
Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5869

 TASK SCHEDULING ALGORITHM IN CLOUD COMPUTING
BASED ON MODIFIED ROUND ROBIN ALGORITHM

1 RUBA ABU KHURMA, 2 HEBA AL HARAHSHEH, 3AHMAD SHARIEH
1Ph.D Student, University of Jordan, Department of Computer Science, King Abdullah II School for

Information Technology, Amman, Jordan
2Ph.D Student, University of Jordan, Department of Computer Science, King Abdullah II School for

Information Technology, Amman, Jordan
3PROF., University of Jordan, Department of Computer Science, King Abdullah II School for Information

Technology, Amman, Jordan

E-mail: 1 ruba_abukhurma@yahoo.com, 2 Heba.moh.h@gmail.com, 3 sharieh@ju.edu.jo

ABSTRACT

Cloud computing offers opportunities to access remote physical and virtual resources. Due to the
continuing development of cloud computing, many challenges face this technology. One of these
challenges is tasks scheduling. It refers to the process of allocating users’ tasks to virtual machines (VMs)
with a goal of minimizing the turnaround time and improving the resource utilization. Tasks scheduling is
considered NP hard problem with O(mn) run time complexity to schedule n tasks on m resources. The
process of tasks scheduling consumes a large solution space and with lacking of algorithms that can find the
optimal solution in a polynomial run time.

This paper presents a review study of various task scheduling algorithms in cloud environment
including: RR, MaxMin, MinMin, FCFS, MCT, PSO, and GA, with a case study on modified round robin
(MRR) algorithm. The MRR algorithm has been tested using CloudSim toolkit. The results show that
when using the MRR algorithm to schedule a number of Cloudlets over a number of VMs, the average
waiting of run time becomes less than when using RR in the same environments. Thus, it is advisable to use
the proposed MRR for tasks scheduling in cloud computing, because it reduces the average waiting time
and keeps the good features of the RR such as fairness, avoiding starvation, based on simple rule, dynamic
based on CC environment situations, and suitable for load balancing.

Keywords: Cloud Computing, CloudSim, Dynamic Scheduling, Modified Round Robin, Task scheduling,

Virtual Machines.

1. INTRODUCTION

This study investigates the performance of
various jobs scheduling algorithms under cloud
computing environment, namely: Round Robin
(RR), Maximum-Minimum (MaxMin), Minimum-
Minimum (MinMin), First Come First Service
(FCFS), Minimum Completion Time (MCT),
Particle Swarm Optimization (PSO), and Genetic
Algorithm (GA). Furthermore, a case study about
modified round robin (MRR) algorithm and the
relation between RR and MRR algorithms will be
described.

With the advancement in the information
technology (IT) industry, several computing
paradigms have been presented including the High
Performance Computing (HPC), Parallel
Computing (PC), Distributed Computing (DC),
Cluster Computing (ClC), Grid Computing (GC),
Mobile Computing(MC) and Cloud Computing
(CC) [1]. The CC is an internet based computing
model to provide on demand services to clients such
as security, virtualization, web infrastructure, Web
2.0 and other developing technologies [2]. The idea
is to pool shared and configurable resources such as
servers, storage, platforms and applications to be
accessed over the internet.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5870

In CC, the commercial service provider like
Microsoft Azure, Amazone EC2, Google apps
engine, etc offers the utility “pay as you go” to rent
services to clients and the resources are delivered as
virtual machines based on service level agreement
(SLA) and negotiation between the service provider
and the consumer[3]. The access mechanism for
resources on the distributed network follows
common internet protocols and standards of
networking and the resources. The processing and
storing for data are done via private cloud owned by
a company or using a public cloud and third part
server in one of the distributed datacenters. There
are also other emerging cloud deployments types
such as hybrid, community, and federated [4].

CC delivers three different service models which
are categorized, as depicted in Fig1, into:
infrastructure as a service (IaaS), platform as a
service (PaaS), and software as services (SaaS) [5].
In IaaS, the resources, storage and processing
power are provided in the form of virtual machines.
PaaS provides a computing platform which includes
operating systems, programming languages, and
web based applications. In SaaS, the software and
database access is allowed for a user according to a
particular usage based payment model.

Figure1: Cloud Services [6]

Nowadays, CC becomes one of the most
significant and attractive technology trend in the IT
market since it efficiently provides dynamic,
flexible, reliable, sustainable, scalable and self-
managed computing infrastructure [7]. Moreover,
there is no need to purchase new hardware, to pay
for training practices or to license new programs.
So, the cost saving is a major benefit for both small
and large enterprises which allow them to focus on

innovation instead of being trapped in hardware and
software setup. On the other hand, flexibility is
considered a bonus for cloud computing with
varying hardware configurations, different
platforms, operating systems and many software
packages. The usefulness of cloud computing also
is represented by offering suitable levels of
availability, reliability and fault tolerance which
guarantee the continuity of cloud functions and the
provision of services even if some cloud sites are
down.

The ubiquities growth of CC faces many
obstacles and challenges such as security,
performance, and resource management [8]. Task
scheduling is one of the main issues related to
resource management and has curious impact on the
efficiency, throughput, and resource utilization in a
cloud environment. Task scheduling in cloud
computing concerns with assigning users’ tasks to
the available recourses in a way the system
utilization and throughput are improved and SLA
requirements are not violated [9].

Tasks scheduling is a matter of mapping a stream
of users’ tasks into the available resources in cloud
computing environment. This is an optimization
problem, since the scheduler tries to find the
optimal tasks-VMs mapping (best matching) with
regard to scheduling times such as the response
time, make span and completion time.

Assume that there are K tasks T = {T1, T2, . . . ,
Ti, . . . , TK } and N resources R = {R1, R2, . . . ,
Rj, . . . , RN } in the current system of cloud
computing. Here, cloud resources refer to the
virtual resources [10].

The main target is to minimize the total
processing and waiting times associated with
scheduling in a way the system throughput is
maximized and quality of service (QoS) constraints
are preserved which include many user input
constraints, as in formulas (1) and (2).

Minimize (Processing time) = Min (∑k
i=1

(Ti.length/VMmips)* NO_PE) (1)

Where Ti.length is the length of the submitted

task, VMmips is the number of instructions (in
millions) per second, which measures the CPU
speed, and PE is the number of processing elements
in a VM.

Minimize (Waiting time) = Min ((∑k
i=1 (Ti.waiting-

time()) (2)

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5871

Tasks scheduling steps are modeled as illustrated
in Figure2.

1. A user of CC submits a task to a scheduler.
2. A scheduler communicates with Cloud

Information System (CIS) for getting
information about resources.

3. CIS provided the resources information to the
scheduler.

4. The scheduling algorithm does its role for
mapping task to the suitable resource and

submits the task to the winner resource
(decision process for allocating a resource).

5. The user gets the identification (id) of the
resource and uses it through cloud interface.

6. The user sends the input data to the resource
according to the schedule.

7. The scheduler gets over time updated
information about the status of a cloud to
manage the schedule.

8. The information is sent to the user.

Figure2: Steps of task scheduling in cloud computing

The process of allocating virtual machines fairly
among tasks is to minimize the workload.
Execution time is considered complicated
especially because there are many influencing
parameters that should be taken into consideration
like task completion time, cost, response time,
power consumption etc [11]. In the other side, the
task scheduling problem is considered non
polynomial (NP)-hard problem, hence there is a
requirement for finding a suitable optimization
approach to solve the problem in a polynomial time
[12].

