
Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5569

CURRENT TRENDS AND FUTURE RESEARCH DIRECTIONS
FOR INTERACTIVE MUSIC

 MAURICIO TORO

Professor, Universidad Eafit, Department of Informatics and Systems, Colombia

E-mail: mtorobe@eafit.edu.co

ABSTRACT

In this review, it is explained and compared different software and formalisms used in music interaction:
sequencers, computer-assisted improvisation, meta-instruments, score-following, asynchronous dataflow
languages, synchronous dataflow languages, process calculi, temporal constraints and interactive scores.
Formal approaches have the advantage of providing rigorous semantics of the behavior of the model and
proving correctness during execution. The main disadvantage of formal approaches is lack of commercial
tools.

Keywords: Interactive Scores, Process Calculi, Temporal Constraints, Score-Following, Meta-

Instruments.

1. INTRODUCTION

Technology has shaped the way on which we
compose and produce music: Notably, the invention
of microphones, magnetic tapes, amplifiers and
computers pushed the development of new music
styles in the 20th century. In fact, several artistic
domains have been benefiting from such
technology developments; for instance,
Experimental music, non-linear music,
Electroacoustic music, and interactive music.
Experimental music is composed in such a way that
ts outcome is often unforeseeable; for instance, it
may contain random generated tones, computer-
generated content, variable-duration notes and
“free” content. It may also include atonal melodies
and microtones.
Another domain is non-linear music, in which the
scenario is divided in parts whose order can be
chosen at execution time. We will use the term
“non-linear” music in that sense. Non-linear music
exists from many centuries ago; for instance,
Mozart’s minuets in which the order of work’s
musical material was determined by coin-tosses.
Electroacoustic music was originated by the
incorporation of electronic sound production into
compositional practice. It subsumes styles such as
musique concrète (French for concrete music),
Acousmatic music, musique mixte (French for
“mixed” music) and Electronic music. Note that
Electroacoustic and Experimental music are not
mutually exclusive: a piece can belong to both
styles or to a single one, for instance, Experimental

music explores composition with microtones which
does not incorporate electronic sounds.
Interactive music deals with the design of scenarios
where music content and interactive events are
handled by computer programs. Examples of such
scenarios are music art installations, interactive
museum exhibitions, some Electroacoustic music
pieces, and some Experimental music pieces. In
Table 2, it is presented a literature mapping of the
different mathematical models and software that
will be presented in this article.

Table 2: Literature Mapping Of Mathematical Models
And Software For Music Interaction

 Sequencers

Pro Tools, Qlab,
Ableton Live

Computer-
assisted
improvisation

[12, 48, 61]

Meta-instruments [39]
Score following [23]
Asynchronous
dataflow
languages

[88]

Synchronous
dataflow
languages

[37, 38, 33, 17, 41]

Process calculi [60, 59, 80, 78, 79, 75,
5,
 100, 58, 59, 105]

Temporal
constraints

[1, 51, 20]

Interactive scores [4, 105, 104, 59, 106]

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5570

In what follows we briefly explain Experimental
music, non-linear music, Electroacoustic music and
interactive music. In this thesis we will focus on
interactive music. We are interested in
Electroacoustic, Experimental and non-linear music
that is interactive. In this section, we introduce the
problems that arise when designers and composers
want to write a score for interactive music, and the
problems with existing computer tools to compose
and perform interactive music; afterwards, we
briefly describe some background concepts and we
propose a solution based on the formalism of
interactive scores.
In this section we briefly define Experimental
music, non-linear music, Electroacoustic music and
interactive music. To clarify the classification of
these domains, we present a Venn’s diagram in
Figure 1: The diagram shows the intersection
between the different domains. Figure 1 includes
music art installations, which are an interesting
subset of interactive music; and Tape music, which
is a subset of Electroacoustic music that is linear
(i.e., parts have a fixed order) and is not interactive.

Figure 1: Intersection Between Electroacoustic Music,
Non-Linear Music, Experimental Music And Interactive

Music.

Experimental music.

Nyman argues that, in Experimental music, a score
may no longer represent a sound by the means of
western music notation [57]: Composers may
provide the performer the means of making
calculations to determine the nature, timing and
spacing of sounds. Composers may indicate
temporal areas in which a number of sounds may be
placed. Experimental music can span from a

minimum of organization to a minimum of
arbitrariness. As an example, Christopher Hobb’s
voicepiece (1967) is written for any number of
vocalists and any length. Nyman argues that,
usually, in Experimental music pieces, certain time
frames may be chosen at random and filled with
sounds.
Nyman argues that an important feature of
Experimental music is the diversity of processes
available; processes may be relationships between
chance and choice. He argues that there are five
types of processes: (1) change determination
processes; for instance, when Cage used random
numbers to choose tones, and also when he wrote
pieces in which it was required to take information
from the telephone directory during performance;
(2) people processes, for instance, the eventuality of
players getting lost or an unknown number of
players; (3) contextual processes, such as actions
taken on unpredictable conditions within the
musicians or the audience; (4) repetition processes,
such as unbounded loops; and (5) electronic
processes, difficult to describe because they are not
well formalized.
A characteristic of Experimental music is that,
often, the starting and ending times of a piece are
unknown. As an example, Nyman argues that in
Wolff’s duo II for pianists (1958), the beginning
and the ending times are determined in performance
by the circumstances of the concert occasion. As
another example, Nyman discussed Reich’s
pendulum music (1968). In this piece, microphones
are suspended from the ceiling. The piece begins
when the performers swing the microphones and
turn on the amplifiers; the piece ends after all
microphones come to rest.
Nyman argues that performing Experimental music
goes above and beyond performing of Western
music because of all the possibilities that can be
modeled with the five types of processes, and the
unknown starting and ending times of a piece, as
explained above.

Non-linear music.

Since 1950, computer technology is used to control
sound structures; however, there is a long history of
non-linear music in western culture. Vickery argues
that, in the 20th century, there are examples of non-
linear music such as Boulez’s third piano sonata
(1958), and free improvisation with game strategies
such as interactive electronics from Gordon Mum
and several Stockhausen’s pieces. Nonetheless,
such an interest is not new. In fact, Vickery argues
that Mozart composed minuets and trios in which

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5571

the order of work’s musical material was
determined by coin-tosses, as we stated before.
Vickery has composed some non-linear pieces
[115] in the 21st century. As an example, ladders
and snakes (2000) is a piece in which the ladder
processes descend to improvise in a later section,
and the snake processes ascend to an earlier section,
as a flash back in a film. As another example, splice

(2002) is a piece in which the computer performs
meta-music shaping of the sound made by the
musician. Finally, in Vickery’s piece parallel
trajectories (2003), performers have a score map
with different paths from start to end, and they can
also choose to stay silent in some parts. As an
example, the score is presented in Figure 2.

Figure 2: Score Of Vickery’s Parallel Trajectories (2003). There Are 14 Lines Of Musical Material And Each Of The 9
Players Is Provided With Four Of The Lines. There Are 9 “Modal Points” In The Score In Which The Player May

Choose A Different Line Or Choose To Remain Silent Until The Next Point.

Furthermore, Vickery argues that computer
coordination of live musical performance allows for
the control and synchronization of the score; for
instance, non-linear selection of music material
[117]. Music is traditionally linear: left-to-right and
top-to-bottom. Computer music offers two main
new possibilities according to Vickery: (1)
Permutation of large structural blocks of music
such as Stockhausen’s momente (1962), and (2)
interactive generative processes may be used in
real-time. There are some other implications of
such a computer-controlled behavior, according to
Vickery [117]. As an example, Jason Freeman’s
glimmer (2004) is written for chamber orchestra
and audience participation by waving four-inch LED
sticks. Vickery’s delicious ironies (2002) has also
an unpredictable environment for the solo
improviser with sample choice, playback speed,
duration, volume and pan. As another examples,
Vickery recalls Stockhausen’s spectral analysis
used in zyklus (1959) and regrain (1959).
According to Vickery, non-linearity allows pieces to
have openness of interpretation and openness of
content [116]. Vickery cites some interesting
examples. Game based analysis first used by
Xenakis in duel (1959) and strategies (1962), then
used by John Zorn in cobra (1984), allows the
musician to give commands to games. Richard
Teitelbaum, creator of automata (1978), presents an
analogy to finite state automata in which a system
responds to user actions. The californian group The
HUB is a computer network band in which the

musicians and sounds communicate through a
network.
Although the many examples that Vickery
explained in his articles, he argued towards the
urgent need of symbiotic human-machine
interactive software to compose non-linear music
[116]. In fact, we argue in this section why
Vickery’s preoccupation can be extended to non-
linear music in general, for instance, in music art
installations.

Electroacoustic music.

All Electroacoustic music is made with electronic
technology. Some electroacoustic compositions
make use of sounds not available in typical acoustic
instruments, such as those used in a traditional
orchestra. Some Electroacoustic music can be
created using non-acoustic technology that exists
only in a recorded format (as a fixed medium), and
is composed for reception via loudspeakers. The
compositional material is not restricted to the
inclusion of sonorities derived from musical
instruments or voices, nor to elements traditionally
thought of as “musical” (e.g., melody, harmony,
rhythm and meter), but rather admits any sound,
acoustic or synthetic. With the aid of various
technologies, such as tape recorders and digital
signal processing tools, this material can then be
combined, juxtaposed, and transformed, in any
conceivable manner 1.

1 http://en.wikipedia.org/wiki/Electroacoustic_music

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5572

A form of Electroacoustic music, specifically
composed for loudspeaker presentation, is
Acousmatic music. Unlike scored music,
compositions that are purely acousmatic exist
solely as audio recordings. The term acousmatic
was introduced by Pierre Schaeffer and refers to the
listening experience of concrete music in which the
audience hears the music from the loudspeakers,
without seeing the source of the sound2. In an
acousmatic concert, the sound component is
produced using pre-recorder media, or generated in
real-time using a computer. The work is often
diffused by the composer (if present), but the role of
the interpreter can also be assumed by another
musician. The main role of musician is to control
spatialisation. As an example, consider one of
Schaeffer’s earliest work five studies of noises
(1948) made without a computer.
The term concrete music is defined by Schaeffer as
an opposition with way musical work usually goes.
Instead of notating musical ideas on a paper with
the symbols of solfège and entrusting their
realization to well-known instruments, the question
is to collect concrete sounds, wherever they came
from, and to abstract the music values they were
potentially containing. According to Pierre Henry,
another well-known composer of this style,
concrete music was not a study of timbre, it is
focused on envelopes and forms3.
A subtype of concrete music, in which sound was
registered in magnetic tapes, is called Tape music4.
In such a style, the starting and ending times of all
the sounds remain fixed once the composition is
over; as opposed, to some pieces of acousmatic
music in which there is real-time sound generated
by computer which order may change.
There is another style subsumed by Electroacoustic
music: “Mixed” music, which merges acoustic
sounds from traditional instruments played by
musicians with electroacoustic sounds (diffused by
loudspeakers). As an example, in Manoury’s partita
I (2006) for solo viola and live electronic effects, in
Section VIIC, the composer wrote a note indicating
that the all parts have to be played but in any order.
The order is chosen by the musician. This is an
example of non-linearity in Electroacoustic music.
Another well-known example of “mixed” music is
Manoury’s pluton (1988) for piano and live
electronics, and Stockhausen’s mikrophonie I
(1964) for tam-tam, microphone and filters.

2 http://en.wikipedia.org/wiki/Acousmatic_music .
3 http://en.wikipedia.org/wiki/Musique_concr\%C3\%A8te.

4 http://en.wikipedia.org/wiki/Electroacoustic_music\#Tape_music.

Interactive music.

Interactive music deals with the design of scenarios
where music content and interactive events can be
handled by computer programs. Designers usually
create music content for their scenarios, and then
bind them to external interactive events controlled
by Max/MSP or Pure Data (Pd) programs [70, 68].
We recall that examples of interactive music are
interactive museum exhibitions and music
installations.
music art installations are an artistic genre of three-
dimensional works that are often site-specific and
designed to transform the perception of a space.
Installations evolved through the use of new and
ever-changing technologies: from simple video
installations, they expanded to include complex
interactive, music and virtual reality environments.
Interactive installations were most frequently
created and exhibited after 1990s, when artists were
particularly interested in using the participation of
the audiences to co-author the meaning of the
installation5. As an example, there is an interactive
installation based on spatial sensing written in Max
[119]. Another example is an interactive installation
based on probabilistic control [14]. Both
installations are non-linear in the sense that the
order in which they diffuse video and sound is
unforeseen and depends on user interactions.
In addition to Max, interactive music scenarios are
also designed with commercial sequencers.
Commercial sequencers for interactive music are
based on a fixed timeline with a very precise script
such as Pro Tools6, or a more flexible script using
cue lists, for instance, the theater cue manager
Qlab7. Another software to design such scenarios is
Ableton Live8. Live is often used in Electroacoustic
music and performing arts.

