<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

ENGLISH SENTIMENT CLASSIFICATION USING A BIRCH ALGORITHM AND THE SENTIMENT LEXICONS-BASED ONE-DIMENSIONAL VECTORS OF A GOWER-2 COEFFICIENT

¹DR.VO NGOC PHU, ²VO THI NGOC TRAN

¹Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City,

702000, Vietnam

²School of Industrial Management (SIM), Ho Chi Minh City University of Technology - HCMUT,

Vietnam National University, Ho Chi Minh City, Vietnam

E-mail: ¹vongocphu03hca@gmail.com, vongocphu@ntt.edu.vn, ²vtntran@HCMUT.edu.vn

ABSTRACT

Sentiment classification is significant in everyday life, such as in political activities, commodity production, and commercial activities. In this survey, we have proposed a new model for Big Data sentiment classification. We use a Balanced Interative Reducing and Clustering using Hierarchies algorithm (BIRCH) and many one-dimensional vectors basd on many sentiment lexicons of our basis English sentiment dictionary (bESD) to cluser one document of our English testing data set, which is 8,500,000 documents including the 4,250,000 positive and the 4,250,000 negative based on our English training data set which is 5,000,000 sentences comprising the 2,500,000 positive and the 2,500,000 negative. We calculate the sentiment scores of English terms (verbs, nouns, adjectives, adverbs, etc.) by using a GOWER-2 coefficient (G2C) through a Google search engine with AND operator and OR operator. We do not use any multidimensional vector. We also do not use any one-dimensional vector based on a vector space modeling (VSM). We do not use any similarity coefficient of a data mining field. The BIRCH is used in clustering one sentence of one document of the testing data set into either the 2,500,000 positive or the 2,500,000 negative of the training data set. We tested the proposed model in both a sequential environment and a distributed network system. We achieved 87.82% accuracy of the testing data set. The execution time of the model in the parallel network environment is faster than the execution time of the model in the sequential system. The results of this work can be widely used in applications and research of the English sentiment classification.

Keywords: English Sentiment Classification; Distributed System; Parallel System; GOWER-2 Similarity Coefficient; Cloudera; Hadoop Map And Hadoop Reduce; Clustering Technology; Balanced Interative Reducing And Clustering Using Hierarchies Algorithm.

1. INTRODUCTION

Clustering data is to process a set of objects into classes of similar objects. One cluster is a set of data objects which are similar to each other and are not similar to objects in other clusters. A number of data clusters can be clustered, which can be identified following experience or can be automatically identified as part of clustering method.

To implement our new model, we propose the following basic principles:

• Assuming that each English sentence has m English words (or English phrases).

• Assuming that the maximum number of one English sentence is m_max; it means that m is less than m max or m is equal to m max.

• Each English sentence is transferred into one vector (one-dimensional). Thus, the length of the vector is m. If m is less than m_max then each element of the vector from m to m_max-1 is 0 (zero).

• All the sentences of one document of the testing data set are transferred into the onedimensional vectors of one document of the testing <u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

<u>www.jatit.org</u>

E-ISSN: 1817-3195

data set based on many sentiment lexicons of our basis English sentiment dictionary (bESD).

• All the positive sentences of the training data set are transferred the positive one-dimensional vectors based on the sentiment lexicons of the bESD, called the positive vector group of the training data set.

• All the negative sentences of the training data set are transferred the negative onedimensional vectors based on the sentiment lexicons of the bESD, called the negative vector group of the training data set.

The aim of this survey is to find a new approach to improve the accuracy of the sentiment classification results and to shorten the execution time of the proposed model with a low cost.

The motivation of this new model is as follows: Many Algorithm in the data mining field can be applied to natural language processing, specifically semantic classification for processing millions of English documents. A GOWER-2 similarity measure (G2C) and a Balanced Interative Reducing and Clustering using Hierarchies algorithm (BIRCH) of the clustering technologies of the data mining filed can be applied to the sentiment classification in both a sequential environment and a parallel network system. This will result in many discoveries in scientific research, hence the motivation for this study.

The novelty of the proposed approach is that the GOWER-2 similarity measure (G2C) and the BIRCH is applied to sentiment analysis. This algorithm can also be applied to identify the emotions of millions of documents. This survey can be applied to other parallel network systems. Hadoop Map (M) and Hadoop Reduce (R) are used in the proposed model. Therefore, we will study this model in more detail.

To get higher accuracy of the results of the sentiment classification and shorten execution time of the sentiment classification, We use many sentiment lexicons in English of our basis English sentiment dictionary (bESD). We do not use any multi-dimensional vector based on both VSM [51-53] and the sentiment lexicons of the bESD. We also do not use any one-dimensional vector based on a vector space modeling VSM [51-53]. We do not use any similarity coefficient of a data mining field. We only use many one-dimensional vectors based on the sentiment lexicons of the bESD. We identify the sentiment scores of English terms (verbs, nouns, adjectives, adverbs, etc.) of the bESD by using a GOWER-2 coefficient (G2C) through the Google search engine with AND operator and OR operator. All the sentences of one document of the testing data set are transferred into the onedimensional vectors of one document of the testing data set based on the sentiment lexicons of our basis English sentiment dictionary. All the positive sentences of the training data set are transferred the positive one-dimensional vectors based on the sentiment lexicons of the bESD, called the positive vector group of the training data set. All the negative sentences of the training data set are transferred the negative one-dimensional vectors based on the sentiment lexicons of the bESD, called the negative vector group of the training data set. Then, we use the BIRCH to cluster one onedimensional vector (corresponding to one sentence of one document of the testing data set) into either the positive vector group or the negative vector group of the training data set. This one-dimensional vector is the positive polarity if it is clustered into the positive vector group. The vector is the negative if it is clustered into the negative vector group. The vector is neutral polarity if it is not clustered into both the positive vector group and the negative vector group. One document of the testing data set is the positive if the number of one-dimensional vectors clustered into the positive is greater than that clustered into the negative. One document of the testing data set is the negative if the number of one-dimensional vectors clustered into the positive is less than that clustered into the negative. One document of the testing data set is the neutral if the number of one-dimensional vectors clustered into the positive is as equal as that clustered into the negative.

We perform all the above things in the sequential system firstly. To shorten execution time of the proposed model, we implement all the above things in the distributed environment secondly.

Our model has many significant applications to many areas of research as well as commercial applications:

1)Many surveys and commercial applications can use the results of this work in a significant way.

2)The algorithms are built in the proposed model.

3)This survey can certainly be applied to other languages easily.

4)The results of this study can significantly be applied to the types of other words in English.

5)Many crucial contributions are listed in the Future Work section.

6)The algorithm of data mining is applicable to semantic analysis of natural language processing.

7)This study also proves that different fields of scientific research can be related in many ways.

8)Millions of English documents are successfully processed for emotional analysis.

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

www.jatit.org

9)The semantic classification is implemented in the parallel network environment.

ISSN: 1992-8645

10)The principles are proposed in the research.

11)The Cloudera distributed environment is used in this study.

12)The proposed work can be applied to other distributed systems.

13)This survey uses Hadoop Map (M) and Hadoop Reduce (R).

14)Our proposed model can be applied to many different parallel network environments such as a Cloudera system

15)This study can be applied to many different distributed functions such as Hadoop Map (M) and Hadoop Reduce (R).

16) The BIRCH – related Algorithm are proposed in this survey.

17) The G2C – related Algorithm are built in this work.

This study contains 6 sections. Section 1 introduces the study; Section 2 discusses the related works about the vector space modeling (VSM), GOWER-2 similarity measure (G2C), Balanced and Interative Reducing Clustering using Hierarchies algorithm (M), etc.; Section 3 is about the English data set; Section 4 represents the methodology of our proposed model; Section 5 represents the experiment. Section 6 provides the conclusion. The References section comprises all the reference documents; all tables are shown in the Appendices section

2. RELATED WORK

We summarize many researches which are related to our research. By far, we know that PMI (Pointwise Mutual Information) equation and SO (Sentiment Orientation) equation are used for determining polarity of one word (or one phrase), and strength of sentiment orientation of this word (or this phrase). Jaccard measure (JM) is also used for calculating polarity of one word and the equations from this Jaccard measure are also used for calculating strength of sentiment orientation this word in other research. PMI, Jaccard, Cosine, Ochiai, Tanimoto, and Sorensen measure are the similarity measure between two words; from those, we prove that the GOWER-2 coefficient (G2C) is also used for identifying valence and polarity of one English word (or one English phrase). Finally, we identify the sentimental values of English verb phrases based on the basis English semantic lexicons of the basis English emotional dictionary (bESD).

There are the works related to PMI measure in [1-13]. In the research [1], the authors generatedseveral Norwegian sentiment lexicons by extracting sentiment information from two different types of Norwegian text corpus, namely, news corpus and discussion forums. The methodology was based on the Point wise Mutual Information (PMI). The authors introduced a modification of the PMI that considered small "blocks" of the text instead of the text as a whole. The study in [2] introduced a simple algorithm for unsupervised learning of semantic orientation from extremely large corpora, etc.

Two studies related to the PMI measure and Jaccard measure are in [14, 15]. In the survey [14], the authors empirically evaluate the performance of different corpora in sentiment similarity was measurement, which is the fundamental task for word polarity classification. The research in [15] proposed a new method to estimate impression of short sentences considering adjectives. In the proposed system, first, an input sentence was analyzed and preprocessed to obtain keywords. Next, adjectives were taken out from the data which was queried from Google N-gram corpus using keywords-based templates.

The works related to the Jaccard measure are in [16-22]. The survey in [16] investigated the problem of sentiment analysis of the online review. In the study [17], the authors were addressing the issue of spreading public concern about epidemics. Public concern about a communicable disease can be seen as a problem of its own, etc.

The surveys related to the similarity coefficients to calculate the valences of words are in [28-32].

The English dictionaries are [33-38] and there are more than 55,000 English words (including English nouns, English adjectives, English verbs, etc.) from them.

The studies related to the Balanced Interative Reducing and Clustering using Hierarchies algorithm (BIRCH) are in [39-44]. The authors in [39] evaluated BIRCH'S time/space efficiency, data input order sensitivity, and clustering quality through several experiments. In this study [40], an efficient and scalable data clustering method was proposed, based on a new in-memory data structure called CF-tree, which served as an in-memory summary of the data distribution. The authors have implemented it in a system called BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies), and studied its performance extensively in terms of memory requirements, running time, clustering quality, stability and

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

<u>www.jatit.org</u>

scalability; the authors also compare it with other available methods, etc.

There are the works related to the GOWER-2 coefficient (G2C) in [45-50]. The authors in [50] collected 76 binary similarity and distance measures used over the last century and reveal their correlations through the hierarchical clustering technique, etc.

There are the works related to vector space modeling (VSM) in [51-53]. In this study [51], the authors examined the Vector Space Model, an Information Retrieval technique and its variation. In this survey [52], the authors considered multi-label text classification task and apply various feature sets. The authors considered a subset of multilabeled files from the Reuters-21578 corpus. The authors used traditional tf-IDF values of the features and tried both considering and ignoring stop words. The authors also tried several combinations of features, like bigrams and unigrams. The authors in [53] introduced a new weighting method based onstatistical estimation of the importance of a word for a specific categorization problem. This method also had the benefit to makefeature selectionimplicit, since for the categorization proble uselessfeatures considered getavery small weight.

The latest researches of the sentiment classification are [54-64]. In the research [54], the presented their machine authors learning experiments with regard to sentiment analysis in blog, review and forum texts found on the World Wide Web and written in English, Dutch and French. The survey in [55] discussed an approach where an exposed stream of tweets from the Twitter micro blogging site were preprocessed and classified based on their sentiments. In sentiment classification system the concept of opinion subjectivity has been accounted. In the study, the presented opinion detection authors and organization subsystem, which have already been integrated into our larger question-answering system, etc.

3. DATA SET

In Fig. 1 below, the testing data set includes 8,500,000 documents in the movie field, which contains 4,250,000 positive documents and 4,250,000 negative documents in English. All the documents in our testing data set are automatically extracted from English Facebook, English websites and social networks; then we labeled positive and negative for them.

In Fig. 2 below, the training data set includes 5,000,000 sentences in the movie field, which contains 2,500,000 positive sentences and 2,500,000 negative sentences in English. All the sentences in our English training data set are automatically extracted from English Facebook, English websites and social networks; then we labeled positive and negative for them.

Fig. 2: Our English Training Data Set.

4. METHODOLOGY

This section comprises two parts: In the first part, we create the sentiment lexicons in English in both a sequential environment and a distributed system in the sub-section (4.1). In the second part, we use the BIRCH and the one-dimensional vectors to classify the documents of the testing data set into either the positive or the negative in both a sequential environment and a distributed system in the sub-section (4.2).

In the sub-section (4.1), the section includes three parts: In the first sub-section of this section, we identify a sentiment value of one word (or one phrase) in English in the sub-section (4.1.1). In the second part of this section, we create a basis English sentiment dictionary (bESD) in a sequential system in the sub-section (4.1.2). In the third subsection of this section, we create a basis English sentiment dictionary (bESD) in a parallel environment in the sub-section (4.1.3).

In the sub-section (4.2), the section comprises two parts: In the fist part of this section, we use the BIRCH and the one-dimensional vectors to classify the documents of the testing data set into either the positive or the negative in a sequential environment in the sub-section (4.2.1). In the second part of this <u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

		34111
ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

section, we use the BIRCH and the one-dimensional vectors to classify the documents of the testing data set into either the positive or the negative in the parallel network environment in the sub-section (4.2.2).

4.1 Creating the sentiment lexicons in English

The section includes three parts: In the first subsection of this section, we identify a sentiment value of one word (or one phrase) in English in the sub-section (4.1.1). In the second part of this section, we create a basis English sentiment dictionary (bESD) in a sequential system in the subsection (4.1.2). In the third sub-section of this section, we create a basis English sentiment dictionary (bESD) in a parallel environment in the sub-section (4.1.3).

4.1.1 Calculating a valence of one word (or one phrase) in English

In this part, we calculate the valence and the polarity of one English word (or phrase) by using the G2C through a Google search engine with AND operator and OR operator, as the following diagram in Fig. 3 below shows.

Fig. 3: Overview Of Identifying The Valence And The Polarity Of One Term In English Using A GOWER-2 Coefficient (G2C)

According to [1-15], Pointwise Mutual Information (PMI) between two words wi and wj has the equation

$$PMI(wi,wj) = \log_2(\frac{P(wi,wj)}{P(wi)xP(wj)})$$
(1)

and SO (sentiment orientation) of word wi has the equation

$$SO(wi) = PMI(wi, positive) - PMI(wi, negative)$$
(2)

In [1-8] the positive and the negative of Eq. (2) in English are: positive = {good, nice, excellent, positive, fortunate, correct, superior} and negative = {bad, nasty, poor, negative, unfortunate, wrong, inferior}.

The AltaVista search engine is used in the PMI equations of [2, 3, 5] and the Google search engine is used in the PMI equations of [4, 6, 8]. Besides, [4] also uses German, [5] also uses Macedonian, [6] also uses Arabic, [7] also uses Chinese, and [8] also uses Spanish. In addition, the Bing search engine is also used in [6].

With [9-12], the PMI equations are used in Chinese, not English, and Tibetan is also added in [9]. About the search engine, the AltaVista search engine is used in [11] and [12] and uses three search engines, such as the Google search engine, the Yahoo search engine and the Baidu search engine. The PMI equations are also used in Japanese with the Google search engine in [13]. [14] and [15] also use the PMI equations and Jaccard equations with the Google search engine in English.

