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ABSTRACT 

In this review, it is explained and compared different software and formalisms used in music interaction: 
sequencers, computer-assisted improvisation, meta-instruments, score-following, asynchronous dataflow 
languages, synchronous dataflow languages, process calculi, temporal constraints and interactive scores. 
Formal approaches have the advantage of providing rigorous semantics of the behavior of the model and 
proving correctness during execution. The main disadvantage of formal approaches is lack of commercial 
tools.  
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1.  INTRODUCTION 

Technology has shaped the way on which we 
compose and produce music: Notably, the invention 
of microphones, magnetic tapes, amplifiers and 
computers pushed the development of new music 
styles in the 20th century. In fact, several artistic 
domains have been benefiting from such 
technology developments; for instance, 
Experimental music, non-linear music, 
Electroacoustic music, and interactive music. 
Experimental music is composed in such a way that 
ts outcome is often unforeseeable; for instance, it 
may contain random generated tones, computer-
generated content, variable-duration notes and 
“free” content. It may also include atonal melodies 
and microtones.  
Another domain is non-linear music, in which the 
scenario is divided in parts whose order can be 
chosen at execution time. We will use the term 
“non-linear” music in that sense. Non-linear music 
exists from many centuries ago; for instance, 
Mozart’s minuets in which the order of work’s 
musical material was determined by coin-tosses. 
Electroacoustic music was originated by the 
incorporation of electronic sound production into 
compositional practice. It subsumes styles such as 
musique concrète (French for concrete music), 
Acousmatic music, musique mixte (French for 
“mixed” music) and Electronic music. Note that 
Electroacoustic and Experimental music are not 
mutually exclusive: a piece can belong to both 
styles or to a single one, for instance, Experimental 

music explores composition with microtones which 
does not incorporate electronic sounds.  
Interactive music deals with the design of scenarios 
where music content and interactive events are 
handled by computer programs. Examples of such 
scenarios are music art installations, interactive 
museum exhibitions, some Electroacoustic music 
pieces, and some Experimental music pieces. In 
Table 2, it is presented a literature mapping of the 
different mathematical models and software that 
will be presented in this article. 

Table 2: Literature Mapping Of Mathematical Models 
And Software For Music Interaction  

 

 

 

 

 

 

 

 

 

 
 Sequencers 

Pro Tools, Qlab,  
Ableton Live 

Computer-
assisted 
improvisation 

[12, 48, 61] 

Meta-instruments [39] 
Score following [23] 
Asynchronous 
dataflow 
languages 

[88] 

Synchronous 
dataflow 
languages 

[37, 38, 33, 17, 41] 

Process calculi [60, 59, 80, 78, 79, 75, 
5, 
 100, 58, 59, 105] 

Temporal 
constraints 

[1, 51, 20] 

Interactive scores [4, 105, 104, 59, 106] 
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In what follows we briefly explain Experimental 
music, non-linear music, Electroacoustic music and 
interactive music. In this thesis we will focus on 
interactive music. We are interested in 
Electroacoustic, Experimental and non-linear music 
that is interactive. In this section, we introduce the 
problems that arise when designers and composers 
want to write a score for interactive music, and the 
problems with existing computer tools to compose 
and perform interactive music; afterwards, we 
briefly describe some background concepts and we 
propose a solution based on the formalism of 
interactive scores. 
In this section we briefly define Experimental 
music, non-linear music, Electroacoustic music and 
interactive music. To clarify the classification of 
these domains, we present a Venn’s diagram in 
Figure 1: The diagram shows the intersection 
between the different domains. Figure 1 includes 
music art installations, which are an interesting 
subset of interactive music; and Tape music, which 
is a subset of Electroacoustic music that is linear 
(i.e., parts have a fixed order) and is not interactive.  

 

  

Figure 1: Intersection Between Electroacoustic Music, 
Non-Linear Music, Experimental Music And Interactive 

Music. 

Experimental music. 

Nyman argues that, in Experimental music, a score 
may no longer represent a sound by the means of 
western music notation [57]: Composers may 
provide the performer the means of making 
calculations to determine the nature, timing and 
spacing of sounds. Composers may indicate 
temporal areas in which a number of sounds may be 
placed. Experimental music can span from a 

minimum of organization to a minimum of 
arbitrariness. As an example, Christopher Hobb’s 
voicepiece (1967) is written for any number of 
vocalists and any length. Nyman argues that, 
usually, in Experimental music pieces, certain time 
frames may be chosen at random and filled with 
sounds. 
Nyman argues that an important feature of 
Experimental music is the diversity of processes 
available; processes may be relationships between 
chance and choice. He argues that there are five 
types of processes: (1) change determination 
processes; for instance, when Cage used random 
numbers to choose tones, and also when he wrote 
pieces in which it was required to take information 
from the telephone directory during performance; 
(2) people processes, for instance, the eventuality of 
players getting lost or an unknown number of 
players; (3) contextual processes, such as actions 
taken on unpredictable conditions within the 
musicians or the audience; (4) repetition processes, 
such as unbounded loops; and (5) electronic 
processes, difficult to describe because they are not 
well formalized. 
A characteristic of Experimental music is that, 
often, the starting and ending times of a piece are 
unknown. As an example, Nyman argues that in 
Wolff’s duo II for pianists (1958), the beginning 
and the ending times are determined in performance 
by the circumstances of the concert occasion. As 
another example, Nyman discussed Reich’s 
pendulum music (1968). In this piece, microphones 
are suspended from the ceiling. The piece begins 
when the performers swing the microphones and 
turn on the amplifiers; the piece ends after all 
microphones come to rest. 
Nyman argues that performing Experimental music 
goes above and beyond performing of Western 
music because of all the possibilities that can be 
modeled with the five types of processes, and the 
unknown starting and ending times of a piece, as 
explained above. 

Non-linear music. 

Since 1950, computer technology is used to control 
sound structures; however, there is a long history of 
non-linear music in western culture. Vickery argues 
that, in the 20th century, there are examples of non-
linear music such as Boulez’s third piano sonata 
(1958), and free improvisation with game strategies 
such as interactive electronics from Gordon Mum 
and several Stockhausen’s pieces. Nonetheless, 
such an interest is not new. In fact, Vickery argues 
that Mozart composed minuets and trios in which 
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the order of work’s musical material was 
determined by coin-tosses, as we stated before.  
Vickery has composed some non-linear pieces 
[115] in the 21st century. As an example, ladders 
and snakes (2000) is a piece in which the ladder 
processes descend to improvise in a later section, 
and the snake processes ascend to an earlier section, 
as a flash back in a film. As another example, splice 

(2002) is a piece in which the computer performs 
meta-music shaping of the sound made by the 
musician. Finally, in Vickery’s piece parallel 
trajectories (2003), performers have a score map 
with different paths from start to end, and they can 
also choose to stay silent in some parts. As an 
example, the score is presented in Figure 2. 

   

Figure 2: Score Of Vickery’s Parallel Trajectories (2003). There Are 14 Lines Of Musical Material And Each Of The 9 
Players Is Provided With Four Of The Lines. There Are 9 “Modal Points” In The Score In Which The Player May 

Choose A Different Line Or Choose To Remain Silent Until The Next Point. 

Furthermore, Vickery argues that computer 
coordination of live musical performance allows for 
the control and synchronization of the score; for 
instance, non-linear selection of music material 
[117]. Music is traditionally linear: left-to-right and 
top-to-bottom. Computer music offers two main 
new possibilities according to Vickery: (1) 
Permutation of large structural blocks of music 
such as Stockhausen’s momente (1962), and (2) 
interactive generative processes may be used in 
real-time. There are some other implications of 
such a computer-controlled behavior, according to 
Vickery [117]. As an example, Jason Freeman’s 
glimmer (2004) is written for chamber orchestra 
and audience participation by waving four-inch LED 
sticks. Vickery’s delicious ironies (2002) has also 
an unpredictable environment for the solo 
improviser with sample choice, playback speed, 
duration, volume and pan. As another examples, 
Vickery recalls Stockhausen’s spectral analysis 
used in zyklus (1959) and regrain (1959).  
According to Vickery, non-linearity allows pieces to 
have openness of interpretation and openness of 
content [116]. Vickery cites some interesting 
examples. Game based analysis first used by 
Xenakis in duel (1959) and strategies (1962), then 
used by John Zorn in cobra (1984), allows the 
musician to give commands to games. Richard 
Teitelbaum, creator of automata (1978), presents an 
analogy to finite state automata in which a system 
responds to user actions. The californian group The 
HUB is a computer network band in which the 

musicians and sounds communicate through a 
network.  
Although the many examples that Vickery 
explained in his articles, he argued towards the 
urgent need of symbiotic human-machine 
interactive software to compose non-linear music 
[116]. In fact, we argue in this section why 
Vickery’s preoccupation can be extended to non-
linear music in general, for instance, in music art 
installations. 

Electroacoustic music. 

All Electroacoustic music is made with electronic 
technology. Some electroacoustic compositions 
make use of sounds not available in typical acoustic 
instruments, such as those used in a traditional 
orchestra. Some Electroacoustic music can be 
created using non-acoustic technology that exists 
only in a recorded format (as a fixed medium), and 
is composed for reception via loudspeakers. The 
compositional material is not restricted to the 
inclusion of sonorities derived from musical 
instruments or voices, nor to elements traditionally 
thought of as “musical” (e.g., melody, harmony, 
rhythm and meter), but rather admits any sound, 
acoustic or synthetic. With the aid of various 
technologies, such as tape recorders and digital 
signal processing tools, this material can then be 
combined, juxtaposed, and transformed, in any 
conceivable manner 1. 

 
1  http://en.wikipedia.org/wiki/Electroacoustic\_music 
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A form of Electroacoustic music, specifically 
composed for loudspeaker presentation, is 
Acousmatic music. Unlike scored music, 
compositions that are purely acousmatic exist 
solely as audio recordings. The term acousmatic 
was introduced by Pierre Schaeffer and refers to the 
listening experience of concrete music in which the 
audience hears the music from the loudspeakers, 
without seeing the source of the sound2. In an 
acousmatic concert, the sound component is 
produced using pre-recorder media, or generated in 
real-time using a computer. The work is often 
diffused by the composer (if present), but the role of 
the interpreter can also be assumed by another 
musician. The main role of musician is to control 
spatialisation. As an example, consider one of 
Schaeffer’s earliest work five studies of noises 
(1948) made without a computer. 
The term concrete music is defined by Schaeffer as 
an opposition with way musical work usually goes. 
Instead of notating musical ideas on a paper with 
the symbols of solfège and entrusting their 
realization to well-known instruments, the question 
is to collect concrete sounds, wherever they came 
from, and to abstract the music values they were 
potentially containing. According to Pierre Henry, 
another well-known composer of this style, 
concrete music was not a study of timbre, it is 
focused on envelopes and forms3.  
A subtype of concrete music, in which sound was 
registered in magnetic tapes, is called Tape music4. 
In such a style, the starting and ending times of all 
the sounds remain fixed once the composition is 
over; as opposed, to some pieces of acousmatic 
music in which there is real-time sound generated 
by computer which order may change. 
There is another style subsumed by Electroacoustic 
music: “Mixed” music, which merges acoustic 
sounds from traditional instruments played by 
musicians with electroacoustic sounds (diffused by 
loudspeakers). As an example, in Manoury’s partita 
I (2006) for solo viola and live electronic effects, in 
Section VIIC, the composer wrote a note indicating 
that the all parts have to be played but in any order. 
The order is chosen by the musician. This is an 
example of non-linearity in Electroacoustic music. 
Another well-known example of “mixed” music is 
Manoury’s pluton (1988) for piano and live 
electronics, and Stockhausen’s mikrophonie I 
(1964) for tam-tam, microphone and filters. 

 
2  http://en.wikipedia.org/wiki/Acousmatic_music . 
3  http://en.wikipedia.org/wiki/Musique\_concr\%C3\%A8te. 

4  http://en.wikipedia.org/wiki/Electroacoustic_music\#Tape\_music. 

Interactive music. 

Interactive music deals with the design of scenarios 
where music content and interactive events can be 
handled by computer programs. Designers usually 
create music content for their scenarios, and then 
bind them to external interactive events controlled 
by Max/MSP or Pure Data (Pd) programs [70, 68]. 
We recall that examples of interactive music are 
interactive museum exhibitions and music 
installations. 
music art installations are an artistic genre of three-
dimensional works that are often site-specific and 
designed to transform the perception of a space. 
Installations evolved through the use of new and 
ever-changing technologies: from simple video 
installations, they expanded to include complex 
interactive, music and virtual reality environments. 
Interactive installations were most frequently 
created and exhibited after 1990s, when artists were 
particularly interested in using the participation of 
the audiences to co-author the meaning of the 
installation5. As an example, there is an interactive 
installation based on spatial sensing written in Max 
[119]. Another example is an interactive installation 
based on probabilistic control [14]. Both 
installations are non-linear in the sense that the 
order in which they diffuse video and sound is 
unforeseen and depends on user interactions. 
In addition to Max, interactive music scenarios are 
also designed with commercial sequencers. 
Commercial sequencers for interactive music are 
based on a fixed timeline with a very precise script 
such as Pro Tools6, or a more flexible script using 
cue lists, for instance, the theater cue manager 
Qlab7. Another software to design such scenarios is 
Ableton Live8. Live is often used in Electroacoustic 
music and performing arts.  