Example 1 Figure 3 shows the user interfaces of
cue lists and timeline based sequencers,
respectively.

5 http://en.wikipedia.org/wiki/Interactive_Art
6 http://www.avid.com/US/resources/digi-orientation
7 http://figure53.com/qlab/

8 http://www.ableton.com/

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5573

Figure 3: Cue-list based Qlab (above) exhibits a list on events and associated actions; it also defines whether and event
is triggered by the computer or by the user. Timeline sequencer Protools (below) exhibits a timeline with several sound
objects; starting and ending times are fixed and cannot be changed during performance.

Another well-known fixed timeline sequencer is the
Acousmograph which is a software to represent
graphically sounds in a composition. In fact, the
acousmograph has been used by Pierre Couprie for
musicological analysis [25]. It is also worth to note
that the acousmograph has been used to represent
Gyorgy Ligeti’s artikulation (1958), as shown in
Figure 49.

9 A video can be found at http://wn.com/artikulation_ligeti.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5574

Figure 4: Visual Listening Score Of Gyorgy Ligeti’s Artikulation (1958) Created By Rainer Wehinger Using
Acousmograph.

In what follows, we define the fixed timeline and
the cue-lists time models, and the problems that
have arisen because of the duality between these
two time models, among other problems.

2. CURRENT PROBLEMS WITH
INTERACTIVE MUSIC SCENARIOS

We have identified seven problems with existing
software to design multimedia scenarios: (1) there
is no formal model for multimedia interaction, (2)
multimedia scenarios have limited reusability and
difficulties with the persistence of multimedia
scenarios, (3) time models (fixed timeline and cue
lists) are temporally unrelated, (4) most multimedia
interaction software products provide no hierarchy,
(5) the different time scales are unrelated, (6)
schedulers for multimedia scenarios are not
appropriate for soft real-time, and (7) there is no
model to combine temporal relations and
conditional branching.
The main problem with interactive music scenarios
is that there are two different time models, but
existing tools only use one, and tools that allow
both, offer both time models temporally unrelated.
To understand this problem, we must travel 2500
years back in time. Desainte-Catherine et al. argued
that this problem was already discussed by

Parmenides of Elea and Heraclitus of Ephesus long
before the invention of computers [28] .

Problems with the time models.

According to Desainte-Catherine et al., what we
call today Tape music, that began by editing and
mixing sounds in magnetic tapes, is composed in a
writing-oriented manner that corresponds to the
arrow metaphor discussed by Parmenides.
Parmenides argued that there are eternal properties
and ordered events; for instance, “Socrates was
born before he died”. According to Parmenides,
timeline goes from past to future. In this paradigm,
it is difficult to define changes in the objects in the
timeline. In fact, the only changes allowed at
performance time of Tape music are in pan,
volume, spacialization, among others parameters,
but not on the starting and ending time of the
sounds nor individual parameters for each sound.
In contrast, many pieces of Experimental and
Electroacoustic music, are based on real-time sound
synthesis. They are usually written in asynchronous
dataflow languages such as Max. According to
Desainte-Catherine et al., interactive music is
performance-oriented, and, for that reason, music
objects and time representation are quite poor.
Performance-oriented software corresponds to the
river metaphor described by Heraclitus: “we never
bath twice in the same river”. In this paradigm, the

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5575

inference of the events flows is from the future,
backwards because events are being “scheduled”.
Identity is hard to define in Heraclitus’ paradigm;
for that reason, according to Desainte-Catherine et
al., we cannot define a permanent environment in
asynchronous dataflow languages such as Max/MSP
[70]. Time-stamped data is handled as a queue and
there is only available a limited timeline to

schedule the triggering of static events in most
asynchronous dataflow languages. Nonetheless, it is
worth noticing the effort made my Puckette to
include a timeline in Pure Data, as shown in Figure
5 [69].

Figure 5: Writing A Score In Pure Data. Horizontal Axis Represents Time And The Vertical Axis Frequency. Objects
Represent Pure Data’s Data Structures. Shapes And Colors Are Chosen By The Composer To Represent The Data

Structures Of The Piece.

The problem of identify is important for both
Electroacoustic and Experimental music. One
implication is the ownership of Electroacoustic
music, as explained by Dahan et al. [26]. According
to Nyman, Cardew argued that when we hear on a
tape or disk is indeed the same playing, but
divorced from its natural context. As an example,
Nyman argued that David Tudor (pianist) played
Cage’s 4’33” (1952) and people think that Cage’s
4’33” (1952) is a piece for piano, but it is a piece
that can be played by the means of any instrument
[57].

Problems with time scales.

In addition to the problem of identity, Schwer
discussed another philosophical problem related to
linguistics [86], which we believe that it is also
related to music: Aristotle argued that between two
time instants there is always a time instant.
Therefore, the metaphoric timeline seams like the
set of real numbers. Nonetheless, according to
Schwer, there is a discrete understanding of time in
Physics; for instance, in quantic mechanics,
Planck’s time is the smallest measure of time

seconds; in the atomic clock is seconds; however,
humans only discriminate at seconds.
In Computer Science, as in Physics, time is also
discrete because it is defined by the occurrence of
events. For events to occur they have to be
observed and this is discrete in nature. In favor of
discrete time, the Stoics argued that the set of
atomic instants is a discrete structure, thus we can
pass from one instant to the next instant, according
to Schwer.
The duality between discrete and continuous time is
also a problem in music interaction when we think
about all the time scales available; for instance, user
gestures, control events, sound processing and
video processing. All those processes work at
different time scales, and they are usually unrelated
one from another in existing tools. music signals
are continuous when they are analogic. Once they
are sampled into the computer, they become
discrete; however, they can be though of continuous
in the sense that a listener will perceive them as
continuous. In contrast, control signals, used to
synchronize different media, are discrete time, and
they are also perceived as discrete by the listeners.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5576

Problem with synchronization.

There is another problem derived from the time
scales, as we discussed in [103]. The description of
a music scenario requires a consistent relationship
between the representation of the scenario in the
composition environment and the execution.
Artistic creation requires a composition of events at
different time scales. As an example, it is easy to
describe that a video begins when the second string
of a guitar arpeggio starts, but how can we achieve
it in practice if the beginning of the notes of the
arpeggio is controlled by the user?
The problem emerges at runtime. The example
given above is very simple, but under high CPU
load, a system interruption at the point of playing
the arpeggio and the video can often lead to
desynchronization, which is the case with Pure
Data and Max. Usually, these eventualities are not
considered by developers, as the quality of systems
is evaluated according to an average performance.
Nonetheless, during performance, it is desired that
the system works well even under high CPU load,
which is common when these systems process
sound, video and image simultaneously.
The synchronization between the arpeggio and the
video must be achieved in every execution. If it
does not work for a performance, concert or show,
the system performance is not satisfactory. Usually,
artists prefer that an event is canceled if the event is
not going to be properly synchronized with all the
other media. Most users want a system that ensures
that the events are either launched as they were
defined in the score or they are not produced.
Another alternative is based on the synchronization
strategies for score following systems proposed by
Echeveste et al. [30]. Echeveste’s strategies are
designed to define behaviors for the cases in which
events are not always properly synchronized with
other media due to musician’s mistakes during
performance or due to incorrect tempo calculations
by the score following system.
Interactive music belongs to the realm of soft real-
time. We argue that in soft real-time, the usefulness
of a result degrades after its deadline, thereby
degrading the system’s quality of service; whereas
in hard real-time missing a deadline is a total
system failure (e.g., flight control systems). It is
difficult to ensure determinism in the execution of
music processes (e.g., sound, video and 3D images)
in the soft real-time realm. Some hard real-time
operating system like RT Linux10 or RedHawk11

10 http://www.windriver.com/index.html

11 http://real-
time.ccur.com/concurrent_redhawk_linux.aspx

include priority queues for processes to respect hard
real-time constraints; however, in common
operating systems, the user does not have this type
of control. Note that software like Max and Live do
not work on Linux.

Problems with conditional branching.

Another issue arises when we think of non-linear
music. When we think about choices based on
conditions, we must consider causality. Causal
relation is studied by metaphysics. According to
Keil, substances are not causes; for instance, “if
knife then always wound” is incorrect: An event
and a verb are missing [42]. In interactive music,
“If note 1 then always note 2” is also incorrect. A
causal relation could be “when note 1 starts, then
note 2 starts”,“whenever note 1 ends the note 2
ends”, or “when the note 1 gets to a volume peak,
then note 2 starts”; however, most tools do not
provide this kind of causal relations.
Keil explains that physical systems are described in
non-perturbed situations, but such rules may not
always apply in real-life situations. As an example,
a fire match will not light without oxygen, although
a cause of lighting a match is to rub it against a
striker. For that reason, when we model non-linear
music, we must consider user interactions. We must
also consider that these interaction may arrive at
any time.
Keil also points out that an event always has
different causes susceptible of exceptions because
the causes include less than the total state of the
universe. For that reason, the causal relation is not
transitive; therefore, the flapping of a butterfly’s
wing is not the cause of a storm on the other side of
the world, according to Keil. As a consequence, we
argue that users’ choices should be made over
single temporal objects (e.g., sounds or videos),
instead of sequences of temporal objects. To choose
a sequence of temporal objects, the sequence
should be contained in one temporal object. In
conclusion, each object must know who was its
direct cause. In both figures, there is a mutually
exclusive choice between two objects. If a
composer wants to write a choice between two
sequences of two objects, each two-object sequence
must be contained inside a bigger object.
Up to now we have considered causality dissociated
from time, as treated by Keil; however, Russel
gives a definition of causality that includes a time
interval: “Given an event e, there is an event and a
time interval τ, such that, every time that occurs, it
is followed by , after such an interval has passed”
[81]. We believe that Russels’ definition is
appropriate for music interaction; however, with

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5577

this definition, it is hard to understand scenarios
with loops, for instance, when an “instance” of
causes an “instance” of , but then such an
“instance” of causes another “instance” of in the
future. What does this relation means? Are we
traveling back to the time when was first executed?
Are we creating a new “instance” of and executing
it in the future? Are those two “instances” two
different events with the same type (or action)?
The problem of “time travel” becomes even more
difficult when we consider multiple instances of a

temporal object that could be executed
simultaneously. We must distinguish between the
motive being repeated and the loop itself; we
illustrate some cases in Figure 6. The problem gets
even harder when we want to synchronize the
ending times of motives and loops. In interactive
music, synchronization of loops and motives has
been extensively studied by Berthaut et al. [18].

Figure 6: Possible Scenarios Synchronizing Motives And Loops. In Case 1, The Loop On The Top Starts The Loop In
The Bottom; This Means That The First Repetition Of Motive “A” Starts The First Repetition Of Motive “B”. In Case
2, Every Repetition Of Motive “A” Starts A New Instance Of The Loop On The Bottom. In Case 3, Each Repetition Of

Motive “A” Starts At The Same Time Than Each Repetition Of Motive “B”.

There are some insights in metaphysics on how to
solve the problem of having multiple instances of
events. Laudisa argues that in neoempirism, leaded
by Hume, everything that starts to exist must have a
cause for its existence, but all human laws admit
exceptions [46]. To formalize such a principle,
Laudisa proposes to distinguish between singular
events and event classes: Let x and y be singular
events, the existence of a causal connection means
that (1) there are event classes of type X and of type
Y, and (2) x is of type X and y is of type Y.
According to Laudisa’s postulates, we could think
about the start event of a temporal object as a class,
and each time the temporal object starts, a different
singular event that belongs to such a class is
launched. Nonetheless, there is still a problem: how
to model choices through time, should we consider
a branching time or a linear time? Let us analyze
what computer scientists have to say on this
dichotomy.
According to Pratt, there is an analogy: branching
time represents local time, and linear time
represents global time, in the same way as true
concurrency represents local information and false

(or interleaving) concurrency represents global
information [67]. In linear time, all choices are
made at the beginning, it means that we cannot
distinguish between a systems that performs actions
a.b+a.c from a system that performs a.(b+c), where
“.” represents sequential composition and “+”
represents blind choice. The first system chooses
either to execute event a and then event b or event a
and then event c, whereas the second system
executes a and then chooses to execute either b or
c.
As an example, Vardi argues that with
computational time logic (CTL), it is possible to
characterize bisimulation of concurrent systems. In
terms of complexity of the model-checking
problem, using CLT is exponentially easier than
linear-time logic LTL, but in a competitive analysis,
with formulae that can be expressed in both logics,
model checkers behave similarly. There is an
advantage of linear time: LTL is more intuitive to
describe properties because its specifications
describe computations, whereas CTL’s specifications
describe trees of computations [114].
Although branching time seams more appropriate
to represent conditional branching in interactive

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5578

music, we believe that linear time is enough
because we can consider that all the temporal
objects in a scenario are always executed, but some
execute silent actions and some execute visible
actions, allowing us to express choices. We want to
keep the specification of properties simple.
After analyzing the philosophical problems, the
Electroacoustic and Experimental music pieces
described above, and existing tools and formalisms
for music scenarios, we have identified seven
problems with existing software to design music
scenario: (1) there is no formal model for music
interaction, (2) music scenarios have limited
reusability and difficulties with their persistence,
(3) time models are temporally unrelated, (4) music
interaction software products provide no hierarchy,
(5) the different time scales are unrelated, (6)
schedulers for music scenario tools are not
appropriate for soft real-time, and (7) there is no
model to combine temporal relations and
conditional branching. In what follows we explain
each of those problems.