Task scheduling in CC is a challenge issue. There
are needs to improve the performances and quality
of services, and reduce cost of execution. The task
scheduling in CC should consider the benefits of
both the users and the service providers. The main
research question, here, is: does the modified RR
algorithm will achieve better performance for task
scheduling in CC? This paper presents an

investigation of exiting strategies to handle the
challenge issues and attempts to enhance the round
robin algorithm for better benefits.

The rest of the paper is organized as follows. The
next section presents a literature review about
different task scheduling algorithms in CC. Section
2 discusses some of the scheduling algorithms in
CC. Section 3 describes the methodology of
modified round robin. Section 4 shows a description
for Cloud Sim Toolkit. Section 5 briefs the
experimental setup, results and discussion.
Conclusion is discussed in Section 6.

2. LITERATURE REVIEW

In this section, a brief review study is presented
which shows some of the most relevant research
works done for enhancing the performance of
scheduling tasks in cloud computing environment.
The review includes various tractable algorithmic

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5872

solutions that have been presented according with
their chronological order.

Tracing the literature back to 2010,Van den
Bossche, R., Vanmechelen, K, and Broeckhove, J.
[13] proposed an optimal tasks scheduling policy in
hybrid cloud model. The hybrid is composed ofboth
private and public cloud. The scenario of the
problem is that some workloads have to be
outsourced from private cloud to public cloud
during the peak load intervals where there are no
sufficient resources in private cloud that cover the
submitted users tasks. These workloads are
constrained by a deadline and QoS requirements. In
this case, a decision making process is needed to
select which workloads to outsource and to what
cloud provider, in such a way the utilization in the
internal data center is maximized and the cost of
running the outsourced tasks is minimized. A linear
programming technique was used to tackle this
optimization problem and it performed well in
terms of cost minimization, feasibility and
scalability.

In 2011, Sindhu, S. and Saswati Mukherjee [14]
proposed two algorithms for scheduling tasks in
cloud computing based on the processing
requirements of a task and the computational
capacity of a resource. The first algorithm, named
Longest Cloudlet Fastest Processing Element
(LCFPE), tries to minimize the makespan (the total
time for executing all tasks) by assigning the
lengthier cloudlets (tasks) to a Processing Elements
(PEs) having high computational power. The
second algorithm, named Shortest Cloudlet Fastest
Processing Element (SCFP), does the opposite. In
SCFP, the shorter cloudlets are mapped to PEs
having high computational power process. Using
this algorithm, the flow time is minimized and the
starvation of longer jobs is avoided. They suggested
for future work experimenting more algorithms that
use heuristic methods and also to consider the
priority of tasks.

Ant Colony Optimization algorithm (ACO) was
used for optimizing scheduling under cloud [15].
ACO resembles the ant colony behavior where an
ant moves in random direction searching for food
sources. In case of task scheduling, the tasks are
analogues to ants and the virtual machines imitate
the food sources. ACO is used to solve
combinatorial optimization problems with several
targets of performance and costs. The complexity
analysis of ant colony optimization scheduling in
cloud with K tasks and R resources is computed
based on two stages: firstly, the algorithm finds the
optimal path in O(K) time complexity . Secondly,

the optimization judgment is made to meet the cost
and performance constraints in O(KN) where N is
the number of tasks. So, the overall complexity of
the algorithm is O(KN). The space complexity of
this algorithm is O(1), since the algorithm
consumes constant number of tasks and resources
and does not involve any dynamic variables.
Gogulan, R., A. Kavitha, and U. Karthick Kumar,
in 2012, presented a new nature inspired algorithm
called Multiple Pheromone Algorithm (MPA)
which belongs to ACO algorithms [16]. MPA
generates dynamic schedule so the task is
completed in minimum time and the resource
utilization is enhanced. MPA achieved better QoS
than ACO and algorithms according to three studied
parameters: makespan, cost and reliability
constraints.

Other study was performed by Ravichandran, S.
and E. R. Naganathan, in 2013 [17]. They applied
genetic algorithm to solve the problem of
uncertainty in tasks arrival to the cloud. This
problem results in tedious binding for tasks to VMs.
The proposed idea to solve this problem was
dynamic scheduling where arrived user’s tasks are
queued and the scheduler role is to sort them based
on the computation and memory usage; then, GA
is used to pick each task and find the best fit for
allocating a task to available virtual machines and
obtain the global optimization.

In 2014, Agarwal, Dr. and Saloni Jain [18]
presented in their work, for task scheduling in CC,
new algorithm, named generalized priority
algorithm (GPA). The algorithm was experimented
and compared with FCFS and RR algorithms for
varying number of VMs and workload traces and
using CloudSim simulator. The results show that
the proposed algorithm was more efficient than
FCFS and RR algorithms.

A multi-objective tasks scheduling algorithm for
mapping tasks to VMs was proposed by Lakra,
Atul Vikas, and Dharmendra Kumar Yadav in 2015
[19]. As opposed to single criteria based algorithm
which considers execution time only, the multi-
objective task scheduling algorithm takes into
consideration some other QoS parameters like
execution time, cost, bandwidth of user etc. The
algorithm was evaluated using CloudSim and the
results showed improved throughput for the
datacenter and reduced cost without violating the
SLA.

In 2015, A. Moradbeiky and V. Bardsiri [20]
conducted a research using Cuckoo Optimization
based Task Scheduling Algorithm . In this

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5873

algorithm, bird nets simulate the processing units
(virtual machines) and eggs are the tasks. The
cuckoo’s role is to lay eggs (tasks) in the nets
(VMs). Using this method and based on the number
of virtual machines and the number of tasks (inputs
of the algorithm) various orders of these machines
are examined each time until tasks are allocated to
hosts in the right manner.

One year later, in 2016, Hamad, Safwat A., and
Fatma A. Omara presented an improved genetic
algorithm (TS-GA) for task scheduling problem in
the cloud computing environment [21]. The aim of
the proposed algorithm was to minimize the
completion time, and maximize resource utilization.
The results was simulated using CloudSim
simulator and the results showed reduced cost,
improvement in resource utilization, increased
speedup, and higher ratio for algorithm efficiency
when compared with default GA and RR
algorithms.

Dandhwani, Vanita, and Vipul Vekariya
presented new K-mean based task scheduling
algorithm [22]. The idea of the proposed algorithm
is to create clusters of tasks using k-mean clustering
technique, and then allocates clusters to VMs as per
capacity of VMs. The results showed reduced
execution time and makespan and improved the
total cloud system performance.