According to [14-22], Jaccard between two words wi and wj has the equations

$$Jaccard(wi, wj) = J(wi, wj)$$
$$= \frac{|wi \cap wj|}{|wi \cup wi|}$$
(3)

and other type of the Jaccard equation between two words wi and wj has the equation

$$Jaccard(wi, wj) = J(wi, wj) = sim(wi, wj)$$
$$= \frac{F(wi, wj)}{F(wi) + F(wj) - F(wi, wj)}$$
(4)

and SO (sentiment orientation) of word wi has the equation

$$SO(wi) = \sum Sim(wi, positive) - \sum Sim(wi, positive)$$
(5)

In [14-21] the positive and the negative of Eq. (5) in English are: positive = {good, nice, excellent, positive, fortunate, correct, superior} and negative = {bad, nasty, poor, negative, unfortunate, wrong, inferior}.

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

<u>www.jatit.org</u>

The Jaccard equations with the Google search engine in English are used in [14, 15, 17]. [16] and [21] use the Jaccard equations in English. [20] and [22] use the Jaccard equations in Chinese. [18] uses the Jaccard equations in Arabic. The Jaccard equations with the Chinese search engine in Chinese are used in [19].

The authors in [28] used the Ochiai Measure through the Google search engine with AND operator and OR operator to calculate the sentiment values of the words in Vietnamese. The authors in [29] used the Cosine Measure through the Google search engine with AND operator and OR operator to identify the sentiment scores of the words in English. The authors in [30] used the Sorensen Coefficient through the Google search engine with AND operator and OR operator to calculate the sentiment values of the words in English. The authors in [31] used the Jaccard Measure through the Google search engine with AND operator and OR operator to calculate the sentiment values of the words in Vietnamese. The authors in [32] used the Tanimoto Coefficient through the Google search engine with AND operator and OR operator to identify the sentiment scores of the words in English

With the above proofs, we have the information as follows: PMI is used with AltaVista in English, Chinese, and Japanese with the Google in English; Jaccard is used with the Google in English, Chinese, and Vietnamese. The Ochiai is used with the Google in Vietnamese. The Cosine and Sorensen are used with the Google in English.

According to [1-32], PMI, Jaccard, Cosine, Ochiai, Sorensen, Tanimoto and GOWER-2 coefficient (G2C) are the similarity measures between two words, and they can perform the same functions and with the same characteristics; so G2C is used in calculating the valence of the words. In addition, we prove that G2C can be used in identifying the valence of the English word through the Google search with the AND operator and OR operator.

With the GOWER-2 coefficient (G2C) in [45-50], we have the equation of the G2C as follows:

$$GOWER - 2 Coefficient (a, b)$$

= Gower - 2 Coefficient(a, b)
= G2C(a, b) = $\frac{A6}{B6}$ (6)

with a and b are the vectors.

 $A6 = (a \cap b) * (\neg a \cap \neg b)$ $B6 = [(a \cap b) + (\neg a \cap b)] * [(a \cap b) + (\neg a \cap \neg b)] * [(\neg a \cap b) + (\neg a \cap \neg b)] *$ $[(a \cap \neg b) + (\neg a \cap \neg b)]$

From the eq. (1), (2), (3), (4), (5), (6), we propose many new equations of the G2C to calculate the valence and the polarity of the English words (or the English phrases) through the Google search engine as the following equations below.

In eq. (6), when a has only one element, a is a word. When b has only one element, b is a word. In eq. (6), a is replaced by w1 and b is replaced by w2.

$$Gower - 2 Coefficient(w1, w2) = GOWER - 2 Coefficient(w1, w2) = G2C (w1, w2) = \frac{P(w1, w2) * P(\neg w1, \neg w2)}{A7}$$
(7)

with

$$A7 = [P(w1, w2) + P(\neg w1, w2)] * [P(w1, w2) + P(w1, \neg w2)] * [P(\neg w1, w2) + P(\neg w1, \neg w2)] * [P(w1, \neg w2) + P(\neg w1, \neg w2)]$$

Eq. (7) is similar to eq. (1). In eq. (2), eq. (1) is replaced by eq. (7). We have eq. (8) as follows:

$$Valence(w) = SO_G2C(w)$$

= G2C(w, positive_query)
- G2C(w, negative_query) (8)

In eq. (7), w1 is replaced by w and w2 is replaced by position_query. We have eq. (9). Eq. (9) is as follows:

$$G2C (w, positive_query) = \frac{P(w, positive_query) * P(\neg w, \neg positive_query)}{A9} (9)$$

with

$$A9 = [P(w, positive_query) + P(\neg w, positive_query)] * [P(w, positive_query)] + P(w, \neg positive_query)] * [P(\neg w, positive_query)] + P(\neg w, \neg positive_query)] * [P(w, \neg positive_query)] + P(\neg w, \neg positive_query)] + P(\neg w, \neg positive_query)] + P(\neg w, \neg positive_query)]$$

In eq. (7), w1 is replaced by w and w2 is replaced by negative_query. We have eq. (10). Eq. (10) is as follows:

31st August 2018. Vol.96. No 16 © 2005 – ongoing JATIT & LLS

<u>www.jatit.org</u>

 $G2C (w, negative_query) = \frac{P(w, negative_query) * P(\neg w, \neg negative_query)}{A10} (10)$

with

 $A10 = [P(w, negative_query) + P(\neg w, negative_query)]$ $* [P(w, negative_query)]$ $+ P(w, \neg negative_query)]$ $* [P(\neg w, negative_query)]$ $+ P(\neg w, \neg negative_query)]$ $* [P(w, \neg negative_query)]$ $* [P(w, \neg negative_query)]$ $+ P(\neg w, \neg negative_query)]$ with

with:

• w, w1, w2 : are the English words (or the English phrases)

• P(w1, w2): number of returned results in Google search by keyword (w1 and w2). We use the Google Search API to get the number of returned results in search online Google by keyword (w1 and w2).

• P(w1): number of returned results in Google search by keyword w1. We use the Google Search API to get the number of returned results in search online Google by keyword w1.

• P(w2): number of returned results in Google search by keyword w2. We use the Google Search API to get the number of returned results in search online Google by keyword w2.

• Valence(W) = SO_G2C(w): valence of English word (or English phrase) w; is SO of word (or phrase) by using the GOWER-2 coefficient (G2C)

• positive_query: { active or good or positive or beautiful or strong or nice or excellent or fortunate or correct or superior } with the positive query is the a group of the positive English words.

• negative_query: { passive or bad or negative or ugly or week or nasty or poor or unfortunate or wrong or inferior } with the negative_query is the a group of the negative English words.

• P(w, positive_query): number of returned results in Google search by keyword (positive_query and w). We use the Google Search API to get the number of returned results in search online Google by keyword (positive query and w)

• P(w, negative_query): number of returned results in Google search by keyword (negative_query and w). We use the Google Search API to get the number of returned results in search online Google by keyword (negative_query and w)

• P(w): number of returned results in Google search by keyword w. We use the Google Search API to get the number of returned results in search online Google by keyword w

• P(¬w,positive_query): number of returned results

in Google search by keyword ((not w) and positive_query). We use the Google Search API to get the number of returned results in search online Google by keyword ((not w) and positive_query).

• P(w, ¬positive_query): number of returned results in the Google search by keyword (w and (not (positive_query))). We use the Google Search API to get the number of returned results in search online Google by keyword (w and [not (positive_query)]).

• P(¬w, ¬positive_query): number of returned results in the Google search by keyword (w and (not (positive_query))). We use the Google Search API to get the number of returned results in search online Google by keyword ((not w) and [not (positive_query)]).

• $P(\neg w, negative_query)$: number of returned results in Google search by keyword ((not w) and negative_query). We use the Google Search API to get the number of returned results in search online Google by keyword ((not w) and negative_query).

• P(w,¬negative_query): number of returned results in the Google search by keyword (w and (not (negative_query))). We use the Google Search API to get the number of returned results in search online Google by keyword (w and (not (negative query))).

• P(¬w,¬negative_query): number of returned results in the Google search by keyword (w and (not (negative_query))). We use the Google Search API to get the number of returned results in search online Google by keyword ((not w) and (not (negative query))).

As like Cosine, Ochiai, Sorensen, Tanimoto, PMI and Jaccard about calculating the valence (score) of the word, we identify the valence (score) of the English word w based on both the proximity of positive query with w and the remote of positive query with w; and the proximity of negative query with w and the remote of negative query with w.The English word w is the of positive query if G2C nearest (w, positive query) is as equal as 1. The English word w is the farthest of positive query if G2C(w, positive query) is as equal as 0. The English word w belongs to positive query being the positive group of the English words if G2C(w, positive query) > 0 and G2C(w, positive query) \leq 1.The English word w is the nearest of negative query if G2C(w, negative query) is as equal as 1. The English word w is the farthest of negative query if G2C(w, negative query) is as equal as 0. The English word w belongs to negative query being the negative group of the English words if G2C(w, negative query) > 0 and

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

G2C(w, negative_query) ≤ 1 . So, the valence of the English word w is the value of G2C(w, positive_query) substracting the value of G2C(w, negative_query) and the eq. (8) is the equation of identifying the valence of the English word w. We have the information about G2C as follows:

- we have the information about G2C as follows: $C_{2C}(m, m, m) > 0$ and $C_{2C}(m, m, m) > 0$
- $G2C(w, positive_query) \ge 0$ and $G2C(w, positive_query) \le 1$.
- G2C(w, negative_query) ≥ 0 and G2C (w, negative_query) ≤ 1
- If G2C (w, positive_query) = 0 and G2C (w, negative_query) = 0 then SO_G2C (w) = 0.
- If G2C (w, positive_query) = 1 and G2C (w, negative_query) = 0 then SO_G2C (w) = 0.
- If G2C (w, positive_query) = 0 and G2C (w, negative query) = 1 then SO G2C (w) = -1.
- If G2C (w, positive_query) = 1 and G2C (w, negative_query) = 1 then SO_G2C(w) = 0.

So, SO_G2C (w) \geq -1 and SO_G2C (w) \leq 1.

The polarity of the English word w is positive polarity If SO_G2C (w) > 0. The polarity of the English word w is negative polarity if SO_G2C (w) < 0. The polarity of the English word w is neutral polarity if SO_G2C (w) = 0. In addition, the semantic value of the English word w is SO_G2C (w).

We calculate the valence and the polarity of the English word or phrase w using a training corpus of approximately one hundred billion English words — the subset of the English Web that is indexed by the Google search engine on the internet. AltaVista was chosen because it has a NEAR operator. The AltaVista NEAR operator limits the search to documents that contain the words within ten words of one another, in either order. We use the Google search engine which does not have a NEAR operator; but the Google search engine can use the AND operator and the OR operator. The result of calculating the valence w (English word) is similar to the result of calculating valence w by using AltaVista. However, AltaVista is no longer.

In summary, by using eq. (8), eq. (9), and eq. (10), we identify the valence and the polarity of one word (or one phrase) in English by using the SC through the Google search engine with AND operator and OR operator.

In Table 1 and Table 2 below of the Appendices section, we compare our model's results with the surveys in [1-22].

In Table 3 and Table 4 below, we compare our model's results with the researches related to the GOWER-2 coefficient (G2C) in [39,40].

4.1.1 Creating a basis English sentiment dictionary (bESD) in a sequential environment

According to [33-38], we have at least 55,000 English terms, including nouns, verbs, adjectives, etc. In this part, we calculate the valence and the polarity of the English words or phrases for our basis English sentiment dictionary (bESD) by using the G2C in a sequential system, as the following diagram in Fig. 4 below shows.

We proposed the algorithm 1 to perform this section.

Input: the 55,000 English terms; the Google search engine

Output: a basis English sentiment dictionary (bESD)

Step 1: Each term in the 55,000 terms, do repeat:

Step 2: By using eq. (8), eq. (9), and eq. (10) of the calculating a valence of one word (or one phrase) in English in the section (4.1.1), the sentiment score and the polarity of this term are identified. The valence and the polarity are calculated by using the G2C through the Google search engine with AND operator and OR operator.

Step 3: Add this term into the basis English sentiment dictionary (bESD);

Step 4: End Repeat – End Step 1;

Step 5: Return bESD;

Our bESD has more 55,000 English words (or English phrases) and bESD is stored in Microsoft SQL Server 2008 R2.

4.1.3 Creating a basis English sentiment dictionary (bESD) in a distributed system

According to [33-38], we have at least 55,000 English terms, including nouns, verbs, adjectives, etc. In this part, we calculate the valence and the polarity of the English words or phrases for our basis English sentiment dictionary (bESD) by using the G2C in a parallel network environment, as the following diagram in Fig. 5 below shows. <u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

English Dictionary of Lingoes [33], Oxford English Dictionary [34], Cambridge English Dictionary [35], Longman English Dictionary [36], Collins English Dictionary [37], MacMillan English Dictionary [38]

Fig. 5: Overview Of Creating A Basis English Sentiment Dictionary (Besd) In A Distributed Environment

In Fig. 5, this section includes two phases: the Hadoop Map (M) phase and the Hadoop Reduce (R) phase. The input of the Hadoop Map phase is the 55,000 terms in English in [33-38]. The output of the Hadoop Map phase is one term which the sentiment score and the polarity are identified. The output of the Hadoop Map phase is the input of the Hadoop Reduce phase. Thus, the input of the Hadoop Reduce phase is one term which the sentiment score and the polarity are identified. The output of the Hadoop Reduce phase is one term which the sentiment score and the polarity are identified. The output of the Hadoop Reduce phase is one term which the sentiment score and the polarity are identified. The output of the Hadoop Reduce phase is the basis English sentiment dictionary (bESD).

We built the algorithm 2 to implement the Hadoop Map phase.

Input: the 55,000 English terms; the Google search engine

Output: one term which the sentiment score and the polarity are identified.

Step 1: Each term in the 55,000 terms, do repeat:

Step 2: By using eq. (8), eq. (9), and eq. (10) of the calculating a valence of one word (or one phrase) in English in the section (4.1.1), the sentiment score and the polarity of this term are identified. The valence and the polarity are calculated by using the G2C through the Google search engine with AND operator and OR operator.

Step 3: Return this term;

We proposed the algorithm 3 to perform the Hadoop Reduce phase

Input: one term which the sentiment score and the polarity are identified – The output of the Hadoop

Map phase.

Output: a basis English sentiment dictionary (bESD)

Step 1: Add this term into the basis English sentiment dictionary (bESD);

Step 2: Return bESD;

Our bESD has more 55,000 English words (or English phrases) and bESD is stored in Microsoft SQL Server 2008 R2.

4.2 Using the BIRCH and the one-dimensional vectors to classify the documents of the testing data set into either polarity or the negative polarity

This section compises two parts: In the fist part of this section, we use the BIRCH and the onedimensional vectors to classify the documents of the testing data set into either the positive polarity or the negative polarity in a sequential environment in the sub-section (4.2.1). In the second part of this section, we use the BIRCH and the one-dimensional vectors to classify the documents of the testing data set into either the positive polarity or the negative polarity in a distributed system in the sub-section (4.2.2).