There is no formal model for music interaction.

As we explained before, designers usually create
music content for their scenarios, and then bind
them to external interactive events controlled by
Max/MSP programs. We advocate a model that
encompasses facilities (1) to design music scenarios
having complex temporal relationships among
components and (2) to define effective mechanisms
for synthesis control based on human gestures. We
claim that no such model has been proposed.
Such a general model must have formal semantics,
as required for automated verification of properties
of the scenario that are fundamental to its designers
and users. As an example, to verify that temporal
objects will be played as expected during
performance. In general, we need to prove some
property of each execution trace; for instance, that
the music motive with notes C-D-E appears in all the
traces of execution (or at least in one). Another
example is to state that there is at most one
temporal object being executed simultaneously.
This property is useful in some theater
performances to state that there is at most one
curtain being moved at the time because of power
constraints. Such properties cannot be verified in
applications based on informal specifications, as it
is the case for most existing scenarios with
interactive controls.

Limited reusability and difficult preservation.

Limited reusability is also a problem caused by the
lack of formal semantics: A module made for one

scenario might not work for another one because
the program may have dependencies on external
parameters that are not stated explicitly. The lack of
semantics also makes it difficult to preserve music
scenarios because there is usually not a score nor a
technology-independent precise way for describing
the objects, and the temporal and dataflow relations
among them.

Time models are unrelated.

Software to design music scenarios is usually based
either on a fixed timeline with a very precise script
or a more flexible script using cue lists, as we stated
before. A commonly used software to design such
scenarios is Live because it allows to use both the
fixed timeline and the cue lists, but the two time
models are unrelated temporally. In fact, most
software products, for instance sequencers, provide
only one time model or they are unrelated
temporally, as we argued previously.

No hierarchy for temporal objects.

Most software do not provide a hierarchy to
represent the temporal objects of the scenario. As
an example, using a hierarchy, it is possible to
control the start or end of an object by controlling
those from its parent. In interactive music, Vickery
argues that using a hierarchy is useful to control
higher-order parameters of the piece; for instance,
to control the volume dynamics instead of the
volume of each note [116]. Concentrating on
foreground parameters can lead to music that is too
superficial as multiple serialism, according to
Vickery.

Time scales are unrelated temporally.

The different time scales are often unrelated and
cannot be controlled in the same tool. Discrete user
gestures (e.g., clicking the mouse), control events
(e.g., control messages) and sound processing have
different sampling frequencies and different
computing models. As a consequence of having the
time scales unrelated, it is difficult to associate, for
instance, a human gesture to both control events
and sound processing parameters.

Event schedules are not appropriate for real-
time.

Schedulers for asynchronous dataflow languages
(e.g., those from Pd and Max) control both signals
and control messages together and they do not
support parallelism, thus they often fail to deliver
control messages at the required time; for instance,
when they work under a high CPU load, which is

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5579

common when they process video and 3D graphics
in addition to sound.
To solve the problem of scheduling and to write
high-performance digital signal processors (DSPs)
for Max and Pd, users often write C++ plugins to
model DSPs with loops or independent threads. C++
plugins solve part of the problem, but the control
messages –for the input and output of these
plugins– are still being scheduled by Max or Pd’s
schedulers.
Another solution for the scheduler problem –often
used during live performance– is to open one or
two instances of Max/MSP or Pd simultaneously,
running different programs on each one.
Nonetheless, synchronization is usually done either
manually during performance or by using open
sound control (OSC), which adds more complexity
and latency.

No model for conditional branching and
temporal relations.

Up to our knowledge, there is not a model for
interactive music to represent scores in which is
possible to combine complex temporal relations
and conditional branching based on conditions over
the variables defined in the scenario. In fact,
Allombert proposes in [2] an extension with
conditional branching to interactive scores, but in
such a model he only considers conditional
branching and no temporal relations.

3. INTERACTIVE SCORES

In interactive scores, it is possible to specify a
variety of relations among temporal objects such as
temporal relations, hierarchical relations, harmonic
relations, rhythmical constraints and conditional
branching. Nonetheless, in this section, we only
take into account relations limited to point-to-point
temporal relations without disjunction nor
inequality (≠) and quantitative temporal relations.
We combine qualitative and quantitative temporal
relations on the lines of previous independent
works by Meiri and Gennary [51, 34].
In what follows, we introduce a mathematic
definition of the structure of interactive scores, a
formal semantics based on timed event structures,
the temporal constraints of a score, and some
formal properties such as playability. We also
discuss the complexity of the playability problem.

3.1 History of interactive scores

The idea of temporal relations among temporal
objects was introduced by Beurivé and Desainte-
Catherine in [19]. They found out that relative
times are a more efficient representation than

absolute times for music scores. Soon after, they
developed Boxes: a software to model a hierarchy
and temporal constraints [19]. In fact, Boxes uses
Allen’s relations to describe temporal constraints. A
few years later, Desainte-Catherine and Brousse
came up with the idea of the interactive scores
formalism [29].
Another system dealing with a hierarchy of
temporal objects is Maquettes of OpenMusic [21].
However, we argue that OpenMusic [22] is a
software for composition and is not meant for real-
time interaction. Allombert and Desainte-Catherine
figured out that the music interaction community
needed a software for composition capable of
describing a hierarchy of temporal objects and
capable of real-time interaction! In 2005, they
introduced a new model of interactive scores [7],
extending the previous model developed by
Desainte-Catherine and Brousse, and following the
concepts of Haury’s meta-instrument [39]. This
model admits modification of the starting and
ending times of the notes of the score during
execution.
In Allombert and Desainte-Catherine’s new model,
a score is composed by temporal objects,
interactive events and temporal relations. This
approach does not allow to define interactive user
events inside the hierarchy, as we can do it today.
They extended Allen’s relations with quantitative
relations to express the duration of temporal objects
in a similar manner as Mieri did it back in 1995.
They introduced the very first notions of temporal
reduction: intervals can be reduced if an event is
launched before its nominal (expected) time and
intervals can be extended if the event is launched
after its nominal time; however, the operational
semantics of the temporal objects with nominal
times, was not very well defined back then. They
also introduced a semantics based on Petri nets.
Finally, they introduced the environment, control,
output (ECO) machine: an abstract machine to
execute an interactive score in real-time.
Allombert, Desainte-Catherine and Assayag
presented a new extension in 2007 [3]. They
changed the definition of a score: A score is defined
as a pair 〈 T,R〉 where T is a set of temporal
objects and R a set of temporal constraints. This
new definition considers an interactive user event
as a kind of temporal object, thus they are included
in the hierarchy, as opposed to the extension they
presented in 2005. They also argued that interactive
scores must have two modes: the edition mode,
which they implemented using constraint
propagation, and the execution mode, which they
made using Petri nets. The edition model is a linear

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5580

constraint satisfaction problem with a cyclic
constraint graph, according to Allombert et al.
In the extension of interactive scores developed in
2007, Allombert et al. realized that some
transformations were needed to the Petri nets to
execute them properly. They proposed to collapse
two places that occur at the same time in the same
place (state). Those transformations inspired what
we call in this dissertation the normal form. They
also introduced global constraints, but not the
details on how to implement them. They also
developed an implementation using OpenMusic.
The implementation they made in OpenMusic will
be the base for the Iscore library, developed one
year after.
In 2008, Allombert et al. developed a new
extension of interactive scores [9]. They introduced
a new kind of temporal relations: linear constraints
over durations; for instance, to say that the duration
of an object is k times bigger than another. They
made an implementation in OpenMusic that only
includes flexible-time durations and does not
include linear constraints. Examples of their
quantitative relations are those involving a
proportional or explicit duration; for instance, “the
duration of A is one third of the duration of B” or
“the duration of A is 3 seconds”. Examples of their
qualitative temporal relations are those to represent
the precedence between the start and end points of
two temporal objects; for instance, “A must be
played during B” or “C must be played after D”.
They also improved the concept of temporal
reductions: left reductions (chronological) and right
reductions (anti-chronological). Temporal
reductions are a mechanism to reduce or stretch the
duration of a temporal object when an interactive
event is, respectively, delayed or speeded up, while
respecting the temporal constraints of the score.
It was most likely that they realized at that time that
including linear constraints over the duration of the
temporal objects will change the complexity of the
satisfiability and dispatching of the temporal
constraints because they could no longer represent
the temporal constraints as a simple temporal
problem. Constraints over the durations of temporal
objects were never again presented in interactive
scores models.
Allombert et al. explored other alternatives to Petri
nets as semantics for interactive scores. After
reading all the previous extensions of interactive
scores, Rueda had in mind that a process calculus
based on constraint programming would be more
appropriate to represent temporal constraints (and
even other constraints, such as harmonic and
rhythmical) than Petri nets. Rueda worked with

Allombert, Assayag and Desainte-Catherine to
develop a model based on ntcc in 2006 [5]. They
used Allen’s relations as temporal relations. There
is a disadvantage: The model does not consider the
problems that arises when two objects are
constraint to start at the same time nor the problems
associated to dispatching efficiently a simple
temporal problem, as described by Muscettola et al.
[55].
Sarria found another disadvantage with the ntcc
model of interactive scores developed by Rueda et
al.: time units in ntcc may have different
(unpredictable) durations. Sarria extended
Allombert’s model in his Ph.D thesis in 2008. He
proposed a different approach to cope with real-
time issues using his own CCP variant, the real-time
concurrent constraint (rtcc) calculus [85]. Rtcc is
an extension of ntcc capable of modeling time units
with fixed duration. This new calculus is capable of
interrupting a process when a constraint can be
inferred from the store. Rtcc is also capable of
delays within a single time unit.
Olarte et al. also extended Rueda’s ntcc model.
They extended the model to change the hierarchy of
temporal objects during execution [58]. The spirit
of such a model is different: they focus on changing
the structure of the score during execution to allow
the user to “improvise” on a written piece, whereas
we are interested on a simpler model that we can
execute in real-time. It is worth noticing that it may
be also possible to model such changes in the
structure during execution using a special kind of
Petri nets in which tokens are also nets, introduced
by Köhler et al. [43].
Finally, in 2009, Allombert explained in his Ph.D.
the results published previously in his models [2].
He also introduced some ideas on how to deal with
durations of arbitrary intervals, he introduced music
processes that can be associated to temporal
objects, and he introduced conditional branching.
Conditional branching is the base for some non-
linear models in music. Non-linear models are used
to create openworks. Open works can have
openness of interpretation or openness of semantic
content, as explained by Vickery [115].
Allombert presented in his thesis conditional
branching and temporal relations separately, but he
did not show an unified way to represent
conditional branching together with temporal
relations in the same scenario. His work on
conditional branching was partially based on
previous results developed during Ranaivoson’s
M.Sc. thesis in 2009 [71]. These two works are the
base of our conditional branching extension.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5581

3.2 Interactive Scores Formalism

There are formalisms to model interactive scenarios
such as interactive scores. Interactive scores has
been a subject of study since the beginning of the
century [29]. The first tool for interactive scores is
Boxes, developed by Beurivé [19]. Boxes was
conceived for the composition of Electroacoustic
music with temporal relations; however, user
interaction was not provided. A recent model of
interactive scores [2], that significantly improves
user interaction, has inspired two applications: i-
score [4] to compose and perform Electroacoustic
music and Virage [6] to control live performances
and interactive exhibitions. We give a further
discussion on the history of interactive scores.
Scenarios in interactive scores are represented by
temporal objects, temporal relations and interactive
objects. Examples of temporal objects are sounds,
videos and light controls. Temporal objects can be
triggered by interactive objects (usually launched
by the user) and several temporal objects can be
executed simultaneously. A temporal object may
contain other temporal objects: this hierarchy
allows us to control the start or end of a temporal
object by controlling the start or end of its parent.
Hierarchy is ever-present in all kinds of music:
Music pieces are often hierarchized by movements,
parts, motives, measures, among other
segmentations.
Temporal relations provide a partial order for the
execution of the temporal objects; for instance,
temporal relations can be used to express
precedence between two objects. As an example of
relative temporal relations, the designer can specify
that a video is played strictly before a light show or
between 10 and 15 seconds before. As an example
of absolute temporal relations, the designer can
specify that a loop starts three seconds after the
video.