Example 1 Figure 3 shows the user interfaces of 
cue lists and timeline based sequencers, 
respectively. 

  

 
5  http://en.wikipedia.org/wiki/Interactive\_Art 
6  http://www.avid.com/US/resources/digi-orientation 
7  http://figure53.com/qlab/ 

8  http://www.ableton.com/ 
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Figure 3: Cue-list based Qlab (above) exhibits a list on events and associated actions; it also defines whether and event 
is triggered by the computer or by the user. Timeline sequencer Protools (below) exhibits a timeline with several sound 
objects; starting and ending times are fixed and cannot be changed during performance. 

Another well-known fixed timeline sequencer is the 
Acousmograph which is a software to represent 
graphically sounds in a composition. In fact, the 
acousmograph has been used by Pierre Couprie for 
musicological analysis [25]. It is also worth to note 
that the acousmograph has been used to represent 
Gyorgy Ligeti’s artikulation (1958), as shown in 
Figure 49. 

 

 
9  A video can be found at http://wn.com/artikulation_ligeti. 
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Figure 4: Visual Listening Score Of Gyorgy Ligeti’s Artikulation (1958) Created By Rainer Wehinger Using 
Acousmograph. 

In what follows, we define the fixed timeline and 
the cue-lists time models, and the problems that 
have arisen because of the duality between these 
two time models, among other problems. 

2.  CURRENT PROBLEMS WITH 
INTERACTIVE MUSIC SCENARIOS 

We have identified seven problems with existing 
software to design multimedia scenarios: (1) there 
is no formal model for multimedia interaction, (2) 
multimedia scenarios have limited reusability and 
difficulties with the persistence of multimedia 
scenarios, (3) time models (fixed timeline and cue 
lists) are temporally unrelated, (4) most multimedia 
interaction software products provide no hierarchy, 
(5) the different time scales are unrelated, (6) 
schedulers for multimedia scenarios are not 
appropriate for soft real-time, and (7) there is no 
model to combine temporal relations and 
conditional branching.  
The main problem with interactive music scenarios 
is that there are two different time models, but 
existing tools only use one, and tools that allow 
both, offer both time models temporally unrelated. 
To understand this problem, we must travel 2500 
years back in time. Desainte-Catherine et al. argued 
that this problem was already discussed by 

Parmenides of Elea and Heraclitus of Ephesus long 
before the invention of computers [28] . 

Problems with the time models. 

According to Desainte-Catherine et al., what we 
call today Tape music, that began by editing and 
mixing sounds in magnetic tapes, is composed in a 
writing-oriented manner that corresponds to the 
arrow metaphor discussed by Parmenides. 
Parmenides argued that there are eternal properties 
and ordered events; for instance, “Socrates was 
born before he died”. According to Parmenides, 
timeline goes from past to future. In this paradigm, 
it is difficult to define changes in the objects in the 
timeline. In fact, the only changes allowed at 
performance time of Tape music are in pan, 
volume, spacialization, among others parameters, 
but not on the starting and ending time of the 
sounds nor individual parameters for each sound.  
In contrast, many pieces of Experimental and 
Electroacoustic music, are based on real-time sound 
synthesis. They are usually written in asynchronous 
dataflow languages such as Max. According to 
Desainte-Catherine et al., interactive music is 
performance-oriented, and, for that reason, music 
objects and time representation are quite poor. 
Performance-oriented software corresponds to the 
river metaphor described by Heraclitus: “we never 
bath twice in the same river”. In this paradigm, the 
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inference of the events flows is from the future, 
backwards because events are being “scheduled”. 
Identity is hard to define in Heraclitus’ paradigm; 
for that reason, according to Desainte-Catherine et 
al., we cannot define a permanent environment in 
asynchronous dataflow languages such as Max/MSP 
[70]. Time-stamped data is handled as a queue and 
there is only available a limited timeline to 

schedule the triggering of static events in most 
asynchronous dataflow languages. Nonetheless, it is 
worth noticing the effort made my Puckette to 
include a timeline in Pure Data, as shown in Figure 
5 [69].  

 

  

    

Figure 5: Writing A Score In Pure Data. Horizontal Axis Represents Time And The Vertical Axis Frequency. Objects 
Represent Pure Data’s Data Structures. Shapes And Colors Are Chosen By The Composer To Represent The Data 

Structures Of The Piece. 

The problem of identify is important for both 
Electroacoustic and Experimental music. One 
implication is the ownership of Electroacoustic 
music, as explained by Dahan et al. [26]. According 
to Nyman, Cardew argued that when we hear on a 
tape or disk is indeed the same playing, but 
divorced from its natural context. As an example, 
Nyman argued that David Tudor (pianist) played 
Cage’s 4’33” (1952) and people think that Cage’s 
4’33” (1952) is a piece for piano, but it is a piece 
that can be played by the means of any instrument 
[57]. 

Problems with time scales. 

In addition to the problem of identity, Schwer 
discussed another philosophical problem related to 
linguistics [86], which we believe that it is also 
related to music: Aristotle argued that between two 
time instants there is always a time instant. 
Therefore, the metaphoric timeline seams like the 
set of real numbers. Nonetheless, according to 
Schwer, there is a discrete understanding of time in 
Physics; for instance, in quantic mechanics, 
Planck’s time is the smallest measure of time  

seconds; in the atomic clock is  seconds; however, 
humans only discriminate at  seconds. 
In Computer Science, as in Physics, time is also 
discrete because it is defined by the occurrence of 
events. For events to occur they have to be 
observed and this is discrete in nature. In favor of 
discrete time, the Stoics argued that the set of 
atomic instants is a discrete structure, thus we can 
pass from one instant to the next instant, according 
to Schwer.  
The duality between discrete and continuous time is 
also a problem in music interaction when we think 
about all the time scales available; for instance, user 
gestures, control events, sound processing and 
video processing. All those processes work at 
different time scales, and they are usually unrelated 
one from another in existing tools. music signals 
are continuous when they are analogic. Once they 
are sampled into the computer, they become 
discrete; however, they can be though of continuous 
in the sense that a listener will perceive them as 
continuous. In contrast, control signals, used to 
synchronize different media, are discrete time, and 
they are also perceived as discrete by the listeners. 
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Problem with synchronization. 

There is another problem derived from the time 
scales, as we discussed in [103]. The description of 
a music scenario requires a consistent relationship 
between the representation of the scenario in the 
composition environment and the execution. 
Artistic creation requires a composition of events at 
different time scales. As an example, it is easy to 
describe that a video begins when the second string 
of a guitar arpeggio starts, but how can we achieve 
it in practice if the beginning of the notes of the 
arpeggio is controlled by the user? 
The problem emerges at runtime. The example 
given above is very simple, but under high CPU 
load, a system interruption at the point of playing 
the arpeggio and the video can often lead to 
desynchronization, which is the case with Pure 
Data and Max. Usually, these eventualities are not 
considered by developers, as the quality of systems 
is evaluated according to an average performance. 
Nonetheless, during performance, it is desired that 
the system works well even under high CPU load, 
which is common when these systems process 
sound, video and image simultaneously. 
The synchronization between the arpeggio and the 
video must be achieved in every execution. If it 
does not work for a performance, concert or show, 
the system performance is not satisfactory. Usually, 
artists prefer that an event is canceled if the event is 
not going to be properly synchronized with all the 
other media. Most users want a system that ensures 
that the events are either launched as they were 
defined in the score or they are not produced. 
Another alternative is based on the synchronization 
strategies for score following systems proposed by 
Echeveste et al. [30]. Echeveste’s strategies are 
designed to define behaviors for the cases in which 
events are not always properly synchronized with 
other media due to musician’s mistakes during 
performance or due to incorrect tempo calculations 
by the score following system. 
Interactive music belongs to the realm of soft real-
time. We argue that in soft real-time, the usefulness 
of a result degrades after its deadline, thereby 
degrading the system’s quality of service; whereas 
in hard real-time missing a deadline is a total 
system failure (e.g., flight control systems). It is 
difficult to ensure determinism in the execution of 
music processes (e.g., sound, video and 3D images) 
in the soft real-time realm. Some hard real-time 
operating system like RT Linux10 or RedHawk11 

 
10  http://www.windriver.com/index.html 

11  http://real-
time.ccur.com/concurrent_redhawk_linux.aspx 

include priority queues for processes to respect hard 
real-time constraints; however, in common 
operating systems, the user does not have this type 
of control. Note that software like Max and Live do 
not work on Linux.  

Problems with conditional branching. 

Another issue arises when we think of non-linear 
music. When we think about choices based on 
conditions, we must consider causality. Causal 
relation is studied by metaphysics. According to 
Keil, substances are not causes; for instance, “if 
knife then always wound” is incorrect: An event 
and a verb are missing [42]. In interactive music, 
“If note 1 then always note 2” is also incorrect. A 
causal relation could be “when note 1 starts, then 
note 2 starts”,“whenever note 1 ends the note 2 
ends”, or “when the note 1 gets to a volume peak, 
then note 2 starts”; however, most tools do not 
provide this kind of causal relations. 
Keil explains that physical systems are described in 
non-perturbed situations, but such rules may not 
always apply in real-life situations. As an example, 
a fire match will not light without oxygen, although 
a cause of lighting a match is to rub it against a 
striker. For that reason, when we model non-linear 
music, we must consider user interactions. We must 
also consider that these interaction may arrive at 
any time. 
Keil also points out that an event always has 
different causes susceptible of exceptions because 
the causes include less than the total state of the 
universe. For that reason, the causal relation is not 
transitive; therefore, the flapping of a butterfly’s 
wing is not the cause of a storm on the other side of 
the world, according to Keil. As a consequence, we 
argue that users’ choices should be made over 
single temporal objects (e.g., sounds or videos), 
instead of sequences of temporal objects. To choose 
a sequence of temporal objects, the sequence 
should be contained in one temporal object. In 
conclusion, each object must know who was its 
direct cause. In both figures, there is a mutually 
exclusive choice between two objects. If a 
composer wants to write a choice between two 
sequences of two objects, each two-object sequence 
must be contained inside a bigger object.  
Up to now we have considered causality dissociated 
from time, as treated by Keil; however, Russel 
gives a definition of causality that includes a time 
interval: “Given an event e, there is an event  and a 
time interval τ, such that, every time that  occurs, it 
is followed by , after such an interval has passed” 
[81]. We believe that Russels’ definition is 
appropriate for music interaction; however, with 
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this definition, it is hard to understand scenarios 
with loops, for instance, when an “instance” of  
causes an “instance” of , but then such an 
“instance” of  causes another “instance” of  in the 
future. What does this relation means? Are we 
traveling back to the time when  was first executed? 
Are we creating a new “instance” of  and executing 
it in the future? Are those two “instances” two 
different events with the same type (or action)? 
The problem of “time travel” becomes even more 
difficult when we consider multiple instances of a 

temporal object that could be executed 
simultaneously. We must distinguish between the 
motive being repeated and the loop itself; we 
illustrate some cases in Figure 6. The problem gets 
even harder when we want to synchronize the 
ending times of motives and loops. In interactive 
music, synchronization of loops and motives has 
been extensively studied by Berthaut et al. [18]. 

 

  

   

Figure 6: Possible Scenarios Synchronizing Motives And Loops. In Case 1, The Loop On The Top Starts The Loop In 
The Bottom; This Means That The First Repetition Of Motive “A” Starts The First Repetition Of Motive “B”. In Case 
2, Every Repetition Of Motive “A” Starts A New Instance Of The Loop On The Bottom. In Case 3, Each Repetition Of 

Motive “A” Starts At The Same Time Than Each Repetition Of Motive “B”.  