Recently, in 2017, Madni, Syed Hamid Hussain
[23] compared the performance of six rule based
heuristic algorithms for tasks scheduling based on
some parameters like cost, degree of imbalance,
makespan and throughput using CloudSim. These
algorithms are First Come First Serve (FCFS),
Minimum Completion Time (MCT), Minimum
Execution Time (MET), MaxMin, MinMin and
Suffer age. The MinMin algorithm performed better
than other heuristics. They recommended that
heuristic algorithms used as a standard to compare
new proposed algorithms. They suggested, for
future work, comparing of heuristic and meta-
heuristic algorithms may give optimal results and
cover the loopholes of each other to achieve the
optimization of task scheduling in cloud computing
and to improve the MinMin algorithm for
optimizing the cost for task scheduling in cloud
computing.

From this review, it is clear that there is not a
beneficial strategy to optimize task scheduling in
CC considering all issues and parameters. For
examples, some consider the utilization in the
internal data center and the cost of running time
[12]; cost minimization, feasibility and scalability

[13]; minimization flow time and avoiding
starvation [14]; solving combinatorial optimization
problems with several targets of performance and
costs [15]; and better QoS according to makespan,
cost and reliability constraints parameters[16].
Recent study [21] was simulated using CloudSim
simulator and the results showed reduced cost,
improvement in resource utilization, increased
speedup, and higher ratio for algorithm efficiency
when compared with default GA and RR algorithms
[21].

We choose to investigate the performance of the
modified RR algorithm for task scheduling in CC
for several reasons. These include the RR fairness
in allocation the processes to CPUs, avoiding
starvation [35], efficiency with respect to average
waiting time; and modifying the RR algorithm to
take online decisions and dynamically adjust the
time slice based on situations of the CC
environment is a more viable alternative for the
standard RR and promising results regarding the
response time.

2.1 Selected Task Scheduling Algorithms

In this study, seven common task scheduling
algorithms are analyzed under cloud computing
environment: RR, MaxMin, MinMin, FCFS , MCT,
PSO, and GA. Table 1 and Table2 describe each
job scheduling algorithm.

3. MODIFIED ROUND ROBIN

The round robin algorithm is one of the best CPU
scheduling algorithms that achieved the fairness in
allocating the processes to CPU based on time
quantum granted to each process [35]. It forces
each running process to be preempted from CPU to
ready queue so that no process allocate the CPU for
a long time and so no starved processes in the
system. This algorithm has been applied also within
the cloud computing environment for allocating
resources and proved its efficiency with respect to
average waiting time for each process [36]. If the
number of tasks is N in a specific CC deployment,
then each task will allocate QT=1/N of the virtual
machine processing time and it will wait no more
than (N-1)*QT, and the scheduling overhead
(selecting task for execution) is O(1) [37].
However, the CC is not stable environment as there
are many changes may arise while the tasks are
waiting in the ready queue; and depending on a
fixed time slice approach may not lead always to
the best system performance. On the other hand,
determining the size of the time quantum and the
ratio of context switch needs a careful thought

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5874

(Context switch is nearly close to 10% of the time
quantum time) [38].

A new enhancement was proposed in the
literature to cope with this bottleneck in front of
round robin algorithm. Modifying the round robin
algorithm to take online decisions and dynamically
adjust the time slice based on the situations is a
more viable alternative for the standard RR and
promising results regarding the response time. In

this study, we will present the modified round robin
(MRR) algorithm and find the relation between the
results of running MRR and RR [39]. Figure 8
shows the task scheduling based on dynamic
quantum time. MRR calculates the time quantum
dynamically so that a task may be granted a
quantum time which differs from the quantum time
granted to other task; for example task1(T1) has a
QT1=5 while task(T2) quantum time QT2 =9.

Figure 8: Dynamic task scheduling using MRR

Table 1: Information about Job Scheduling Algorithms

Scheduling
Algorithm

Description Pros Cons

RR
[24]

It is a pre-emptive algorithm
that distributes the jobs on the
available VMs in a round form
(cyclic manner), where the
jobs are stored in a ring queue.
Each job is allocated a quantum
of time and if it can’t complete
within its turn, then it will be
interrupted and stored back in
the tail of queue and wait for its
next turn. The algorithm
repeats until each task in the
queue is being assigned to at
least one virtual machine.

1- No need for a preprocessing step
to fetch the nominated VM.

2- Distribute the load equally among
VMs.

3- Focuses on fairness among the
scheduled tasks.

4- Jobs are executed in turn and
never waiting for previous job to
finish execution (starvation free).

5- The scheduler will not wait until
all processing power of a VM is
exhausted before it moves to next
VM.

6- It is based on a simple rule.

1- Long jobs take longer time
to complete execution.

2- Servers may be overloaded
3- Preemptive policies

depend on the length of
time slice and case on
short time slice this will
cause many switching.

MaxMin
[25,26]

The algorithm computes the
time completion for each task
on all VMs and dispatches the
largest task(maximum
completion time) and assigns it
to fastest machine (the one with
minimum completion time for
that particular task).The
algorithm is repeated until all
tasks are exhausted.

1- Reduce the waiting time of long
tasks so they never starved.

2- The utilization is increased.
3- The response time is minimized.
4- The makespan is reduced since

smaller jobs are executed
concurrently while other longer
jobs are executed.

1- As it first selects the large
tasks for execution the
smaller tasks are delayed.

2- Not effective in load
balancing.

MinMin

[27]

The algorithm computes the
time completion for each task
on all VMs and dispatches the

1- Smaller makespan, since tasks are
scheduled on the fastest machines
where they are completed earlier.

1- It increases the total
completion time of all the
tasks and hence increases

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5875

smallest task (smallest
completion time) and assigns it
to fastest machine (the one with
minimum completion time for
that particular task).The
algorithm is repeated until all
tasks are exhausted.

2- The algorithm is operative for the
task scheduling in CC.

3- No pre-checking on machines
load; it just smaller tasks on faster
machines.

Increase the throughput.

the makespan
(Batched jobs completion
time).

2- The long tasks have to
wait for smaller tasks to
end their execution.

Unbalanced load.

FCFS
[28]

The incoming task aims the
queue with smallest waiting
time. The queue is managed by
FIFO mechanism (first come
first out).

1- Simple.
2- Easy to understand

1-Non preemptive.
2-The short jobs at the back
of a queue will wait until
long task in the front of
queue is completed.
3-It is based on single
criterion for scheduling.

SJF
[29]

Shortest Job First Scheduling
(SJN) is used to order a set of
tasks by placing the shorter
task in the front of the queue
and the longer tasks at the end
of a queue.

1- Reduce average waiting time
because it reduces the waiting
time of the short jobs and
increases the waiting time of the
long jobs.

1- Can result in starvation for
longer jobs when there are
a large number of small
jobs.

MCT
[30]

The algorithm scans the
available VMs to find the most
appropriate machine to assign a
job for .The VM is selected
based on the minimum
completion time by taking into
consideration the processing
speed and the current workload
on a machine.

1-MCT considers both execution
times and resource loads so it is
considered a successful heuristic
that could be implemented in CC .

1-The process of assigning a
task to certain machine with
minimum completion time is
done in arbitrary order so
each time a task is assigned
to the fastest machine in the
remaining resources pool.

PSO
[31]

PSO is a type of meta-
heuristics algorithms which
applies self-adaptive global
search for optimization and it
starts with random initialization
for position and velocity for the
practices population. Referring
to a problem of task
scheduling, the tasks are
considered the particles and the
number of tasks in the
workflow is the dimension of
these particles. Each dimension
has a value associated to it
indicates the resource where
the tasks workflow is heading
to. So the mapping between
tasks and resources is
represented by a particle in
PSO. Like GA each particle is
evaluated using fitness
function.