New semantics for interactive scores.

We provide an abstract semantics for interactive
scores based on timed event structures. The purpose
of such a semantics is (1) to provide an easy,
declarative way, to understand the behavior of a
score, and (2) a simple theoretical background to
specify properties of the system. In constraint
programming, we can specify some properties of
the scores such as playability. We can also specify
those properties in event structures; moreover, the
notion of trace, inherent in event structures, is more
appropriate than temporal constraints for certain
properties. As an example, to specify that a music
motive appears in at least one trace of execution.

This study led us to discover that there is no
difference between interactive objects and the other
temporal objects in the event structures semantics:
such a difference can only be observed in the
operational semantics. That was the main reason to
introduce an operational semantics based on ntcc,
on the lines of Allombert et al. [5]. Nonetheless, in
Allombert et al.’s models of interactive scores, it
was not precisely stated how to execute scores
whose temporal object durations are arbitrary
integers intervals; for instance, a score in which
object a must be executed between two and four
time units after object b. Allombert et al.’s models
handle flexible-time intervals: {0} to express
simultaneity, and (0,∞) and [0,∞) for precedence or
for the flexible duration of the objects. Allombert et
al.’s models also miss an abstract semantics.
We extend the interactive scores formalism with an
abstract semantics based on event structures and an
operational semantics specified in ntcc, providing
(1) a new insight into the interactive scores model;
(2) more complex temporal relations to bind
objects, including arbitrary sets of integers in the
event structures semantics and arbitrary intervals in
the operational semantics; and (3) the possibility to
verify properties over the execution traces. In order
to use arbitrary integer intervals in our operational
semantics, we show that several transformations to
the event structures semantics are needed to define
operational semantics that can dispatch the
temporal objects of the score in real-time.
To complete our framework, we also present in this
dissertation two extensions of the interactive scores
formalism: one for conditional branching and one
for signal processing. We also explain the
implementation of interactive scores and the
implementation of an automatic verification tool for
ntcc.

Time conditional branching interactive scores.

Non-linear music pieces are open works. According
to Vickery, open works may have openness of
interpretation or openness of semantic content
[115]. Conditional branching is essential to describe
pieces with openness of interpretation.
Conditional branching is commonly used in
programming to describe control structures such as
if/else and switch/case. It provides a mechanism to
choose the state of a program based on a condition
and its current state. In music interaction, using
conditional branching, a designer can create
scenarios with loops and choices (as in
programming).
In the domain of interactive scores, using
conditional branching, the user or the system can

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5582

take decisions on the performance of the scenario
with the degree of freedom that the designer
described. The designer can express under which
conditions a loop ends; for instance, when the user
changes the value of a certain variable, the loop
stops; or the system non-deterministically chooses
to stop. As an example, the designer can specify a
condition to end a loop: When the user changes the
value of the variable end to true, the loop stops. The
designer can also specify that such choice is made
by the system: The system non-deterministically
chooses to stop or continue the loop.
We chose event structures because it is a powerful
formalism for concurrency that allow us to extend
the interactive scores semantics with conditional
branching and loops in a very precise and
declarative way. Conditional-branching timed
interactive scores were introduced in [102, 101].
Such an extension has operational semantics based
on ntcc, but it misses an abstract semantics to
understand the conflicts among the temporal
objects that take place when modeling conditions
and choices.

Interactive scores with signal processing.

It is crucial that interactive music software products
preserve the macroform and the microform of the
scenario. The macroform includes the structure of
the scenario (e.g., the tempo and the duration of the
scenes, movements, parts and measures). The
microform comprises the operations with samples
(e.g., micro delays, articulation, intonation, and
envelop of the sound).
We propose an extension to the interactive scores
formalism for sound synthesis. In this extension, we
deal with microstructure and macrostructure of
sound, not the structure of image nor other media.
In the interactive scenarios we consider, we can
deal with streams produced in real-time (e.g., a
stream captured from the microphone).
We define a new type of temporal relations meant
for high precision; for instance, to express micro
delays. We also introduce dataflow relations; for
instance, how the audio recorded by a temporal
object is transferred to another object to filter it,
add a micro delay, and then, send it to another
temporal object to be diffused.
We also propose an encoding of the scenario into
two models that interact during performance: (1) A
model based on the ntcc for concurrency, user
interactions and temporal relations, and (2) a model
based on Faust for sound processing and micro
controls. An advantage of having a formal model
for ntcc and Faust interoperation is that we could

prove properties such as playability, and predict the
behavior of the system.
The novelty of our approach is using the constraints
sent from ntcc to control Faust. We tested our
examples in Pd, although they could also be
compiled for Max or as a standalone program since
both Faust and ntcc can be translated into C++ and
Max. In fact, the final goal of our research is to
develop a standalone program for interactive
scores. Such a program should be general enough to
interact with Pure Data, Live, Max/MSP and other
existing software either by passing messages or by
generating plugins for those languages.

Execution of interactive scores.

We give operational semantics for interactive
scores, but we need to execute those models. The
execution must be able to interact with a user in
real-time. Since the operational semantics are given
in ntcc, we need an interpreter for ntcc capable of
real-time interaction and being able to control
music objects such as sound, video and lights.
There are some interpreters for ntcc, but they are
not suitable for real-time interaction [54, 75]. We
chose a real-time capable interpreter for ntcc, Ntccrt
[100], to execute our models. Ntccrt is based on
Gecode [90]: state-of-the-art in constraint
propagation. Ntccrt programs can be compiled into
standalone programs, or plugins for Pd or Max.
Users can use Pd to communicate any object with
the Ntccrt plugin. In fact, Ntccrt can control all the
available objects for audio processing defined in
Pd, although our goal is to use Faust for such tasks.
Ntcc belongs to a bigger family of process calculi
called concurrent constraint programming (CCP). In
the last decade, there has been a growing interest
for CCP models of music interaction [77, 80, 78, 79,
75, 5, 100, 58, 59, 105]12.
Ntcc is not only useful for music semantic
interaction, ntcc has also been used in other fields
such as modeling molecular biology [76], analyzing
biological systems [36] and security protocols [47].
Therefore, advances on the simulation of ntcc
models will be useful not only for music
interaction, but also for other fields.

Automatic verification.

A disadvantage of ntcc is the lack of automatic
verification tools available. This limits the
applicability of the verification techniques to small
problems. We claim for the urgent need of a
verification tool for ntcc. First, because ntcc has
been widely used to model reactive systems and

12 We will discuss all these works in this article.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5583

verify properties about them, but the verification
had to be done by hand. Second, because there are
not many frameworks to model and verify music
interaction systems, and ntcc has been proved to be
successful in that field.
We developed a bounded-time model checking
procedure for ntcc, ntccMC13. The model checker is
based on encoding ntcc processes and constraint
linear-time logic (CLTL) formulae into
deterministic finite state automata. Examples of
CLTL formulae are “always the constraint pitch=60
can be deduced from the output store”, namely
(pitch=60); and “eventually object a and object b
are launched at the same time”, namely .
Ntcc has been used since its beginnings to prove
properties of music interaction systems. Ntcc is a
powerful formalism because it allows to simulate
the behavior of a model and also to verify
properties of the model. As an example, ntcc was
used to verify properties of a musicological
problem of western-african music [77]. The reader
may also look at [78] and [80] for other examples
of verification of music interaction systems.

3.3 Structural Definition of the Score

Interactive scores are composed by temporal
objects and temporal relations. We consider that all
temporal objects have only a start and end point and
it is not possible to define intermediate points.

3.3.1 Temporal objects

A temporal object has two point identifiers: to
control its starting and ending times. An external
action is usually associated to each of them (e.g.,
turn on the lights, play a video or stop a sound).
Some temporal objects are interactive, thus we call
them interactive objects.

Definition 1 (Temporal object (TO)) Let P be a
set of point identifiers. A Temporal object is a tuple
o=〈 sp,ep,Δ〉 ∈, where sp,ep P,sp≠ep, are called
start and end points, respectively, and Δ�N is a set
of durations. A temporal object whose duration
Δ={0} is called an interactive object. Functions
sp(o), ep(o) and d(o) return the start, end and
duration, respectively, of object o. The set of all
temporal objects is T.

3.3.2 Temporal relations

Points p,q�P are supposed to be positioned on a
timeline. Temporal positions of points could be
fully or partially determined. Temporal relations
constrain the set of possibilities for these positions.
A partial order among points is given by

13 http://sourceforge.net/projects/ntccmc/

quantitative relations; for instance, point q is
executed between four and ten time units after point
p. Qualitative temporal relations can be easily
expressed as quantitative relations; for instance,
point-to-point before relation is the interval (0,∞)
and point-to-point equal relation is the set {0}, a
proposed in [51].
Our quantitative relations are close in spirit to the
temporal relations described by Allombert et al.
which contain time intervals [9]. A limitation of
Allombert’s interactive scores is that all intervals
must be flexible: intervals must have the form
(0,∞), [0,∞) or {0}. In Allombert’s thesis [2], the
model is extended to general integer intervals, but
arbitrary durations cannot be expressed. The
durations contained in our temporal relations are
usually intervals, but they can be any set of
integers.

Definition 2 (Temporal Relation) Let function
give the set of potential time positions for each
point p�P. A temporal relation is a tuple 〈 p,Δ,q〉
where Δ�N is the set of durations between points
p,q�P. We use the notation for temporal
constraints of duration. Temporal positions of p and
q are said to be constrained by ν(q)=ν(p)+Δ. The
set of all temporal relations is R.

Allen’s relations [1] without disjunction, over
discrete time, can be easily expressed as point-to-
point relations [51]. Furthermore, with point-to-
point relations we can express relations that cannot
be expressed in Allen’s relations without
disjunction; for instance, that the end of a temporal
objects is before the end of another temporal object.

Example 3 Figure 7 shows how the Allen’s relation
“red light overlaps green light” can be represented
by three point-to-point before relations.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5584

Figure 7: Encoding Of The Allen Relation Overlaps Into Point-To-Point Relations.

3.3.3 Interactive scores

Definition 4 (Interactive Score) An interactive
score is a set of temporal objects equipped with a
set of temporal relations: a tuple 〈 〉P,O,R , where
P is a set of point identifiers, O�T is a set of
temporal objects, R�(P×P(N)×P) the temporal
relations. Set R also includes the relations derived
from the duration of temporal objects. For each
o�O, 〈 〉 ∈sp(o),d(o),ep(o) R. In addition, a
relation 〈 p,Δ,q〉 ∈R iff

1. p,q are distinct points and ν(q)=ν(p)+Δ;

2. two interactive objects do not occur at the
same time; and

3. there is only one temporal relation between
the start and end point of a temporal object.

Property 2 takes care of the fact that two interactive
points cannot happen at the same time; it means,
that they cannot be related with zero-duration
temporal relations, not even transitively by the
means of other objects. The reason for this
constraint is that interactive objects are usually
launched by the user of the scenario; therefore, we
cannot guarantee that the user will launch them at
the same time. This simplifies the model.

Example 5 Figure 8 is an example of a score.
Objects red light, green light and sound produce
visible actions at their start and end. Objects a,b
are interactive. Temporal relations starts represents
a zero-duration between the start points of the two
objects they connect. Relations ends represents a
zero-duration between the end points of the two
objects they connect. Allen’s relation overlaps can
be represented by the three point-to-point relations,
as shown in Figure 7.

Figure 8: Example Of An Interactive Score.

Example 6 The Constraints Of The Score In Figure 8 Are Presented In Table 3.

 Constraints of duration Explicit temporal relations

ν(ep(r))�ν(sp(r))+d(r)
ν(sp(g))=ν(sp(u))

ν(ep(g))�ν(sp(g))+d(g) ν(ep(a))=ν(ep(r))
ν(ep(a))�ν(sp(a))+{0} ν(sp(g))>ν(sp(r))
ν(ep(b))�ν(sp(b))+{0} ν(ep(g))>ν(ep(r))
ν(ep(d))�ν(sp(d))+{0} ν(sp(g))<ν(ep(r))
ν(ep(u))�ν(sp(u))+d(u) ν(sp(d))=ν(ep(u))
 ν(sp(b))=ν(sp(r))

Table 3: Implicit and explicit temporal constraints of the score in Figure 8. Relations “<” and “>” are
represented by the interval (0,∞); relation “=” is represented by the set {0}. 8

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5585

3.4 Event Structures Semantics

Langerak’s timed event structures (henceforth event
structures) is a mathematical model to represent
systems with non-determinism, real-time and
concurrency [13]. Event structures allow to define a
partial order among concurrent events. Event
structures include a set of labeled events and a
bundle delay relation. The bundle delay relation
establishes which events must happen before some
other occurs. Actions can be associated to events.
Events are unique, but two events may perform the
same action. Events can be defined to be “urgent”.
An urgent event occurs as soon as it is enabled. In
addition to the bundle relation, event structures
include a conflict relation establishing events that
cannot occur together. Events can also be given
absolute occurrence times.
We recall that interactive scores must have formal
semantics, as required for automated verification of
properties of the scenario that are fundamental to its
designers and users. We also recall that we denote
by the functions and R(ε) each component of an
event structure ε.