There are some insights in metaphysics on how to 
solve the problem of having multiple instances of 
events. Laudisa argues that in neoempirism, leaded 
by Hume, everything that starts to exist must have a 
cause for its existence, but all human laws admit 
exceptions [46]. To formalize such a principle, 
Laudisa proposes to distinguish between singular 
events and event classes: Let x and y be singular 
events, the existence of a causal connection means 
that (1) there are event classes of type X and of type 
Y, and (2) x is of type X and y is of type Y.  
According to Laudisa’s postulates, we could think 
about the start event of a temporal object as a class, 
and each time the temporal object starts, a different 
singular event that belongs to such a class is 
launched. Nonetheless, there is still a problem: how 
to model choices through time, should we consider 
a branching time or a linear time? Let us analyze 
what computer scientists have to say on this 
dichotomy.  
According to Pratt, there is an analogy: branching 
time represents local time, and linear time 
represents global time, in the same way as true 
concurrency represents local information and false 

(or interleaving) concurrency represents global 
information [67]. In linear time, all choices are 
made at the beginning, it means that we cannot 
distinguish between a systems that performs actions 
a.b+a.c from a system that performs a.(b+c), where 
“.” represents sequential composition and “+” 
represents blind choice. The first system chooses 
either to execute event a and then event b or event a 
and then event c, whereas the second system 
executes a and then chooses to execute either b or 
c.  
As an example, Vardi argues that with 
computational time logic (CTL), it is possible to 
characterize bisimulation of concurrent systems. In 
terms of complexity of the model-checking 
problem, using CLT is exponentially easier than 
linear-time logic LTL, but in a competitive analysis, 
with formulae that can be expressed in both logics, 
model checkers behave similarly. There is an 
advantage of linear time: LTL is more intuitive to 
describe properties because its specifications 
describe computations, whereas CTL’s specifications 
describe trees of computations [114]. 
Although branching time seams more appropriate 
to represent conditional branching in interactive 
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music, we believe that linear time is enough 
because we can consider that all the temporal 
objects in a scenario are always executed, but some 
execute silent actions and some execute visible 
actions, allowing us to express choices. We want to 
keep the specification of properties simple.  
After analyzing the philosophical problems, the 
Electroacoustic and Experimental music pieces 
described above, and existing tools and formalisms 
for music scenarios, we have identified seven 
problems with existing software to design music 
scenario: (1) there is no formal model for music 
interaction, (2) music scenarios have limited 
reusability and difficulties with their persistence, 
(3) time models are temporally unrelated, (4) music 
interaction software products provide no hierarchy, 
(5) the different time scales are unrelated, (6) 
schedulers for music scenario tools are not 
appropriate for soft real-time, and (7) there is no 
model to combine temporal relations and 
conditional branching. In what follows we explain 
each of those problems. 

There is no formal model for music interaction. 

As we explained before, designers usually create 
music content for their scenarios, and then bind 
them to external interactive events controlled by 
Max/MSP programs. We advocate a model that 
encompasses facilities (1) to design music scenarios 
having complex temporal relationships among 
components and (2) to define effective mechanisms 
for synthesis control based on human gestures. We 
claim that no such model has been proposed. 
Such a general model must have formal semantics, 
as required for automated verification of properties 
of the scenario that are fundamental to its designers 
and users. As an example, to verify that temporal 
objects will be played as expected during 
performance. In general, we need to prove some 
property of each execution trace; for instance, that 
the music motive with notes C-D-E appears in all the 
traces of execution (or at least in one). Another 
example is to state that there is at most one 
temporal object being executed simultaneously. 
This property is useful in some theater 
performances to state that there is at most one 
curtain being moved at the time because of power 
constraints. Such properties cannot be verified in 
applications based on informal specifications, as it 
is the case for most existing scenarios with 
interactive controls.  

Limited reusability and difficult preservation. 

Limited reusability is also a problem caused by the 
lack of formal semantics: A module made for one 

scenario might not work for another one because 
the program may have dependencies on external 
parameters that are not stated explicitly. The lack of 
semantics also makes it difficult to preserve music 
scenarios because there is usually not a score nor a 
technology-independent precise way for describing 
the objects, and the temporal and dataflow relations 
among them. 

Time models are unrelated. 

Software to design music scenarios is usually based 
either on a fixed timeline with a very precise script 
or a more flexible script using cue lists, as we stated 
before. A commonly used software to design such 
scenarios is Live because it allows to use both the 
fixed timeline and the cue lists, but the two time 
models are unrelated temporally. In fact, most 
software products, for instance sequencers, provide 
only one time model or they are unrelated 
temporally, as we argued previously.  

No hierarchy for temporal objects. 

Most software do not provide a hierarchy to 
represent the temporal objects of the scenario. As 
an example, using a hierarchy, it is possible to 
control the start or end of an object by controlling 
those from its parent. In interactive music, Vickery 
argues that using a hierarchy is useful to control 
higher-order parameters of the piece; for instance, 
to control the volume dynamics instead of the 
volume of each note [116]. Concentrating on 
foreground parameters can lead to music that is too 
superficial as multiple serialism, according to 
Vickery.  

Time scales are unrelated temporally. 

The different time scales are often unrelated and 
cannot be controlled in the same tool. Discrete user 
gestures (e.g., clicking the mouse), control events 
(e.g., control messages) and sound processing have 
different sampling frequencies and different 
computing models. As a consequence of having the 
time scales unrelated, it is difficult to associate, for 
instance, a human gesture to both control events 
and sound processing parameters. 

Event schedules are not appropriate for real-
time. 

Schedulers for asynchronous dataflow languages 
(e.g., those from Pd and Max) control both signals 
and control messages together and they do not 
support parallelism, thus they often fail to deliver 
control messages at the required time; for instance, 
when they work under a high CPU load, which is 
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common when they process video and 3D graphics 
in addition to sound. 
To solve the problem of scheduling and to write 
high-performance digital signal processors (DSPs) 
for Max and Pd, users often write C++ plugins to 
model DSPs with loops or independent threads. C++ 
plugins solve part of the problem, but the control 
messages –for the input and output of these 
plugins– are still being scheduled by Max or Pd’s 
schedulers.  
Another solution for the scheduler problem –often 
used during live performance– is to open one or 
two instances of Max/MSP or Pd simultaneously, 
running different programs on each one. 
Nonetheless, synchronization is usually done either 
manually during performance or by using open 
sound control (OSC), which adds more complexity 
and latency. 

No model for conditional branching and 
temporal relations. 

Up to our knowledge, there is not a model for 
interactive music to represent scores in which is 
possible to combine complex temporal relations 
and conditional branching based on conditions over 
the variables defined in the scenario. In fact, 
Allombert proposes in [2] an extension with 
conditional branching to interactive scores, but in 
such a model he only considers conditional 
branching and no temporal relations. 

3.  INTERACTIVE SCORES 

In interactive scores, it is possible to specify a 
variety of relations among temporal objects such as 
temporal relations, hierarchical relations, harmonic 
relations, rhythmical constraints and conditional 
branching. Nonetheless, in this section, we only 
take into account relations limited to point-to-point 
temporal relations without disjunction nor 
inequality (≠) and quantitative temporal relations. 
We combine qualitative and quantitative temporal 
relations on the lines of previous independent 
works by Meiri and Gennary [51, 34].  
In what follows, we introduce a mathematic 
definition of the structure of interactive scores, a 
formal semantics based on timed event structures, 
the temporal constraints of a score, and some 
formal properties such as playability. We also 
discuss the complexity of the playability problem. 

3.1  History of interactive scores 

The idea of temporal relations among temporal 
objects was introduced by Beurivé and Desainte-
Catherine in [19]. They found out that relative 
times are a more efficient representation than 

absolute times for music scores. Soon after, they 
developed Boxes: a software to model a hierarchy 
and temporal constraints [19]. In fact, Boxes uses 
Allen’s relations to describe temporal constraints. A 
few years later, Desainte-Catherine and Brousse 
came up with the idea of the interactive scores 
formalism [29]. 
Another system dealing with a hierarchy of 
temporal objects is Maquettes of OpenMusic [21]. 
However, we argue that OpenMusic [22] is a 
software for composition and is not meant for real-
time interaction. Allombert and Desainte-Catherine 
figured out that the music interaction community 
needed a software for composition capable of 
describing a hierarchy of temporal objects and 
capable of real-time interaction! In 2005, they 
introduced a new model of interactive scores [7], 
extending the previous model developed by 
Desainte-Catherine and Brousse, and following the 
concepts of Haury’s meta-instrument [39]. This 
model admits modification of the starting and 
ending times of the notes of the score during 
execution.  
In Allombert and Desainte-Catherine’s new model, 
a score is composed by temporal objects, 
interactive events and temporal relations. This 
approach does not allow to define interactive user 
events inside the hierarchy, as we can do it today. 
They extended Allen’s relations with quantitative 
relations to express the duration of temporal objects 
in a similar manner as Mieri did it back in 1995. 
They introduced the very first notions of temporal 
reduction: intervals can be reduced if an event is 
launched before its nominal (expected) time and 
intervals can be extended if the event is launched 
after its nominal time; however, the operational 
semantics of the temporal objects with nominal 
times, was not very well defined back then. They 
also introduced a semantics based on Petri nets. 
Finally, they introduced the environment, control, 
output (ECO) machine: an abstract machine to 
execute an interactive score in real-time. 
Allombert, Desainte-Catherine and Assayag 
presented a new extension in 2007 [3]. They 
changed the definition of a score: A score is defined 
as a pair 〈 T,R〉  where T is a set of temporal 
objects and R a set of temporal constraints. This 
new definition considers an interactive user event 
as a kind of temporal object, thus they are included 
in the hierarchy, as opposed to the extension they 
presented in 2005. They also argued that interactive 
scores must have two modes: the edition mode, 
which they implemented using constraint 
propagation, and the execution mode, which they 
made using Petri nets. The edition model is a linear 
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constraint satisfaction problem with a cyclic 
constraint graph, according to Allombert et al.  
In the extension of interactive scores developed in 
2007, Allombert et al. realized that some 
transformations were needed to the Petri nets to 
execute them properly. They proposed to collapse 
two places that occur at the same time in the same 
place (state). Those transformations inspired what 
we call in this dissertation the normal form. They 
also introduced global constraints, but not the 
details on how to implement them. They also 
developed an implementation using OpenMusic. 
The implementation they made in OpenMusic will 
be the base for the Iscore library, developed one 
year after. 
In 2008, Allombert et al. developed a new 
extension of interactive scores [9]. They introduced 
a new kind of temporal relations: linear constraints 
over durations; for instance, to say that the duration 
of an object is k times bigger than another. They 
made an implementation in OpenMusic that only 
includes flexible-time durations and does not 
include linear constraints. Examples of their 
quantitative relations are those involving a 
proportional or explicit duration; for instance, “the 
duration of A is one third of the duration of B” or 
“the duration of A is 3 seconds”. Examples of their 
qualitative temporal relations are those to represent 
the precedence between the start and end points of 
two temporal objects; for instance, “A must be 
played during B” or “C must be played after D”. 
They also improved the concept of temporal 
reductions: left reductions (chronological) and right 
reductions (anti-chronological). Temporal 
reductions are a mechanism to reduce or stretch the 
duration of a temporal object when an interactive 
event is, respectively, delayed or speeded up, while 
respecting the temporal constraints of the score.  
It was most likely that they realized at that time that 
including linear constraints over the duration of the 
temporal objects will change the complexity of the 
satisfiability and dispatching of the temporal 
constraints because they could no longer represent 
the temporal constraints as a simple temporal 
problem. Constraints over the durations of temporal 
objects were never again presented in interactive 
scores models.  
Allombert et al. explored other alternatives to Petri 
nets as semantics for interactive scores. After 
reading all the previous extensions of interactive 
scores, Rueda had in mind that a process calculus 
based on constraint programming would be more 
appropriate to represent temporal constraints (and 
even other constraints, such as harmonic and 
rhythmical) than Petri nets. Rueda worked with 

Allombert, Assayag and Desainte-Catherine to 
develop a model based on ntcc in 2006 [5]. They 
used Allen’s relations as temporal relations. There 
is a disadvantage: The model does not consider the 
problems that arises when two objects are 
constraint to start at the same time nor the problems 
associated to dispatching efficiently a simple 
temporal problem, as described by Muscettola et al. 
[55].  
Sarria found another disadvantage with the ntcc 
model of interactive scores developed by Rueda et 
al.: time units in ntcc may have different 
(unpredictable) durations. Sarria extended 
Allombert’s model in his Ph.D thesis in 2008. He 
proposed a different approach to cope with real-
time issues using his own CCP variant, the real-time 
concurrent constraint (rtcc) calculus [85]. Rtcc is 
an extension of ntcc capable of modeling time units 
with fixed duration. This new calculus is capable of 
interrupting a process when a constraint can be 
inferred from the store. Rtcc is also capable of 
delays within a single time unit.  
Olarte et al. also extended Rueda’s ntcc model. 
They extended the model to change the hierarchy of 
temporal objects during execution [58]. The spirit 
of such a model is different: they focus on changing 
the structure of the score during execution to allow 
the user to “improvise” on a written piece, whereas 
we are interested on a simpler model that we can 
execute in real-time. It is worth noticing that it may 
be also possible to model such changes in the 
structure during execution using a special kind of 
Petri nets in which tokens are also nets, introduced 
by Köhler et al. [43]. 
Finally, in 2009, Allombert explained in his Ph.D. 
the results published previously in his models [2]. 
He also introduced some ideas on how to deal with 
durations of arbitrary intervals, he introduced music 
processes that can be associated to temporal 
objects, and he introduced conditional branching. 
Conditional branching is the base for some non-
linear models in music. Non-linear models are used 
to create openworks. Open works can have 
openness of interpretation or openness of semantic 
content, as explained by Vickery [115].  
Allombert presented in his thesis conditional 
branching and temporal relations separately, but he 
did not show an unified way to represent 
conditional branching together with temporal 
relations in the same scenario. His work on 
conditional branching was partially based on 
previous results developed during Ranaivoson’s 
M.Sc. thesis in 2009 [71]. These two works are the 
base of our conditional branching extension. 
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3.2  Interactive Scores Formalism 

There are formalisms to model interactive scenarios 
such as interactive scores. Interactive scores has 
been a subject of study since the beginning of the 
century [29]. The first tool for interactive scores is 
Boxes, developed by Beurivé [19]. Boxes was 
conceived for the composition of Electroacoustic 
music with temporal relations; however, user 
interaction was not provided. A recent model of 
interactive scores [2], that significantly improves 
user interaction, has inspired two applications: i-
score [4] to compose and perform Electroacoustic 
music and Virage [6] to control live performances 
and interactive exhibitions. We give a further 
discussion on the history of interactive scores. 
Scenarios in interactive scores are represented by 
temporal objects, temporal relations and interactive 
objects. Examples of temporal objects are sounds, 
videos and light controls. Temporal objects can be 
triggered by interactive objects (usually launched 
by the user) and several temporal objects can be 
executed simultaneously. A temporal object may 
contain other temporal objects: this hierarchy 
allows us to control the start or end of a temporal 
object by controlling the start or end of its parent. 
Hierarchy is ever-present in all kinds of music: 
Music pieces are often hierarchized by movements, 
parts, motives, measures, among other 
segmentations.  
Temporal relations provide a partial order for the 
execution of the temporal objects; for instance, 
temporal relations can be used to express 
precedence between two objects. As an example of 
relative temporal relations, the designer can specify 
that a video is played strictly before a light show or 
between 10 and 15 seconds before. As an example 
of absolute temporal relations, the designer can 
specify that a loop starts three seconds after the 
video.  