1- The traffic workload using PSO is
balanced.

2- Scalable as it could be used with
any number of tasks and
resources.

3- It can find near optimal solutions
for mapping all tasks in the
workflow to the set of available
resources.

4- Less use of mathematical
operators compared with GA and
consequently less need for
parameters tuning.

5- Simple and effective to be used in
wide applications with little
computation overhead compared
to GA.

1- Easy to fall into local
optimum in large search
space.

2- Slow convergence.

GA
[32,33,34]

Using GA for tasks scheduling,
each chromosome represents
the job vector and the tasks are
the positions in this vector. The
content of each position (task)
is the id for the machine that
the task assigned to. The
population depicts several
mappings for tasks to machines
and the GA plays the role of

1- The algorithm can find the near
optimal solution (the fittest
mappings) since it considers in
each generation the past and the
new solutions to formulate the
best scheduling.

2- Apply stochastic search to deal
with large space problems.

3- Lessen the waiting time.
4- Handle local optima problem.

1- Complexity in
computations and long
time requirement.

2- Trial/error parameters such
cross over and mutation
percentages.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5876

performing heuristic search to
find the optimal solution
(mapping). The fitness function
in this case measures the
quality of solution (is the
execution time for all tasks).
Generally the algorithm
imitates the mechanism of
natural selection strategy which
include the four steps:
selection, cross over, mutation
and evaluation

Table 2: Job Scheduling Algorithms Pseudo Codes and Examples

Algo
rithm

Pseudo code Example

Max
Min

// T: #tasks, M: #VMs, Cij :
completion time of a task,
Eij: execution time of a task
i, Rj: ready time of task i on
virtual machine j
1. For i=1 to T
2. For j=1 to M
3. Cij=Eij + Rj

 End for End for
4. Do until all the un

schedule tasks are
exhausted

5. For each unscheduled
task

6. Find the minimum
completion time of the
task and virtual machine
that obtains it
 End for

7. Find task tp with
maximum completion
time

8. Assign task tp with
maximum completion
time

9. Assign task tp from pull
of unscheduled tasks

10. Update ready time of
the machine that gives
the maximum
completion time
End do

Assume a cloud computing with 4 machines and six tasks as shown in Table
2.1.

 Table2.1:Tasks execution time on various VMs
Tasks/

machines
VM0 VM1 VM2 VM3

T0 150 200 170 250
T1 100 120 140 110
T2 250 270 130 310
T3 350 330 300 260
T4 50 70 90 110
T5 170 200 230 150

 The tasks will be assigned to the machines as shown in Figure3.

Figure3:MinMax tasks scheduling

Min

// M:#tasks, N:#VMs ,Cij:
completion time of a task,
Eij: execution time of a task,
Rj: ready time of task i on
virtual machine j
1. As steps 1-3 in

MaxMinDo until all the
unscheduled tasks are
exhausted

2. For each unscheduled
task

Assume the same cloud computing environment in the previous example.
The tasks will be assigned to the machines according to MinMin as shown
in Figure 4.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5877

Min 3. Find the minimum
completion time of the
task and virtual machine
that obtains it
 End for

4. Find task tp with
earliest completion time

5. Assign task tp with
earliest completion time

6. Assign task tp from pull
of unscheduled tasks

7. Update ready time of
the machine that gives
the minimum
completion time. End
do

Figure4:MinMin tasks scheduling

MCT

1. Steps 1-3 as in MaxMin Do
until all the unscheduled
tasks are exhausted

2. For each unscheduled task
Find the minimum completion

time of the task and virtual
machine that obtains it.
End for

3. Find task tp with earliest
completion time

4. Assign task tp with earliest
completion time

5. Assign task tp from pull of
unscheduled tasks

6. Delete task tp from pull of
unscheduled tasks

Update ready time of the
machine that gives the
minimum completion time.
 End do

Assume the same cloud computing environment in the previous example. The
tasks will be assigned to the machines as shown in Figure 5.

Figure5:MCT tasks scheduling

FCF
S

1- Place each incoming Task

at the end of the service
queue.

2- The first task in the queue
is assigned to VM when it
is available until the end
of its execution time

Assume a cloud computing environment consists of 10 tasks and 3 VMs.

Table2.2: Task time calculation on various VMs using FCFS

Tas
k Id

Arri
val

time

Exec
ution
time

Comple
tion
time

Waiting
time

each on
VMs

Assi
gne
d

VM

Waiting
queue on
each VM

Turnarou
nd

time

T1 0 4

VM1:
0+4=4
VM2:0
VM3:0

VM1 : 0
VM2 : 0
VM3 : 0

VM
1

VM1:T1
VM2:-
VM3:-

VM1:4-
0=4
VM2:0
VM3:0

T2 1 5

VM1:4
VM2:5
+1=6
Vm3:0

VM1 : 4-
1=3
VM2 : 0
VM3 : 0

VM
2

VM1:T1
VM2:T2
VM3:-

VM1:4-
0=4
VM2:6-
1=5
VM3:0

T3 2 7

VM1 :
4
VM2 :
6
VM3 :
2+7=9

VM1 : 4-
2=2
VM2 : 6-
2=4
VM3 : 0

VM
3

VM1:T1
VM2:T2
VM3:T3

VM1:4-
0=4
VM2:6-
1=5
VM3=9-
2=7

T4 3 9
VM1 :
4
VM2 :

VM1 : 4-
3=1
VM2 : 6-

VM
1

VM1:T1,
T4
VM2:T2

VM1:4-
0=4
VM2:6-

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5878

6
VM3 :
9

3=3
VM3 : 9-
3=6

VM3:T3 1=5
VM3=9-
2=7

T5 4 2

VM1 :
4+9=13
VM2 :
6
VM3 :
9

VM1 :
13-4=9
VM2 : 6-
4=2
VM3 : 9-
4=5

VM
2

VM1:T4
VM2:T2,
T5
VM3:T3

VM1:13-
0=13
VM2:6-
1=5
VM3=9-
2=7

T6 5 3

VM1 :
13
VM2 :
6+2=8
VM3 :
9

VM1 :
13-5=8
VM2 : 8-
5=3
VM3 : 9-
5=4

VM
2

VM1:T4
VM2:T2,
T5,T6
VM3:T3

VM1:13-
0=13
VM2:8-
1=7
VM3=9-
2=7

T7 6 10

VM1 :
13
VM2 :
8+3=11
VM3 :
9

VM1 :
13-6=7
VM2 :
11-6=5
VM3 : 9-
6=3

VM
3

VM1:T4
VM2:T5,
T6
VM3:T3,
T7

VM1:13-
0=13
VM2:11-
1=10
VM3=9-
2=7

T8 7 6

VM1 :
13
VM2 :
11
VM3 :
9+10=1
9

VM1 :
13-7=6
VM2 :
11-7=4
VM3 :
19-7=12

VM
2

VM1:T4
VM2:T5,
T6,T8
VM3:T3,
T7

VM1:13-
0=13
VM2:11-
1=10
VM3=19
-2=17

T9 8 2

VM1 :
13
VM2 :
11+6=1
7
VM3 :
19

VM1 :
13-8=5
VM2 :
17-8=9
VM3 :
19-8=11

VM
1

VM1:T4,
T9
VM2:T6,
T8
VM3:T3,
T7

VM1:13-
0=13
VM2:17-
1=16
VM3=19
-2=17

T10 9 8

VM1 :
13+2=1
5
VM2 :
17
VM3 :
19

VM1 :
15-9=6
VM2 :
17-9=8
VM3 :
19-9=10

VM
1

VM1:T4,
T9,T10
VM2:T6,
T8
VM3:T7

VM1:15-
0=15
VM2:17-
1=16
VM3=19
-2=17

Average waiting time on VM1:(1+5+6)/15=.8
, Average waiting time on VM2:(2+3+4)/16=.56
Average waiting time on VM3:3/17=.18