3.4.1 Temporal objects

The events represent the start or end points of a
temporal object. An interactive object is represented
by a single event. Temporal relations are modeled
with event delays. A static temporal object a is

represented by two events (start and end events).
The labels of events are pairs (type,o), where
type�{startPoint,endPoint,interactiveObject} and
o is the temporal object giving rise to the event.

Example 7 Figure 9 shows the encoding of three
temporal objects.

Definition 8 (Temporal object encoding) The
encoding of a temporal object (a) is a function
defined by

1. if a=〈 〉sp,ep,{0} (i.e., a is an interactive
object),

then

2. if a=〈 sp,ep,Δ〉 (i.e., a is a static temporal
object), then eto(a)=〈 ∅ 〉E,l, , ,

where and .

The above definition guarantees that there are
unique start and end events in the translation of a
static temporal object, thus we know that each
event is related to a single point.

Definition 9 (Relation between points and
events) Let o be a temporal and the set of points
contained in o, function associates a point
identifier to its corresponding event in eto(o).

Figure 9: Encoding Of A Temporal Object And Its Temporal Relations Of Duration. There Are Two For R, Two For G,
And A Single One For A. Double Line Arrows Are Just A Visual Notation For The Event Delays That Model The

Duration Of The Temporal Objects.

3.4.2 Temporal relations

Each point-to-point relation is represented by an
event delay function.

Definition 10 (Temporal relation encoding) Let
p be a point of temporal object a and q be a point of
temporal object b. The encoding of a temporal
relation r is given by the function . For each
r=〈 p,Δ,q〉 ∈R, the encoding etr(r) is defined by
pe(b,q).

Example 11 Figure 10 is the encoding of an
overlaps relation between the objects r and g.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5586

Figure 10: Encoding of two temporal objects, and the overlaps relation between them.

3.4.3 Interactive scores

The encoding of a score is given by adding the event delays from the encoding of the temporal relations to
the encoding the temporal objects.

Example 12 The encoding of Figure 8 is presented in Figure 11.

Definition 13 (Interactive score encoding) The encoding of an interactive score s=〈 〉P,O,R is given by
the function that translates interactive scores into event structures. Let , then .

Figure 11: Encoding of the score in Figure 8.8

We shall prove that the temporal constraint of the
event structures semantics of a score corresponds to
the temporal constraint of the score.

Definition 14 (Temporal constraint of an event
structure) Let ε=〈 E,R,l〉 be an event structure
without conflicts. The temporal constraint of an
event structure tc(ε) is the conjunction of
constraints for each with , where is a finite set of
natural numbers.

Given an event structure ε, is a valid trace of ε iff
is a solution to tc(ε). The proof proceeds as follows.
By the definition of event structures without
conflicts, for all 0<i,j≤n: in any trace of ε because ε
has no conflicts. By Def. , for each , we have the
constraint . Therefore, is a solution to tc(ε).

Proposition 15 (Equivalence of interactive score
constraints and its event traces) Let
s=〈 〉P,O,R be an interactive score, ε=es(s) the
encoding of the score, ts(s) the temporal constraint
of the score, and tc(ε) the temporal constraint of ε.
It holds that , where is obtained by replacing each
point identifier by its corresponding event in the
constraint ts(s), and p is the start or end point of
temporal object c�O.

We recall that gives the set of potential time
positions for each point p�P. We also recall the
notation for temporal constraints:
t+Δ={t'|t'=t+δ,δ�Δ}.

The proof above is presented for hierarchical
interactive scores in [105].

3.5 Some Properties of the Scenarios

We insist that a motivation of defining an abstract
semantics in event structures is to prove properties
of the system execution; in particular, properties
about the execution traces. As an example, to verify
that temporal objects will be played as expected
during performance (i.e., playability) or, in general,

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5587

some property of each execution trace. Such
properties cannot be verified in applications based
upon informal specifications, as it is the case for
most existing software for music scenarios with
interactive controls. The following properties were
already presented in [105].

• Properties of the traces of execution.

• There exist a trace σ that contains a
word w; for instance, the sequence
of notes C-D-E is part of n traces of
execution.

• There exists n traces σ that contain a
word w, possibly with other events
in between; for instance, the
sequence of notes C-D-E is contained
in the trace .

• The number of possible traces of
execution for a score ε is
card(Traces(ε)).

• If event e is launched before time
unit n, the duration of object a is
greater than m. For all σ�Traces(ε)
and , it holds that .

• After event e is played, there are n
traces where event f is launched
before event g.

• Between time units a to b, there is
no more than n objects playing
simultaneously.

• Minimum duration of a score. Let s be a
score and ε=es(s) the encoding of s, the
trace whose duration is minimum
corresponds to a path from the start event of
ε to the end event of ε such that the sum of
the delays in the event delay relation is
minimal among all paths connecting start
and end.

• Maximum and minimum number of
simultaneous temporal objects. Let be a
trace of ε=es(s), and maxS(σ),minS(σ) the
maximum and minimum number of events
executed simultaneously in σ, respectively.
The maximum and minimum number of
simultaneous temporal objects of a score
correspond, respectively, to the maximum
and minimum value of maxS(σ) and minS(σ)
among all σ�Traces(ε). This property is
useful, for instance, to argue that there is
only one curtain moving at the time during a
theater performance.

• Playability of a score. This property states
that all temporal objects will be played
during execution; this is desirable because a
score can be over-constrained and therefore
not playable. Formally, let be the events
played in trace σ. We say that a score is
playable iff for all σ�Traces(es(s)) it holds
that .

The playability of a score can be decided by
solving a constraint satisfaction problem
(CSP). There exists a σ�Traces(es(s)) such
that iff the following CSP has at least one
solution: a variable for each event ; the
domain for each variable, where is a finite
subset of N; and the single constraint tc(ε).
This holds as a direct consequence of Prop. .

3.5.1 Time complexity of the playability of a
score

In what follows we will show that deciding the
playability of a score is NP-complete in the general
case, but there is an interesting subclass that is
tractable.

The NP-complete case

We will show that the decision problem of the
subset sum [50] can be encoded as the playability of
an interactive score. The subset decision problem is
stated as follows: Given a set of integers of n
objects and an integer W, does any non-empty
subset sum to W?

There are several algorithms to solve the subset
sum, all with exponential time complexity in n, the
number of objects. The most naïve algorithm would
be to cycle through all subsets of 1≤k≤n numbers
and, for every one of them, check if the subset sums
to the right number. The running time is of order
O(), since there are subsets and, to check each
subset, we need to sum at most n elements. The best
algorithm known runs in time O(), according to
Martello [50]. In what follows we show that the
playability of a score is a NP-complete problem by
following the methodology described in [87].

Proposition 16 (The playability of a score is a
np-complete problem)

(1) The subset sum decision problem can be
encoded as the playability of an interactive score.
(2) If the score is not playable, there is not a subset
whose sum is W. (3) If the score is playable, then it
exists at least a subset whose sum is W. (4) To check

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5588

whether a solution satisfies the playability problem
can be done in polynomial time.

Figure 12: Encoding Of The Subset Sum Problem Into An Interactive Score. Note That The Subset Sum Problem Is A
Variant Of The Knapsack Decision Problem Where Costs Are Not Taken Into Account And The Goal Is To Find If There

Is A Subset Of The Elements That Fills Exactly The Knapsack Capacity.

3.5.2 A polynomial-time subclass

The conjunction of temporal constraints of an
interactive score can be represented as a simple
temporal problem (STP) when the domains of the
durations are intervals of integers without holes
[27]. The translation of the playability of a score
into a STP consists in a set of point variables , one
for each point in the score, and a set of binary
constraints over those variables , one for each
temporal constraint of the score. Each constraint
has the form with and a,b�N∪∞. Constraints of
the form can be easily obtained from the temporal
constraint of an interactive score. As an example,
constraint of the form can be translated into two
constraint a constraint . It is left to the reader the
encoding of the inequalities into constraints of the
form .
The satisfiability of a STP can be easily computed
with an algorithm to find all-pairs shortest-path of
a graph, such as Floyd-Warshall [24] algorithm
which has a polynomial time and space complexity.
In fact, Floyd-Warshall has a time complexity of ,
where n is the number of points of the score. There
are faster algorithms for this problem in the
literature [66, 118]; however, they are efficient to
calculate if a STP has a solution, but do not
guarantee that the constraint problem remains
satisfiable when dispatching the events during the
execution of a score.
Fortunately, with some transformations, a STP can
be dispatched online efficiently by relying only on
local propagation: looking only to the neighbors of
the event launched, as proposed by Muscettola et
al. [55]. We extend the approach of Muscettola et

al. to event structures: Transform an event structure
in such a way that the events of the event structure
can be dispatched online efficiently.

Iscore.

Iscore is a library developed by Allombert et al.
that implements the ECO machine to execute
interactive scores. It was originally developed in
Lisp, and then it was ported to C++ during the ANR
Virage14 project in 2008. Allombert et al.
introduced Iscore as a new tool that replaces Boxes
[4]. The comparison with Boxes is given in detail in
[8]. Iscore uses Petri nets as its underlying model
because Allombert argued that solving constraint
satisfaction problems during execution may be
incompatible with real time [2]. The first
implementation of Iscore uses the OpenMusic
Maquettes environment and the constraint solving
library Gecode in the edition mode. During
execution, OpenMusic communicates with Max or
Pd. Max and Pd are in charge of the contents of the
temporal objects. The communication is done using
the open sound control (OSC) protocol. The library
was ported to C++ during the project Virage and it
is currently being used by Acoumouscribe.

14 ANR Virage Project Virage was a research
platform project that aimed at developing new
writing and management interfaces for artistic
creation and cultural industries. This platform
included businesses (JazzMutant, Blue Yeti,
RSF), academic laboratories (LIMSI-CNRS
Paris Sud, MSH Paris Nord-CICM, LaBRI
Bordeaux) and artists (GMEA, the Albi-Tarn
centre national de création musicale and
didascalie.net).

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5589

Virage.

Virage is a software that uses Iscore and provides a
user-friendly interface for edition and execution of
interactive scores [6]. It was designed for
interactive theater performances, but it can also be
used for Electroacoustic music. Recently, Marczac
et al. describe an extension of Virage with fast
forward and go to jumps functionalities [49]. Fast
forward is used to modify the execution speed of
the score, and go to jumps can be seen as very fast a
acceleration in which the artist do not want
intermediate values.

Acousmouscribe.

“The Acousmoscribe is a free software coming
from the former software, Boxes, which aim was to
write scores and compose electroacoustic music.
Acousmoscribe is built around two possible uses:
notation and composition. This software offers
concrete and symbolic approaches of
electroacoustic music at the same time. The user
interface allows the writing of electroacoustic
music scores, following the phenomenological
approach initiated by Pierre Schaeffer. Around
twenty signs, that can be combined thanks to a
palette to write a "sound object", produce more than
20000 combinations: In this way, its use is intuitive
while allowing quite a precise description of
sounds. The length of each created box corresponds
to the length of the associated sound in time.
Regarding composition, a software built in
Max/MSP named Acousmosynth receives messages
from Acousmoscribe thanks to the open sound
control protocol, and translates its symbolic
notation into control parameters for audio synthesis
modules.” 15

i-score.

The latest software for interactive scores is i-score.
This software combines the edition interface of
Acousmouscribe with the execution model of
Virage. It is currently maintained by Scrime16 and
distributed as opensource.

4. OTHER SOFTWARE AND FORMALISMS
IN MUSIC INTERACTION

In what follows we describe software and
formalisms used in music interaction such as

15

http://scrime.labri.fr/index.php?option=com_content\&vie
w=article\&id=11\%3Aacousmoscribe\&catid=41\%3Athe
mesderecherche\&Itemid=81\&lang=en

16 http://scrime.labri.fr/

sequencers, signal processing languages, dataflow
languages and process calculi.

4.1 Sequencers

Software to design music scenarios are usually
based either on a fixed timeline with a very precise
script or a more flexible script based on cue lists.
As an example of fixed-timeline sequencers, there
are two well-known sequencers for Mac OS X: Pro
tools17 and Final cut pro18. As another example, the
theater cue manager Qlab19 is based on cue lists. In
Qlab, the user programs a list of upcoming events;
however, Pro tools, Final cut pro and Qlab only use
one time model and cannot use both.
Another software to design music scenarios is
Ableton live20. Live is often used in Electroacoustic
music and performing arts because it allows to use
both the fixed timeline and the cue lists.
Nonetheless, both time models are unrelated
temporally.
An advantage of interactive scores over the
previously mentioned sequencers is to relate
temporally both time models and to model
conditional branching.