New semantics for interactive scores. 

We provide an abstract semantics for interactive 
scores based on timed event structures. The purpose 
of such a semantics is (1) to provide an easy, 
declarative way, to understand the behavior of a 
score, and (2) a simple theoretical background to 
specify properties of the system. In constraint 
programming, we can specify some properties of 
the scores such as playability. We can also specify 
those properties in event structures; moreover, the 
notion of trace, inherent in event structures, is more 
appropriate than temporal constraints for certain 
properties. As an example, to specify that a music 
motive appears in at least one trace of execution. 

This study led us to discover that there is no 
difference between interactive objects and the other 
temporal objects in the event structures semantics: 
such a difference can only be observed in the 
operational semantics. That was the main reason to 
introduce an operational semantics based on ntcc, 
on the lines of Allombert et al. [5]. Nonetheless, in 
Allombert et al.’s models of interactive scores, it 
was not precisely stated how to execute scores 
whose temporal object durations are arbitrary 
integers intervals; for instance, a score in which 
object a must be executed between two and four 
time units after object b. Allombert et al.’s models 
handle flexible-time intervals: {0} to express 
simultaneity, and (0,∞) and [0,∞) for precedence or 
for the flexible duration of the objects. Allombert et 
al.’s models also miss an abstract semantics.  
We extend the interactive scores formalism with an 
abstract semantics based on event structures and an 
operational semantics specified in ntcc, providing 
(1) a new insight into the interactive scores model; 
(2) more complex temporal relations to bind 
objects, including arbitrary sets of integers in the 
event structures semantics and arbitrary intervals in 
the operational semantics; and (3) the possibility to 
verify properties over the execution traces. In order 
to use arbitrary integer intervals in our operational 
semantics, we show that several transformations to 
the event structures semantics are needed to define 
operational semantics that can dispatch the 
temporal objects of the score in real-time.  
To complete our framework, we also present in this 
dissertation two extensions of the interactive scores 
formalism: one for conditional branching and one 
for signal processing. We also explain the 
implementation of interactive scores and the 
implementation of an automatic verification tool for 
ntcc. 

Time conditional branching interactive scores. 

Non-linear music pieces are open works. According 
to Vickery, open works may have openness of 
interpretation or openness of semantic content 
[115]. Conditional branching is essential to describe 
pieces with openness of interpretation. 
Conditional branching is commonly used in 
programming to describe control structures such as 
if/else and switch/case. It provides a mechanism to 
choose the state of a program based on a condition 
and its current state. In music interaction, using 
conditional branching, a designer can create 
scenarios with loops and choices (as in 
programming).  
In the domain of interactive scores, using 
conditional branching, the user or the system can 
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take decisions on the performance of the scenario 
with the degree of freedom that the designer 
described. The designer can express under which 
conditions a loop ends; for instance, when the user 
changes the value of a certain variable, the loop 
stops; or the system non-deterministically chooses 
to stop. As an example, the designer can specify a 
condition to end a loop: When the user changes the 
value of the variable end to true, the loop stops. The 
designer can also specify that such choice is made 
by the system: The system non-deterministically 
chooses to stop or continue the loop. 
We chose event structures because it is a powerful 
formalism for concurrency that allow us to extend 
the interactive scores semantics with conditional 
branching and loops in a very precise and 
declarative way. Conditional-branching timed 
interactive scores were introduced in [102, 101]. 
Such an extension has operational semantics based 
on ntcc, but it misses an abstract semantics to 
understand the conflicts among the temporal 
objects that take place when modeling conditions 
and choices.  

Interactive scores with signal processing. 

It is crucial that interactive music software products 
preserve the macroform and the microform of the 
scenario. The macroform includes the structure of 
the scenario (e.g., the tempo and the duration of the 
scenes, movements, parts and measures). The 
microform comprises the operations with samples 
(e.g., micro delays, articulation, intonation, and 
envelop of the sound).  
We propose an extension to the interactive scores 
formalism for sound synthesis. In this extension, we 
deal with microstructure and macrostructure of 
sound, not the structure of image nor other media. 
In the interactive scenarios we consider, we can 
deal with streams produced in real-time (e.g., a 
stream captured from the microphone). 
We define a new type of temporal relations meant 
for high precision; for instance, to express micro 
delays. We also introduce dataflow relations; for 
instance, how the audio recorded by a temporal 
object is transferred to another object to filter it, 
add a micro delay, and then, send it to another 
temporal object to be diffused.  
We also propose an encoding of the scenario into 
two models that interact during performance: (1) A 
model based on the ntcc for concurrency, user 
interactions and temporal relations, and (2) a model 
based on Faust for sound processing and micro 
controls. An advantage of having a formal model 
for ntcc and Faust interoperation is that we could 

prove properties such as playability, and predict the 
behavior of the system. 
The novelty of our approach is using the constraints 
sent from ntcc to control Faust. We tested our 
examples in Pd, although they could also be 
compiled for Max or as a standalone program since 
both Faust and ntcc can be translated into C++ and 
Max. In fact, the final goal of our research is to 
develop a standalone program for interactive 
scores. Such a program should be general enough to 
interact with Pure Data, Live, Max/MSP and other 
existing software either by passing messages or by 
generating plugins for those languages. 

Execution of interactive scores. 

We give operational semantics for interactive 
scores, but we need to execute those models. The 
execution must be able to interact with a user in 
real-time. Since the operational semantics are given 
in ntcc, we need an interpreter for ntcc capable of 
real-time interaction and being able to control 
music objects such as sound, video and lights. 
There are some interpreters for ntcc, but they are 
not suitable for real-time interaction [54, 75]. We 
chose a real-time capable interpreter for ntcc, Ntccrt 
[100], to execute our models. Ntccrt is based on 
Gecode [90]: state-of-the-art in constraint 
propagation. Ntccrt programs can be compiled into 
standalone programs, or plugins for Pd or Max. 
Users can use Pd to communicate any object with 
the Ntccrt plugin. In fact, Ntccrt can control all the 
available objects for audio processing defined in 
Pd, although our goal is to use Faust for such tasks.  
Ntcc belongs to a bigger family of process calculi 
called concurrent constraint programming (CCP). In 
the last decade, there has been a growing interest 
for CCP models of music interaction [77, 80, 78, 79, 
75, 5, 100, 58, 59, 105]12. 
Ntcc is not only useful for music semantic 
interaction, ntcc has also been used in other fields 
such as modeling molecular biology [76], analyzing 
biological systems [36] and security protocols [47]. 
Therefore, advances on the simulation of ntcc 
models will be useful not only for music 
interaction, but also for other fields. 

Automatic verification. 

A disadvantage of ntcc is the lack of automatic 
verification tools available. This limits the 
applicability of the verification techniques to small 
problems. We claim for the urgent need of a 
verification tool for ntcc. First, because ntcc has 
been widely used to model reactive systems and 

 
12  We will discuss all these works in this article. 
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verify properties about them, but the verification 
had to be done by hand. Second, because there are 
not many frameworks to model and verify music 
interaction systems, and ntcc has been proved to be 
successful in that field.  
We developed a bounded-time model checking 
procedure for ntcc, ntccMC13. The model checker is 
based on encoding ntcc processes and constraint 
linear-time logic ( CLTL) formulae into 
deterministic finite state automata. Examples of 
CLTL formulae are “always the constraint pitch=60 
can be deduced from the output store”, namely 
(pitch=60); and “eventually object a and object b 
are launched at the same time”, namely .  
Ntcc has been used since its beginnings to prove 
properties of music interaction systems. Ntcc is a 
powerful formalism because it allows to simulate 
the behavior of a model and also to verify 
properties of the model. As an example, ntcc was 
used to verify properties of a musicological 
problem of western-african music [77]. The reader 
may also look at [78] and [80] for other examples 
of verification of music interaction systems. 

3.3  Structural Definition of the Score 

Interactive scores are composed by temporal 
objects and temporal relations. We consider that all 
temporal objects have only a start and end point and 
it is not possible to define intermediate points. 

3.3.1  Temporal objects 

A temporal object has two point identifiers: to 
control its starting and ending times. An external 
action is usually associated to each of them (e.g., 
turn on the lights, play a video or stop a sound). 
Some temporal objects are interactive, thus we call 
them interactive objects. 

Definition 1 (Temporal object (TO) )  Let P be a 
set of point identifiers. A Temporal object is a tuple 
o=〈 sp,ep,Δ〉 ∈, where sp,ep P,sp≠ep, are called 
start and end points, respectively, and Δ�N is a set 
of durations. A temporal object whose duration 
Δ={0} is called an interactive object. Functions 
sp(o), ep(o) and d(o) return the start, end and 
duration, respectively, of object o. The set of all 
temporal objects is T.  

3.3.2  Temporal relations 

Points p,q�P are supposed to be positioned on a 
timeline. Temporal positions of points could be 
fully or partially determined. Temporal relations 
constrain the set of possibilities for these positions. 
A partial order among points is given by 
 

13  http://sourceforge.net/projects/ntccmc/ 

quantitative relations; for instance, point q is 
executed between four and ten time units after point 
p. Qualitative temporal relations can be easily 
expressed as quantitative relations; for instance, 
point-to-point before relation is the interval (0,∞) 
and point-to-point equal relation is the set {0}, a 
proposed in [51]. 
Our quantitative relations are close in spirit to the 
temporal relations described by Allombert et al. 
which contain time intervals [9]. A limitation of 
Allombert’s interactive scores is that all intervals 
must be flexible: intervals must have the form 
(0,∞), [0,∞) or {0}. In Allombert’s thesis [2], the 
model is extended to general integer intervals, but 
arbitrary durations cannot be expressed. The 
durations contained in our temporal relations are 
usually intervals, but they can be any set of 
integers.  

Definition 2 (Temporal Relation)  Let function  
give the set of potential time positions for each 
point p�P. A temporal relation is a tuple 〈 p,Δ,q〉  
where Δ�N is the set of durations between points 
p,q�P. We use the notation  for temporal 
constraints of duration. Temporal positions of p and 
q are said to be constrained by ν(q)=ν(p)+Δ. The 
set of all temporal relations is R.  

Allen’s relations [1] without disjunction, over 
discrete time, can be easily expressed as point-to-
point relations [51]. Furthermore, with point-to-
point relations we can express relations that cannot 
be expressed in Allen’s relations without 
disjunction; for instance, that the end of a temporal 
objects is before the end of another temporal object. 

Example 3 Figure 7 shows how the Allen’s relation 
“red light overlaps green light” can be represented 
by three point-to-point before relations. 
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Figure 7: Encoding Of The Allen Relation Overlaps Into Point-To-Point Relations. 

3.3.3  Interactive scores 

Definition 4 (Interactive Score)  An interactive 
score is a set of temporal objects equipped with a 
set of temporal relations: a tuple 〈 〉P,O,R , where 
P is a set of point identifiers, O�T is a set of 
temporal objects, R�(P×P(N)×P) the temporal 
relations. Set R also includes the relations derived 
from the duration of temporal objects. For each 
o�O, 〈 〉 ∈sp(o),d(o),ep(o) R. In addition, a 
relation 〈 p,Δ,q〉 ∈R iff  

1. p,q are distinct points and ν(q)=ν(p)+Δ; 

2. two interactive objects do not occur at the 
same time; and  

3. there is only one temporal relation between 
the start and end point of a temporal object. 