4.2.1 Using the BIRCH and the onedimensional vectors to classify the documents of the testing data set into either polarity or the negative polarity in the sequential environment

The Testing data set	The training data set
The documents	
One document	The positive sentences The negative sentences
The sentences	Transfer the sentences into the one- dimensional vectors based on the sentiment lexicons of the bESD in
dimensional vectors based on the sentiment lexicons of the bESD in the sequential environment	the sequential system
The one-dimensional vectors of one document	The positive one- dimensional vectors The negative vector The negative vector
One one-dimensional vector	group group
	dimensional vector into either the positive vector or group in the sequential environment
The result of the sent	timent classification of this vector
	sitive if the number of sentences clustered into the ustered into the negative in this document.
	gative if the number of sentences clustered into the stered into the negative in this document
	eutral if the number of sentences clustered into the ustered into the negative in this document
The result of the sentin	nent classification of this document
The result of the sentiment classif	* ication of the documents of the testing data set
The result of the sentiment classif	ication of the documents of the testing data set

Fig. 6: Overview Of Using The BIRCH And The One-Dimensional Vectors To Classify The Documents Of The Testing Data Set Into Either Polarity Or The Negative Polarity In The Sequential Environment

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-31

In Fig. 6, we use the BIRCH and the onedimensional vectors to classify the documents of the testing data set into either polarity or the negative polarity in the sequential environment.

In Fig. 6, we perform the proposed model in the sequential system: firstly, we create the sentiment lexicons of the bESD based on the creating a basis English sentiment dictionary (bESD) in a sequential environment in (4.1.2). We transfer one sentence into one one-dimensional vector based on the sentiment lexicons of the bESD. We transfer all the sentences of one document of the testing data set ino the one-dimensional vectors based on the sentiment lexicons of the bESD. All the positive sentences of the training data set are transferred into the the positive one-dimensional vectors based on the sentiment lexicons of the bESD, called the positive vector group of the training data set. All the negative sentences of the training data set are transferred into the the negative one-dimensional vectors based on the sentiment lexicons of the bESD, called the negative vector group of the training data set. Then, we use the BIRCH to cluster one one-dimensinal vector (corresponding to one sentence of one document of the testing data set) into either the positive vector group or the negative vector group. One document is clustered into the positive if the number of sentences clustered into the positive is greater than that clustered into the negative in this document. One document is clustered into the negative if the number of sentences clustered into the positive is less than that clustered into the negative in this document. One document is clustered into the neutral if the number of sentences clustered into the positive is as equal as that clustered into the negative in this document. Finally, all the documents of the testing data set are clustered into either the positive or the negative.

We built the algorithm 4 to transfer one sentence into one-dimensional vector based on the sentiment lexicons of the bESD in the sequential environment.

Input: one sentence and the bESD

Output: one one-dimensional vector based on the sentiment lexicons of the bESD

Step 1: Split this sentence into the meaningful terms based on the bESD;

Step 2: Set OneOne-dimensionalVector := null;

Step 3: Each term in the terms of this sentence, do repeat:

Step 4: Identify the valence of this term based on bESD;

Step 5: Add this term into OneOnedimensionalVector; Step 6: End Repeat – End Step 3;

Step 7: Return OneOne-dimensionalVector;

We proposed the algorithm 5 to transfer all the sentences of one document into the onedimensional vectors based on the sentiment lexicons of the bESD in the sequential system

Input: one document and the bESD;

Output: the one-dimensional vectors of this document;

Step 1: Split this document into the sentences;

Step 2: Each sentence in the sentences of this document, do repeat:

Step 3: OneOne-dimensionalVector := The algorithm 4 to transfer one sentence into onedimensional vector based on the sentiment lexicons of the bESD in the sequential environment with the input is this sentence and the bESD;

Step 4: Add OneOne-dimensionalVector into the one-dimensional vectors of this document;

Step 5: End Repeat – End Step 3;

Step 6: Return the one-dimensional vectors of this document;

We built the algorithm 6 to transfer all the positive sentences of the training data set into the one-dimensional vector based on the sentiment lexicons of the bESD in the sequential system, called the positive vector group of the training data set.

Input: the positive sentences of the training data set and the bESD;

Output: the positive one-dimensional vectors, called the positive vector group of the training data set;

Step 1: Set the positive vector group := null;

Step 2: Each sentence in the positive sentences of the training data set, do repeat:

Step 3: OneOne-dimensionalVector := The algorithm 4 to transfer one sentence into onedimensional vector based on the sentiment lexicons of the bESD in the sequential environment with the input is this sentence and the bESD;

Step 4: Add dimensionalVector into the positive vector group;

Step 5: End Repeat – End Step 2;

Step 6: Return the positive vector group;

We proposed the algorithm 7 to transfer all the negative sentences of the training data set into the one-dimensional vector based on the sentiment lexicons of the bESD in the sequential system, called the negative vector group of the training data set.

31st August 2018. Vol.96. No 16 © 2005 – ongoing JATIT & LLS

7-3195

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817

Input: the negative sentences of the training data set and the bESD;

Output: the negative one-dimensional vectors, called the negative vector group of the training data set; Step 1: Set the negative vector group in pull.

Step 1: Set the negative vector group := null;

Step 2: Each sentence in the negative sentences of the training data set, do repeat:

Step 3: OneOne-dimensionalVector := The algorithm 4 to transfer one sentence into onedimensional vector based on the sentiment lexicons of the bESD in the sequential environment with the input is this sentence and the bESD;

Step 4: Add dimensionalVector into the negative vector group;

Step 5: End Repeat – End Step 2;

Step 6: Return the negative vector group;

According to the surveys related the Balanced Interative Reducing and Clustering using Hierarchies algorithm (BIRCH) in [39-44], we build the algorithm 8 to use the BIRCH to cluster one one-dimensional vector (corresponding one sentence of one document of the testing data set) into either the positive vector group or the negative vector group of the training data set int the sequential environment as follows:

Input: one one-dimensional vector of a document in the testing data set; the positive vector group and the negative vector group of the training data set.

Output: the result of clustering the vector into either the positive vector group or the negative vector group.

Step 1: Scan all data and build an initial in-memory CF tree, using the given amount of memory and recycling space on disk.

Step 2: With each vector in n vectors, do:

Step 3: Condense into desirable length by building a smaller CF tree.

Step 4: Global clustering with the vector into CF Triple 1 or CF Triple 2

Step 5: Cluster refining – this is optional, and requires more passes over the data to refine the results.

Step 6: Return the result of clustering the vector into either the positive vector group or the negative vector group.

We proposed the algorithm 9 to cluster one document of the testing data set into either the positive or the negative in the sequential system

Input: one document of the testing data set; the positive vector group and the negative vector group of the training data set.

Output: The result of the sentiment classification of this document

Step 1: TheOne-dimensionalVectors := The algorithm 5 to transfer all the sentences of one document into the one-dimensional vectors based on the sentiment lexicons of the bESD in the sequential system with the input is this document; Step 2: Set count_positive := 0; and count_negative := 0;

Step 3: Each one-dimensional vector in TheOnedimensionalVectors, do repeat:

Step 4: OneResult := The algorithm 8 to use the BIRCH to cluster one one-dimensional vector (corresponding one sentence of one document of the testing data set) into either the positive vector group or the negative vector group of the training data set int the sequential environment with this vector, the positive vector group and the negative vector group;

Step 5: If OneResults is the positive Then count positive := count positive + 1;

Step 6: Else If OneResults is the negative Then count_negative := count_negative + 1;

Step 7: End Repeat – End Step 3;

Step 8: If count_positive is greater than count_negative Then Return positive;

Step 9: Else If count_positive is less than count_negative Then Return negative;

Step 10: Return neutral;

We built the algorithm 10 to cluster the documents of the testing data set into either the positive or the negative in the sequential environment.

Input: the documents of the testing data set and the training data set

Output: the results of the sentiment classification of the documents of the testing data set;

Step 1: The algorithm 6 to transfer all the positive sentences of the training data set into the onedimensional vector based on the sentiment lexicons of the bESD in the sequential system, called the positive vector group of the training data set with the input is the positive sentences of the training data set; and the bESD;

Step 2: The algorithm 7 to transfer all the negative sentences of the training data set into the onedimensional vector based on the sentiment lexicons of the bESD in the sequential system, called the negative vector group of the training data set with the input is the negative sentences of the training data set; and the bESD;

Step 3: Each document in the documents of the testing data set, do repeat:

Step 4: OneResult := the algorithm 9 to cluster one document of the testing data set into either the positive or the negative in the sequential system

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

with the input is this document, the positive vector group and the negative vector group;

Step 5: Add OneResult into the results of the sentiment classification of the documents of the testing data set;

Step 6: Return the results of the sentiment classification of the documents of the testing data set;

4.2.2 Using the BIRCH and the onedimensional vectors to classify the documents of the testing data set into either polarity or the negative polarity in the distributed network system

In Fig. 7, we use the BIRCH and the onedimensional vectors to classify the documents of the testing data set into either polarity or the negative polarity in the sequential environment as follows:

In Fig. 7, we perform the proposed model in the parallel system: firstly, we create the sentiment lexicons of the bESD based on the creating a basis English sentiment dictionary (bESD) in a distributed system in (4.1.3). We transfer one sentence into one one-dimensional vector based on the sentiment lexicons of the bESD. We transfer all the sentences of one document of the testing data set ino the one-dimensional vectors based on the sentiment lexicons of the bESD. All the positive sentences of the training data set are transferred into

the the positive one-dimensional vectors based on the sentiment lexicons of the bESD, called the positive vector group of the training data set. All the negative sentences of the training data set are transferred into the the negative one-dimensional vectors based on the sentiment lexicons of the bESD, called the negative vector group of the training data set. Then, we use the BIRCH to cluster one one-dimensinal vector (corresponding to one sentence of one document of the testing data set) into either the positive vector group or the negative vector group. One document is clustered into the positive if the number of sentences clustered into the positive is greater than that clustered into the negative in this document. One document is clustered into the negative if the number of sentences clustered into the positive is less than that clustered into the negative in this document. One document is clustered into the neutral if the number of sentences clustered into the positive is as equal as that clustered into the negative in this document. Finally, all the documents of the testing data set are clustered into either the positive or the negative.

In Fig. 8, we transfer one English sentence into one one-dimensional vector based on the sentiment lexicons of the bESD in Cloudera. This stage includes two phases: the Hadoop Map phase and the Hadoop Reduce phase. The input of the Hadoop Map phase is one sentence and the bESD. The output of the Hadoop Map phase is one term (one meaningful word/or one meaningful phrase) which the valence is identified. The input of the Hadoop Reduce phase is the output of the Hadoop Map, thus, the input of the Hadoop Reduce phase is one term (one meaningful word/or one meaningful phrase) which the valence is identified. The output of the Hadoop Reduce phase is one onedimensional vector of this sentence.

We built the algorithm 11 to perform the Hadoop Map phase

Input: one sentence and the bESD;

Output: one term (one meaningful word/or one meaningful phrase) which the valence is identified Step 1: Input this sentence and the bESD into the Hadoop Map in the Cloudera system;

Step 2: Split this sentence into the many meaningful terms (meaningful words/or meaningful phrases) based on the bESD;

Step 3: Each term in the terms, do repeat:

Step 4: Identify the valence of this term based on the bESD;

Step 5: Return this term; //the output of the Hadoop Map phase.

31st August 2018. Vol.96. No 16

6 20	005 – ongo	
ISSN: 1992-8645	<u>www.ja</u>	tit.org E-ISSN: 1817-3195
We proposed the algorithm 12 to perform Hadoop Reduce phase: Input: one term (one meaningful word)		dimensional vector based on the sentiment lexicons of the bESD in Cloudera in Fig. 8 with the input is this sentence
meaningful phrase) which the valence is id	lentified	Step 5: Return one one-dimensional vector; //the

- the output of the Hadoop Map phase

Output: one one-dimensional vector based on the sentiment lexicons of the bESD

Step 1: Receive one term;

Step 2: Add this term into the one-dimentional vector:

Step 3: Return the one-dimentional vector;

In Fig. 9, we transfer all the sentences of one document of the testing data set into the onedimensional vectors of the document of testing data set based on the sentiment lexicons of the bESD in the parallel network environment. This stage comprise two phases: the Hadoop Map phase and the Hadoop Reduce phase. The input of the Hadoop Map is one document of the testing data se. The output of the Hadoop Reduce is one onedimensional vector (corresponding to one sentence) of this document. The input of the Hadoop Reduce is the output of the Hadoop Map, thus, the input of the Hadoop Reduce is one one-dimensional vector (corresponding to one sentence) of this document. The output of the Hadoop Reduce is the onedimensional vectors of this document.

We built the algorithm 13 to perform the Hadoop Map phase

Input: one document of the testing data set;

Output: one one-dimensional vector of this document

Step 1: Input this document into the Hadoop Map in the Cloudera system;

Step 2: Split this document into the sentences;

Step 3: Each sentence in the sentences, do repeat:

Step 4: one one-dimensional vector := The transferring one English sentence into one oneoutput of the Hadoop Map phase.

We proposed the algorithm 14 to perform the Hadoop Reduce phase

Input: one one-dimensional vector of this document Output: the one-dimensional vectors of this document

Step 1: Receive one one-dimensional vector;

Step 2: Add this one-dimensional vector into the one-dimensional vectors of this document;

Step 3: Return the one-dimensional vectors of this document;

One English document
Input this document into Hadoop Map (M) in Cloudera
Split the document into the sentences
Each sentence in the sentences, do repeat:
OneOne-dimensionalVector := The transforming one English sentence into one one-
dimensional vector based on the sentiment lexicons of the bESD in Cloudera in Fig 8 with
the input is this sentence
OneOne-dimensionalVector
Output of Hadoop Map in Cloudera: OneOne-dimensionalVector
Investo fillede en Deduce in Clauders O. O. dimensionalWester
Input of Hadoop Reduce in Cloudera: OneOne-dimensionalVector
Hadoop Reduce in Cloudera: Add One One-dimensional Vector into the one- dimensional vectors of the document
Output of Hadoop Reduce in Cloudera: the one-dimensional vectors of the document
the one-dimensional vectors of the document

Fig. 9: Overview Of Transferring All The Sentences Of One Document Of The Testing Data Set Into The One-Dimensional Vectors Of The Document Of Testing Data Set Based On The Sentiment Lexicons Of The Besd In The Parallel Network Environment

In Fig. 10, we transfer the positive sentences of the training data set into the positive onedimensional vectors (called the positive vector group of the training data set) in the distributed system. In Fig. 10, the stage includes two phases: the Hadoop Map (M) phase and the Hadoop Reduce (R) phase. The input of the Hadoop Map phase is the positive sentences of the training data set. The output of the Hadoop Map phase is one one-dimensional vector of the positive sentences of the training data set. The input of the Hadoop Redude phase is the output of the Hadoop Map phase, thus, the input of the Hadoop Reduce phase is one one-dimensional vector of one sentence of the positive sentences of the training data set). The output of the Hadoop Reduce phase is the positive one-dimensional vectors, called the positive vector group (corresponding to the positive sentences of the training data set)

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

www.jatit.org

E-ISSN: 1817-3195

Fig. 10: Overview Of Transferring The Positive Sentences Of The Training Data Set Into The Positive One-Dimensional Vectors (Called The Positive Vector Group Of The Training Data Set) In The Distributed System.

We built the algorithm 15 to perform the Hadoop Map phase

Input: the positive sentences of the training data set Output: one one-dimensional vector of the positive sentences of the training data set

Step 1: Input the positive sentences into the Hadoop Map in the Cloudera system.

