, M. Grimaila, R. Baldwin,
R. Bennington, and C. Reuter, "The use of
attack and protection trees to analyze security
for an online banking system," in System
Sciences, 2007. HICSS 2007. 40th Annual
Hawaii International Conference on, 2007,
pp. 144b-144b.

[21] B. Kordy, S. Mauw, S. Radomirović, and P.
Schweitzer, "Foundations of Attack–Defense
Trees," in Formal Aspects of Security and
Trust. vol. 6561, P. Degano, S. Etalle, and J.
Guttman, Eds., ed: Springer Berlin
Heidelberg, 2011, pp. 80-95.

[22] B. Kordy, L. Piètre-Cambacédès, and P.
Schweitzer, "DAG-based attack and defense
modeling: Don’t miss the forest for the attack
trees," Computer science review, vol. 13, pp.
1-38, 2014.

[23] R. Jhawar, B. Kordy, S. Mauw, S.
Radomirović, and R. Trujillo-Rasua, "Attack

trees with sequential conjunction," in IFIP
International Information Security
Conference, 2015, pp. 339-353.

[24] N. Poolsappasit, R. Dewri, and I. Ray,
"Dynamic security risk management using
bayesian attack graphs," IEEE Transactions
on Dependable and Secure Computing, vol. 9,
pp. 61-74, 2012.

[25] S. Chen, Z. Kalbarczyk, J. Xu, and R. K. Iyer,
"A Data-Driven Finite State Machine Model
for Analyzing Security Vulnerabilities," in
Proceedings of the International Conference
on Dependable Systems and Networks, 2003,
pp. 605-614.

[26] G. Sindre and A. L. Opdahl, "Eliciting
security requirements with misuse cases,"
Requirements Engineering, vol. 10, pp. 34-44,
Jan 2005.

[27] L. Wang, E. Wong, and D. Xu, "A Threat
Model Driven Approach for Security
Testing," presented at the Proceedings of the
Third International Workshop on Software
Engineering for Secure Systems, 2007.

[28] A. Marback, H. Do, K. He, S. Kondamarri,
and D. Xu, "Security test generation using
threat trees," in Automation of Software Test,
2009. AST'09. ICSE Workshop on, 2009, pp.
62-69.

[29] A. Shostack, Threat modeling: Designing for
security: John Wiley & Sons, 2014.

[30] SecurityInnovation. (2011). Threat Modelling
for Secure Embedded Software [White paper].
Available:
http://web.securityinnovation.com/threat-
modeling-embedded/

[31] W. Halfond, J. Viegas, and A. Orso, "A
classification of SQL-injection attacks and
countermeasures," in Proceedings of the IEEE
International Symposium on Secure Software
Engineering, 2006, pp. 65-81.

[32] R. Dharam and S. G. Shiva, "Runtime
Monitors to Detect and Prevent Union Query
based SQL Injection Attacks," Proceedings of
the 2013 10th International Conference on
Information Technology: New Generations,
pp. 357-362, 2013.

[33] R. Chandrashekhar, M. Mardithaya, S.
Thilagam, and D. Saha, "SQL Injection
Attack Mechanisms and Prevention
Techniques," in Advanced Computing,
Networking and Security. vol. 7135, P. S.
Thilagam, A. Pais, K. Chandrasekaran, and N.
Balakrishnan, Eds., ed: Springer Berlin
Heidelberg, 2012, pp. 524-533.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5648

ANNEX1 Table 5: Test Case Report and Security Recommendations

Test
Case
ID

Test Case
Description

Status Observations and comment Security Recommendations for
mitigating SQL Injection
Vulnerabilities in the AUT

TC1 Login with Invalid

username(U) and
password(P)

Fail

1. Input validation missing for both username
and password fields
2. Length of user input is not restricted
3. SQL statements were generated dynamically
via string concatenation.

Login.jsp

1. All dynamically generated SQL
statements on the login form must be
replaced with parameterized queries.

2. Use of string concatenation with
parameterized queries must not be
allowed as it violates secure coding
practices

3. All user input must be validated on
the server side as client side
validation can be bypassed

4. Ensure strict enforcement of
username and password policy to
prevent SQL injection attacks by
specifying an acceptable format and
length that meets system security
requirement

5 Exception handling must reveal only
generic messages to users

6. Database connection must only be
initiated with an account having the
necessary privileges to make the
application function properly.

TC2 Login with

username (U) only
Fail

All observations in TC1 also observed
here and login attempts are allowed without
providing a password.

TC3 Login with

password (P) only
Fail

All observations in TC1 also observed here and
login attempts are allowed without providing a
username.