Property 2 takes care of the fact that two interactive 
points cannot happen at the same time; it means, 
that they cannot be related with zero-duration 
temporal relations, not even transitively by the 
means of other objects. The reason for this 
constraint is that interactive objects are usually 
launched by the user of the scenario; therefore, we 
cannot guarantee that the user will launch them at 
the same time. This simplifies the model.  

Example 5 Figure 8 is an example of a score. 
Objects red light, green light and sound produce 
visible actions at their start and end. Objects a,b 
are interactive. Temporal relations starts represents 
a zero-duration between the start points of the two 
objects they connect. Relations ends represents a 
zero-duration between the end points of the two 
objects they connect. Allen’s relation overlaps can 
be represented by the three point-to-point relations, 
as shown in Figure 7. 

  

    

Figure 8: Example Of An Interactive Score. 

Example 6 The Constraints Of The Score In Figure 8 Are Presented In Table 3.  

 Constraints of duration Explicit temporal relations
 

ν(ep(r))�ν(sp(r))+d(r) 
ν(sp(g))=ν(sp(u)) 

ν(ep(g))�ν(sp(g))+d(g) ν(ep(a))=ν(ep(r)) 
ν(ep(a))�ν(sp(a))+{0} ν(sp(g))>ν(sp(r)) 
ν(ep(b))�ν(sp(b))+{0} ν(ep(g))>ν(ep(r)) 
ν(ep(d))�ν(sp(d))+{0} ν(sp(g))<ν(ep(r)) 
ν(ep(u))�ν(sp(u))+d(u) ν(sp(d))=ν(ep(u)) 
 ν(sp(b))=ν(sp(r)) 

Table 3: Implicit and explicit temporal constraints of the score in Figure 8. Relations “<” and “>” are 
represented by the interval (0,∞); relation “=” is represented by the set {0}. 8 
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3.4  Event Structures Semantics 

Langerak’s timed event structures (henceforth event 
structures) is a mathematical model to represent 
systems with non-determinism, real-time and 
concurrency [13]. Event structures allow to define a 
partial order among concurrent events. Event 
structures include a set of labeled events and a 
bundle delay relation. The bundle delay relation 
establishes which events must happen before some 
other occurs. Actions can be associated to events. 
Events are unique, but two events may perform the 
same action. Events can be defined to be “urgent”. 
An urgent event occurs as soon as it is enabled. In 
addition to the bundle relation, event structures 
include a conflict relation establishing events that 
cannot occur together. Events can also be given 
absolute occurrence times.  
We recall that interactive scores must have formal 
semantics, as required for automated verification of 
properties of the scenario that are fundamental to its 
designers and users. We also recall that we denote 
by the functions and R(ε) each component of an 
event structure ε. 

3.4.1  Temporal objects 

The events represent the start or end points of a 
temporal object. An interactive object is represented 
by a single event. Temporal relations are modeled 
with event delays. A static temporal object a is 

represented by two events  (start and end events). 
The labels of events are pairs (type,o), where 
type�{startPoint,endPoint,interactiveObject} and 
o is the temporal object giving rise to the event.  

Example 7 Figure 9 shows the encoding of three 
temporal objects.  

Definition 8 (Temporal object encoding)   The 
encoding of a temporal object (a) is a function  
defined by  

1. if a=〈 〉sp,ep,{0}  (i.e., a is an interactive 
object),  

then   

2. if a=〈 sp,ep,Δ〉  (i.e., a is a static temporal 
object), then eto(a)=〈 ∅ 〉E,l, , ,  

where  and . 

The above definition guarantees that there are 
unique start and end events in the translation of a 
static temporal object, thus we know that each 
event is related to a single point.  

Definition 9 (Relation between points and 
events)   Let o be a temporal and  the set of points 
contained in o, function  associates a point 
identifier  to its corresponding event in eto(o).  

 

  

   

Figure 9: Encoding Of A Temporal Object And Its Temporal Relations Of Duration. There Are Two For R, Two For G, 
And A Single One For A. Double Line Arrows Are Just A Visual Notation For The Event Delays That Model The 

Duration Of The Temporal Objects. 

 

3.4.2  Temporal relations 

Each point-to-point relation is represented by an 
event delay function.  

Definition 10 (Temporal relation encoding)   Let 
p be a point of temporal object a and q be a point of 
temporal object b. The encoding of a temporal 
relation r is given by the function . For each 
r=〈 p,Δ,q〉 ∈R, the encoding etr(r) is defined by  
pe(b,q).  

Example 11 Figure 10 is the encoding of an 
overlaps relation between the objects r and g.  
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Figure 10: Encoding of two temporal objects, and the overlaps relation between them.  

3.4.3  Interactive scores 

The encoding of a score is given by adding the event delays from the encoding of the temporal relations to 
the encoding the temporal objects.  

Example 12 The encoding of Figure 8 is presented in Figure 11.  

Definition 13 (Interactive score encoding)   The encoding of an interactive score s=〈 〉P,O,R  is given by 
the function  that translates interactive scores into event structures. Let , then . 

  

   

Figure 11: Encoding of the score in Figure 8.8 

We shall prove that the temporal constraint of the 
event structures semantics of a score corresponds to 
the temporal constraint of the score. 

Definition 14 (Temporal constraint of an event 
structure)   Let ε=〈 E,R,l〉  be an event structure 
without conflicts. The temporal constraint of an 
event structure tc(ε) is the conjunction of 
constraints  for each  with , where  is a finite set of 
natural numbers. 

Given an event structure ε,  is a valid trace of ε iff  
is a solution to tc(ε). The proof proceeds as follows. 
By the definition of event structures without 
conflicts, for all 0<i,j≤n:  in any trace of ε because ε 
has no conflicts. By Def. , for each , we have the 
constraint . Therefore,   is a solution to tc(ε). 

Proposition 15 (Equivalence of interactive score 
constraints and  its event traces)   Let 
s=〈 〉P,O,R  be an interactive score, ε=es(s) the 
encoding of the score, ts(s) the temporal constraint 
of the score, and tc(ε) the temporal constraint of ε. 
It holds that , where  is obtained by replacing each 
point identifier by its corresponding event in the 
constraint ts(s), and p is the start or end point of 
temporal object c�O.  

We recall that  gives the set of potential time 
positions for each point p�P. We also recall the 
notation for temporal constraints: 
t+Δ={t'|t'=t+δ,δ�Δ}. 

 
The proof above is presented for hierarchical 
interactive scores in [105]. 

3.5  Some Properties of the Scenarios 

We insist that a motivation of defining an abstract 
semantics in event structures is to prove properties 
of the system execution; in particular, properties 
about the execution traces. As an example, to verify 
that temporal objects will be played as expected 
during performance (i.e., playability) or, in general, 
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some property of each execution trace. Such 
properties cannot be verified in applications based 
upon informal specifications, as it is the case for 
most existing software for music scenarios with 
interactive controls. The following properties were 
already presented in [105].  

• Properties of the traces of execution.  

• There exist a trace σ that contains a 
word w; for instance, the sequence 
of notes C-D-E is part of n traces of 
execution.  

• There exists n traces σ that contain a 
word w, possibly with other events 
in between; for instance, the 
sequence of notes C-D-E is contained 
in the trace .  

• The number of possible traces of 
execution for a score ε is 
card(Traces(ε)). 

• If event e is launched before time 
unit n, the duration of object a is 
greater than m. For all σ�Traces(ε) 
and , it holds that . 

• After event e is played, there are n 
traces where event f is launched 
before event g.  

• Between time units a to b, there is 
no more than n objects playing 
simultaneously.  

• Minimum duration of a score. Let s be a 
score and ε=es(s) the encoding of s, the 
trace whose duration is minimum 
corresponds to a path from the start event of 
ε to the end event of ε such that the sum of 
the delays in the event delay relation is 
minimal among all paths connecting start 
and end. 

• Maximum and minimum number of 
simultaneous temporal objects. Let   be a 
trace of ε=es(s), and maxS(σ),minS(σ) the 
maximum and minimum number of events 
executed simultaneously in σ, respectively. 
The maximum and minimum number of 
simultaneous temporal objects of a score 
correspond, respectively, to the maximum 
and minimum value of maxS(σ) and minS(σ) 
among all σ�Traces(ε). This property is 
useful, for instance, to argue that there is 
only one curtain moving at the time during a 
theater performance.  

• Playability of a score. This property states 
that all temporal objects will be played 
during execution; this is desirable because a 
score can be over-constrained and therefore 
not playable. Formally, let  be the events 
played in trace σ. We say that a score is 
playable iff for all σ�Traces(es(s)) it holds 
that . 

The playability of a score can be decided by 
solving a constraint satisfaction problem 
(CSP). There exists a σ�Traces(es(s)) such 
that  iff the following CSP has at least one 
solution: a variable  for each event ; the 
domain  for each variable, where  is a finite 
subset of N; and the single constraint tc(ε). 
This holds as a direct consequence of Prop. .  

3.5.1  Time complexity of the playability of a 
score 

In what follows we will show that deciding the 
playability of a score is NP-complete in the general 
case, but there is an interesting subclass that is 
tractable. 

The NP-complete case 

We will show that the decision problem of the 
subset sum [50] can be encoded as the playability of 
an interactive score. The subset decision problem is 
stated as follows: Given a set of integers  of n 
objects and an integer W, does any non-empty 
subset sum to W?  

  

There are several algorithms to solve the subset 
sum, all with exponential time complexity in n, the 
number of objects. The most naïve algorithm would 
be to cycle through all subsets of 1≤k≤n numbers 
and, for every one of them, check if the subset sums 
to the right number. The running time is of order 
O(), since there are  subsets and, to check each 
subset, we need to sum at most n elements. The best 
algorithm known runs in time O(), according to 
Martello [50]. In what follows we show that the 
playability of a score is a NP-complete problem by 
following the methodology described in [87]. 

Proposition 16 (The playability of a score is a 
np-complete  problem)   

(1) The subset sum decision problem can be 
encoded as the playability of an interactive score. 
(2) If the score is not playable, there is not a subset 
whose sum is W. (3) If the score is playable, then it 
exists at least a subset whose sum is W. (4) To check 
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whether a solution satisfies the playability problem 
can be done in polynomial time. 

 

 

  

   

Figure 12: Encoding Of The Subset Sum Problem Into An Interactive Score. Note That The Subset Sum Problem Is A 
Variant Of The Knapsack Decision Problem Where Costs Are Not Taken Into Account And The Goal Is To Find If There 

Is A Subset Of The Elements That Fills Exactly The Knapsack Capacity. 

3.5.2  A polynomial-time subclass 

The conjunction of temporal constraints of an 
interactive score can be represented as a simple 
temporal problem (STP) when the domains of the 
durations are intervals of integers without holes 
[27]. The translation of the playability of a score 
into a STP consists in a set of point variables , one 
for each point in the score, and a set of binary 
constraints over those variables , one for each 
temporal constraint of the score. Each constraint 
has the form  with  and a,b�N∪∞. Constraints of 
the form  can be easily obtained from the temporal 
constraint of an interactive score. As an example, 
constraint of the form  can be translated into two 
constraint a constraint . It is left to the reader the 
encoding of the inequalities into constraints of the 
form . 
The satisfiability of a STP can be easily computed 
with an algorithm to find all-pairs shortest-path of 
a graph, such as Floyd-Warshall [24] algorithm 
which has a polynomial time and space complexity. 
In fact, Floyd-Warshall has a time complexity of , 
where n is the number of points of the score. There 
are faster algorithms for this problem in the 
literature [66, 118]; however, they are efficient to 
calculate if a STP has a solution, but do not 
guarantee that the constraint problem remains 
satisfiable when dispatching the events during the 
execution of a score. 
Fortunately, with some transformations, a STP can 
be dispatched online efficiently by relying only on 
local propagation: looking only to the neighbors of 
the event launched, as proposed by Muscettola et 
al. [55]. We extend the approach of Muscettola et 

al. to event structures: Transform an event structure 
in such a way that the events of the event structure 
can be dispatched online efficiently. 

Iscore. 

Iscore is a library developed by Allombert et al. 
that implements the ECO machine to execute 
interactive scores. It was originally developed in 
Lisp, and then it was ported to C++ during the ANR 
Virage14 project in 2008. Allombert et al. 
introduced Iscore as a new tool that replaces Boxes 
[4]. The comparison with Boxes is given in detail in 
[8]. Iscore uses Petri nets as its underlying model 
because Allombert argued that solving constraint 
satisfaction problems during execution may be 
incompatible with real time [2]. The first 
implementation of Iscore uses the OpenMusic 
Maquettes environment and the constraint solving 
library Gecode in the edition mode. During 
execution, OpenMusic communicates with Max or 
Pd. Max and Pd are in charge of the contents of the 
temporal objects. The communication is done using 
the open sound control (OSC) protocol. The library 
was ported to C++ during the project Virage and it 
is currently being used by Acoumouscribe. 
 