Step 2: Each sentences in the positive sentences, do repeat:

Step 3: OneOne-DimentionalVector := The transferring one English sentence into one onedimensional vector based on the sentiment lexicons of the bESD in Cloudera in Fig. 7

Step 4: Return OneOne-DimentionalVector;

We proposed the algorithm 16 to implement the Hadoop Reduce phase

Input: one one-dimensional vector of the positive sentences of the training data set

Output: the positive one-dimensional vectors, called the positive vector group (corresponding to the positive sentences of the training data set)

Step 1: Receive one one-dimensional vector;

Step 2: Add this one-dimensional vector into PositiveVectorGroup;

Step 3: Return PositiveVectorGroup - the positive one-dimensional vectors, called the positive vector group (corresponding to the positive sentences of the training data set);

In Fig. 11, we transfer the negative sentences of the training data set into the negative onedimensional vectors (called the negative vector group of the training data set) in the distributed system.

Fig. 11: Overview Of Transferring The Negative Sentences Of The Training Data Set Into The Negative One-Dimensional Vectors (Called The Negative Vector Group Of The Training Data Set) In The Distributed System.

In Fig. 11, the stage includes two phases: the Hadoop Map (M) phase and the Hadoop Reduce (R) phase. The input of the Hadoop Map phase is the negative sentences of the training data set. The output of the Hadoop Map phase is one one-dimensional vector of the negative sentences of the training data set. The input of the Hadoop Reduce phase is the output of the Hadoop Reduce phase, thus, the input of the Hadoop Reduce phase is one one-dimensional vector of one sentence of the negative sentences of the training data set). The output of the Hadoop Reduce phase is the positive one-dimensional vectors, called the negative vector group (corresponding to the negative sentences of the training data set)

We built the algorithm 17 to perform the Hadoop Map phase

Input: the negative sentences of the training data set Output: one one-dimensional vector of the negative sentences of the training data set

Step 1: Input the negative sentences into the Hadoop Map in the Cloudera system.

Step 2: Each sentences in the negative sentences, do repeat:

Step 3: OneOne-DimentionalVector := the transferring one English sentence into one onedimensional vector based on the sentiment lexicons of the bESD in Cloudera in Fig. 8

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

Step 4: Return OneOne-DimentionalVector ;

We proposed the algorithm 18 to implement the Hadoop Reduce phase

Input: one one-dimensional vector of the negative sentences of the training data set

Output: the negative one-dimensional vectors, called the negative vector group (corresponding to the negative sentences of the training data set)

Step 1: Receive one one-dimensional vector;

Step 2: Add this one-dimensional vector into NegativeVectorGroup;

Step 3: Return NegativeVectorGroup - the negative one-dimensional vectors, called the negative vector group (corresponding to the negative sentences of the training data set);

In Fig. 12, we use the BIRCH to cluster one onedimensional vector (corresponding one sentence of one document of the testing data set) into either the positive vector group or the negative vector group of the training data set int the parallel environment.

Fig. 12: Overview Of Using The BIRCH To Cluster One One-Dimensional Vector (Corresponding One Sentence Of One Document Of The Testing Data Set) Into Either The Positive Vector Group Or The Negative Vector Group Of The Training Data Set Int The Parallel Environment

In Fig. 12, this stage has two phases: the Hadoop Map phase and the Hadoop Reduce phase. The input of the Hadoop Map is one one-dimensional vector (corresponding one sentence of one document of the testing data set), the positive vector grop and the negative vector group the training data set. The output of the Hadoop Map is the result of the sentiment classification of this vector. The input of the Hadoop Reduce is the output of the Hadoop Map, thus the input of the Hadoop Reduce is the result of the sentiment classification of this vector. The output of the Hadoop Reduce is the the result of the sentiment classification of this vector.

We built the algorithm 19 to perform the Hadoop Map phase

Input: one one-dimensional vector of a document in the testing data set; the positive vector group and the negative vector group of the training data set.

Output: the result of clustering the vector into either the positive vector group or the negative vector group.

Step 1: Scan all data and build an initial in-memory CF tree, using the given amount of memory and recycling space on disk.

Step 2: With each vector in n vectors, do:

Step 3: Condense into desirable length by building a smaller CF tree.

Step 4: Global clustering with the vector into CF Triple 1 or CF Triple 2

Step 5: Cluster refining – this is optional, and requires more passes over the data to refine the results.

Step 6: Return the result of clustering the vector into either the positive vector group or the negative vector group;// the output of the Hadoop Map

We built the algorithm 20 to implement the Hadoop Reduce phase

Input: the result of clustering the vector into either the positive vector group or the negative vector group – the output of the Hadoop Map

Output: the result of clustering the vector into either the positive vector group or the negative vector group.

Step 1: Receive the result of clustering the vector into either the positive vector group or the negative vector group;

Step 2: Return the result of clustering the vector into either the positive vector group or the negative vector group;

In Fig. 13, we use the BIRCH and the onedimensional vectors to cluster one document of the testing data set into either the positive or the negative in the distributed environment. The input of the Hadoop Map is one document of the testing data set, the positive vector group and the negative vector group of the training data set. The output of the Hadoop Map is the result of the sentiment classification of one one-dimensional vector (corresponding to one sentence of this document) into either the positive vector group or the negative vector group. The input of the Hadoop Reduce is the output of the Hadoop Map, thus, the input of the Hadoop Reduce is the result of the sentiment classification of one one-dimensional vector (corresponding to one sentence of this document)

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

into either the positive vector group or the negative vector group. The output of the Hadoop Reduce is the result of the sentiment classification of this document.

We proposed the algorithm 21 to perform the Hadoop Map phase

Input: one document of the testing data set; the positive vector group and the negative vector group of the training data set.

Output: the result of the sentiment classification of one one-dimensional vector (corresponding to one sentence of this document) into either the positive vector group or the negative vector group

Step 1: Input this document, the positive vector group and the negative vector group into the Hadoop Map in the Cloudera system.

Step 2: TheOne-dimensionalVectors := transferring all the sentences of one document of the testing data set into the one-dimensional vectors of the document of testing data set based on the sentiment lexicons of the bESD in the parallel network environment in Fig. 9;

Step 3: Each one-dimensional vector in TheOnedimensionalVectors, do repeat:

Step 4: OneResult := the using the BIRCH to cluster one one-dimensional vector (corresponding one sentence of one document of the testing data set) into either the positive vector group or the negative vector group of the training data set int the parallel environment in Fig. 12;

Step 5: Return OneResult; // the output of the Hadoop Map

We built the algorithm 22 to perform the Hadoop Reduce phase

Input: OneResult - the result of the sentiment classification of one one-dimensional vector (corresponding to one sentence of this document) into either the positive vector group or the negative vector group

Output: the result of the sentiment classification of this document.

Step 1: Receive OneResult - the result of the sentiment classification of one one-dimensional vector (corresponding to one sentence of this document) into either the positive vector group or the negative vector group;

Step 2: Add OneResult into the result of the sentiment classification of this document;

Step 3: Return the result of the sentiment classification of this document;

In Fig. 14, we use the BIRCH and the onedimensional vectors to cluster the documents of the testing data set into either the positive or the negative in the parallel network environment. This stage comprises two phases: the Hadoop Map phase and the Hadoop Reduce phase. The input of the Hadoop Map is the documents of the testing data set and the training data set. The output of the Hadoop Map is the result of the sentiment classification of one document of the testing data set. The input of the Hadoop Reduce is the output of the Hadoop Map, thus, the input of the Hadoop Reduce is the result of the sentiment classification of one document of the testing data set. The output of the Hadoop Reduce is the results of the sentiment classification of the documents of the testing data set.

We built the algorithm 23 to implement the Hadoop Map phase

Input: the documents of the testing data set and the training data set

Output: the result of the sentiment classification of one document of the testing data set;

Step 1: The transferring the positive sentences of the training data set into the positive onedimensional vectors (called the positive vector group of the training data set) in the distributed system in Fig. 10

Step 2: The transferring the negative sentences of the training data set into the negative onedimensional vectors (called the negative vector

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-31

group of the training data set) in the distributed system in Fig. 11

Step 3: Input the documents of the testing data set, the positive vector group and the negative vector group into the Hadoop Map in the Cloudera system Step 4: Each document in the documents of the testing data set, do repeat:

Step 5: OneResult := The using the BIRCH and the one-dimensional vectors to cluster one document of the testing data set into either the positive or the negative in the distributed environment in Fig. 13 with the input is this document, the positive vector group and the negative vector group.

Step 6: Return OneResult - the result of the sentiment classification of one document of the testing data set;//the output of the Hadoop Map

Fig. 14: Overview Of Using The BIRCH And The One-Dimensional Vectors To Cluster The Documents Of The Testing Data Set Into Either The Positive Or The Negative In The Parallel Network Environment.

We proposed the algorithm 24 to perform the Hadoop Reduce phase

Input: OneResult - the result of the sentiment classification of one document of the testing data set;//the output of the Hadoop Map

Output: the results of the sentiment classification of the documents of the testing data set;

Step 1: Receive OneResult;

Step 2: Add OneResult into the results of the sentiment classification of the documents of the testing data set;

Step 3: Return the results of the sentiment classification of the documents of the testing data set;

5. EXPERIMENT

We have measured an Accuracy (A) to calculate the accuracy of the results of emotion classification. A Java programming language is used for programming to save data sets, implementing our proposed model to classify the 8,500,000 documents of the testing data set. To implement the proposed model, we have already used the Java programming language to save the English testing data set and to save the results of emotion classification.

The sequential environment in this research includes 1 node (1 server). The Java language is used in programming our model related to the BIRCH and the one-dimensional vectors. The configuration of the server in the sequential environment is: Intel® Server Board S1200V3RPS, Intel® Pentium® Processor G3220 (3M Cache, 3.00 GHz), 2GB G2C3-10600 EG2C 1333 MHz LP Unbuffered DIMMs. The operating system of the server is: Cloudera.

We perform the proposed model related to the BIRCH and the one-dimensional vectors in the Cloudera parallel network environment; this Cloudera system includes 9 nodes (9 servers). The Java language is used in programming the application of the proposed model related to the BIRCH and the one-dimensional vectors in the Cloudera. The configuration of each server in the Cloudera system is: Intel® Server Board S1200V3RPS, Intel® Pentium® Processor G3220 (3M Cache, 3.00 GHz), 2GB G2C3-10600 EG2C 1333 MHz LP Unbuffered DIMMs. The operating system of each server in the 9 servers is: Cloudera. All 9 nodes have the same configuration information.

The results of the documents of the English testing data set to test are presented in Table 5 below.

The accuracy of the emotional classification of the documents in the English testing data set is shown in Table 6 below.

In Table 7 below, the average time of the classification of our new model for the English documents in testing data set are displayed

6. CONCLUSION

Although our new model has been tested on our English data set, it can be applied to many other

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

<u>www.jatit.org</u>

languages. In this paper, our model has been tested on the 8,500,000 English documents of the testing data set in which the data sets are small. However, our model can be applied to larger data sets with millions of English documents in the shortest time.

In this work, we have proposed a new model to classify sentiment of English documents using the BIRCH and the one-dimensional vectors with Hadoop Map (M) /Reduce (R) in the Cloudera parallel network environment. With our proposed new model, we have achieved 87.82% accuracy of the testing data set in Table 6. Until now, not many studies have shown that the clustering methods can be used to classify data. Our research shows that clustering methods are used to classify data and, in particular, can be used to classify emotion in text.

In Table 7, the average time of the semantic classification of using the BIRCH and the onedimensional vectors in the sequential environment is 37,142,852 seconds / 8,500,000 English documents and it is greater than the average time of the emotion classification of using the BIRCH and the one-dimensional vectors in the Cloudera parallel network environment with 3 nodes which is 11,047,614 seconds / 8,500,000 English documents. The average time of the emotion classification of using the BIRCH and the one-dimensional vectors in the Cloudera parallel network environment with 9 nodes, which is 4,139,204 seconds / 8,500,000 English documents, is the shortest time. Besides, the average time of the emotion classification of using the BIRCH and the one-dimensional vectors in the Cloudera parallel network environment with 6 nodes is 6,324,807 seconds / 8,500,000 English documents

The execution time of using the BIRCH and the one-dimensional vectors in the Cloudera is dependent on the performance of the Cloudera parallel system and also dependent on the performance of each server on the Cloudera system.

The proposed model has many advantages and disadvantages. Its positives are as follows: It uses using the BIRCH and the one-dimensional vectors to classify semantics of English documents based on sentences. The proposed model can process millions of documents in the shortest time. This study can be performed in distributed systems to shorten the execution time of the proposed model. It can be applied to other languages. Its negatives are as follows: It has a low rate of accuracy. It costs too much and takes too much time to implement this proposed model.

To understand the scientific values of this research, we have compared our model's results with many studies in the tables below.

In Table 8, the comparisons of our model's results with the works in [39-44] are presented.

The comparisons of our model's advantages and disadvantages with the works in [39-44] are displayed in Table 9.

In Table 10, the comparisons of our model's results with the works in [50, 51, 52] are shown.

The comparisons of our model's advantages and disadvantages with the works in [50, 51, 52] are presented in Table 11.

In Table 12, the comparisons of our model with the latest sentiment classification models (or the latest sentiment classification methods) in [53-63] are displayed.

The comparisons of our model's positives and negatives with the latest sentiment classification models (or the latest sentiment classification methods) in [53-63] are shown in Table 13.

Future Work

Based on the results of this proposed model, many future projects can be proposed, such as creating full emotional lexicons in a parallel network environment to shorten execution times, creating many search engines, creating many translation engines, creating many applications that can check grammar correctly. This model can be applied to many different languages, creating applications that can analyze the emotions of texts and speeches, and machines that can analyze sentiments.