SJF ShortestJobFirst(I)// There
are I jobs
 While (I ≠ 0) do
 Accept the shortest
possible job j from all I jobs.
 Delete j, and intervals
which intersect j from I.
 Assign j to available VM
until completion.
I = I -1
End while

Assume the same cloud computing environment in the previous example

Table2.3: Task time calculation on various VMs using SJF

ask
Id

Arri
val

time

Exe
cuti
on

time

Comple
tion
time

Waiting
time

each on
VMs

Assig
ned
VM

Waiting
queue on
each VM

Turnarou
nd

time

T1 0 4

VM1:
0+4=4
VM2:0
VM3:0

VM1 : 0
VM2 : 0
VM3 : 0

VM1
VM1:T1
VM2:-
VM3:-

VM1:4-
0=4
VM2:0
VM3:0

T2 1 5

VM1:4
VM2:5
+1=6
Vm3:0

VM1 : 0
VM2 : 0
VM3 : 0

VM2
VM1:T1
VM2:T2
VM3:-

VM1:4-
0=4
VM2:6-
1=5
VM3:0

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5879

T3 2 7

VM1 :
4
VM2 :
6
VM3 :
2+7=9

VM1 : 0
VM2 : 0
VM3 : 0

VM3
VM1:T1
VM2:T2
VM3:T3

VM1:4-
0=4
VM2:6-
1=5
VM3=9-
2=7

T4,
T5,
T6

4
9,2,
3

VM1 :
4
VM2 :
6
VM3 :
9

VM1 : 0
VM2 : 6-
4=2
VM3 : 9-
4=5

T5:V
M1
T6:V
M2
T4:V
M3

VM1:T5
VM2:T2,
T6
VM3:T3,
T4

VM1:6-
0=6
VM2:9-
1=8
VM3=18
-2=16

T7,
T8,
T9
,T1
0

6
10,6
,2,8

VM1 :
6
VM2 :
6+3=9
VM3
:9+9=1
8

VM1 : 0
VM2 : 9-
6=3
VM3 :
18-6=12

T9:V
M1
T8:V
M1
T10:
VM2
T7:V
M2

VM1:T9,
T8
VM2:T1
0,T7
VM3:-

VM1:14-
0=14
VM2:27-
1=26
VM3=18
-2=16

Average waiting time on VM1:2/14=.14
Average waiting time on VM2:(2+3+8)/26=.5
Average waiting time on VM3:(5/17)=.29

RR

Input:
Cloudletlist(tasks),VML:
The list of available VMs
Output: Map each cloudlet to
a VM.
Steps:
NoCL:cloudletlist.size();
NoVM:VML.size();
Index:0;
For j=0 to NoCL do
CL:cloudletlist.get(j);
Index:(index+1)mod NoVM;
V:VML.get(index);
Stagein:transfertime(CL,V,in
);
Stageout:transfertime(CL,V,
out);
Exec:executetime(CL,V);
If(CL.AT+stagein+exec+sta
geout+V.RT<=CL.DL)then
Sendjob(CL,V)
Update(V);
Else Drop(CL); FailedJobs;
end

Assume a system consists of 4 tasks ,1 VM, quantum time=100, and values
 corresponding to the vector (Process id , Arrival time , Execute time) are :
{(T0,0,150), (T1,50,200), (T2,230,60), (T3,280,100)} then RR will be
executed as follows :

Table2.4: RR tasks scheduling
Tim
e

0 50 100 200 230 250 280 350
41
0

51
0

Pro
cess T0

T0,
T1

T1,T
0

T0,
T1

T0,
T1,

T1,
T3

T1,
T2,

T2,
T3

T3 -

For a cloud environment with several virtual machines the distribution of

tasks on VMs is implemented in a round fashion as shown in Figure6

Figure6:RR task scheduling

GA

Standard Genetic Algorithm
(SGA)
� Produce an initial
population by randomly
generated individuals.
� Evaluate the fitness of all
individuals.
� while termination
condition not met do:

o select fitter individuals
for reproduction
o crossover between
individuals

The standard genetic algorithm (SGA) could be exploited to solve the
problem of task scheduling in cloud. The steps for this are as follows:

1- Initialize the population
The population is generated randomly using binary encoding where
each chromosome corresponds to a VM and the genes of this
chromosome represents the scheduled tasks on this VM.Example on
this
VM1[T4,T2,T5],VM2[T1,T7,T6],VM3[T3,T8,T9]

2- The fitness function.
The purpose related to scheduling tasks on VMs is to find the best
assignment of tasks on VMj such that the completion time for tasks
on VMs is minimized. This can be formulated using the following
equation.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5880

o mutate individuals
o evaluate the fitness of
the modified individuals

 o Generate a new
population

� End while

Pj=∑Pij where
Pj is the execution time of all tasks (1…n) on VMj.
Pij is the execution time of task Pi on VMj.
Pij =Ci/Psj where Ci is the computation complexity of tasks Pi and Psj is the
processing speed of VMj.

3- Selection process: in this step the two random individuals are
selected to do the GA operations on them in order to generate new
population and the nonelected individuals are kept untouched.

4- Crossover :is the process of exploring the search space and
generating new solutions(descendents) form the original
solutions(parents) by interchanging the genes of the selected
chromosomes.

5- Mutation: is to do operations such as swap,move,or replacement on
gene values.

 6-Evaluation:the solutions are evaluated based on the fitness functions
and the ones that achieved good fitness are chosen in the next iteration

1- Set particle as equal to the
size of ready tasks in {ti}
∈ T

2- Initialize particles position
randomly from VM= 1, ..., j
and velocity vi
randomly.

3- For each particle,
calculate its fitness value.

4- If the fitness value is better
than the previous best pbest,
set the current fitness value
as the new pbest.

5- After Steps 3 and 4 for
all particles, select the
best particle as gbest.

6- For all particles, calculate
velocity and update their
positions.

 If the stopping criteria or
maximum iteration is not
satisfied, repeat from Step3.

Figure 7 shows the behavior of PSO algorithm in exploring the search space
;the particles represent the tasks which are initiated randomly (red circles)
and each one will have a fitness value which will be evaluated using a fitness
function at each iteration .if the fitness value is better than the previous one
the local best or personal best (blue circles) are updated .The particles
memorize the best positions they have achieved .The best one of all of these
local best solutions represents the global best(green circle) which is in this
scenario the best mapping of a task onto VM.