14  ANR Virage Project Virage was a research 
platform project that aimed at developing new 
writing and management interfaces for artistic 
creation and cultural industries. This platform 
included businesses (JazzMutant, Blue Yeti, 
RSF), academic laboratories (LIMSI-CNRS 
Paris Sud, MSH Paris Nord-CICM, LaBRI 
Bordeaux) and artists (GMEA, the Albi-Tarn 
centre national de création musicale and 
didascalie.net). 
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Virage. 

Virage is a software that uses Iscore and provides a 
user-friendly interface for edition and execution of 
interactive scores [6]. It was designed for 
interactive theater performances, but it can also be 
used for Electroacoustic music. Recently, Marczac 
et al. describe an extension of Virage with fast 
forward and go to jumps functionalities [49]. Fast 
forward is used to modify the execution speed of 
the score, and go to jumps can be seen as very fast a 
acceleration in which the artist do not want 
intermediate values.  

Acousmouscribe. 

“The Acousmoscribe is a free software coming 
from the former software, Boxes, which aim was to 
write scores and compose electroacoustic music. 
Acousmoscribe is built around two possible uses: 
notation and composition. This software offers 
concrete and symbolic approaches of 
electroacoustic music at the same time. The user 
interface allows the writing of electroacoustic 
music scores, following the phenomenological 
approach initiated by Pierre Schaeffer. Around 
twenty signs, that can be combined thanks to a 
palette to write a "sound object", produce more than 
20000 combinations: In this way, its use is intuitive 
while allowing quite a precise description of 
sounds. The length of each created box corresponds 
to the length of the associated sound in time. 
Regarding composition, a software built in 
Max/MSP named Acousmosynth receives messages 
from Acousmoscribe thanks to the open sound 
control protocol, and translates its symbolic 
notation into control parameters for audio synthesis 
modules.” 15 

i-score. 

The latest software for interactive scores is i-score. 
This software combines the edition interface of 
Acousmouscribe with the execution model of 
Virage. It is currently maintained by Scrime16 and 
distributed as opensource. 

4.  OTHER SOFTWARE AND FORMALISMS 
IN MUSIC INTERACTION 

In what follows we describe software and 
formalisms used in music interaction such as 

 
15  

http://scrime.labri.fr/index.php?option=com_content\&vie
w=article\&id=11\%3Aacousmoscribe\&catid=41\%3Athe
mesderecherche\&Itemid=81\&lang=en 

16  http://scrime.labri.fr/ 

sequencers, signal processing languages, dataflow 
languages and process calculi. 

4.1  Sequencers 

Software to design music scenarios are usually 
based either on a fixed timeline with a very precise 
script or a more flexible script based on cue lists. 
As an example of fixed-timeline sequencers, there 
are two well-known sequencers for Mac OS X: Pro 
tools17 and Final cut pro18. As another example, the 
theater cue manager Qlab19 is based on cue lists. In 
Qlab, the user programs a list of upcoming events; 
however, Pro tools, Final cut pro and Qlab only use 
one time model and cannot use both. 
Another software to design music scenarios is 
Ableton live20. Live is often used in Electroacoustic 
music and performing arts because it allows to use 
both the fixed timeline and the cue lists. 
Nonetheless, both time models are unrelated 
temporally. 
An advantage of interactive scores over the 
previously mentioned sequencers is to relate 
temporally both time models and to model 
conditional branching.  

4.2  Computer-assisted improvisation 

Computer-assisted improvisation usually considers 
building representations of music, either by explicit 
coding of rules or applying machine learning 
methods. An interactive machine improvisation 
system capable of real-time must perform two 
activities concurrently: stylistic learning and 
stylistic simulation. As an example, the Omax 
system [12, 48] and the Continuator [61] construct 
models to represent the sequences played by the 
musician and create their own sequences based on 
the musician’s style. 
Improvisation systems are interactive and 
concurrent, but they are different to interactive 
score systems: their goal is to create music based on 
the user style, whereas interactive scores is a 
formalism to compose music (or create music 
scenarios). In interactive scores, the designer 
describes several rules that have to be respected 
during execution and the system does not produce 
new sequences nor sounds that are not written in 
the score. 

 
17  http://www.avid.com/us/products/pro-tools-software 
18  http://www.apple.com/finalcutpro/ 
19  http://figure53.com/qlab/ 

20  http://www.ableton.com/ 
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4.3  Meta-instruments 

A meta-instrument is a musician-machine interface 
and a gesture transducer intended for 
Electroacoustic music, music work, and, more 
generally, for controlling a program in real-time. A 
class of meta-instruments allows to control the 
activation and release of notes. Interpretation of 
musical pieces based on activating and releasing 
notes has been studied by Haury [39].  
Haury identifies four ways for interpretation: 
dynamic variations as the possibility to 
continuously modify the volume of the notes during 
the performance, accentuation as temporary 
volume variations, phrasing as modifying the 
binding of the notes, and agogic variations as the 
possibility to change the date of beginning and end 
of the notes. Haury’s research focuses on agogic 
modifications. As examples of agogic 
modifications, in Haury’s meta-instrument, the 
metapiano, the musicians can start or stop a group 
of notes through control points placed in the piece 
that he calls interaction points. A pause is a good 
example of interaction point in instrumental music 
because the musician or the conductor can choose 
the duration of the pause. Haury’s work inspired 
Allombert et al.’s models of interactive scores. 

4.4  Score Following 

Another kind of systems capable of real-time 
interaction are score following systems [23]. To use 
such systems, we must first write a score for the 
musician and for the computer. During execution, 
such systems track the performance of a real 
instrument and they may play music associated to 
certain notes of the piece. Nevertheless, to use these 
systems it is necessary to play a music instrument; 
whereas to use interactive scores, the user only has 
to control some parameters of the piece, such as the 
starting and ending times of the temporal objects. 
Score following systems can also provide temporal 
relations and hierarchical relations [30]; however, 
the system tracks the performance of a music 
instrument and is not meant to work with a meta-
instrument. In contrast, one of the main advantages 
of interactive scores is meant to work with meta-
instruments. 

4.5  Asynchronous Dataflow Languages 

Stream processing can be modeled as a collection 
of separate but communicating processes. Dataflow 
is the canonical example of stream processing. 
There is synchronous dataflow and asynchronous 
dataflow [88]. Synchronous dataflow they lack of 
FIFO queues to communicate channels like 
asynchronous dataflow languages. This is a main 

difference between the synchronous and 
asynchronous dataflow languages. 
As an example, asynchronous dataflow languages 
Max/MSP and Pure Data (Pd) [70] are often used to 
control signal processing and control events by 
human gestures. Max and Pd distinguishes between 
two levels of time: the event scheduler level and the 
digital signal processor (DSP) level. Max and Pd 
programs, called patches, are made by arranging 
and connecting building-blocks of objects within a 
visual canvas. Objects pass messages from their 
outlets to the inlets of connected objects. The order 
of execution for messages traversing through the 
graph of objects is defined by the visual 
organization of the objects in the patch itself21.  
There are several problems with Max and Pd that 
we aim to overcome. First, their schedulers control 
both audio signals and control messages together 
and they do not support parallelism, thus they often 
fail to deliver control messages at the required time; 
for instance, when they work under a high CPU 
load, which is common when they process video, 
3D images and sound. We present some insights on 
how to solve this problem; nonetheless, this is still 
an open problem. 
To solve the scheduling problem and to write high-
performance DSPs for Max and Pd, users often write 
C++ plugins to model loops and independent 
threads. C++ plugins solve part of the problem, but 
the control messages –for the input and output of 
these plugins– are still being scheduled by Max or 
Pd’s schedulers.  
Second, there is another problem with Max and Pd: 
they do not provide an environment to design 
scenarios. The different time scales are often 
unrelated and cannot be controlled in the same tool: 
Discrete user gestures (e.g., clicking the mouse), 
control events (e.g., control messages) and signal 
processing have different sampling frequencies and 
computing models. 
One goal of the extension of interactive scores with 
signal processing is to overcome the existing 
problems of the asynchronous dataflow languages 
mentioned. 

4.6  Synchronous Dataflow Languages 

There are three well-known french synchronous 
languages: Esterel, Lustre [37, 38] and Signal [33]. 
Benveniste et al. discussed the advantages and 
limitations of such languages 12 years after they 
were conceived [17]. They argue that synchronous 
languages were designed to implement real-time 
embedded applications, thus such languages work 

 
21  http://en.wikipedia.org/wiki/Max_(software) 
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on the deterministic concurrency paradigm and they 
are meant to model deterministic system behavior. 
Synchrony divides time into discrete intervals and 
supposes that operations take no time (e.g., to 
assign a variable or read a value).  
Benveniste et al. argue that Esterel is imperative 
and it is well-suited for describing control. Signal is 
based on the reactive programming paradigm: A 
program does something at each reaction and it 
may be embedded in some environment. Signal is a 
multiclock language. Lustre supports recursive 
definitions, but may not contain cyclic definitions, 
and a variable can only depend on past values. Both 
Lustre and Signal have clocks to align streams, but 
they lack of FIFO queues to communicate channels 
like asynchronous dataflow languages. This is a 
main difference between the synchronous and 
asynchronous dataflow languages. 
A very useful feature of synchronous dataflow 
languages is multirate computation. Using multirate 
computation, it is possible to easily handle control 
signals, video signals and audio signals that have 
different sampling rates. In fact, Forget compared 
the mutirate capabilities of Esterel, Lustre and 
Signal [31]. Forget argues that in Lustre each 
variable is a flow. Lustre has a clock, but multirate 
is hard to describe. In Signal, variables are signals 
instead of flows. Clocks in Signal are first class 
objects; therefore, it can be polychronous, but 
multirate is also hard to achieve. Finally, Esterel 
focuses on control flow, where several modules 
communicate through signals, Esterel also has some 
asynchronous extensions and automated 
verification, but does not support multirate. 
Faust is a synchronous language with formal 
semantics for multirate; however, this functionality 
has not yet been implemented [41]. Faust is a 
functional programming language for signal 
processing. In Faust, DSP algorithms are functions 
operating on signals. Faust programs are compiled 
into efficient C++ code that can be used in multiple 
programming languages and environments; for 
instance, in Pure data [35]. Faust is the DSP 
language we chose for our extension of interactive 
scores with signal processing.  
There is another well-known synchronous dataflow 
language. Csound22 has three types of variables 
with different time levels (and different sampling 
rates): instrument variables, control variables and 
audio variables. In fact, control variables 
correspond to event scheduler sampling rate and 
audio processes to DSP level in Max. Nonetheless, 
Csound does not provide sophisticated mechanisms 

 
22  http://www.csounds.com/ 

to temporally relate instrument, control and audio 
variables; for instance, to say that one microsecond 
after an audio signal reaches a peak, a control 
variable changes its value, causing three 
instruments to play a note whose duration is the 
distance between such peak and the last peak the 
audio signal reached. 

4.7  Process Calculi 

Process calculi (or process algebras) are a diverse 
family of related approaches to formally model 
concurrent systems. Process calculi provide high-
level description of interactions, communications, 
and synchronizations between a collection of 
independent processes. They also provide algebraic 
laws that allow process descriptions to be 
manipulated and analyzed, and permit formal 
reasoning about equivalences between processes; 
for instance, using bisimulation [82]. Intuitively, 
two systems are bisimilar if they match each other’s 
moves. In this sense, each of the systems cannot be 
distinguished from the other by an observer. A well-
known process calculus is the pi-calculus. 
Unfortunately, the pi-calculus is not well suited to 
model reactive systems with partial information.  
Concurrent constraint programming (CCP) [83] is a 
process calculus to model systems with partial 
information. In CCP, a system is modeled as a 
collection of concurrent processes whose 
interaction behavior is based on the information 
(represented by constraints) contained in a global 
store. Formally, CCP is based on the idea of a 
constraint system. A constraint system is composed 
of a set of (basic) constraints and an entailment 
relation specifying constraints that can be deduced 
from others.  
Although constraint systems suppose a big 
flexibility and modeling power for concurrent 
systems, Garavel argues that models based on 
process calculi have not found widespread use 
because there are many calculi and many variants 
for each calculus, making difficult to choose the 
most appropriate [32]. In addition, he argues that it 
is difficult to express an explicit notion of time and 
real-time requirements in process calculi. Finally, 
Garavel argues that existing tools for process 
calculi are not user-friendly and there are not many 
tools available.  
A position in favor of process calculi is defended by 
Olarte et al. [60, 59]. They showed that CCP calculi 
have been used in several applications such as 
music interaction, security protocols and systemic 
biology. They explained that CCP has different 
variants to model mobility, probabilistic behavior, 
hybrid systems, discrete time and real-time. 
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We also argue, in favor of CCP, that there has been a 
growing interest for CCP models of music 
interaction in the last decade [77, 80, 78, 79, 75, 5, 
100, 58, 59, 105]. CCP processes can be analyzed 
from both a behavioral and declarative point of 
view, making them suitable for simulation and for 
verification of properties. Some programming 
languages have also been developed following the 
concepts of CCP. As an example Mozart/Oz [74, 
113] is a multiparadigm programming language 
inspired in the CCP paradigm. 
Process calculi has been applied to the modeling of 
interactive music systems [104, 111, 99, 110, 10, 
106, 100, 59, 97, 93, 95, 98, 11, 103, 94, 101, 102, 
92] and ecological systems [107, 64, 109, 65, 108].  
Although there are programming languages based 
on CCP, as Garavel argued, the explicit notion of 
time is missing in most process calculi and, 
unfortunately, it is also the case of CCP. In CCP it is 
not possible to delete nor change information 
accumulated in the store. For that reason, it is 
difficult to perceive a notion of discrete time, useful 
to model reactive systems communicating with an 
external environment (e.g., motion sensors and 
speakers). 
The temporal concurrent constraint (tcc) [84] 
calculus circumvents this limitation by introducing 
the notion of discrete time as a sequence of time 
units. At each time unit, a CCP computation takes 
place, starting with an empty store (or one that has 
been given some information by the environment). 
In fact, tcc has been shown to be very expressive to 
model synchronous languages such as Lustre and 
Esterel [91]. There is also an interpreter to execute 
tcc models [89].  
The non-deterministic timed concurrent constraint 
(ntcc) [56] adds non-determinism and asynchrony 
to tcc. Ntcc has been extendedly used for musical 
applications. We chose ntcc to express operational 
semantics of interactive scores because it allows for 
verification of temporal properties; for instance, it 
has been used to model music improvisation 
systems and a western-african music problem [77, 
78]. In addition, there is a real-time capable 
interpreter for ntcc [100], and verifications tools 
and techniques are being developed in the recently 
started Colciencia’s REACT+ project23. Finally, 
another advantage of ntcc is that it handles very 
naturally temporal constraints. 