REFERENCES:

- Aleksander Bai, Hugo Hammer, "Constructing sentiment lexicons in Norwegian from a large text corpus", 2014 IEEE 17th International Conference on Computational Science and Engineering, 2014
- P.D.Turney, M.L.Littman, "Unsupervised Learning of Semantic Orientation from a Hundred-Billion-Word Corpus", arXiv:cs/0212012, Learning (cs.LG); Information Retrieval (cs.IR), 2002
- [3] Robert Malouf, Tony Mullen, "Graph-based user classification for informal online political discourse", In proceedings of the 1st Workshop on Information Credibility on the Web, 2017
- [4] Christian Scheible, "Sentiment Translation through Lexicon Induction", Proceedings of the ACL 2010 Student Research Workshop, Sweden, pp 25–30, 2010
- [5] Dame Jovanoski, Veno Pachovski, Preslav Nakov, "Sentiment Analysis in Twitter for

Macedonian", Proceedings of Recent Advances in Natural Language Processing, Bulgaria, pp 249–257, 2015

ISSN: 1992-8645

- [6] Amal Htait, Sebastien Fournier, Patrice Bellot, "LSIS at SemEval-2016 Task 7: Using Web Search Engines for English and Arabic Unsupervised Sentiment Intensity Prediction", Proceedings of SemEval-2016, California, pp 481–485, 2016
- [7] Xiaojun Wan, "Co-Training for Cross-Lingual Sentiment Classification", Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, Singapore, pp 235–243, 2009
- [8] Julian Brooke, Milan Tofiloski, Maite Taboada, "Cross-Linguistic Sentiment Analysis: From English to Spanish", International Conference RANLP 2009 - Borovets, Bulgaria, pp 50–54, 2009
- [9] Tao Jiang, Jing Jiang, Yugang Dai, Ailing Li, "Micro-blog Emotion Orientation Analysis Algorithm Based on Tibetan and Chinese Mixed Text", International Symposium on Social Science (ISSS 2015), 2015
- [10] Tan, S.; Zhang, J., "An empirical study of sentiment analysis for Chinese documents", Expert Systems with Applications (2007), doi:10.1016/j.eswa.2007.05.028, 2007
- [11] Weifu Du, Songbo Tan, Xueqi Cheng, Xiaochun Yun, "Adapting Information Bottleneck Method for Automatic Construction of Domain-oriented Sentiment Lexicon", WSDM'10, New York, USA, 2010
- [12] Ziqing Zhang, Qiang Ye, Wenying Zheng, Yijun Li, "Sentiment Classification for in Consumer Word-of-Mouth Chinese: Comparison between Supervised and Approaches", Unsupervised The 2010 International Conference E-Business on Intelligence, 2010
- [13] Guangwei Wang, Kenji Araki, "Modifying SO-PMI for Japanese Weblog Opinion Mining by Using a Balancing Factor and Detecting Neutral Expressions", Proceedings of NAACL HLT 2007, Companion Volume, NY, pp 189– 192, 2007
- [14] Shi Feng, Le Zhang, Binyang Li Daling Wang, Ge Yu, Kam-Fai Wong, "Is Twitter A Better Corpus for Measuring Sentiment Similarity?", Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, USA, pp 897–902, 2013
- [15] Nguyen Thi Thu An, Masafumi Hagiwara, "Adjective-Based Estimation of Short

Sentence's Impression", (KEER2014) Proceedings of the 5th Kanesi Engineering and Emotion Research; International Conference; Sweden, 2014

- [16] Nihalahmad R. Shikalgar, Arati M. Dixit, "JIBCA: Jaccard Index based Clustering Algorithm for Mining Online Review", International Journal of Computer Applications (0975 – 8887), Volume 105 – No. 15, 2014
- [17] Xiang Ji, Soon Ae Chun, Zhi Wei, James Geller, "Twitter sentiment classification for measuring public health concerns", Soc. Netw. Anal. Min. (2015) 5:13, DOI 10.1007/s13278-015-0253-5, 2015
- [18] Nazlia Omar, Mohammed Albared, Adel Qasem Al-Shabi, Tareg Al-Moslmi, "Ensemble of Classification Algorithm for Subjectivity and Sentiment Analysis of Arabic Customers' Reviews", International Journal of Advancements in Computing Technology (IJACT), Volume 5, 2013
- [19] Huina Mao, Pengjie Gao, Yongxiang Wang, Johan Bollen, "Automatic Construction of Financial Semantic Orientation Lexicon from Large-Scale Chinese News Corpus", 7th Financial Risks International Forum, Institut Louis Bachelier, 2014
- [20] Yong Ren, Nobuhiro Kaji, Naoki Yoshinaga, Masaru Kitsuregaw, "Sentiment Classification In Under-Resourced Languages Using Graph-Based Semi-Supervised Learning Methods", Ieice Trans. Inf. & Syst., Vol.E97–D, No.4, Doi: 10.1587/Transinf.E97.D.1, 2014
- [21] Oded Netzer, Ronen Feldman, Jacob Goldenberg, Moshe Fresko, "Mine Your Own Business: Market-Structure Surveillance Through Text Mining", Marketing Science, Vol. 31, No. 3, pp 521-543, 2012
- [22]Yong Ren, Nobuhiro Kaji, Naoki Yoshinaga, Masashi Toyoda, Masaru Kitsuregawa, "Sentiment Classification in Resource-Scarce Languages by using Label Propagation", Proceedings of the 25th Pacific Asia Conference on Language, Information and Computation, Institute of Digital Enhancement of Cognitive Processing, Waseda University, pp 420 – 429, 2011
- [23] José Alfredo Hernández-Ugalde, Jorge Mora-Urpí, Oscar J. Rocha, "Genetic relationships among wild and cultivated populations of peach palm (Bactris gasipaes Kunth, Palmae): evidence for multiple independent domestication events", Genetic Resources and

ISSN: 1992-8645 www.jatit.org

E-ISSN: 1817-3195

Crop Evolution, Volume 58, Issue 4, pp 571-583, 2011

- [24] Julia V. Ponomarenko, Philip E. Bourne, Ilya N. Shindyalov, "Building an automated classification of DNA-binding protein domains", BIOINFORMATICS, Vol. 18, pp S192-S201, 2002
- [25] Andréia da Silva Meyer, Antonio Augusto Franco Garcia, Anete Pereira de Souza, Cláudio Lopes de Souza Jr, "Comparison of similarity coefficients used for cluster analysis with dominant markers in maize (Zea maysL) ", Genetics and Molecular Biology, 27, 1, 83-91, 2004
- [26] Snežana MLADENOVIĆ DRINIĆ, Ana NIKOLIĆ, Vesna PERIĆ, "Cluster Analysis Of Soybean Genotypes Based On RAPD Markers", Proceedings. 43rd Croatian And 3rd International Symposium On Agriculture. Opatija. Croatia, 367- 370, 2008
- [27] Tamás, Júlia; Podani, János; Csontos, Péter, "An extension of presence/absence coefficients to abundance data:a new look at absence", Journal of Vegetation Science 12: 401-410, 2001
- [28] Vo Ngoc Phu, Vo Thi Ngoc Chau, Vo Thi Ngoc Tran, Nguyen Duy Dat, "A Vietnamese adjective emotion dictionary based on language exploitation of Vietnamese characteristics", International Journal of Artificial Intelligence Review (AIR), doi:10.1007/s10462-017-9538-6, 67 pages, 2017
- [29] Vo Ngoc Phu, Vo Thi Ngoc Chau, Nguyen Duy Dat, Vo Thi Ngoc Tran, Tuan A. Nguyen, "A Valences-Totaling Model for English Sentiment Classification", International Journal of Knowledge and Information Systems, DOI: 10.1007/s10115-017-1054-0, 30 pages, 2017
- [30] Vo Ngoc Phu, Vo Thi Ngoc Chau, Vo Thi Ngoc Tran, "Shifting Semantic Values of English Phrases for Classification", International Journal of Speech Technology (IJST), 10.1007/s10772-017-9420-6, 28 pages, 2017
- [31] Vo Ngoc Phu, Vo Thi Ngoc Chau, Vo Thi Ngoc Tran, Nguy Duy Dat, Khanh Ly Doan Duy, "A Valence-Totaling Model for Vietnamese Sentiment Classification", International Journal of Evolving Systems (EVOS), DOI: 10.1007/s12530-017-9187-7, 47 pages, 2017
- [32] Vo Ngoc Phu, Vo Thi Ngoc Chau, Vo Thi Ngoc Tran, Nguyen Duy Dat, Khanh Ly Doan Duy, "Semantic Lexicons of English Nouns for Classification", International Journal of

- Evolving Systems, DOI: 10.1007/s12530-017-9188-6, 69 pages, 2017
- [33]English Dictionary of Lingoes, http://www.lingoes.net/, 2017
- [34] Oxford English Dictionary, http://www.oxforddictionaries.com/, 2017
- [35] Cambridge English Dictionary, http://dictionary.cambridge.org/, 2017
- [36]Longman English Dictionary, http://www.ldoceonline.com/, 2017
- [37]Collins English Dictionary, http://www.collinsdictionary.com/dictionary/en glish, 2017
- [38] MacMillan English Dictionary http://www.macmillandictionary.com/, 2017
- [39] Tian Zhang, Raghu Ramakrishnan, Miron Livny, "BIRCH: an efficient data clustering method for very large databases", SIGMOD '96 Proceedings of the 1996 ACM SIGMOD international conference on Management of data, Pages 103-114, Montreal, Quebec, Canada, 1996
- [40]Tian Zhang, Raghu Ramakrishnan, Miron Livny, "BIRCH: A New Data Clustering Algorithm and Its Applications", Data Mining and Knowledge Discovery, Volume 1, Issue 2, pp 141–182, 1997
- [41]Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu, "Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications", Data Mining and Knowledge Discovery, Volume 2, Issue 2, pp 169–194, 1998
- [42] P.A Vijaya, M Narasimha Murty, D.K Subramanian, "Leaders–Subleaders: An efficient hierarchical clustering algorithm for large data sets. Pattern Recognition Letters, https://doi.org/10.1016/j.patrec.2003.12.013, Volume 25, Issue 4, Pages 505-513, 2004
- [43]Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu, "Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications", Data Mining and Knowledge Discovery, Volume 2, Issue 2, pp 169–194, 1998
- [44]Marcel R. Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot, Christiane Lammersen, Christian Sohler, "StreamKM++: A clustering algorithm for data streams", Journal of Experimental Algorithmics (JEA), Volume 17, 2012, Article No. 2.4, ACM New York, NY, USA, 2012

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

<u>www.jatit.org</u>

- [45]Seung-Seok Choi, Sung-Hyuk Cha, Charles C. Tappert, "A Survey Of Binary Similarity And Distance Measures", Systemics, Cybernetics And Informatics, Issn: 1690-4524, Volume 8 -Number 1, 2010
- [46] Bruce M. Campbell, "Similarity coefficients for classifying relevés", Vegetatio, Volume 37, Issue 2, pp 101–109, 1978
- [47] Rodham E. Tulloss, "Assessment of Similarity Indices for Undesirable Properties and a new Tripartite Similarity Index Based on Cost Functions", Offprint from Palm, M. E. and I. H. Chapela, eds. 1997. MG2Cology in Sustainable Development: Expanding Concepts, Vanishing Borders. (Parkway Publishers, Boone, North Carolina): 122-143, 1997
- [48] Sung-Hyuk Cha, "Comprehensive Survey On Distance/Similarity Measures Between Probability Density Functions", International Journal Of Mathematical Models And Methods In Applied Sciences, Issue 4, Volume 1, 2007
- [49]Zdenek Hubálek, "Coefficients Of Association And Similarity, Based On Binary (Presence-Absence) Data: An Evaluation", Biological Reviews, Volume 57, Issue 4, Pages 669–689, DOI: 10.1111/j.1469-185X.1982.tb00376.x, 1982
- [50]Sony Hartono Wijaya, Farit Mochamad Afendi, Irmanida Batubara, Latifah K. Darusman, Md Altaf-Ul-Amin, Shigehiko Kanaya, "Finding an appropriate equation to measure similarity between binary vectors: Case studies on Indonesian and Japanese herbal medicines", BMC Bioinformatics BMC series – open, inclusive and trusted 2016 17:520, https://doi.org/10.1186/s12859-016-1392-z, 2016
- [51]Vaibhav Kant Singh, Vinay Kumar Singh, "Vector Space Model: An Information Retrieval System", Int. J. Adv. Engg. Res. Studies/IV/II/Jan.-March,2015/141-143, 2015
- [52]Víctor Carrera-Trejo, Grigori Sidorov, Sabino Miranda-Jiménez, Marco Moreno Ibarra and Rodrigo Cadena Martínez, "Latent Dirichlet Allocation complement in the vector space model for Multi-Label Text Classification", International Journal of Combinatorial Optimization Problems and Informatics, Vol. 6, No. 1, pp. 7-19, 2015
- [53]Pascal Soucy, Guy W. Mineau, "Beyond TFIDF Weighting for Text Categorization in the Vector Space Model", Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 1130-1135, USA, 2015

- [54] Basant Agarwal, Namita Mittal, "Machine Learning Approach for Sentiment Analysis", Prominent Feature Extraction for Sentiment Analysis, Print ISBN 978-3-319-25341-1, 10.1007/978-3-319-25343-5_3, 21-45, 2016
- [55] Basant Agarwal, Namita Mittal, "Semantic Orientation-Based Approach for Sentiment Analysis", Prominent Feature Extraction for Sentiment Analysis, Print ISBN 978-3-319-25341-1, 10.1007/978-3-319-25343-5_6, 77-88, 2016
- [56] Sérgio Canuto, Marcos André, Gonçalves, Fabrício Benevenuz, "Exploiting New Sentiment-Based Meta-level Features for Effective Sentiment Analysis", Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (WSDM '16), 53-62, New York USA, 2016
- [57] Shoiab Ahmed, Ajit Danti, "Effective Sentimental Analysis and Opinion Mining of Web Reviews Using Rule Based Classifiers", Computational Intelligence in Data Mining, Volume 1, Print ISBN 978-81-322-2732-8, DOI 10.1007/978-81-322-2734-2_18, 171-179, India, 2016
- [58] Vo Ngoc Phu, Phan Thi Tuoi, "Sentiment classification using Enhanced Contextual Valence Shifters", International Conference on Asian Language Processing (IALP), 224-229, 2014
- [59] Vo Thi Ngoc Tran, Vo Ngoc Phu and Phan Thi Tuoi, "Learning More Chi Square Feature Selection to Improve the Fastest and Most Accurate Sentiment *Classification*", The Third Asian Conference on Information Systems (ACIS 2014), 2014
- [60] Nguyen Duy Dat, Vo Ngoc Phu, Vo Thi Ngoc Tran, Vo Thi Ngoc Chau, "STING Algorithm used English Sentiment Classification in A Parallel Environment", International Journal of Pattern Recognition and Artificial Intelligence, January 2017.
- [61] Vo Ngoc Phu, Nguyen Duy Dat, Vo Thi Ngoc Tran, Vo Thi Ngoc Tran, "Fuzzy C-Means for English Sentiment Classification in a Distributed System", International Journal of Applied Intelligence (APIN), DOI: 10.1007/s10489-016-0858-z, 1-22, November 2016.
- [62] Vo Ngoc Phu, Chau Vo Thi Ngoc, Tran Vo THi Ngoc, Dat Nguyen Duy, "A C4.5 algorithm for english emotional classification", Evolving Systems, pp 1-27, doi:10.1007/s12530-017-9180-1, April 2017.

www.jatit.org

© 2005 - ongoing JATIT & LLS

[63] Vo Ngoc Phu, Vo Thi Ngoc Chau, Vo Thi Ngoc Tran, "SVM for English Semantic Classification in Parallel Environment", International Journal of Speech Technology (IJST), 10.1007/s10772-017-9421-5, 31 pages, May 2017.

ISSN: 1992-8645

[64] Vo Ngoc Phu, Vo Thi Ngoc Tran, Vo Thi Ngoc Chau, Nguyen Duy Dat, Khanh Ly Doan Duy, "A Decision Tree using ID3 Algorithm for English Semantic Analysis", International Journal of Speech Technology (IJST), DOI: 10.1007/s10772-017-9429-x, 23 pages, 2017

eng

ine Bin g sear

ch

eng ine No Me ntio n

Go ogl e

No Me ntio n

ISSN: 1992-8645

APPENDICES

www.jatit.org

 E-ISSN: 1817-3195

	υn	-E0																
Table	1: C		arison: e work					results	with									
GOWE	R-2 (. 10	[1 5	2].										
Semant						ent c	lass	ification	n: SC									
Stu	Р	J	La	S	D	G	S	Oth	Sea									
die s	M I	Μ	ngu age	D	Т	2 C	С	er mea sure s	rch eng ine s	[7]	Y e s	N o	Eng lish Chi nes	Y e s	Y e s	N o	Y e s	SV M(C N); SV
[1]	Y e s	N o	Eng lish	Y e s	Y e s	N o	Y e s	No	No Me ntio n				e					M(E N); SV M(E
[2]	Y e s	N o	Eng lish	Y e s	N o	N o	Y e s	Late nt Sem antic Anal ysis (LS A)	Alt aVi sta									NC N1); SV M(E NC N2); TSV M(C N);
[3]	Y e s	N o	Eng lish	Y e s	Y e s	N o	Y e s	Base line; Turn ey- inspi red; NB; Clus ter+ NB; Hum an	Alt aVi sta									N); TSV M(E N); TSV M(E NC N1); TSV M(E NC N2); CoT
[4]	Y e s	N o	Eng lish Ger ma n	Y e s	Y e s	N o	Y e s	Sim Ran k	Go ogl e sear ch eng ine	[8]	Y e s	N o	Eng lish Spa nis h	Y e s	Y e s	N o	Y e s	rain SO Calc ulati on SV M
[5]	Y e s	N o	Eng lish Ma ced oni an	Y e s	Y e s	N o	Y e s	No Men tion	Alt aVi sta sear ch eng ine	[9]	Y e s	N o	Chi nes e Tib eta n	Y e s	Y e s	N o	Y e s	- Feat ure selec tion -
[6]	Y e s	N o	Eng lish Ara bic	Y e s	N o	N o	Y e s	No Men tion	Go ogl e sear ch									Expe ctati on Cros s

a.