 Figure7:PSO example

3.1 METHODOLOGY

Modified round robin does a simple
improvement on the standard round robin algorithm
by dynamically taking into consideration the burst
time for each incoming task entering the ready
queue. The time slicing process is based on
computing the average burst time (expected needed
execution time for each task) of all the remaining
waiting requests in the ready queue [40]. For
achieving this purpose, two registers are used: SReg
for storing the total burst time of the all requests in
the ready queue and AReg for storing the average

burst time by dividing the value of SReg by the
number of tasks residing in the ready queue.

Initially, the first job is allocated to virtual
machine and takes all its burst time. Then, the
scheduler begins computing the time slice for each
incoming request. Each task, when it is allocated to
run on a virtual machine, it will run for a time
period equals to the time slice granted to it by
modified round robin when entered the queue.
When the time slice elapses, the task either joins the
ready queue again standing at the back of the queue,
or it is removed from the ready queue.
Consequently, the scheduler adjusts the values of
the registers by subtracting the burst time of the

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5881

Table3: Modified Round Robin Algorithm

removed task from SReg and adding the value of
the new joined tasks to AReg. The pseudo code for
modified Round Robin Algorithm is shown in
Table3 [41].

4. Cloudsim Toolkit

 CloudSim is a priceless open source Java toolkit
developed originally in GRIDS distributed system
laboratory in the University of Melbourne,
Australia [42]. CloudSim is used to simulate the
cloud computing system components and services
in order to evaluate resource provisioning policies,
experiment different CC deployments, generate a
mix of workload request distributions and test the
performance of various CC configurations and
scenarios. These functionalities exposed by
CloudSim permits the CC developer to efficiently
tackle and manipulate several critical issues related
to cloud computing and finally develop the best
practice.

Cloudsim framework is used to model the
complicated real-world CC environment and
simulate its behavior. Using this tool a model
consists of different components such as
datacenters, host, service brokers, scheduling and
allocation policies CC be generated [43].

For a CC system to start execution there should
be at least one datacenter which is registered with
the Cloud Information Service registry (CIS).
Multiple hosts are created within each data center.
The data center broker is responsible on receiving
the submitted lists of cloudlets and of virtual
machines and performs the allocation policy for
assigning cloudlets to VMs [44].

Within CloudSim environment, each cloudlet is
mapped to a VM and each VM is mapped to a host.
According to this, there are two levels of VMs
provisioning [45]:

Input: SReg (sum register), AReg(average register) , Tn (task n), BT(T)(the burst time of a task) , TQ (time quantum), Ready Queue(a
stack structure for tasks waiting their turn for execution in CPU).
Output: all tasks finish execution and leave the ready queue.
1. Begin
2. New request T arrives. T Enters ready queue.
3. Update SReg and AReg Request . //SReg includes the summation of the burst time for the whole tasks residing in the ready

queue and AReg is the value of SReg divided by the number of tasks exists in the queue at certain instant of time .
O(2)

4. T is loaded from ready queue into VM queue to be executed. O(1)
5. While (Ready Queue! = NULL) do O(N)….N=#Tasks
6. Ready Queue T.
7. Update SReg& AReg . O(2)
8. Load T // For Execution O(1)
 end while

9. If (Ready Queue = NULL) then O(1)
10. TQ =BT (T) O(1)
11. Update SReg & AReg O(2)
 else
12. TQ = AVG (BT of all request in Ready Queue). O(1)
13. Update SReg & AReg O(2)
14. // VM executes T by TQ Time O(TQ)
15. If (T terminated) then O(1)
16. Update SReg & AReg O(2)

 else
17. Return T // To the Ready Queue with its updated . O(1)
18. Burst Time (BT) .
19. Update SReg & AReg O(2)
20. end if

Run time cost = 2 + 1 + n*(2+1) + 1 + [(prop of statements 10 and 11 say 1/2)*(1+2) + (prop of statements 12 , 13,and 14 say
1/2)*(1+2+TQ) + 1 + [(prop of statement16 say 1/2)*2+(prop of statement17,18 say 1/2)*2] .

Run time cost = 2+1+3n+1+(.5*3)+(.5*3)+(.5*QT)+1+(.5*2)+(.5*2)=10+3n+.5*QT=O(n)

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5882

a) At the host level: the overall possessing power
is distributed on the available VMs (VM policy

Allocation).

b) At the VM level: the VMs processing power is
distributed among the cloudlets (tasks) existing
in its execution machine (VM Scheduling).

CloudSim software platform is implemented

using a multi-layered design as illustrated in Fig 9.
The lowest layer is the discrete event simulation
engine (SimJava) which provides the core
functionalities for the upper cloud layers like
creating cloud system components (services, host,
data center, broker, VMs), communication between
components, managing simulation clock, and
queuing and processing of events[46].

The next layer implemented above SimJava layer
is the CloudSim simulation layer which supports
fundamental issues related to management of large
scale cloud infrastructure such as memory, storage,
bandwidth and interfaces of VMs. It also has the
responsibility on provisioning of hosts to VMs,
managing application execution, and monitoring
dynamic system state. In addition, different tasks-
machines allocation policies were experimented.

The highest layer in the CloudSim stack is the
user code where the basic cloud entities are exposed
such as number of machines in hosts and their
specification, number of tasks and their
requirements in the application, the number of
users and their application types, and broker
scheduling policies.

Figure 9: CloudSim Architecture

5. EXPERIMENT RESULTS AND

ANALYSIS

The CloudSim provides cloud environment, File
size, MIPS, BW, RAM, VMs configuration, Host
and Data center, same as components in physical

cloud environments. Also, CloudSim provides
scheduling environment with customization
scheduling depending on user requirements. This
simulation can be used to test the efficiency and
performance of a schedule algorithm. It covers the
need to experiment the proposed MRR scheduler
and compare it with RR scheduler. Also, it is used
to compare previous related work in RR algorithm
and RR algorithm in our CloudSim environment in
different machine specification.

Two algorithms was implemented using
CloudSim simulation. In the experiments, we
employed two data centers contain VMs. We used
different number of VMs up to six and different
number of cloudlets (tasks) up to 300. In the two
algorithms, we measured the performance
depending on the execution time for scheduling
cloudlets on VMs.

Fig 10 and Table 4 show the results of running
RR schedule on the machine with
specifications:4096MB RAM, Intel® core™ i5
CPU@1.80GHz , and windows 64-bit. Then, we
compared with Hicham’s results of running RR
schedule [46]. This is to verify the current
implementation of the RR with a previous one. The
figure shows that the same schedule with same
parameters gets different results depending on the
environment that it runs on. The difference in
resource capabilities such as the processing power
(number of instructions per seconds or MIPS) and
RAM storage may influence the quantum time
calculation process and so the performance of RR.