4.2 Computer-assisted improvisation

Computer-assisted improvisation usually considers
building representations of music, either by explicit
coding of rules or applying machine learning
methods. An interactive machine improvisation
system capable of real-time must perform two
activities concurrently: stylistic learning and
stylistic simulation. As an example, the Omax
system [12, 48] and the Continuator [61] construct
models to represent the sequences played by the
musician and create their own sequences based on
the musician’s style.
Improvisation systems are interactive and
concurrent, but they are different to interactive
score systems: their goal is to create music based on
the user style, whereas interactive scores is a
formalism to compose music (or create music
scenarios). In interactive scores, the designer
describes several rules that have to be respected
during execution and the system does not produce
new sequences nor sounds that are not written in
the score.

17 http://www.avid.com/us/products/pro-tools-software
18 http://www.apple.com/finalcutpro/
19 http://figure53.com/qlab/

20 http://www.ableton.com/

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5590

4.3 Meta-instruments

A meta-instrument is a musician-machine interface
and a gesture transducer intended for
Electroacoustic music, music work, and, more
generally, for controlling a program in real-time. A
class of meta-instruments allows to control the
activation and release of notes. Interpretation of
musical pieces based on activating and releasing
notes has been studied by Haury [39].
Haury identifies four ways for interpretation:
dynamic variations as the possibility to
continuously modify the volume of the notes during
the performance, accentuation as temporary
volume variations, phrasing as modifying the
binding of the notes, and agogic variations as the
possibility to change the date of beginning and end
of the notes. Haury’s research focuses on agogic
modifications. As examples of agogic
modifications, in Haury’s meta-instrument, the
metapiano, the musicians can start or stop a group
of notes through control points placed in the piece
that he calls interaction points. A pause is a good
example of interaction point in instrumental music
because the musician or the conductor can choose
the duration of the pause. Haury’s work inspired
Allombert et al.’s models of interactive scores.

4.4 Score Following

Another kind of systems capable of real-time
interaction are score following systems [23]. To use
such systems, we must first write a score for the
musician and for the computer. During execution,
such systems track the performance of a real
instrument and they may play music associated to
certain notes of the piece. Nevertheless, to use these
systems it is necessary to play a music instrument;
whereas to use interactive scores, the user only has
to control some parameters of the piece, such as the
starting and ending times of the temporal objects.
Score following systems can also provide temporal
relations and hierarchical relations [30]; however,
the system tracks the performance of a music
instrument and is not meant to work with a meta-
instrument. In contrast, one of the main advantages
of interactive scores is meant to work with meta-
instruments.

4.5 Asynchronous Dataflow Languages

Stream processing can be modeled as a collection
of separate but communicating processes. Dataflow
is the canonical example of stream processing.
There is synchronous dataflow and asynchronous
dataflow [88]. Synchronous dataflow they lack of
FIFO queues to communicate channels like
asynchronous dataflow languages. This is a main

difference between the synchronous and
asynchronous dataflow languages.
As an example, asynchronous dataflow languages
Max/MSP and Pure Data (Pd) [70] are often used to
control signal processing and control events by
human gestures. Max and Pd distinguishes between
two levels of time: the event scheduler level and the
digital signal processor (DSP) level. Max and Pd
programs, called patches, are made by arranging
and connecting building-blocks of objects within a
visual canvas. Objects pass messages from their
outlets to the inlets of connected objects. The order
of execution for messages traversing through the
graph of objects is defined by the visual
organization of the objects in the patch itself21.
There are several problems with Max and Pd that
we aim to overcome. First, their schedulers control
both audio signals and control messages together
and they do not support parallelism, thus they often
fail to deliver control messages at the required time;
for instance, when they work under a high CPU
load, which is common when they process video,
3D images and sound. We present some insights on
how to solve this problem; nonetheless, this is still
an open problem.
To solve the scheduling problem and to write high-
performance DSPs for Max and Pd, users often write
C++ plugins to model loops and independent
threads. C++ plugins solve part of the problem, but
the control messages –for the input and output of
these plugins– are still being scheduled by Max or
Pd’s schedulers.
Second, there is another problem with Max and Pd:
they do not provide an environment to design
scenarios. The different time scales are often
unrelated and cannot be controlled in the same tool:
Discrete user gestures (e.g., clicking the mouse),
control events (e.g., control messages) and signal
processing have different sampling frequencies and
computing models.
One goal of the extension of interactive scores with
signal processing is to overcome the existing
problems of the asynchronous dataflow languages
mentioned.

4.6 Synchronous Dataflow Languages

There are three well-known french synchronous
languages: Esterel, Lustre [37, 38] and Signal [33].
Benveniste et al. discussed the advantages and
limitations of such languages 12 years after they
were conceived [17]. They argue that synchronous
languages were designed to implement real-time
embedded applications, thus such languages work

21 http://en.wikipedia.org/wiki/Max_(software)

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5591

on the deterministic concurrency paradigm and they
are meant to model deterministic system behavior.
Synchrony divides time into discrete intervals and
supposes that operations take no time (e.g., to
assign a variable or read a value).
Benveniste et al. argue that Esterel is imperative
and it is well-suited for describing control. Signal is
based on the reactive programming paradigm: A
program does something at each reaction and it
may be embedded in some environment. Signal is a
multiclock language. Lustre supports recursive
definitions, but may not contain cyclic definitions,
and a variable can only depend on past values. Both
Lustre and Signal have clocks to align streams, but
they lack of FIFO queues to communicate channels
like asynchronous dataflow languages. This is a
main difference between the synchronous and
asynchronous dataflow languages.
A very useful feature of synchronous dataflow
languages is multirate computation. Using multirate
computation, it is possible to easily handle control
signals, video signals and audio signals that have
different sampling rates. In fact, Forget compared
the mutirate capabilities of Esterel, Lustre and
Signal [31]. Forget argues that in Lustre each
variable is a flow. Lustre has a clock, but multirate
is hard to describe. In Signal, variables are signals
instead of flows. Clocks in Signal are first class
objects; therefore, it can be polychronous, but
multirate is also hard to achieve. Finally, Esterel
focuses on control flow, where several modules
communicate through signals, Esterel also has some
asynchronous extensions and automated
verification, but does not support multirate.
Faust is a synchronous language with formal
semantics for multirate; however, this functionality
has not yet been implemented [41]. Faust is a
functional programming language for signal
processing. In Faust, DSP algorithms are functions
operating on signals. Faust programs are compiled
into efficient C++ code that can be used in multiple
programming languages and environments; for
instance, in Pure data [35]. Faust is the DSP
language we chose for our extension of interactive
scores with signal processing.
There is another well-known synchronous dataflow
language. Csound22 has three types of variables
with different time levels (and different sampling
rates): instrument variables, control variables and
audio variables. In fact, control variables
correspond to event scheduler sampling rate and
audio processes to DSP level in Max. Nonetheless,
Csound does not provide sophisticated mechanisms

22 http://www.csounds.com/

to temporally relate instrument, control and audio
variables; for instance, to say that one microsecond
after an audio signal reaches a peak, a control
variable changes its value, causing three
instruments to play a note whose duration is the
distance between such peak and the last peak the
audio signal reached.

4.7 Process Calculi

Process calculi (or process algebras) are a diverse
family of related approaches to formally model
concurrent systems. Process calculi provide high-
level description of interactions, communications,
and synchronizations between a collection of
independent processes. They also provide algebraic
laws that allow process descriptions to be
manipulated and analyzed, and permit formal
reasoning about equivalences between processes;
for instance, using bisimulation [82]. Intuitively,
two systems are bisimilar if they match each other’s
moves. In this sense, each of the systems cannot be
distinguished from the other by an observer. A well-
known process calculus is the pi-calculus.
Unfortunately, the pi-calculus is not well suited to
model reactive systems with partial information.
Concurrent constraint programming (CCP) [83] is a
process calculus to model systems with partial
information. In CCP, a system is modeled as a
collection of concurrent processes whose
interaction behavior is based on the information
(represented by constraints) contained in a global
store. Formally, CCP is based on the idea of a
constraint system. A constraint system is composed
of a set of (basic) constraints and an entailment
relation specifying constraints that can be deduced
from others.
Although constraint systems suppose a big
flexibility and modeling power for concurrent
systems, Garavel argues that models based on
process calculi have not found widespread use
because there are many calculi and many variants
for each calculus, making difficult to choose the
most appropriate [32]. In addition, he argues that it
is difficult to express an explicit notion of time and
real-time requirements in process calculi. Finally,
Garavel argues that existing tools for process
calculi are not user-friendly and there are not many
tools available.
A position in favor of process calculi is defended by
Olarte et al. [60, 59]. They showed that CCP calculi
have been used in several applications such as
music interaction, security protocols and systemic
biology. They explained that CCP has different
variants to model mobility, probabilistic behavior,
hybrid systems, discrete time and real-time.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5592

We also argue, in favor of CCP, that there has been a
growing interest for CCP models of music
interaction in the last decade [77, 80, 78, 79, 75, 5,
100, 58, 59, 105]. CCP processes can be analyzed
from both a behavioral and declarative point of
view, making them suitable for simulation and for
verification of properties. Some programming
languages have also been developed following the
concepts of CCP. As an example Mozart/Oz [74,
113] is a multiparadigm programming language
inspired in the CCP paradigm.
Process calculi has been applied to the modeling of
interactive music systems [104, 111, 99, 110, 10,
106, 100, 59, 97, 93, 95, 98, 11, 103, 94, 101, 102,
92] and ecological systems [107, 64, 109, 65, 108].
Although there are programming languages based
on CCP, as Garavel argued, the explicit notion of
time is missing in most process calculi and,
unfortunately, it is also the case of CCP. In CCP it is
not possible to delete nor change information
accumulated in the store. For that reason, it is
difficult to perceive a notion of discrete time, useful
to model reactive systems communicating with an
external environment (e.g., motion sensors and
speakers).
The temporal concurrent constraint (tcc) [84]
calculus circumvents this limitation by introducing
the notion of discrete time as a sequence of time
units. At each time unit, a CCP computation takes
place, starting with an empty store (or one that has
been given some information by the environment).
In fact, tcc has been shown to be very expressive to
model synchronous languages such as Lustre and
Esterel [91]. There is also an interpreter to execute
tcc models [89].
The non-deterministic timed concurrent constraint
(ntcc) [56] adds non-determinism and asynchrony
to tcc. Ntcc has been extendedly used for musical
applications. We chose ntcc to express operational
semantics of interactive scores because it allows for
verification of temporal properties; for instance, it
has been used to model music improvisation
systems and a western-african music problem [77,
78]. In addition, there is a real-time capable
interpreter for ntcc [100], and verifications tools
and techniques are being developed in the recently
started Colciencia’s REACT+ project23. Finally,
another advantage of ntcc is that it handles very
naturally temporal constraints.

23 REACT+ is a colombian project supported by

Colciencias to develop verification and simulation tools
for ntcc calculi.
http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:av
ispa:react-plus.

4.8 Temporal Constraints

Temporal constraints have gained interest among
scientists ever since the invention of artificial
intelligence. Temporal constraints are often used for
temporal planing of autonomous robots. Lately, the
music interaction community developed an interest
on temporal constraints for the design of interactive
music.
There are two well-known types of temporal
constraints: metric (or quantitative) constraints and
qualitative constraints. Metric constraints restrict
the distance between points and qualitative
constraints are relative positions. A metric
constraint is, for instance, “a point occurs five time
units after another”, and a qualitative constraint is,
for instance, “a point occurs strictly before
another”.
There are some well-known classes of qualitative
constraints: interval-interval (also known as Allen’s
relations [1], shown in Figure 13), point-to-point
and point-interval. Interval-interval temporal
relations were conceived to model dense
(continuos) time, but they can also be used for
discrete time. According to Gennari, point-to-point
are more expressive than point-interval relations
when interval-interval does not include disjunction.
When interval-interval temporal relations include
disjunctions, they are more expressive than the
other classes, but its satisfiability is NP-Hard [34].
There are also some well-known classes of
quantitative constraints: unary constraints and
binary constraints. They express location and
distance respectively, both concepts important in
music, but useless without the concept of relative
positions.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5593

Figure 13: Allen’s interval-to-interval relations.

Fortunately, Meiri formalized a new class: the
combination of both qualitative and metric
constraints [51]. Meiri’s approach is simple:
qualitative constraints can be represented as
quantitative constraints; for instance, the relation <
can be represented by the interval (0,∞). A subset of
Meiri’s new class can be represented as a simple
temporal problem [27] when each temporal
constraint is given by a single interval. In
interactive scores, we combine point-to-point
qualitative relations with unary and binary
quantitative constraints, as proposed by Meiri.
There is another kind of temporal constraints:
hierarchical unification-based temporal pattern
grammar [20]. The unification-based temporal
grammar is meant to describe multivariable time
series. Such a grammar is an extension of context-
free grammars with Prolog clauses evaluated as
side conditions. Temporal patterns use logical
disjunction and they have been successfully applied
to the recognition of sleeping disorders. It has also
been used to data mining hierarchical temporal
patterns in multivariable time series. Nonetheless,
Biundo et al.’s temporal grammar is not meant for
real-time operations.