Go ogl

e

sear cheng ine

Go ogl

e

No

Me

ntio

n

Go

ogl

e

www.jatit.org

ISSN: 1992-8645

E-ISSN: 1817-3195

514.13	//2-0	045							www.jai		<u>ng</u>						1	5-15	514. 101
								Entr		[
								opy - Infor mati on Gain			[14]	Y e s	Y e s	Eng lish	Y e s	Y e s	N o	Y e s	Dice ; NG D
)	Y e s	N o	Chi nes e	Y e s	Y e s	N o	Y e s	DF, CHI, MI andI G	No Me ntio n		[15]	Y e s	Y e s	Eng lish	Y e s	N o	N o	Y e s	Dice ; Over lap
1	Y e s	N o	Chi nes e	Y e s	N o	N o	Y e s	Infor mati on Bottl enec k Met hod (IB); LE	Alt aVi sta		[16]	N o	Y e s	Eng lish	Y e s	Y e s	N o	Y e s	A Jacc ard inde x base d clust ering algor
2	Y e s	N o	Chi nes e	Y e s	Y e s	N o	Y e s	SV M	Go ogl e Ya hoo Bai du		[17]	N o	Y e s	Eng lish	Y e s	Y e s	N o	Y e s	ithm (JIB (A) Naiv e Baye s,
3	Y e s	N o	Jap ane se	No		N o	Yes	Har moni c-M ean	Go ogl e and repl ace d the NE AR ope rato r wit h the AN D ope rato r inth e SO for mul										- Step Multi inom ial Natve Bayee s, and Two - Step Poly nom al- Kerm el Supp ort Vecto or Mac hine

ISSN: 19	92-80	645							www.ja	tit.	org			
[18	N	Y	Ara	N	N	N	Y	Naiv	No		[30	N	N	E
]	0	e s	bic	0	0	0	e s	e Baye s	Me ntio]	0	0	li
								s (NB)	n		[31	N	Y	V
								, Supp ort			J	0	e s	tn m e
								Vect or			[32	N	N	E
								Mac hine			J	0	0	li
								s (SV			Ou	N	N	E
								M); RoG			r wo	0	0	lis L
								2Chi o; Cosi			rk			gi
[19	N	Y	Chi	Y	Y	N	Y	ne A	Chi					
]	0	e s	nes e	e s	e s	0	e s	new scor	nes e		Table	2.0	omno	risz
		3	C	3	3		3	e–	sear	Г	C	lisad	lvante	ages
								Econ omic	ch		Survey s	Y .	Appr h	
								Valu e			[1]	i	Const ting	
								(EV), etc.				i	sentin t lexicc	
[20]	N o	Y e	Chi nes	Y e	Y e	N o	Y e	Cosi ne	No Me				in Norw	egi
J	0	s	e	s	s	Ū	s	ne	ntio n				a la	rom arge
[21	N	Y	Eng lish	N	Y	N	Y	Cosi	No Me				text corpu	s
J	0	e s	11511	0	e s	0	e s	ne	ntio n					
[22]	N o	Y e	Chi nes	N o	Y e	N o	Y e	Dice	No Me					
J	U	s	e	Ū	s	Ū	s	, overl	ntio					
								ap; Cosi ne	n					
[28	N	N	Vie tna	N o	N o	N o	Y	Ochi ai	Go					
]	0	0	tha mes e	0	0	0	e s	ai Mea sure	ogl e					
[29	N	N	Eng	N	N	N	Y	Cosi	Go					
]	0	0	lish	0	0	0	e s	ne coeff icien t	ogl e					

[30	Ν	Ν	Eng	Ν	Ν	Ν	Y	Sore	Go
]	0	0	lish	0	0	0	e	nsen	ogl
							s	meas	e
								ure	
[31	Ν	Y	Vie	Ν	Ν	Ν	Y	Jacc	Go
]	0	e	tna	0	0	0	e	ard	ogl
		s	mes				s		e
			e						
[32	Ν	Ν	Eng	Ν	Ν	Ν	Y	Tani	Go
1	0	0	lish	0	0	0	e	moto	ogl
-							s	coeff	e
								icien	
								t	
Ou	Ν	Ν	Eng	Ν	Ν	Y	Y	No	Go
r	0	0	lish	0	0	e	e		ogl
wo			Lan			s	s		e
rk			gua						sear
			ge						ch
									eng
									ine

sons of our model's advantages and es with the works related to [1-32].

	Survey s	Approac h	Advantages	Disadva ntages
, ,	-		Advantages Through the authors' PMI computations in this survey they used a distance of 100 words from the seed word, but it might be that other lengths that generate better sentiment lexicons. Some of the authors' preliminary research showed that 100 gave a better result.	
				they are the basis
				for PMI calculati on, it might be a lot to
				gain by

SSN: 1992-86	645		www.j	atit.or	<u>'g</u>		E-ISSN	1: 1817-319
[2] U v L o S C o a H H -I	Jnsuper ised earning f emantic Drientati n from	This survey has presented a general strategy for learning semantic orientation from semantic association, SO-A. Two instances of this strategy have been empirically evaluated, SO-	finding better seed words. The authors would like to explore the impact that different approach es to seed word selection have on the performa nce of the develope d sentimen t lexicons.			tion for informal online political discourse	political orientation of posters in an informal environment. The authors' results indicate that the most promising approach is to augment text classification methods by exploiting information about how posters interact with each other	investigate in terms o optimizi ng thi linguistid analysis, beginnin g witi spelling correctico n and working up to shallow parsing and co reference identifica- tion. Likewise , it will also b worthwh ile to further investigate exploiting g sentimer t value of phrases and clauses, taking cues from methods
	Corpus.	PMI-IR and SO- LSA. The accuracy of SO- PMI-IR is comparable to the accuracy of HM, the algorithm of Hatzivassiloglou and G2CKeown (1997). SO-PMI- IR requires a large corpus, but it is simple, easy to implement, unsupervised, and it is not restricted to adjectives.			[4]	A novel, graph- based approach using SimRank	The authors presented a novel approach to the translation of sentiment information that outperforms SOPMI, an established method. In particular, the authors could show that SimRank outperforms SO- PMI for values of the threshold x in	The authors' future work will include further examination the merits of its applicat on for knowled ge-spars
b	draph- ased ser lassifica	The authors describe several experiments in identifying the	There is still much left to				an interval that most likely leads to the correct separation of positive, neutral,	languag s.

www.jatit.org

ISSN: 1992-8645

E-ISSN: 1817-3195

		and negative					studying
[5]	Analysis in Twitter for Macedon ian	and negative adjectives. The authors' experimental results show an F1-score of 92.16, which is very strong and is on par with the best results for English, which were achieved in recent SemEval	In future work, the authors are intereste d in studying the impact of the raw	[6]	Using Web Search	- For the General English sub-task, the authors' system	studying the quality of the individua l words and phrases used as seeds. Although the results
		competitions.	corpus size, e.g., the authors could only collect half a million tweets for creating lexicons and analyzin g/evaluat ing the system, while Kiritchen ko et al. (2014) built their lexicon on million tweets		Engines for English and Arabic Unsuper vised Sentimen t Intensity Predictio n	has modest but interesting results. - For the Mixed Polarity English sub-task, the authors' system results achieve the second place. - For the Arabic phrases sub-task, the authors' system has very interesting results since they applied the unsupervised method only	results are encourag ing, further investiga tion is required, in both language s, concerni ng the choice of positive and negative words which once associate d to a phrase, they make it more negative.
			and evaluate d their system on 135 million English tweets. Moreove r, the authors are intereste d not only in quantity but also in quality, i.e., in	[7]	Co- Training for Cross- Lingual Sentimen t Classific ation	The authors propose a co- training approach to making use of unlabeled Chinese data. Experimental results show the effectiveness of the proposed approach, which can outperform the standard inductive classifiers and the transductive classifiers.	In future work, the authors will improve the sentimen t classifica tion accuracy in the followin g two ways: 1) The smoothe d co- training

ISSN: 1992-8645		www.j	atit.org		E-ISSN	N: 1817-3195
		approach used in (Mihalce a, 2004) will be adopted for sentimen t classifica tion. 2) The authors will employ the structural correspo ndence learning (SCL) domain adaption algorith m used in (Blitzer et al., 2007) for linking the translate d text and the natural text.		Orientati on Analysis Algorith m Based on Tibetan and Chinese Mixed Text	studying of Tibetan microblog which is concerned in Sina, making Tibetan Chinese emotion dictionary, Chinese sentences, Tibetan part of speech sequence and emotion symbol as emotion factors and using expected cross entropy combined fuzzy set to do feature selection to realize a kind of microblog emotion orientation analyzing algorithm based on Tibetan and Chinese mixed text. The experimental results showed that the method can obtain better performance in Tibetan and Chinese mixed Microblog orientation analyzing	
[8] Cross- Linguist c Sentime: t Analysis From English to Spanish	n (SOCAL) is clearly inferior to the authors'	No Mention	[10]	An empirical study of sentimen t analysis for Chinese documen ts	Four feature selection methods (MI, IG, CHI and DF) and five learning methods (centroid classifier, K-nearest neighbor, winnow classifier, Naïve Bayes and SVM) are investigated on a Chinese sentiment corpus with a size of 1021 documents. The experimental results indicate that IG performs the best for sentimental terms selection and SVM exhibits the best	No Mention
[9] Micro- blog Emotion	By emotion orientation analyzing and	No Mention			performance for sentiment classification. Furthermore, the	

www.jatit.org

ISSN: 1992-8645

E-ISSN: 1817-3195

	1					much a C (' '	ı
		authors found that sentiment				number of training examples is	
		classifiers are				smaller than 300.	
		severely dependent					
		on domains or		[13]	Modifyin	After these	In the
		topics.			g SO- PMI for	modifications, the authors achieved a	future, the
[11]	Adapting	The authors'	In this		Japanese	well-balanced	authors
[11]	Informati	theory verifies the	study,		Weblog	result: both	will
	on	convergence	only the		Opinion	positive and	evaluate
	Bottlene	property of the	mutual		Mining	negative accuracy	different
	ck	proposed method.	informati		by Using	exceeded 70%.	choices
	Method	The empirical	on		a D 1	This shows that the	of words
	for Automati	results also support the authors'	measure is		Balancin g Factor	authors' proposed approach not only	for the sets of
	c	theoretical	employe		and	adapted the SO-	positive
	Construc	analysis. In their	d to		Detectin	PMI for Japanese,	and
	tion of	experiment, it is	measure		g Neutral	but also modified	negative
	Domain-	shown that	the three		Expressi	it to analyze	reference
	oriented	proposed method	kinds of		ons	Japanese opinions	words.
	Sentimen	greatly outperforms the	relations hip. In			more effectively.	The
	t Lexicon	outperforms the baseline methods	hip. In order to				authors also plan
	Lexicon	in the task of	show the				to
		building out-of-	robustne				appraise
		domain sentiment	ss of the				their
		lexicon.	framewo				proposal
			rk, the authors'				on other
			future				language s.
			effort is				
			to	[14]	In this	Experiment results	No
			investiga		survey, the	show that the Twitter data can	Mention
			te how to		authors	achieve a much	
			integrate		empirical	better performance	
			more measures		ly	than the Google,	
			into this		evaluate	Web1T and	
			framewo		the	Wikipedia based	
			rk.		performa nce of	methods.	
[12]	Sentimen	This study adopts	No		different		
[*-]	t	three supervised	Mention		corpora		
	Classific	learning			in		
	ation for	approaches and a			sentimen		
	Consume	web-based			t		
	r Word- of-	semantic orientation			similarit y		
	Mouth in	approach, PMI-IR,			y measure		
	Chinese:	to Chinese			ment,		
	Compari	reviews. The			which is		
	son	results show that			the		
	between	SVM outperforms			fundame ntal task		
	Supervis ed and	naive bayes and N- gram model on			for word		
	Unsuper	various sizes of			polarity		
	vised	training examples,			classifica		
	Approac	but does not			tion.		
	hes	obviously exceeds		[15]	Adjectiv	The adjectives are	In the
		the semantic		[13]	e-Based	ranked and top na	authors'
		orientation approach when the			Estimati	adjectives are	future
	I	approach when the			on of	considered as an	work,

www.jatit.org

ISSN: 1992-8645

155N: 1992	-0043		www.j	am.	<u>.01g</u>		E-1551	1817-3195
	Short Sentence 's Impressi on	output of system. For example, the experiments were carried out and got fairly good results. With the input "it is snowy", the results are white (0.70), light (0.49), cold (0.43), solid (0.38), and scenic (0.37)	they will improve more in the tasks of keyword extractio n and semantic similarit y methods to make the proposed system working well with complex inputs		[18]	Ensembl	attempt to correlate peaks of the MOC timeline to the peaks of the News (Non-Personal) timeline. The authors' best accuracy results are achieved using the two-step method with a Naïve Bayes classifier for the Epidemic domain (six datasets) and the Mental Health domain (three datasets).	No
[16]	Jaccard Index based Clusterin g Algorith m for Mining Online Review	In this work, the problem of predicting sales performance using sentiment information mined from reviews is studied and a novel JIBCA Algorithm is proposed and mathematically modeled. The outcome of this generates knowledge from mined data that	inputs. For future work, by using this framewo rk, it can extend it to predictin g sales performa nce in the other domains like customer		[]	e of Classific ation Algorith m for Subjectiv ity and Sentimen t Analysis of Arabic Custome rs' Reviews	results show that the ensemble of the classifiers improves the classification effectiveness in terms of macro-F1 for both levels. The best results obtained from the subjectivity analysis and the sentiment classification in terms of macro-F1 are 97.13% and 90.95% respectively.	Mention
		can be useful for forecasting sales.	electroni cs, mobile phones, computer s based on the user reviews posted on the websites, etc.		[19]	Automati c Construc tion of Financial Semantic Orientati on Lexicon from Large- Scale Chinese	Semantic orientation lexicon of positive and negative words is indispensable for sentiment analysis. However, many lexicons are manually created by a small number of human subjects, which are susceptible to high	No Mention
[17]	Twitter sentimen t classifica tion for measurin g public health concerns	Based on the number of tweets classified as Personal Negative, the authors compute a Measure of Concern (MOC) and a timeline of the MOC. We	No Mention			News Corpus	cost and bias. In this survey, the authors propose a novel idea to construct a financial semantic orientation lexicon from large-scale Chinese news corpus	

www.jatit.org

		automatically				rich, and useful	
[20]	Sentimen t Classific ation in	In particular, the authors found that choosing initially labeled vertices in	/			body of consumer data readily available on Web 2.0.	
	auton in Under- Resource d Languag es Using Graph- based Semi- supervise d Learning Methods	aG2Cordance with their degree and PageRank score can improve the performance. However, pruning unreliable edges will make things more difficult to predict. The authors believe that other people who are interested in this field can benefit from their empirical findings.	will attempt to use a sophistic ated approach to induce better sentimen t features. The authors consider such elaborate d features improve the classifica tion performa nce, especiall y in the book domain. The authors also plan to exploit a much larger amount of unlabele d data to fully take advantag	[22]	Sentimen t Classific ation in Resource -Scarce Languag es by using Label Propagat ion	The authors compared our method with supervised learning and semi- supervised learning methods on real Chinese reviews classification in three domains. Experimental results demonstrated that label propagation showed a competitive performance against SVM or Transductive SVM with best hyper- parameter settings. Considering the difficulty of tuning hyper-parameters in a resourcescarce setting, the stable performance of parameter-free label propagation is promising.	The authors plan to further improve the performa nce of LP in sentimen t classifica tion, especiall y when the authors only have a small number of labeled seeds. The authors will exploit the idea of restrictin g the label propagati ng steps when the available labeled data is quite small.
[21]	A text- mining approach and	In summary, the authors hope the text-mining and derived market-	Algorith m No Mention		Vietnam ese adjective emotion dictionar y based on	adjectives often bear emotion which values (or semantic scores) are not fixed and are changed when they appear in	calculati ng all Vietnam ese words complete ly; not
	combine it with semantic network analysis tools	structure analysis presented in this paper provides a first step in exploring the extremely large,			exploitati on of Vietnam ese language character	different contexts of these phrases. Therefore, if the Vietnamese adjectives bring sentiment and their	identifyi ng all Vietnam ese adjective phrases