We run RR and MRR in the same environment
using CloudSim simulator. We used the same
parameters for both schedules, the number of
cloudlets from 10 up to 300 tasks on a set of one
VM up to six VMs. The values show a remarkable
growth in the average waiting time when the
number of cloudlets increases; this is because the
total requested power of cloudlets increases while
the available resource power is limited. The
comparison is based on average waiting time
needed for each schedule. Figure11 shows the
average waiting time when MRR was used over
different number of VMs for different Cloudlet
amounts.

Figure 12 represents sample of the test for 100
cloudlets run on different numbers of VMs in
CloudSim simulator. The figure shows if we use
more number of VMs with the same number of
Cloudlets the average waiting time decreases. The

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5883

same conclusion was inferred with 150, 200, and
300 cloudlets

Table 4: Average waiting time (AWT) in seconds for RRc on Current Machine and RRp Previous Machine

No. Cloudlets AWT for RRp AWT for RRc Relative error (|RRp-RRc| /RRp)

3 5 4.33 0.15

4 5 8.5 0.41

5 10 9.6 0.04

6 13 13.33 0.02

7 18 17.28 0.04

8 22 21.5 0.02

9 32 22.22 0.44

10 33 26.2 0.26

Figure 10: RR results on current machine and old machine

Figure 11: Average waiting time when MRR was used over different number of VMs for different Cloudlet amounts

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5884

Figure 12: Average waiting time for 100 cloudlets run over different number of VMs using MRR

Figure 13: Average waiting time versus number of VMs for 100 cloudlets run using MRR and RR

Figure 13 shows part of the execution in
CloudSim using 100 cloudlets on different number
of VMs for both schedules RR and MRR. The
graph shows that MRR is more efficient with less
average waiting time than RR schedule with the
same specifications for both algorithms.

Figure 14 shows the experimental complexity
versus the theoretical complexity O(n) for MRR

algorithm after implementing the experiments in
CloudSim .The experiments were conducted over
various numbers of cloudlets 10,20,30, …, 300 and
the number of virtual machines equal two. The
results show that the experimental running time and
the theoretical running time have similar behavior.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5885

Figure 14: Comparison of experimental and theoretical MRR complexity

Table5: RR & MRR (waiting time(s))

The average waiting time (AWT) using MRR is
less than the AWT when using RR as shown in
Table 5. For this experimented data set, the MRR is
faster than RR in average waiting time for the
selected quantum by up 5 times.

6. CONCLUSION AND FUTURE WORK

Cloud computing is a distributed based computer
paradigm which is used by users to get good quality
with less cost. As task scheduling is a challenge in
cloud computing, different algorithms have been
suggested and applied to get better results regarding
utilization of system resources, response time and
satisfaction of user demands. In this study, we
highlight some of the task scheduling algorithms
used in cloud supported by examples, namely
Round Robin (RR), MaxMin, MinMin, FCFS,
MCT, PSO, and GA.

 Also, we studied the behavior of modified
round robin task scheduling within the environment
of CloudSim and compared between the
performance of the RR and MRR in terms of
average waiting time. The results show that when
using MRR to scheduling number of Cloudlets over
number of VMs, the average waiting time becomes
less than when using RR, using the same numbers
of cloudlets and the CC environments.

For future work, it is worth to investigate the
effect of other parameters such as VMs,
datacenters, memory, bandwidth for network and
storage in cloud environments, and reflect that in
real physical environment.

MRR

RR

No.
Cloudlets

MRR RR
No.

Cloudlets

333 437 160 23 120 10

350 449 170 36 132 20

370 479 180 62 160 30

420 526 190 85 178 40

458 552 200 108 217 50

460 568 210 128 233 60

486 587 220 144 251 70

490 592 230 162 264 80

510 615 240 184 287 90

547 548 250 245 342 100

560 663 260 230 331 110

578 674 270 241 349 120

584 691 280 260 363 130

620 723 290 281 386 140

667 768 300 315 408 150

9937 12893 Sum

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5886

REFRENCES:

[1] Buyya, R., Broberg, J., & Goscinski, A. M.

(Eds.). (2010). Cloud computing: Principles
and paradigms (Vol. 87). John Wiley & Sons.

[2] Kumar, M. R., Ganesh, D., & Harish, V.
(2017). Various Task Scheduling Algorithms
in Clouds. International Journal of Engineering
and Management Research (IJEMR), 7(2),
479-485.

[3] Sharieh, A., & Al-Thwaib, E. (2017, May). A
mathematical model for hybrid-multi-cloud
environment. In Information Technology
(ICIT), 2017 8th International Conference
on (pp. 193-199). IEEE.

[4] Goyal, S. (2014). Public vs. private vs. hybrid
vs. community-cloud computing: A critical
review. International Journal of Computer
Network and Information Security, 6(3), 20.

[5] Kaur, N., & Chhabra, A. (2017). Comparative
Analysis of Job Scheduling Algorithms in
Parallel and Distributed Computing
Environments. International Journal of
Advanced Research in Computer Science, 8(3).

[6] Gabriel Herrera.19 September 2014 SaaS 101:
IaaS, PaaS, SaaS and Cloud Computing.
https://starthq.com/blog/saas-101-iaas-paas-
saas-and-cloud-computing.(2018,febreuary
18).

[7] Vijay, P., & Anju, B. G. (2014). An Efficient
Workflow Scheduling Approach in Cloud
Computing (Doctoral dissertation). [8]
Grandinetti, L. (Ed.). (2013). Pervasive Cloud
Computing Technologies: Future Outlooks and
Interdisciplinary Perspectives: Future Outlooks
and Interdisciplinary Perspectives. IGI Global.

[8] Grandinetti, L. (Ed.). (2013). Pervasive Cloud
Computing Technologies: Future Outlooks and
Interdisciplinary Perspectives: Future Outlooks
and Interdisciplinary Perspectives. IGI Global.

[9] Al-Shaikh, A., Khattab, H., Sharieh, A., &
Sleit, A. (2016). Resource Utilization in Cloud
Computing as an Optimization
Problem. INTERNATIONAL JOURNAL OF
ADVANCED COMPUTER SCIENCE AND
APPLICATIONS, 7(6), 336-342.

[10] Sharieh, A., & Albdour, L. (2017). A Heuristic
Approach for Service Allocation in Cloud
Computing. International Journal of Cloud
Applications and Computing (IJCAC), 7(4),
60-74.

[11] Armbrust, M., Fox, A., Griffith, R., Joseph, A.
D., Katz, R., Konwinski, A., ... & Zaharia, M.
(2010). A view of cloud

computing. Communications of the
ACM, 53(4), 50-58.

[12] Islam, M. S. U., & Rana, B. (2017). Task
Scheduling in Cloud Computing. International
Journal of Advance Research, Ideas and
Innovations in Technology, 3(4), 642-646.

[13] Van den Bossche, R., Vanmechelen, K., &
Broeckhove, J. (2010, July). Cost-optimal
scheduling in hybrid iaas clouds for deadline
constrained workloads. In Cloud Computing
(CLOUD), 2010 IEEE 3rd International
Conference on (pp. 228-235). IEEE.

[14] Sindhu, S., & Mukherjee, S. (2011). Efficient
task scheduling algorithms for cloud
computing environment. In High Performance
Architecture and Grid Computing (pp. 79-83).
Springer, Berlin, Heidelberg.