TC4 Login using a request

file and SQL Map
Fail

1. All observations in TC1 also observed here
and parameterized queries are not used in
writing SQL statements.
2. Database connections are carried out with
excessive privilege

TC5

Access all tables on
database using
SQL Map

Fail

Same as TC4

TC6 Login using Union

based Injection
without password (P)

Fail

Observations from TC1 and TC2 also
observed here and DB server does not restrict
messages displayed in the event of an
exception.

TC7

Access all user
information using a
request file and SQL
Map

Fail

Same as TC4

TC8 Access another user’s

basket by injecting
values into cookie
using Tamper Data

Fail

1. Dynamic SQL query used to obtain basket ID
from cookies to display user basket.
2. User specific data stored in cookies
unencrypted and Session management is not
enforced in managing unique user data
3. Guest Users are allowed to add items to
basket which violates the System’s Use Case.
4. Input Data type not enforced on cookies

Basket.jsp

7. Enforce verification of cookie value so
it matches with that of the currently
logged in user.
8. Ensure guest users can not add item to
any basket
9. Verify cookie data type before getting
user’s basket items
10. All SQL queries must be designed
using parameterized queries to avoid loss
of semantics of the SQL query

11. All form parameters must be verified
before passing parameter values to the
SQL statements with validation routines
implemented on the server

TC9

Corrupt basket
Database with a post
request file using
SQL Map

Fail

1. Attackers exploit basket.jsp via a valid
referral link in the http header to corrupt the
basket DB pretending to add item to basket.
2. Input validation not enforced on form
parameter found in the request file.
3. Dynamically generated SQL queries allow
user input to change semantics of the query on
the basket.jsp asset

TC10 Access Database

Tables using Union
Based SQLIA

Fail

1.Search strings for user not validated for
correctness and length.
2. Invalid inputs not properly escaped
3. Database connections established with over-
privileged account

Advanced.jsp
12. Use regular expression to define a
concise and acceptable format of search
strings including value of product prices

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5649

TC11

Register with
username (U)
containing a
malicious statement
and a normal
password (P)

Fail

1. The registration form lacks input validation
routines for verifying inputs against malicious
content
2. SQL statements derived from string
concatenation are susceptible to SQLIAs.
3. SQL keywords allowed as username

Register.jsp
14. Recommendation 10 must be
enforced

15. Enforce input validation on the
server to ensure malformed inputs are
dropped and generic information is
shown to users

16. No SQL keyword or database
specific operators are accepted as either
username or password

TC12

Register with normal
username (U) but
with password (P)
containing a
malicious SQL
statement

Fail

1. The registration form lacks input validation
routines for verifying inputs against malicious
content
2. SQL statements derived from string
concatenation are susceptible to SQLIAs
3. Proper password policy not set to enforce
acceptable password properties

TC13

Access Database
Tables using Union
Based SQLIA

Fail

1. Tainted input with malicious queries
processed by back-end database.
2. Proper password policy not set to enforce
acceptable password properties
3. Use of dynamic SQL statement vulnerable to
SQLI vulnerabilities for password update

Password.jsp

17. Recommendation 10 must be
enforced
18. Recommendation 11 must be
enforced.

Annex 2 Table 7: Comparison of test case execution results before and after application of security
requirements

 Before Applying Security Recommendation After Applying Security Recommendation

Test Cases Expected Result Actual Result Status Expected Result Actual Result Status

TC1
Invalid username

or password Login Successful Fail
Invalid username

or password
Invalid username

or password pass

TC2
Invalid username

or password Login Successful Fail
Invalid username

or password
Invalid username

or password
pass

TC3
Invalid username

or password Login Successful Fail
Invalid username

or password
Invalid username

or password
pass

TC4
Login not
Successful Login Successful Fail

Login not
Successful

Login not Successful pass

TC5
Table not
accessible table accessible Fail Table not

accessible
Table not accessible pass

TC6
Invalid username

or password Login Successful Fail
Invalid username

or password
Invalid username

or password
pass

TC7
parameter pass
not injectable

parameter pass
vulnerable

Fail
parameter pass
not injectable

parameter pass
not injectable

pass

TC8
Cannot access
another users

shopping basket

Unauthorized access to
other users basket

successful
Fail

Cannot access
another users

shopping basket

Cannot access
another users

shopping basket
pass

TC9
Basket Database

information intact Basket Database Corrupted Fail
Basket Database

information intact
Basket Database

information intact
pass

TC10 No results found Database Tables revealed Fail No results found No results found pass

TC11
Invalid username

or password

You have successfully
registered with

The Bodgeit Store
Fail Invalid username

or password
Invalid username or

password
pass

TC12
Invalid username

or password

You have successfully
registered with

The Bodgeit Store
Fail

Invalid
username or

password

Invalid username or
password

pass

TC13 Invalid password
Your Password has

been changed
Fail Invalid password Invalid password pass