5. CONCLUSIONS

We described sequencers which are software to
design music interaction. Sequencers are usually
based on a fixed timeline or on cue lists. Some
software provide both time models but they are
temporally unrelated. An advantage of interactive
scores is to relate temporally both time models and
to model conditional branching.

There is also hardware to control music interaction.
Meta-instruments are musician-machine gesture
transducers intended for controlling a program in
real-time. As an example, a meta-instrument can
control the start and end of groups of notes,
allowing for the interpretation of complex pieces
with interfaces as simples as a one-touch piano.
This work inspired the first models of interactive
scores. In contrast, there are score-following
systems, in which a real-instrument is needed. A
score-following system tracks the performance and
plays electronics associated to the notes of the
score.
There are also synchronous and asynchronous
dataflow paradigms, which are paradigms closely
related to interactive scores. Asynchronous
dataflow is meant to handle asynchronous events
such as user interactions, whereas synchronous
languages are meant to design real-time
applications and they are based on a model of
deterministic concurrency. Heterogeneous systems
are systems that combines several paradigms, for
instance, asynchronous and synchronous languages.
Heterogeneous systems combining asynchronous
and synchronous circuits can be designed using
schemes such as global asynchronous, locally
synchronous. A special case, of interest for
interactive scores is called ratiochronous, in which
the receiver’s clock frequency is an exact multiple
to the sender’s, and both are derived from the same
source clock. This design scheme could be useful to
synchronize interactive scores with a signal
processing system, but also with other systems such
as a score following system.
Process calculi are approaches to formally model
concurrent systems. As an example, ntcc describes

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5594

partial information by the means of constraints, it
provides discrete time units, and it models
asynchrony and non-determinism. Ntcc has been
used in the past to model interactive scores. It
handles naturally temporal constraints. A similar
approach is Petri nets, which is is another model of
concurrency with an intuitive graphical notation.
An extension of Petri nets with time and hierarchy
has been used to model interactive scores in the
past and for synchronization of music streaming
systems. Ntcc has also been used to model
interactive scores
There are other existing models of interactive
scores. First models were conceived to control the
starting and ending times of the notes of a score.
They also included different temporal relations; for
instance, to model two temporal objects that
overlaps, by the means of Allen’s relations. Later
extensions included a Petri nets operational
semantics. Finally, there are extensions of
interactive scores with conditional branching. Note
that the Petri nets semantics of interactive scores
were implemented in an efficient C++ library called
Iscore, and it is currently being used by i-score.
Most scenarios and musical pieces with interactive
controls have no formal semantics. Interactive
scores is a formalism to describe interactive
scenarios based on temporal constraints. In this
dissertation, we introduced an event structures
semantics of interactive scores, we formalized some
properties, and we proved that the event structures
semantics complies with the temporal constraints of
the score. With the event structures semantics, we
expressed several properties about the traces of
execution that are difficult to express and prove
using constraints.
We introduced the dispatchable event structures
(DES): event structures whose temporal object
durations and temporal distances among objects are
integer intervals. DES can be dispatched online by
relying only on local propagation: This is achieved
by transforming the constraint graph into an all-
pairs shortest-path graph; however, that drastically
increases the number of arcs. In the future, we
propose to minimize the number of arcs of such
networks, as proposed by Muscettola et al. [55].
Although event structures provide a theoretical
background to specify properties and understand
the system, there is no difference between
interactive objects and static temporal objects in the
event structures semantics: such a difference can
only be expressed in the operational semantics. This
means that the event structure semantics are not
fully abstract with respect to the operational
semantics: Operational equivalence does not always

coincides with denotational equality. It is an open
issue how to capture the behavior of interactive
objects in the event structures semantics.
Operational semantics are based on the
dispatchable normal form of the event structures of
the score. A score is in normal form when it does
not have zero-duration event delays. The
computation of the normal form is similar to the
algorithm to transform a score into a Petri net
proposed by Allombert et al. [2]: In Petri nets
semantics of interactive scores, points of temporal
objects executed at the same time share the same
place (i.e., state). Other algorithms for optimization
problems include [62, 53, 72].

Comparison with Allombert et al.’s model.

We believe that this dissertation extends
significantly Allombert et al.’s model because it
provides a concise operational semantics for
interactive scores whose temporal object duration
can be any interval of integers. Allombert et al.
proposed temporal relations with flexible intervals
with only {0}, [0,∞) and (0,∞) intervals [5, 4]. In
fact, arbitrary integer intervals are not allowed in
neither Virage nor i-score, only flexible-time
intervals. To handle temporal relations with
arbitrary intervals, Allombert proposed in [2] to
either build a Hierarchical colored time stream
Petri net, adding a big number of new places
(states), or to use a constraint store that is unrelated
to the Petri nets semantics, and the combined
semantics of Petri nets interacting with a constraint
store are not given.
There is another disadvantage of Allombert et al.’s
models: Temporal relations are limited to Allen’s
relations. Allen’s relations do not allow to represent
quantitative relations between two objects easily;
for instance, “object a occurs 3 time units after
object b”. Using Allen’s relations, it is neither
possible to say “the start of object a is before the
end of object b”. These kind of relations are easily
modeled using point-to-point temporal relations. In
fact, recently, i-score has moved forward to point-
to-point temporal relations.
A conditional branching extension was presented in
[2], but no temporal relations were allowed. We
struggled to allow temporal relations and
conditional branching in the same model. As an
example, it is possible to model conditions and also
preserve temporal properties over all the branches,
for instance, that .
In our first models of conditional branching,
published in [101, 102], we allowed branches
starting in the same point have different durations.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5595

We left aside such an approach because it makes
many scores incoherent and unplayable.
An advantage of our extension of interactive scores
with conditional branching with respect to previous
models of interactive scores, Pure Data, Max and
Petri Nets is representing declarative conditions by
the means of constraints. Complex conditions, in
particular those with an unknown number of
parameters, are difficult to model in Max or Pd. To
model generic conditions in Max or Pd, we would
have to define each condition either in a new patch
or in a predefined library. In Petri nets, we would
have to define a net for each condition.
A disadvantage of our conditional branching model
is that the number of event conflicts increases
exponentially with respect to the hierarchy depth.
Fortunately, the hierarchy depth is usually not so
big, thus we argue that we do not need a formalism
that supports hierarchical constructions, such as
hierarchical Petri nets or statecharts.
Using timed event structures with conflicts, it is
possible to model conditional branching: the
possibility to choose among different continuations
of the piece based on the preferences of the
musician. In addition, Langerak describes in [45]
how to encode recursive processes into event
structures; in fact, loops in the interactive scores
could be encoded with such a technique.
Unfortunately, conditional branching drastically
increases the complexity of the system; for
instance, a score may contain dead-locks. An
alternative for automated verification is constraint
programming; for instance, to verify the playability
of a score and calculate the potential time positions
of the points of the score. Nonetheless, once again,
we argue that, for some properties, the notion of
trace is more appropriate.
Another advantage of our event structure semantics
and our operational semantics is that they can
express trans-hierarchical relations: temporal
relations between objects with different parents.
Trans-hierarchical relations are not possible to
model with hierarchical time stream Petri nets used
by Allombert et al. These relations are useful; for
instance, to model temporal relations between
videos and sounds that are contained in different
temporal objects, allowing to define temporal
relations among different media.
A key issue of this dissertation is that we executed
interactive scores in a efficient manner. We want to
encourage the use of process calculi to develop
reactive systems. For that reason, this research
focused on developing real-life applications with
ntcc and showing that our interpreter Ntccrt is a
user-friendly tool, providing a graphical interface to

specify ntcc models and compiling them to efficient
C++ programs capable of real-time interaction in
Max and Pure Data (Pd). We argue that using ntcc
to model, verify and execute reactive systems
decreases the development time and guarantees
correct process synchronization, in contrast to the
graphical patch paradigm of Max and Pd.

Disadvantages of our models.

A disadvantage of most ntcc tools is the syntax to
write the input. Previous attempts to write ntcc
processes directly as C++ classes, Lisp functions or
visual objects has been proven to be insufficiently
user-friendly. A compiler to parse ntcc into C++
classes is the "missing link" to allow non-
programmers to use the real-time capable
interpreter for ntcc (Ntccrt) and the ntcc time-
bounded model checker (ntccMC), and could be the
base for other CCP tools.
There are some other problems to execute
interactive scores with Ntccrt. First, To compute the
event structures semantics, its normal form and the
dispatchable form by hand is very difficult. In the
future, this should be done automatically. Second,
ntcc recursive definition cannot be translated
directly to Ntccrt because their encoding is based
on nested non-deterministic choices hard to
simulate. In the future, variables should be treated
differently; for instance, using variables that can
change value from a time unit to another one.
Unfortunately, there are other problems that Ntccrt
must overcome. Third, one may argue that although
we can synchronize Ntccrt with an external clock
(e.g., a metronome object) provided by Max or Pure
Data, this does not solve the problem of simulating
models when the clock step is shorter than the time
necessary to compute a time-unit. To solve this
problem, Sarria proposed to develop an interpreter
for the real time concurrent constraint (rtcc) [85]
calculus, which is an extension of ntcc capable of
modeling time units with fixed duration. The reader
may find a further discussion on executing time
units with fixed durations in [100].
One may also argue that interactive scores had little
applicability because they do not allow to describe
signal processors. In this dissertation, we also
extended the formalism of interactive scores with
sound processing and micro controls for sound
processors. We present an encoding of the scenario
into a ntcc model –executed using the real-time
capable interpreter Ntccrt– and a Faust program.
Both programs interact during the performance of
the scenario. We show how some interesting
applications can be easily modeled in the formalism
and how they can be executed in Pure Data. Using

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5596

Faust and Ntccrt, we achieved an efficient and real-
time capable performance of a scenario –even
under high CPU-load. Nonetheless, our final goal is
to integrate Ntccrt and Faust in a standalone
program.
There is an interesting framework to evaluate the
expressiveness of interactive multimedia
formalisms: Janin’s dimensions. There are several
dimensions in multimedia interaction, according to
Janin24: Abstraction that represents the hierarchy of
temporal objects, time that represents the causality
and can be thought as the logical implication,
parallelism that represents that two (or more)
objects can be executed simultaneously and can be
though as an logical and, alternative that represents
conditional branching and can be though as a
logical or. Finally, there are dimensions for value
that represents, for instance, the value of the pitch,
volume or pan. Janin’s dimensions are represented
in Figure 14.

24

http://www.labri.fr/perso/janin/index_fichiers/Magma.jpg

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5597

Figure 14: Janin’s Dimensions Of Interactive Multimedia.

The hierarchical model of interactive scores allows
us to express abstraction, time and values in the
same two-dimensional space. In fact, i-score
represents such interactive scores in a two-
dimensional space. In the conditional branching
model we can express abstraction, time, value and
alternative, all in the same two-dimensional space
because all branches starting on the same point
have the same duration. Finally, in the signal
processing extension, we can express time, value
and parallelism in one two-dimensional space, and
time, value and dataflow in another two-
dimensional space. We argue that the dataflow
dimension is missing among Janin’s dimensions
and should also be considered. The dataflow
dimension describes how sound is transferred from
one process to another. To represent time, value and
dataflow together, we would need a tridimensional
space; otherwise, arrows representing dataflow will
overlap with those representing temporal relations.