 
23   REACT+ is a colombian project supported by 

Colciencias to develop verification and simulation tools 
for ntcc calculi. 
http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:av
ispa:react-plus. 

4.8  Temporal Constraints 

Temporal constraints have gained interest among 
scientists ever since the invention of artificial 
intelligence. Temporal constraints are often used for 
temporal planing of autonomous robots. Lately, the 
music interaction community developed an interest 
on temporal constraints for the design of interactive 
music. 
There are two well-known types of temporal 
constraints: metric (or quantitative) constraints and 
qualitative constraints. Metric constraints restrict 
the distance between points and qualitative 
constraints are relative positions. A metric 
constraint is, for instance, “a point occurs five time 
units after another”, and a qualitative constraint is, 
for instance, “a point occurs strictly before 
another”. 
There are some well-known classes of qualitative 
constraints: interval-interval (also known as Allen’s 
relations [1], shown in Figure 13), point-to-point 
and point-interval. Interval-interval temporal 
relations were conceived to model dense 
(continuos) time, but they can also be used for 
discrete time. According to Gennari, point-to-point 
are more expressive than point-interval relations 
when interval-interval does not include disjunction. 
When interval-interval temporal relations include 
disjunctions, they are more expressive than the 
other classes, but its satisfiability is NP-Hard [34].  
There are also some well-known classes of 
quantitative constraints: unary constraints and 
binary constraints. They express location and 
distance respectively, both concepts important in 
music, but useless without the concept of relative 
positions. 
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Figure 13: Allen’s interval-to-interval relations. 

Fortunately, Meiri formalized a new class: the 
combination of both qualitative and metric 
constraints [51]. Meiri’s approach is simple: 
qualitative constraints can be represented as 
quantitative constraints; for instance, the relation < 
can be represented by the interval (0,∞). A subset of 
Meiri’s new class can be represented as a simple 
temporal problem [27] when each temporal 
constraint is given by a single interval. In 
interactive scores, we combine point-to-point 
qualitative relations with unary and binary 
quantitative constraints, as proposed by Meiri. 
There is another kind of temporal constraints: 
hierarchical unification-based temporal pattern 
grammar [20]. The unification-based temporal 
grammar is meant to describe multivariable time 
series. Such a grammar is an extension of context-
free grammars with Prolog clauses evaluated as 
side conditions. Temporal patterns use logical 
disjunction and they have been successfully applied 
to the recognition of sleeping disorders. It has also 
been used to data mining hierarchical temporal 
patterns in multivariable time series. Nonetheless, 
Biundo et al.’s temporal grammar is not meant for 
real-time operations. 

5. CONCLUSIONS 

We described sequencers which are software to 
design music interaction. Sequencers are usually 
based on a fixed timeline or on cue lists. Some 
software provide both time models but they are 
temporally unrelated. An advantage of interactive 
scores is to relate temporally both time models and 
to model conditional branching.  

There is also hardware to control music interaction. 
Meta-instruments are musician-machine gesture 
transducers intended for controlling a program in 
real-time. As an example, a meta-instrument can 
control the start and end of groups of notes, 
allowing for the interpretation of complex pieces 
with interfaces as simples as a one-touch piano. 
This work inspired the first models of interactive 
scores. In contrast, there are score-following 
systems, in which a real-instrument is needed. A 
score-following system tracks the performance and 
plays electronics associated to the notes of the 
score.  
There are also synchronous and asynchronous 
dataflow paradigms, which are paradigms closely 
related to interactive scores. Asynchronous 
dataflow is meant to handle asynchronous events 
such as user interactions, whereas synchronous 
languages are meant to design real-time 
applications and they are based on a model of 
deterministic concurrency. Heterogeneous systems 
are systems that combines several paradigms, for 
instance, asynchronous and synchronous languages. 
Heterogeneous systems combining asynchronous 
and synchronous circuits can be designed using 
schemes such as global asynchronous, locally 
synchronous. A special case, of interest for 
interactive scores is called ratiochronous, in which 
the receiver’s clock frequency is an exact multiple 
to the sender’s, and both are derived from the same 
source clock. This design scheme could be useful to 
synchronize interactive scores with a signal 
processing system, but also with other systems such 
as a score following system. 
Process calculi are approaches to formally model 
concurrent systems. As an example, ntcc describes 
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partial information by the means of constraints, it 
provides discrete time units, and it models 
asynchrony and non-determinism. Ntcc has been 
used in the past to model interactive scores. It 
handles naturally temporal constraints. A similar 
approach is Petri nets, which is is another model of 
concurrency with an intuitive graphical notation. 
An extension of Petri nets with time and hierarchy 
has been used to model interactive scores in the 
past and for synchronization of music streaming 
systems. Ntcc has also been used to model 
interactive scores 
There are other existing models of interactive 
scores. First models were conceived to control the 
starting and ending times of the notes of a score. 
They also included different temporal relations; for 
instance, to model two temporal objects that 
overlaps, by the means of Allen’s relations. Later 
extensions included a Petri nets operational 
semantics. Finally, there are extensions of 
interactive scores with conditional branching. Note 
that the Petri nets semantics of interactive scores 
were implemented in an efficient C++ library called 
Iscore, and it is currently being used by i-score. 
Most scenarios and musical pieces with interactive 
controls have no formal semantics. Interactive 
scores is a formalism to describe interactive 
scenarios based on temporal constraints. In this 
dissertation, we introduced an event structures 
semantics of interactive scores, we formalized some 
properties, and we proved that the event structures 
semantics complies with the temporal constraints of 
the score. With the event structures semantics, we 
expressed several properties about the traces of 
execution that are difficult to express and prove 
using constraints. 
We introduced the dispatchable event structures 
(DES): event structures whose temporal object 
durations and temporal distances among objects are 
integer intervals. DES can be dispatched online by 
relying only on local propagation: This is achieved 
by transforming the constraint graph into an all-
pairs shortest-path graph; however, that drastically 
increases the number of arcs. In the future, we 
propose to minimize the number of arcs of such 
networks, as proposed by Muscettola et al. [55]. 
Although event structures provide a theoretical 
background to specify properties and understand 
the system, there is no difference between 
interactive objects and static temporal objects in the 
event structures semantics: such a difference can 
only be expressed in the operational semantics. This 
means that the event structure semantics are not 
fully abstract with respect to the operational 
semantics: Operational equivalence does not always 

coincides with denotational equality. It is an open 
issue how to capture the behavior of interactive 
objects in the event structures semantics. 
Operational semantics are based on the 
dispatchable normal form of the event structures of 
the score. A score is in normal form when it does 
not have zero-duration event delays. The 
computation of the normal form is similar to the 
algorithm to transform a score into a Petri net 
proposed by Allombert et al. [2]: In Petri nets 
semantics of interactive scores, points of temporal 
objects executed at the same time share the same 
place (i.e., state). Other algorithms for optimization 
problems include [62, 53, 72]. 

Comparison with Allombert et al.’s model. 

We believe that this dissertation extends 
significantly Allombert et al.’s model because it 
provides a concise operational semantics for 
interactive scores whose temporal object duration 
can be any interval of integers. Allombert et al. 
proposed temporal relations with flexible intervals 
with only {0}, [0,∞) and (0,∞) intervals [5, 4]. In 
fact, arbitrary integer intervals are not allowed in 
neither Virage nor i-score, only flexible-time 
intervals. To handle temporal relations with 
arbitrary intervals, Allombert proposed in [2] to 
either build a Hierarchical colored time stream 
Petri net, adding a big number of new places 
(states), or to use a constraint store that is unrelated 
to the Petri nets semantics, and the combined 
semantics of Petri nets interacting with a constraint 
store are not given.  
There is another disadvantage of Allombert et al.’s 
models: Temporal relations are limited to Allen’s 
relations. Allen’s relations do not allow to represent 
quantitative relations between two objects easily; 
for instance, “object a occurs 3 time units after 
object b”. Using Allen’s relations, it is neither 
possible to say “the start of object a is before the 
end of object b”. These kind of relations are easily 
modeled using point-to-point temporal relations. In 
fact, recently, i-score has moved forward to point-
to-point temporal relations.  
A conditional branching extension was presented in 
[2], but no temporal relations were allowed. We 
struggled to allow temporal relations and 
conditional branching in the same model. As an 
example, it is possible to model conditions and also 
preserve temporal properties over all the branches, 
for instance, that . 
In our first models of conditional branching, 
published in [101, 102], we allowed branches 
starting in the same point have different durations. 
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We left aside such an approach because it makes 
many scores incoherent and unplayable.  
An advantage of our extension of interactive scores 
with conditional branching with respect to previous 
models of interactive scores, Pure Data, Max and 
Petri Nets is representing declarative conditions by 
the means of constraints. Complex conditions, in 
particular those with an unknown number of 
parameters, are difficult to model in Max or Pd. To 
model generic conditions in Max or Pd, we would 
have to define each condition either in a new patch 
or in a predefined library. In Petri nets, we would 
have to define a net for each condition.  
A disadvantage of our conditional branching model 
is that the number of event conflicts increases 
exponentially with respect to the hierarchy depth. 
Fortunately, the hierarchy depth is usually not so 
big, thus we argue that we do not need a formalism 
that supports hierarchical constructions, such as 
hierarchical Petri nets or statecharts.  
Using timed event structures with conflicts, it is 
possible to model conditional branching: the 
possibility to choose among different continuations 
of the piece based on the preferences of the 
musician. In addition, Langerak describes in [45] 
how to encode recursive processes into event 
structures; in fact, loops in the interactive scores 
could be encoded with such a technique. 
Unfortunately, conditional branching drastically 
increases the complexity of the system; for 
instance, a score may contain dead-locks. An 
alternative for automated verification is constraint 
programming; for instance, to verify the playability 
of a score and calculate the potential time positions 
of the points of the score. Nonetheless, once again, 
we argue that, for some properties, the notion of 
trace is more appropriate.  
Another advantage of our event structure semantics 
and our operational semantics is that they can 
express trans-hierarchical relations: temporal 
relations between objects with different parents. 
Trans-hierarchical relations are not possible to 
model with hierarchical time stream Petri nets used 
by Allombert et al. These relations are useful; for 
instance, to model temporal relations between 
videos and sounds that are contained in different 
temporal objects, allowing to define temporal 
relations among different media.  
A key issue of this dissertation is that we executed 
interactive scores in a efficient manner. We want to 
encourage the use of process calculi to develop 
reactive systems. For that reason, this research 
focused on developing real-life applications with 
ntcc and showing that our interpreter Ntccrt is a 
user-friendly tool, providing a graphical interface to 

specify ntcc models and compiling them to efficient 
C++ programs capable of real-time interaction in 
Max and Pure Data (Pd). We argue that using ntcc 
to model, verify and execute reactive systems 
decreases the development time and guarantees 
correct process synchronization, in contrast to the 
graphical patch paradigm of Max and Pd.  

Disadvantages of our models. 