ISSN: 1992-8645		<u>www.</u> j	jatit	.org		E-ISSN	J: 1817-3195
ISSN: 1992-8645 istics istics Igenualized and the second	semantic values (or their sentiment scores) are not changed in any context, then the results of the emotion classification are not high accuracy. The authors propose many rules based on Vietnamese language characteristics to determine the emotional values of the Vietnamese adjective phrases bearing sentiment in specific contexts. The authors' Vietnamese sentiment adjective dictionary is widely used in applications and researches of the Vietnamese semantic classification. The authors present a full range of English sentences; thus, the emotion expressed in the English text is classified with more precision. The authors new model is not dependent on a special domain and training data set— it is a domain- independent classifier. The authors test our new model on the Internet data in English. The calculated valence (and polarity) of English semantic	www.j fully, etc. fully, etc.		<u>[30]</u>	Shifting Semantic Values of English Phrases for Classific ation	networks. networks. The results of the sentiment classification are not high accuracy if the English phrases bring the emotions and their semantic values (or their sentiment scores) are not changed in any context. For those reasons, the authors propose many rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts. The results of this work are widely used in applications and researches of the English semantic classification. The authors have	English words in this phrase; it misses many English sentence s which are not processe d fully; and it misses many English documen ts which are not processe d fully. This survey is only applied to the English adverb phrases. The proposed model is needed to research more for the different types of the English adverbs, etc
				[31]	A Valence- Totaling Model for Vietnam ese	The authors have used the VTMfV to classify 30,000 Vietnamese documents which include the 15,000 positive	it has a low accuracy

www.jatit.org

ISSN: 1992-8645

E-ISSN: 1817-3195

					- T						
	Sentimen	Vietnamese						ores)	are		
	t	documents and the						nanged		-	U U
	Classific	15,000 negative					cc	ontext.		The	
	ation	Vietnamese						alences		the	
		documents. The					E	nglish	wore	ds (o	U
		authors have					th	e	E	nglisl	n English
		achieved accuracy					pl	irases)		are	e adverbs,
		in 63.9% of the					id	entifie	d	by	y etc.
		authors'					us	sing	Tan	imoto	5
		Vietnamese testing						oeffici	ent	(TC)
		data set. VTMfV is					th	rough		th	
		not dependent on						oogle		searcl	1
		the special domain.						igine			
		VTMfV is also not						perator			
		dependent on the						perator		The	
		training data set					-	notion		value	
		and there is no					of			nglisl	
		training stage in						oun p			
		this VTMfV. From						ised	on	the	
		the authors' results						nglish			
		in this work, our						English			
		VTMfV can be						aracte			0
		applied in the						aracte	1300	5)	
		different fields of		Our	-	We	use th	e BI	RCH	and	d the one-
		the Vietnamese		work	Ċ	lime	nsional	vector	rs t	o c	lassify one
		natural language			Ċ	locu	ment of t	he test	ting o	lata s	et into either
		processing. In									ative polarity
		addition, the									ment and the
		authors' TCMfV					buted sys				
									d disa	advan	tages of this
		can be applied to									ision section.
		many other					<i>.</i>				
		languages such as									
		Spanish, Korean,		Tahle	3. C	'omn	arisons o	f our n	ndel	's ros	ults with the
		etc. It can also be									cient (G2C) in
		applied to the big		WO	11631	eiui		[45-5		Joejju	<i>cieni</i> (02C) in
		data set sentiment			-	-	~~~	1		-	~ .
		classification in		Stud	Р	J	GO	La	S	D	Sentimen
						•	00			Т	t
		Vietnamese and		ies	Μ	M	WER	ng	D	1	ι
		can classify		ies	M I			ng ua	D	1	Classifica
		can classify millions of the		ies			WER -2	ua	D	1	Classifica
		can classify millions of the Vietnamese		ies			WER -2 coeffi	-	D	1	•
		can classify millions of the		ies			WER -2 coeffi cient	ua	D	1	Classifica
[22]	Samantia	can classify millions of the Vietnamese documents	This	ies			WER -2 coeffi cient (G2C	ua	D	I	Classifica
[32]	Semantic	can classify millions of the Vietnamese documents The proposed rules	This	ies			WER -2 coeffi cient	ua	D	1	Classifica
[32]	Lexicons	can classify millions of the Vietnamese documents The proposed rules based on English	survey is		Ι	Μ	WER -2 coeffi cient (G2C)	ua ge			Classifica tion
[32]	Lexicons of	can classify millions of the Vietnamese documents The proposed rules based on English language	survey is only	ies [45]	I	M	WER -2 coeffi cient (G2C	ua ge En	N	N	Classifica tion No
[32]	Lexicons of English	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to	survey is only applied		I Y e	M Y e	WER -2 coeffi cient (G2C)	ua ge En gli			Classifica tion
[32]	Lexicons of English Nouns	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the	survey is only applied in the		I	M	WER -2 coeffi cient (G2C)	ua ge En	N	N	Classifica tion No
[32]	Lexicons of English Nouns for	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values	survey is only applied in the English	[45]	I Y e s	M Y e s	WER -2 coeffi cient (G2C) Yes	ua ge En gli sh	N M	N M	Classifica tion No mention
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English	survey is only applied in the English noun		I Y e s N	M Y e s N	WER -2 coeffi cient (G2C)	ua ge En gli sh N	N M N	N M N	Classifica tion No mention No
[32]	Lexicons of English Nouns for	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing	survey is only applied in the English noun phrases.	[45]	I Y e s	M Y e s	WER -2 coeffi cient (G2C) Yes	ua ge En gli sh	N M	N M	Classifica tion No mention
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their	survey is only applied in the English noun phrases. The	[45]	I Y e s N o	M Y e s N o	WER -2 coeffi cient (G2C) Yes	ua ge En gli sh N M	N M M	N M N M	Classifica tion No mention No mention
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts.	survey is only applied in the English noun phrases. The proposed	[45]	I Y e s N o N	M Y e s N o N	WER -2 coeffi cient (G2C) Yes	ua ge En gli sh N M	N M M N	N M M N N	Classifica tion No mention No No
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts. The results of the	survey is only applied in the English noun phrases. The proposed model is	[45]	I Y e s N o	M Y e s N o	WER -2 coeffi cient (G2C) Yes	ua ge En gli sh N M	N M M	N M N M	Classifica tion No mention No mention
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts. The results of the sentiment	survey is only applied in the English noun phrases. The proposed model is needed	[45] [46] [47]	I Y e s N o N o	M Y e s N o N o	WER -2 coeffi cient (G2C) Yes Yes	ua ge En gli sh M N M	N M M N M	N M M M M	Classifica tion No mention No mention
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts. The results of the sentiment classification are	survey is only applied in the English noun phrases. The proposed model is needed to	[45]	I Y e s N o N o N	M Y e s N o N o N	WER -2 coeffi cient (G2C) Yes	ua ge En gli sh N M N N N	N M N M N N N	N M N M N N N	Classifica tion No mention No mention No Mo
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts. The results of the sentiment classification are not high accuracy	survey is only applied in the English noun phrases. The proposed model is needed to research	[45] [46] [47]	I Y e s N o N o	M Y e s N o N o	WER -2 coeffi cient (G2C) Yes Yes	ua ge En gli sh M N M	N M M N M	N M M M M	Classifica tion No mention No mention
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts. The results of the sentiment classification are not high accuracy if the English	survey is only applied in the English noun phrases. The proposed model is needed to research more and	[45] [46] [47] [48]	I Y e s N o N o N	M Y e s N o N o N	WER -2 coeffi cient (G2C) Yes Yes	ua ge En gli sh N M N N N	N M N M N N N	N M N M N N N	Classifica tion No mention No mention No Mo
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts. The results of the sentiment classification are not high accuracy if the English phrases bring the	survey is only applied in the English noun phrases. The proposed model is needed to research more and more	[45] [46] [47]	I Y e s N o N o N o N o N	M Y e s N o N o N o	WER -2 coeffi cient (G2C) Yes Yes Yes	ua ge En gli sh M M N M N M	N M M M M M N M	N M N M M N M N N N	Classifica tion No mention No mention No mention No mention
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts. The results of the sentiment classification are not high accuracy if the English phrases bring the emotions and their	survey is only applied in the English noun phrases. The proposed model is needed to research more and more about the	[45] [46] [47] [48] [49]	I Y e s N o N o N o N o N	M Y e s N o N o N o N o N o	WER -2 coeffi cient (G2C) Yes Yes Yes Yes Yes	ua ge En gli sh N M N M N M N M	N M N M N M N M N M	N M M N M N M N M	Classifica tion
[32]	Lexicons of English Nouns for Classific	can classify millions of the Vietnamese documents The proposed rules based on English language grammars to calculate the sentimental values of the English phrases bearing emotion in their specific contexts. The results of the sentiment classification are not high accuracy if the English phrases bring the	survey is only applied in the English noun phrases. The proposed model is needed to research more and more	[45] [46] [47] [48]	I Y e s N o N o N o N o N	M Y e s N o N o N	WER -2 coeffi cient (G2C) Yes Yes Yes	ua ge En gli sh M M N M N M	N M M M M M N M	N M N M M N M N N N	Classifica tion No mention No mention No mention No mention

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Oui woi k			rtion		Undesirable Properties and a new Tripartite Similarity Index Based on Cost Functions	an implementation for, a working similarity index that avoids the difficulties noted for the others.	ion
	drawbacks with th	ons of our model's benefits the studies related to the Go cient (G2C) in [45-50]		[48]	Comprehens ive Survey on Distance/Si milarity	Various distance/similarity measures that are applicable to compare two	No ment ion
Sur vey s	Approach	Benefits	Dra wba cks		Measures between Probability	probabilitydensity functions, pdf in short, are reviewed	
[45]	A Survey of Binary Similarity and Distance Measures	Applying appropriate measures results in more accurate data analysis. Notwithstanding, few comprehensive surveys on binary measures have been conducted. Hence the authors collected 76 binary similarityand distance measures used over the last century and reveal their correlations through the hierarchical	No ment ion	[49]	Density Functions Coefficients Of Association And Similarity, Based On	and categorized inboth syntactic and semantic relationships. A correlation coefficient and a hierarchical clustering technique are adopted to reveal similarities among numerous distance/similarity measures For some purposes, however, other 'admissible' coefficients would be more optimal, and the choice of a	No ment ion
[46]	Similarity coefficients for classifying relevés	clustering technique In this study, the clustering procedure of group average sorting was used to construct the dendrogram. It gives an average similarity value within the dendrogram groups. These values can be used to give quantitative definitions to	No ment ion		Binary (Presence- Absence) Data: An Evaluation	measure should be related to the nature of the data. It is tentatively suggested that three or so alternative coefficients be used and the results compared on the same data basis; moreover, significance tests on association should be carried out whenever possible.	
[47]	Assessment of Similarity Indices for	syntaxonomic rank. The purpose of this study is to motivate, describe, and offer	No ment	[50]	Finding an appropriate equation to measure	The selection of binary similarity and dissimilarity measures for	No ment ion

www.jatit.org

E-ISSN: 1817-3195

	similarity	multivariate analysis	
	between	is data dependent.	
	binary	The proposed	
	vectors: case	method can be used	
	studies on	to find the most	
	Indonesian	suitable binary	
	and	similarity and	
	Japanese	dissimilarity	
	herbal	equation wisely for	
	medicines	a particular data.	
		Our finding suggests	
		that all four types of	
		matching quantities	
		in the Operational	
		Taxonomic Unit	
		(OTU) table are	
		important to	
		calculate the	
		similarity and	
		dissimilarity	
		coefficients between	
		herbal medicine	
		formulas. Also, the	
		binary similarity and	
		dissimilarity	
		measures that	
		include the negative	
		match quantity <i>d</i> achieve better	
		capability to separate herbal	
		medicine pairs	
		compared to	
		equations that	
		exclude <i>d</i> .	
Ou	-We use th	e BIRCH and the	one-
r		vectors to classify	one
wo		he testing data set into	
rk		plarity or the negative p	
		quential environment a	
	distributed sys		
		ges and disadvantages of	of this
		wn in the Conclusion se	
			-

ISSN: 1992-8645

	5	set.	
	Testin g Datase t	Correct Classifica tion	Incorrect Classifica tion
Negative	4,250,0 00	3,732,176	517,824
Positive	4,250,0 00	3,732,524	517,476

	Testin g Datase t	Correct Classifica tion	Incorrect Classifica tion
Summary	8,500,0	7,464,700	1,035,300

Table 6: The accuracy of our new model for the
documents in the testing data set.

Proposed Model	Class	Accuracy
Our novel model	Negative	87.82%
	Positive	

Table 7: Average time of the classification of our new
model for the English documents in testing data set.

	Average time of the classification /8,500,000 documents.
The GOWER-2 coefficient (G2C) in the sequential environment	37,142,852 seconds
The GOWER-2 coefficient (G2C) in the Cloudera distributed system with 3 nodes	11,047,614 seconds
The GOWER-2 coefficient (G2C) in the Cloudera distributed system with 6 nodes	6,324,807 seconds
The GOWER-2 coefficient (G2C) in the Cloudera distributed system with 9 nodes	4,139,204 seconds

Table 8: Comparisons of our model's results with the works in [39-44]

Clustering technique: CT. Parallel network system: PNS (distributed system). Special Domain: SD. Depending on the training data set: DT. Vector Space Model: VSM No Mention: NM

English Language: EL.