[15] Tawfeek, M. A., El-Sisi, A., Keshk, A. E., &
Torkey, F. A. (2013, November). Cloud task
scheduling based on ant colony optimization.
In Computer Engineering & Systems (ICCES),
2013 8thInternational.

[16] Gogulan, R., Kavitha, A., & Kumar, U. K.
(2012). A multiple pheromone algorithm for
cloud scheduling with various QOS
requirements. Int. J. Comput. Sci, 9, 3.

[17] Kaleeswaran, A., Ramasamy, V., &
Vivekanandan, P. (2013). Dynamic scheduling
of data using genetic algorithm in cloud
computing. Park College of Engineering and
Technology, Coimbatore, India.

[18] Agarwal, D., & Jain, S. (2014). Efficient
optimal algorithm of task scheduling in cloud
computing environment. arXiv preprint
arXiv:1404.2076.

[19] Lakra, A. V., & Yadav, D. K. (2015). Multi-
objective tasks scheduling algorithm for cloud
computing throughput optimization. Procedia
Computer Science, 48, 107-113.

[20] Branch, K. (2015). A novel task scheduling
method in cloud environment using cuckoo
optimization algorithm. International Journal of
Cloud-Computing and Super-Computing, 2(2),
7-20.

[21] Hamad, S. A., & Omara, F. A. (2016). Genetic-
based task scheduling algorithm in cloud
computing environment. International Journal
of Advanced computer Science and
Applications, 7(4), 550-556.

[22] Dandhwani, Vanita, and Vipul Vekariya.
"Evolutionary Algorithm Using K-mean For
Task Scheduling in Cloud Computing."

[23] Madni, S. H. H., Latiff, M. S. A., Abdullahi,
M., & Usman, M. J. (2017). Performance
comparison of heuristic algorithms for task

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5887

scheduling in IaaS cloud computing
environment. PloS one, 12(5), e0176321.

[24] Samal, P., & Mishra, P. (2013). Analysis of
variants in Round Robin Algorithms for load
balancing in Cloud Computing. International
Journal of computer science and Information
Technologies, 4(3), 416-419.

[25] Bhoi, U., & Ramanuj, P. N. (2013). Enhanced
max-min task scheduling algorithm in cloud
computing. International Journal of
Application or Innovation in Engineering and
Management (IJAIEM), 2(4), 259-264.

[26] Devipriya, S., & Ramesh, C. (2013,
December). Improved max-min heuristic
model for task scheduling in cloud. In Green
Computing, Communication and Conservation
of Energy (ICGCE), 2013 International
Conference on (pp. 883-888). IEEE.

[27] Gupta, A. K., & Rawat, P. S. (2017). Efficient
Resource Utilization in Virtual Cloud
Computing Environment. International Journal
of Computer Applications, 168(11).

[28] Salot, P. (2013). A survey of various
scheduling algorithm in cloud computing
environment. International Journal of Research
in Engineering and Technology, 2(2), 131-135.

[29] Vignesh, V., Sendhil Kumar, K. S., &
Jaisankar, N. (2013). Resource management
and scheduling in cloud
environment. International journal of scientific
and research publications, 3(6), 1.

[30] Panda, S. K., & Jana, P. K. (2015). Efficient
task scheduling algorithms for heterogeneous
multi-cloud environment. The Journal of
Supercomputing, 71(4), 1505-1533.

[31] Pandey, S., Wu, L., Guru, S. M., & Buyya, R.
(2010, April). A particle swarm optimization-
based heuristic for scheduling workflow
applications in cloud computing environments.
In Advanced information networking and
applications (AINA), 2010 24th IEEE
international conference on (pp. 400-407).
IEEE.

[32] Guo, L., Zhao, S., Shen, S., & Jiang, C. (2012).
Task scheduling optimization in cloud
computing based on heuristic
algorithm. JNW, 7(3), 547-553.

[33] Jang, S. H., Kim, T. Y., Kim, J. K., & Lee, J.
S. (2012). The study of genetic algorithm-
based task scheduling for cloud
computing. International Journal of Control
and Automation, 5(4), 157-162.

[34] Zhao, C., Zhang, S., Liu, Q., Xie, J., & Hu, J.
(2009, September). Independent tasks
scheduling based on genetic algorithm in cloud

computing. In Wireless Communications,
Networking and Mobile Computing, 2009.
WiCom'09. 5th International Conference
on (pp. 1-4). IEEE.

[35] Shreedhar, M., & Varghese, G. (1996).
Efficient fair queuing using deficit round-
robin. IEEE/ACM Transactions on
networking, 4(3), 375-385.

[36] Yigitbasi, N., Iosup, A., Epema, D., &
Ostermann, S. (2009, May). C-meter: A
framework for performance analysis of
computing clouds. In Cluster Computing and
the Grid, 2009. CCGRID'09. 9th IEEE/ACM
International Symposium on (pp. 472-477).
IEEE.

[37] Nieh, J., Vaill, C., & Zhong, H. (2001, June).
Virtual-Time Round-Robin: An O (1)
Proportional Share Scheduler. In USENIX
Annual Technical Conference, General
Track (pp. 245-259).

[38] Bernstein, E., & Vazirani, U. (1997). Quantum
complexity theory. SIAM Journal on
Computing, 26(5), 1411-1473.

[39] Matarneh, R. J. (2009). Self-adjustment time
quantum in round robin algorithm depending
on burst time of the now running
processes. American Journal of Applied
Sciences, 6(10), 1831.

[40] Pradhan, P., Behera, P. K., & Ray, B. N. B.
(2016). Modified Round Robin Algorithm for
resource allocation in cloud
computing. Procedia Computer Science, 85,
878-890.

[41] CloudSim: A Framework For Modeling And
Simulation Of Cloud Computing
Infrastructures And Services. (2017, December
16). http://www.cloudbus.org/cloudsim/.

[42] Calheiros, R. N., Ranjan, R., Beloglazov, A.,
De Rose, C. A., & Buyya, R. (2011).
CloudSim: a toolkit for modeling and
simulation of cloud computing environments
and evaluation of resource provisioning
algorithms. Software: Practice and
experience, 41(1), 23-50.

[43] Buyya, R., Ranjan, R., & Calheiros, R. N.
(2009, June). Modeling and simulation of
scalable Cloud computing environments and
the CloudSim toolkit: Challenges and
opportunities. In High Performance Computing
& Simulation, 2009. HPCS'09. International
Conference on (pp. 1-11). IEEE.

[44] Goyal, T., Singh, A., & Agrawal, A. (2012).
Cloudsim: simulator for cloud computing
infrastructure and modeling. Procedia
Engineering, 38, 3566-3572.

Journal of Theoretical and Applied Information Technology
15th September 2018. Vol.96. No 17

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5888

[45] Tian, W., Xu, M., Chen, A., Li, G., Wang, X.,
& Chen, Y. (2015). Open-source simulators for
cloud computing: Comparative study and
challenging issues. Simulation Modeling
Practice and Theory, 58, 239-254.

[46] Tani, Hicham Gibet, and Chaker El Amrani.
"Smarter round robin scheduling algorithm for
cloud computing and big data." Journal of Data
Mining and Digital Humanities (2018).