A disadvantage of most ntcc tools is the syntax to 
write the input. Previous attempts to write ntcc 
processes directly as C++ classes, Lisp functions or 
visual objects has been proven to be insufficiently 
user-friendly. A compiler to parse ntcc into C++ 
classes is the "missing link" to allow non-
programmers to use the real-time capable 
interpreter for ntcc (Ntccrt) and the ntcc time-
bounded model checker (ntccMC), and could be the 
base for other CCP tools.  
There are some other problems to execute 
interactive scores with Ntccrt. First, To compute the 
event structures semantics, its normal form and the 
dispatchable form by hand is very difficult. In the 
future, this should be done automatically. Second, 
ntcc recursive definition cannot be translated 
directly to Ntccrt because their encoding is based 
on nested non-deterministic choices hard to 
simulate. In the future, variables should be treated 
differently; for instance, using variables that can 
change value from a time unit to another one. 
Unfortunately, there are other problems that Ntccrt 
must overcome. Third, one may argue that although 
we can synchronize Ntccrt with an external clock 
(e.g., a metronome object) provided by Max or Pure 
Data, this does not solve the problem of simulating 
models when the clock step is shorter than the time 
necessary to compute a time-unit. To solve this 
problem, Sarria proposed to develop an interpreter 
for the real time concurrent constraint (rtcc) [85] 
calculus, which is an extension of ntcc capable of 
modeling time units with fixed duration. The reader 
may find a further discussion on executing time 
units with fixed durations in [100]. 
One may also argue that interactive scores had little 
applicability because they do not allow to describe 
signal processors. In this dissertation, we also 
extended the formalism of interactive scores with 
sound processing and micro controls for sound 
processors. We present an encoding of the scenario 
into a ntcc model –executed using the real-time 
capable interpreter Ntccrt– and a Faust program. 
Both programs interact during the performance of 
the scenario. We show how some interesting 
applications can be easily modeled in the formalism 
and how they can be executed in Pure Data. Using 
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Faust and Ntccrt, we achieved an efficient and real-
time capable performance of a scenario –even 
under high CPU-load. Nonetheless, our final goal is 
to integrate Ntccrt and Faust in a standalone 
program.  
There is an interesting framework to evaluate the 
expressiveness of interactive multimedia 
formalisms: Janin’s dimensions. There are several 
dimensions in multimedia interaction, according to 
Janin24: Abstraction that represents the hierarchy of 
temporal objects, time that represents the causality 
and can be thought as the logical implication, 
parallelism that represents that two (or more) 
objects can be executed simultaneously and can be 
though as an logical and, alternative that represents 
conditional branching and can be though as a 
logical or. Finally, there are dimensions for value 
that represents, for instance, the value of the pitch, 
volume or pan. Janin’s dimensions are represented 
in Figure 14. 

 

 
24  

http://www.labri.fr/perso/janin/index_fichiers/Magma.jpg 
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Figure 14: Janin’s Dimensions Of Interactive Multimedia. 

The hierarchical model of interactive scores allows 
us to express abstraction, time and values in the 
same two-dimensional space. In fact, i-score 
represents such interactive scores in a two-
dimensional space. In the conditional branching 
model we can express abstraction, time, value and 
alternative, all in the same two-dimensional space 
because all branches starting on the same point 
have the same duration. Finally, in the signal 
processing extension, we can express time, value 
and parallelism in one two-dimensional space, and 
time, value and dataflow in another two-
dimensional space. We argue that the dataflow 
dimension is missing among Janin’s dimensions 
and should also be considered. The dataflow 
dimension describes how sound is transferred from 
one process to another. To represent time, value and 
dataflow together, we would need a tridimensional 
space; otherwise, arrows representing dataflow will 
overlap with those representing temporal relations.  

5.1  Answers to Problem Statements 

We have identified seven problems with existing 
software to design multimedia scenarios: (1) there 

is no formal model for multimedia interaction, (2) 
multimedia scenarios have limited reusability and 
difficulties with the persistence of multimedia 
scenarios, (3) time models (fixed timeline and cue 
lists) are temporally unrelated, (4) most multimedia 
interaction software products provide no hierarchy, 
(5) the different time scales are unrelated, (6) 
schedulers for multimedia scenarios are not 
appropriate for soft real-time, and (7) there is no 
model to combine temporal relations and 
conditional branching. In what follows we explain 
how the interactive scores formalism solves those 
problems. 
First, interactive scores is a formalism to model 
multimedia scenarios. Event structures semantics 
allows to specify properties over the traces of 
execution. Ntcc semantics allows to understand the 
execution of the score and to specify temporal 
properties as well. Both semantics were proved to 
be related. Therefore, interactive scores is a formal 
model for multimedia interaction. 
Second, scenarios described in interactive scores 
can be preserved because they have formal 
semantics. In addition, signal processors can be 
specified in Faust, which also has formal semantics. 
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In fact, Faust can be used for preservation of music 
pieces because it provides formal semantics of all 
the audio processors used in the music piece [52, 
15]. 
Third, time models are related temporally, for 
instance, we can specify that an object is executed 
strictly in the third second of execution, and we can 
also express that another object is executed between 
two and five seconds after the end of the previous 
object. Although, during the execution, micro 
controls are managed by Faust and macro controls 
by ntcc, it is also possible to express, for instance, 
that an object starts 500 microseconds after another, 
and it will end one second before another object. 
Fourth, hierarchy is available in our model and it 
allows to constrain the execution times of the 
objects contained in another object. 
Fifth, different time scales are available in our tool, 
but, unfortunately, they are temporally unrelated, as 
in many tools; for instance, it is not possible to 
relate the frequency of the clock that controls ntcc 
discrete time units to the signal processing 
sampling rate.  
Sixth, the system is appropriate, even under high 
CPU-load, to interact with a human in real-time. The 
solution to this problem is relevant for the 
multimedia interaction domain because, in addition 
to sound processing, the computer may execute at 
the same time complex video and image operations. 
For that reason, we did the evaluation of our system 

under high CPU-load, obtained by executing several 
video processing operations concurrently. 
Seventh, in interactive scores, it is now possible to 
combine conditions and intervals into a new type of 
relation called time conditional relations. In fact, by 
labeling these relations by true conditions, we can 
also express scores written in the pure temporal 
model. We managed to combine conditions and 
temporal relations by making the assumption that 
all branches starting in the same point have the 
same duration. 

5.2  Future Directions 

We propose some directions on the study and 
applications of interactive scores. Our final goal is 
to have a complete framework, as shown in Figure 
15. The translation of conditional branching scores 
with loops into event structures is missing. In 
addition, operational semantics of conditional 
branching scores, for the general case, are missing. 
The translation of event structures semantics of 
scores with arbitrary durations into ntcc is also 
missing. Formal semantics of the integration of ntcc 
and Faust are missing. Some improvements for the 
model checker are missing to make it fully usable, 
and finally stand alone programs are missing to 
allow different applications of interactive scores, 
such as applications for music pedagogy. In what 
follows, we explain in detail some of these issues.  

 

  

   

Figure 15: Diagram Of The Complete Interactive Scores Framework. Dashed-Arrows And Dashed-Lines Represent 
Translations, Semantics And Programs That Are Missing Or Are Incomplete. 
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Signal processing extension. 

To improve the expressiveness of interactive scores, 
we should allow multiple points inside a temporal 
object, instead of just start and end points, as usual. 
Janin has already explained the advantages of such 
an approach to model rhythmical structures [40] . 
We also propose to extend our implementation to 
handle audio files efficiently. Libaudiostream25 is 
an audio library, developed at the french research 
institute Grame26, to manipulate audio resources 
through the concept of streams using Faust 
programs. Including Libaudiostream in our 
framework, it will be possible to design a scenario 
where a temporal object loads a sound file into 
memory, filter it in Faust, and then, play the sound 
in Faust at the appropriate time. Precision is 
guaranteed because the time to load the file and to 
process it is foreknown in the scenario. Currently, 
we have to rely on third-party programs, such as 
Pd, to do handle audio files, and to communicate 
the control signals from Ntccrt to Faust. 
It has been already discussed that Faust can be used 
to assure the persistence of music pieces with sound 
synthesis. We believe that such an approach could 
be used for the extension of interactive scores with 
signal processing. To solve that problem, Allombert 
developed a XML file format for interactive scores. 
This file format is currently used in Virage and i-
score; however, it does not allow to represent the 
hierarchy, point-to-point temporal relations nor a 
set of possible durations of a temporal object. 
In the future, we also want to to translate files from 
music XML and music markup language (mml) to 
our interactive scores XML format. We also want to 
represent scores with signal processors in our XML 
format. 

Conditional branching extension.  

Event structures semantics for scores with loops is 
not easily defined because events can only be 
executed once; therefore, to define semantics we 
need infinite number of events, as proposed by 
Langerak in [45]. Afterwards, it will be required to 
translate such event structures semantics into 
operational semantics in ntcc with a finite number 
of processes. 

Automatic verification.  

At the time of this writing, there are no formal 
semantics of a heterogeneous system that 

 
25  http://libaudiostream.sourceforge.net/ 

26  http://www.grame.fr/ 

synchronizes concurrent objects, handles global 
constraints, and controls audio and video streams. 
Modeling this kind of systems will be useful in 
other domains such as machine musical 
improvisation and music video games. An 
advantage over the existing implementations of 
these systems will be verification. 
We believe that any Faust program could be 
translated into ntcc based on the results obtained by 
Rueda et al. in [79]. Rueda et al. translated the 
Karplus-Strong Faust program into ntcc. Although 
it is clear that the execution of a Ntccrt simulation 
cannot be done at the sound processing sampling 
frequency, such a translation could be used to verify 
properties of correctness of a scenario where ntcc 
and Faust interact (e.g., playability). 
In the proof system of ntcc, we could prove 
properties like “10 time units after the event  is 
launched, during the next 4 time units, the stream B 
is the result of applying a gain filter to the stream 
A”; however, real-time audio processing cannot be 
implemented in Ntccrt because it requires to 
simulate 44100 time units per second to process a 
44.1 kHz sound. If we replace some ntcc processes 
by Faust plugins, we can execute such a system 
efficiently, but we cannot verify that the properties 
of the system hold. There is one open issue: How to 
prove that a Faust plugin that replaces a ntcc 
process obeys the temporal properties proved for 
the process. We discussed this issue in [96]. 
A first step to achieve the goal explained above is 
our model checker for ntcc, ntccMC. In ntccMC, we 
provide a prototype of a parser for ntcc syntax, but 
the parser can be improved. As an example, build 
an efficient representation of the process hierarchy, 
instead of a directed tree, so that two equivalent 
processes do not have to be encoded twice. 
There is another disadvantage of ntccMC: Although 
FSA operations have lower complexity than 
operations over Büchi, the implementation needs to 
be improved to be used in bigger examples. The 
hash-table based automata class, provided by the 
automata standard library, is parametrized, during 
compilation time, by the size of the alphabet which 
is the number of relevant constraints. In addition, 
the number of relevant constraints is bounded by n!, 
where n is the number of constraints that appear in 
the process and the formula. In addition to having a 
factorial number of constraints, constraint 
deduction is based on search, thus the domains of 
the variables should not be too big to be tractable.  
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Scores whose temporal objects have arbitrary 
durations. 

This extension will allow us to represent rhythmical 
patterns using temporal objects. When the duration 
of a temporal object can be an arbitrary set of 
integers, we can model rhythmical patterns; for 
instance, that a music object should be played at 
beats one, three or five (but not two nor four). 
Constraints of this form are found in the 

improvisation system presented by Rueda and 
Valencia in [78].  

Example 1 As an example, Figure 16 is a score to 
represent rhythms. Object a’s start time could be in 
the 1st,3rd,5th,9th or 12th time unit and its 
duration could be 1,2,3 or 4 time units.  

 

  

   

Figure 16: A Scores Whose Temporal Objects Have Arbitrary Durations. 

The satisfiability of a score with this kind of 
temporal constraints is equivalent to a disjunctive 
temporal problem, which is well-known to be NP-
complete. One alternative to cope with this problem 
is to do a static analysis; for instance, a space 
efficient backtrack-free representation for constraint 
satisfaction problems [16]; however, to achieve 
such as representation, the order on which the 
temporal objects are going to be executed must be 
foreknown. Nonetheless, there are some scores in 
which this is possible, but for many other it is not 
possible. 
Another possibility to cope with this problem in 
real-time could be an extension of Truchet’s 
approach to solve music constraint satisfaction 
problems with local search [112]. Nonetheless, her 
algorithm requires random initialization of the 
variables and iterative refinements. Such a random 
initialization could be an incoherent representation 
of the temporal objects in the timeline; for instance, 
an end point could be executed before a start point. 

Pedagogic applications. 

There are several possible pedagogic applications 
that can be developed using interactive scores. One 
alternative is to use interactive scores for rhythmic 
exercises for music students, easily modeled by 

constraints. Anders et al. have already discussed 
this approach [63], but we believe that it could be 
improved by allowing user interactions and 
temporal relations, which is possible in interactive 
scores. 
Another possibility is using user gestures to 
generate Electroacoustic music for pedagogical 
purposes. This was not possible before in 
interactive scores due to the lack of a signal 
processing extension. In the future, we could 
imagine scenarios, as those proposed by Kurtag et 
al. [44].  
Finally, another possibility for future work is to use 
automatic generated fingering for piano or guitar to 
generate scores in which only “easy” playable notes 
(according to a fingering analysis) are played by the 
user and the “hard” playable notes are played by the 
computer. Note that automatic generation of piano 
fingering has been already studied by Robine, who 
also describes several related work on that subject 
[73]. 
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