Stu dies	G2 C	C T	Senti ment Class ificat ion	P N S	S D	D T	Lan gua ge	VS M
[39]	No	Ν	No	Ν	Y	Ν	EL	Yes
		0		0	e	0		
					S			
[40]	No	Ν	Yes	Ν	Y	Ν	EL	Yes

		0		0	e	0		
					S			
[41]	No	Ν	Yes	Ν	Y	Y	EL	Yes
		0		0	e	e		
					S	S		
[42]								
[43]								
[44]								
Our	Ye	Y	Yes	Y	Ν	Ν	EL	Yes
wor	s	e		e	0	0		
k		S		s				

ISSN: 1992-8645

Table 9: Comparisons of our model's advantages and
disadvantages with the works in [39-44]

Res	Approach	Advantages	Disad	
ear			vanta	
che			ges	
S				
[39	BIRCH: an	This survey	No	
]	efficient	presents a data	menti	
	data	clustering method	on	
	clustering	named BIRCH		
	method for	(Balanced		
	very large	Iterative Reducing		
	databases	and Clustering		
		using		
		Hierarchies), and		
		demonstrates that		
		it is especially		
		suitable for very		
		large databases.		
		BIRCH		
		incrementally and		
		dynamically		
		clusters incoming		
		multi-dimensional		
		metric data points		
		to try to produce		
		the best quality		
		clustering with the		
		available		
		resources (i.e.,		
		available memory		
		and time		
		constraints).		
		BIRCH can		
		typically find a		
		good clustering		
		with a single scan		
		of the data, and		
		improve the		
		quality further		
		with a few		
		additional scans.		
		BIRCH is also the		
		first clustering		L

-					JAIN
<u>www.ja</u>	tit.c	rg		E-ISSN: 1	817-3195
Yes				algorithm proposed in the database area to handle "noise" (data points that are not part of the underlying	
Yes				pattern) effectively. The authors evaluate BIRCH's time/space	
es and 4] Disad vanta				efficiency, data input order sensitivity, and clustering quality	
ges No menti				through several experiments. The authors also present a	
on				performance comparisons of BIRCH versus CLARANS, a clustering method proposed recently for large datasets,	
				and show that BIRCH is consistently superior.	
		[40]	BIRCH: A New Data Clustering Algorithm and Its Application s	In this survey, an efficient and scalable data clustering method is proposed, based on a new in- memory data structure called CF-tree, which serves as an in- memory summary of the data distribution. The authors have implemented it in a system called BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies), and studied its performance extensively in	No menti on

www.jatit.org

ISSN: 1992-8645

E-ISSN: 1817-3195

[41]]	Density- Based Clustering in Spatial Databases: The Algorithm GDBSCA N and Its Application s	terms of memory requirements, running time, clustering quality, stability and scalability; the authors also compare it with other available methods. Finally, BIRCH is applied to solve two real- life problems: one is building an iterative and interactive pixel classification tool, and the other is generating the initial codebook for image compression. In this survey, the authors generalize this algorithm in two important directions. The generalized algorithm—called GDBSCAN—can cluster point objects as well as spatially extended objects according to both, their spatial and their nonspatial attributes. In addition, four applications using 2D points (astronomy), 3D points (biology), 5D points (earth science) and 2D	No menti on	[43]	An efficient hierarchical clustering algorithm for large data sets Density- Based Clustering in Spatial Databases: The Algorithm GDBSCA N and Its Application s	clustering algorithm— 'Leaders– Subleaders', an extension of the leader algorithm is presented. Classification accuracy (CA) obtained using the representatives generated by the Leaders– Subleaders method is found to be better than that of using leaders as representatives. Even if more number of prototypes are generated, classification time is less as only a part of the hierarchical structure is searched. In this survey, the authors generalize this algorithm in two important directions. The generalized algorithm—called GDBSCAN—can cluster point objects as well as spatially extended objects according to both, their spatial and their nonspatial attributes. In addition	on No menti on
[42	Leaders-	addition, four applications using 2D points (astronomy), 3D points (biology), 5D points (earth	No		Application	objects as well as spatially extended objects according to both, their spatial and their nonspatial	
Ĺ	Subleaders:	two level	menti			presented,	

www.jatit.org

E-ISSN: 1817-3195

		demonstrating the applicability of GDBSCAN to real-world problems.	
[44]]	StreamKM ++: A clustering algorithm for data streams	The authors compare the atuhors' algorithm experimentally with two well- known streaming implementations: BIRCH and StreamLS. In terms of quality (sum of squared errors), the authors' algorithm is comparable with StreamLS and significantly better than BIRCH (up to a factor of 2). Besides, BIRCH requires significant effort to tune its parameters. In terms of running time, the authors' algorithm is slower than BIRCH. Comparing the running time with StreamLS, it turns out that the authors' algorithm scalesmuch better with increasing number of centers. The authors conclude that, if the first priority is the quality of the clustering, then the authors' algorithm first provides a good alternative to BIRCH and StreamLS, in particular, if the number of cluster	No menti on

	centers is large. The authors also give a theoretical justification of the authors' approach by proving that the authors' sample set is a small coreset in low-dimensional
	spaces.
Ou	-We use the BIRCH and the one-
r	dimensional vectors to classify one
wo	document of the testing data set into
rk	either the positive polarity or the negative
	polarity in both the sequential
	environment and the distributed system.
	-The advantages and disadvantages of the
	proposed model are shown in the
	Conclusion section.

Table 10: 0	Comparisons	of our	model's	results with the
	wo	orks in	[51-53]	

Studi es	G 2 C	C T	Sen tim ent Cla ssifi cati on	PN S	SD	DT	La ng ua ge	V S M
[51]	Ν	Ν	No	No	Yes	No	EL	Y
	0	0						e
								S
[52]	Ν	Ν	Yes	No	Yes	No	EL	Y
	0	0						e
								S
[53]	Ν	Ν	Yes	No	Yes	Yes	EL	Y
	0	0						e
								S
Our	Y	Y	Yes	Yes	No	No	EL	Y
work	e	e						e
	S	S						S

Table 11: Comparisons of our model's advantages and	
disadvantages with the works in [51-53]	

Rese arch es	Approach	Advantages	Disadv antages
[51]	Examining	In this work, the	The
	the vector	authors have given	drawba
	space	an insider to the	cks are
	model, an	working of vector	that the
	information	space model	system
	retrieval	techniques used for	yields
	technique	efficient retrieval	no
	and its	techniques. It is the	theoreti

www.jatit.org

ISSN: 1992-8645

15514. 199			<u>w w w.ja</u>	 			
	variation	bare fact that each	cal		n tasks and	subset of multi-	
	variation	system has its own	findings			labeled files of the	
		2	maings		apply		
		strengths and	• •		various	Reuters-21578	
		weaknesses. What	Weight		feature sets.	corpus. The authors	
		we have sorted out	S .		+Several	use traditional TF-	
		in the authors' work	associat		combinatio	IDF values of the	
		for vector space	ed with		ns of	features and tried	
		modeling is that the	the		features,	both considering	
		model is easy to	vectors		like bi-	and ignoring stop	
		understand and	are very		grams and	words. The authors	
		cheaper to	arbitrar		uni-grams.	also tried several	
		implement,	y, and			combinations of	
		considering the fact	this			features, like bi-	
		that the system	system			grams and uni-	
		should be cost	is an			grams. The authors	
		effective (i.e.,	indepen			also experimented	
		should follow the	dent			with adding LDA	
		space/time	system,			results into vector	
		constraint. It is also	thus			space models as	
		very popular.	requirin			new features. These	
		Although the system	g			last experiments	
		has all these	separate			obtained the best	
		properties, it is	attentio			results.	
		facing some major	n.	[52]	The K-	In this study, the	Despite
		drawbacks.	Though	[53]	Nearest	authors introduce a	positive
			it is a		Neighbors	new weighting	results
			promisi		algorithm	method based on	in some
			ng		for English	statistical estimation	settings
			techniq		sentiment	of the importance of	settings
			ue, the		classificatio	a word for a specific	, GainRa
			current		n in the	categorization	tio
			level of		Cloudera	problem. One	failed
			success		distributed	benefit of this	to show
			of the			method is that it can	that
			vector		system.	make feature	
							supervi sed
			space model			selection implicit,	
						since useless	weighti
			techniq			features of the	ng
			ues			categorization	method
			used for			problem considered	s are
			informa			get a very small	generall
			tion			weight. Extensive	У
			retrieva			experiments	higher
			l are not			reported in the work	than
			able to			show that this new	unsuper
			satisfy			weighting method	vised
			user			improves	ones.
			needs			significantly the	The
			and			classification	authors
			need			accuracy as	believe
			extensi			measured on many	that
			ve			categorization tasks.	ConfW
			attentio			-	eight is
			n.				a
[52]	+Latent	In this work, the	No				promisi
[0=]	Dirichlet	authors consider	mention				ng
	allocation	multi-label text					supervi
	(LDA).	classification tasks					sed
	+Multi-	and apply various					weighti
	label text	feature sets. The					ng
	classificatio	authors consider a					techniq
L		constact u			l		·······

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

(or the latest sentiment classification methods) in

			ue that behaves graceful ly both with and without feature selectio n. Therefo re, the authors advocat e its use in further experim ents.						
ŀ	Our	-We use the BIRCH and the one-dir							
	work	vectors to classify one documer testing data set into either the positiv	nt of the e polarity						
		or the negative polarity in both the sequential							
		environment and the distributed syste -The advantages and disadvantage							
		proposed model are shown in the C section.							

Table 12: Comparisons of our model with the latest
sentiment classification models (or the latest
sentiment classification methods) in [54-64]

Stu	G	С	Se	Р	SD	D	Langu	VSM		
dies	2	Т	nti	Ν		Т	age			
	С		me	S			8			
			nt							
			Cl							
			ass							
			ifi							
			cat							
			io							
			n							
[54]	Ν	Ν	Ye	Ν	Ye	Ye	Yes	vecto		
	0	0	s	Μ	s	s		r		
[55]	Ν	Ν	Ye	Ν	Ye	Ye	NM	NM		
	0	0	S	Μ	S	S				
[56]	Ν	Ν	Ye	Ν	Ye	Ye	EL	NM		
	0	0	S	Μ	S	S				
[57]	Ν	Ν	Ye	Ν	Ye	Ye	NM	NM		
	0	0	s	Μ	s	s				
[58]	Ν	Ν	Ye	Ν	No	No	EL	No		
	0	0	s	0						
[59]	Ν	Ν	Ye	Ν	No	No	EL	No		
	0	0	s	0						
Our	Y	Y	Ye	Y	No	No	Yes	Yes		
wor	e	e	s	e						
k	s	s		s						

Table 13: Comparisons of our model's positives and negatives the latest sentiment classification models

(or the latest sentiment classification methods) in [54-64]								
St ud ies	Approach	Positives	Negativ es					
[5 4]	The Machine Learning Approach es Applied to Sentiment Analysis- Based Applicatio ns	The main emphasis of this survey is to discuss the research involved in applying machine learning methods, mostly for sentiment classification at document level. Machine learning- based approaches work in the following phases, which are discussed in detail in this work for sentiment classification: (1) feature extraction, (2) feature weighting schemes, (3) feature selection, and (4) machine-learning methods. This study also discusses the standard free benchmark datasets and evaluation methods for sentiment analysis. The authors conclude the research with a comparative study of some state-of- the-art methods for sentiment analysis and some possible future research directions in opinion mining and sentiment analysis.	No mention					
[5 5]	Semantic Orientatio n-Based Approach for Sentiment Analysis	This approach initially mines sentiment- bearing terms from the unstructured text and further computes the polarity of the terms. Most of the sentiment- bearing terms are multi-word features unlike bag-of-words, e.g., "good movie," "nice cinematography," "nice actors," etc. Performance of semantic orientation- based approach has	No mention					

www.jatit.org

E-ISSN: 1817-3195

		literature due to					Comparative	
		inadequate coverage of					experiments on	
		multi-word features.					various rule-based	
[5	Exploiting	Experiments	A line				machine learning	
6	New	performed with a	of				Algorithm have been	
vj	Sentiment	substantial number of	future				performed through a	
	-Based	datasets (nineteen)	researc				ten-fold cross	
	Meta-	demonstrate that the	h would				validation training	
	Level	effectiveness of the	be to				model for sentiment	
	Features	proposed sentiment-	explore				classification.	
	for	based meta-level	the		[5	The	The authors have	No
	Effective	features is not	authors'		-	Combinati	explored different	mention
	Sentiment	only superior to the	meta		8]	on of	methods of improving	
	Analysis	traditional bag-of-	features			Term-	the accuracy of	
		words representation	with			Counting	sentiment	
		(by up to 16%) but	other			Method	classification. The	
		also is also superior in	classific			and	sentiment orientation	
		most cases to state-of-	ation			Enhanced	of a document can be	
		art meta-level features	Algorit			Contextua	positive (+), negative	
		previously proposed in	hm and			1 Valence	(-), or neutral (0). The	
		the literature for text	feature			Shifters	authors combine five	
		classification tasks that	selectio			Method	dictionaries into a new	
		do not take into	n				one with 21,137	
		account any	techniq				entries. The new	
		idiosyncrasies of	ues in				dictionary has many	
		sentiment analysis.	differen				verbs, adverbs, phrases	
		The authors' proposal	t				and idioms that were	
		is also largely superior	sentime				not in five dictionaries	
		to the best lexicon-	nt				before. The study	
		based methods as well	analysis				shows that the authors'	
		as to supervised	tasks				proposed method	
		combinations of them.	such as				based on the	
		In fact, the proposed	scoring				combination of Term-	
		approach is the only	movies				Counting method and	
		one to produce the best	or				Enhanced Contextual	
		results in all tested	product				Valence Shifters	
		datasets in all	S				method has improved	
		scenarios.	Accordi				the accuracy of	
			ng to				sentiment	
			their				classification. The	
			related				combined method has	
			reviews				accuracy 68.984% on	
							the testing dataset, and	
[5	Rule-	The proposed	No				69.224% on the	
-	Based	approach is tested by	mention				training dataset. All of	
7]	Machine	experimenting with					these methods are	
	Learning	online books and					implemented to	
	Algorithm	political reviews and					classify the reviews	
	-	demonstrates the					based on our new	
		efficacy through					dictionary and the	
		Kappa measures,					Internet Movie	
		which have a higher					Database data set.	
		accuracy of 97.4% and			[5	Naive	The authors have	No
		a lower error rate. The			-	Bayes	explored the Naive	Mentio
		weighted average of			9]	Model	Bayes model with N-	n
		different accuracy				with N-	GRAM method,	
		measures like				GRAM	Negation Handling	
		Precision, Recall, and				Method,	method, Chi-Square	
		TP-Rate depicts higher				Negation	method and Good-	
		efficiency rate and				Handling	Turing Discounting by	
		lower FP-Rate.				Method,	selecting different	
L	·		í	1		,	<u> </u>	I

ISSN: 1992-8645

www.jatit.org

	Chi-	thresholds of Good-				
	Square	Turing Discounting				
	Method	method and different				
	and Good-	minimum frequencies				
		1				
	Turing	of Chi-Square method				
	Discounti	to improve the				
	ng, etc.	accuracy of sentiment				
		classification.				
0	-We use the BIRCH and the one-dimensional					
ur	vectors to classify one document of the testing					
wo	data set into either the positive polarity or the					
rk	negative polarity in both the sequential					
	environment and the distributed system.					
	-The positives and negatives of the proposed					
	model are given in the Conclusion section.					