5.1 Answers to Problem Statements

We have identified seven problems with existing
software to design multimedia scenarios: (1) there

is no formal model for multimedia interaction, (2)
multimedia scenarios have limited reusability and
difficulties with the persistence of multimedia
scenarios, (3) time models (fixed timeline and cue
lists) are temporally unrelated, (4) most multimedia
interaction software products provide no hierarchy,
(5) the different time scales are unrelated, (6)
schedulers for multimedia scenarios are not
appropriate for soft real-time, and (7) there is no
model to combine temporal relations and
conditional branching. In what follows we explain
how the interactive scores formalism solves those
problems.
First, interactive scores is a formalism to model
multimedia scenarios. Event structures semantics
allows to specify properties over the traces of
execution. Ntcc semantics allows to understand the
execution of the score and to specify temporal
properties as well. Both semantics were proved to
be related. Therefore, interactive scores is a formal
model for multimedia interaction.
Second, scenarios described in interactive scores
can be preserved because they have formal
semantics. In addition, signal processors can be
specified in Faust, which also has formal semantics.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5598

In fact, Faust can be used for preservation of music
pieces because it provides formal semantics of all
the audio processors used in the music piece [52,
15].
Third, time models are related temporally, for
instance, we can specify that an object is executed
strictly in the third second of execution, and we can
also express that another object is executed between
two and five seconds after the end of the previous
object. Although, during the execution, micro
controls are managed by Faust and macro controls
by ntcc, it is also possible to express, for instance,
that an object starts 500 microseconds after another,
and it will end one second before another object.
Fourth, hierarchy is available in our model and it
allows to constrain the execution times of the
objects contained in another object.
Fifth, different time scales are available in our tool,
but, unfortunately, they are temporally unrelated, as
in many tools; for instance, it is not possible to
relate the frequency of the clock that controls ntcc
discrete time units to the signal processing
sampling rate.
Sixth, the system is appropriate, even under high
CPU-load, to interact with a human in real-time. The
solution to this problem is relevant for the
multimedia interaction domain because, in addition
to sound processing, the computer may execute at
the same time complex video and image operations.
For that reason, we did the evaluation of our system

under high CPU-load, obtained by executing several
video processing operations concurrently.
Seventh, in interactive scores, it is now possible to
combine conditions and intervals into a new type of
relation called time conditional relations. In fact, by
labeling these relations by true conditions, we can
also express scores written in the pure temporal
model. We managed to combine conditions and
temporal relations by making the assumption that
all branches starting in the same point have the
same duration.

5.2 Future Directions

We propose some directions on the study and
applications of interactive scores. Our final goal is
to have a complete framework, as shown in Figure
15. The translation of conditional branching scores
with loops into event structures is missing. In
addition, operational semantics of conditional
branching scores, for the general case, are missing.
The translation of event structures semantics of
scores with arbitrary durations into ntcc is also
missing. Formal semantics of the integration of ntcc
and Faust are missing. Some improvements for the
model checker are missing to make it fully usable,
and finally stand alone programs are missing to
allow different applications of interactive scores,
such as applications for music pedagogy. In what
follows, we explain in detail some of these issues.

Figure 15: Diagram Of The Complete Interactive Scores Framework. Dashed-Arrows And Dashed-Lines Represent
Translations, Semantics And Programs That Are Missing Or Are Incomplete.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5599

Signal processing extension.

To improve the expressiveness of interactive scores,
we should allow multiple points inside a temporal
object, instead of just start and end points, as usual.
Janin has already explained the advantages of such
an approach to model rhythmical structures [40] .
We also propose to extend our implementation to
handle audio files efficiently. Libaudiostream25 is
an audio library, developed at the french research
institute Grame26, to manipulate audio resources
through the concept of streams using Faust
programs. Including Libaudiostream in our
framework, it will be possible to design a scenario
where a temporal object loads a sound file into
memory, filter it in Faust, and then, play the sound
in Faust at the appropriate time. Precision is
guaranteed because the time to load the file and to
process it is foreknown in the scenario. Currently,
we have to rely on third-party programs, such as
Pd, to do handle audio files, and to communicate
the control signals from Ntccrt to Faust.
It has been already discussed that Faust can be used
to assure the persistence of music pieces with sound
synthesis. We believe that such an approach could
be used for the extension of interactive scores with
signal processing. To solve that problem, Allombert
developed a XML file format for interactive scores.
This file format is currently used in Virage and i-
score; however, it does not allow to represent the
hierarchy, point-to-point temporal relations nor a
set of possible durations of a temporal object.
In the future, we also want to to translate files from
music XML and music markup language (mml) to
our interactive scores XML format. We also want to
represent scores with signal processors in our XML
format.

Conditional branching extension.

Event structures semantics for scores with loops is
not easily defined because events can only be
executed once; therefore, to define semantics we
need infinite number of events, as proposed by
Langerak in [45]. Afterwards, it will be required to
translate such event structures semantics into
operational semantics in ntcc with a finite number
of processes.

Automatic verification.

At the time of this writing, there are no formal
semantics of a heterogeneous system that

25 http://libaudiostream.sourceforge.net/

26 http://www.grame.fr/

synchronizes concurrent objects, handles global
constraints, and controls audio and video streams.
Modeling this kind of systems will be useful in
other domains such as machine musical
improvisation and music video games. An
advantage over the existing implementations of
these systems will be verification.
We believe that any Faust program could be
translated into ntcc based on the results obtained by
Rueda et al. in [79]. Rueda et al. translated the
Karplus-Strong Faust program into ntcc. Although
it is clear that the execution of a Ntccrt simulation
cannot be done at the sound processing sampling
frequency, such a translation could be used to verify
properties of correctness of a scenario where ntcc
and Faust interact (e.g., playability).
In the proof system of ntcc, we could prove
properties like “10 time units after the event is
launched, during the next 4 time units, the stream B
is the result of applying a gain filter to the stream
A”; however, real-time audio processing cannot be
implemented in Ntccrt because it requires to
simulate 44100 time units per second to process a
44.1 kHz sound. If we replace some ntcc processes
by Faust plugins, we can execute such a system
efficiently, but we cannot verify that the properties
of the system hold. There is one open issue: How to
prove that a Faust plugin that replaces a ntcc
process obeys the temporal properties proved for
the process. We discussed this issue in [96].
A first step to achieve the goal explained above is
our model checker for ntcc, ntccMC. In ntccMC, we
provide a prototype of a parser for ntcc syntax, but
the parser can be improved. As an example, build
an efficient representation of the process hierarchy,
instead of a directed tree, so that two equivalent
processes do not have to be encoded twice.
There is another disadvantage of ntccMC: Although
FSA operations have lower complexity than
operations over Büchi, the implementation needs to
be improved to be used in bigger examples. The
hash-table based automata class, provided by the
automata standard library, is parametrized, during
compilation time, by the size of the alphabet which
is the number of relevant constraints. In addition,
the number of relevant constraints is bounded by n!,
where n is the number of constraints that appear in
the process and the formula. In addition to having a
factorial number of constraints, constraint
deduction is based on search, thus the domains of
the variables should not be too big to be tractable.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5600

Scores whose temporal objects have arbitrary
durations.

This extension will allow us to represent rhythmical
patterns using temporal objects. When the duration
of a temporal object can be an arbitrary set of
integers, we can model rhythmical patterns; for
instance, that a music object should be played at
beats one, three or five (but not two nor four).
Constraints of this form are found in the

improvisation system presented by Rueda and
Valencia in [78].

Example 1 As an example, Figure 16 is a score to
represent rhythms. Object a’s start time could be in
the 1st,3rd,5th,9th or 12th time unit and its
duration could be 1,2,3 or 4 time units.

Figure 16: A Scores Whose Temporal Objects Have Arbitrary Durations.

The satisfiability of a score with this kind of
temporal constraints is equivalent to a disjunctive
temporal problem, which is well-known to be NP-
complete. One alternative to cope with this problem
is to do a static analysis; for instance, a space
efficient backtrack-free representation for constraint
satisfaction problems [16]; however, to achieve
such as representation, the order on which the
temporal objects are going to be executed must be
foreknown. Nonetheless, there are some scores in
which this is possible, but for many other it is not
possible.
Another possibility to cope with this problem in
real-time could be an extension of Truchet’s
approach to solve music constraint satisfaction
problems with local search [112]. Nonetheless, her
algorithm requires random initialization of the
variables and iterative refinements. Such a random
initialization could be an incoherent representation
of the temporal objects in the timeline; for instance,
an end point could be executed before a start point.

Pedagogic applications.

There are several possible pedagogic applications
that can be developed using interactive scores. One
alternative is to use interactive scores for rhythmic
exercises for music students, easily modeled by

constraints. Anders et al. have already discussed
this approach [63], but we believe that it could be
improved by allowing user interactions and
temporal relations, which is possible in interactive
scores.
Another possibility is using user gestures to
generate Electroacoustic music for pedagogical
purposes. This was not possible before in
interactive scores due to the lack of a signal
processing extension. In the future, we could
imagine scenarios, as those proposed by Kurtag et
al. [44].
Finally, another possibility for future work is to use
automatic generated fingering for piano or guitar to
generate scores in which only “easy” playable notes
(according to a fingering analysis) are played by the
user and the “hard” playable notes are played by the
computer. Note that automatic generation of piano
fingering has been already studied by Robine, who
also describes several related work on that subject
[73].

REFERENCES
[1] J. F. Allen. Maintaining knowledge about

temporal intervals. Communication of ACM,
26, 1983.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5601

[2] A. Allombert. Aspects temporels d’un
système de partitions numèriques
interactives pour la composition et
l’interprétation. PhD thesis, Université de
Bordeaux, November 2009.

[3] A. Allombert, G. Assayag, and M. Desainte-
Catherine. A system of interactive scores
based on petri nets. In Proc. of SMC ’07,
Athens, Greece, 2007.

[4] A. Allombert, G. Assayag, and M. Desainte-
Catherine. Iscore: a system for writing
interaction. In Proc. of 3rd International
Conference on Digital Interactive Media in
Entertainment and Arts (DIMEA) ’08, pages
360–367, New York, NY, USA, 2008. ACM.

[5] A. Allombert, G. Assayag, M. Desainte-
Catherine, and C. Rueda. Concurrent
constraint models for interactive scores. In
Proc. of Sound and Music Computing (SMC)
’06, Marseille, France, 2006.

[6] A. Allombert, P. Baltazar, R. Marczak,
M. Desainte-Catherine, and L. Garnier.
Designing an interactive intermedia
sequencer from users requirements and
theoretical background. In Proc. of
International Computer Music Conference
(ICMC) ’10, 2010.

[7] A. Allombert and M. Desainte-Catherine.
Interactive scores: A model for specifying
temporal relations between interactive and
static events. In Journal of New Music
Research, 2005.

[8] A. Allombert, M. Desainte-Catherine, and
G. Assayag. De boxes à iscore: vers une
écriture de l’interaction. In Proc. of Journées
d’Informatique Musicale (JIM) 2008, 2008.

[9] A. Allombert, M. Desainte-Catherine,
J. Larralde, and G. Assayag. A system of
interactive scores based on qualitative and
quantitative temporal constraints. In Proc. of
4th International Conference on Digital Arts
(Artech) ’08, Porto, Portugal, 2008. The
Artech International Association.

[10] A. Allombert, M. Desainte-Catherine, and
M. Toro. Modeling temporal constrains for a
system of interactive score. In G. Assayag
and C. Truchet, editors, Constraint
Programming in Music, chapter 1, pages 1–
23. Wiley, 2011.

[11] J. Aranda, G. Assayag, C. Olarte, J. A. Pérez,
C. Rueda, M. Toro, and F. D. Valencia. An
overview of FORCES: an INRIA project on
declarative formalisms for emergent systems.
In P. M. Hill and D. S. Warren, editors, Logic
Programming, 25th International

Conference, ICLP 2009, Pasadena, CA,
USA, July 14-17, 2009. Proceedings, volume
5649 of Lecture Notes in Computer Science,
pages 509–513. Springer, 2009.

[12] G. Assayag, G. Bloch, M. Chemillier,
A. Cont, and S. Dubnov. Omax brothers: a
dynamic topology of agents for
improvization learning. In Proc. of the 1st
ACM workshop on Audio and music
computing multimedia (AMCMM) ’06, pages
125–132, New York, NY, USA, 2006. ACM.

[13] C. Baier, J.-P. Katoen, and D. Latella. Metric
semantics for true concurrent real time. In
Proc. of International Conference on
Automata, Languages and Programming
(ICALP) ’98, Berlin, Germany, 1998.
Springer.

[14] C. G. Baltera, S. B. Smith, and J. A.
Flanklin. Probabilistic interactive
installations. In Proc. of the Florida
Artificial Intelligence Research Society
Conference (FLAIRS) ’07, pages 553–558,
2007.

[15] K. Barkati and Y. Orlarey. Auto-
documentation mathématique pour le
traitement du signal avec faust. In Proc. of
Journées d’informatique musical (JIM),
2011.

[16] J. C. Beck, T. Carchrae, E. C. Freuder, and
G. Ringwelski. A space-efficient backtrack-
free representation for constraint satisfaction
problems. International Journal on Artificial
Intelligence Tools, 17(4):703–730, 2008.

[17] A. Benveniste, P. Caspi, S. A. Edwards,
N. Halbwachs, P. L. Guernic, and R. D.
Simone. The synchronous languages twelve
years later. In Proceedings of the IEEE,
2003.

[18] F. Berthaut, M. Desainte-Catherine, and
M. Hachet. Drile: an immersive environment
for hierarchical live-looping. In Proc. of New
Interfaces for Musical Expression (NIME)
2010, 2010.

[19] A. Beurivé and M. Desainte-Catherine.
Representing musical hierarchies with
constraints. In 7th International Conference
on Principles and Practice of Constraint
Programming, Musical Constraints
Workshop, Paphos, 2001.

[20] S. Biundo, T. Frühwirth, and G. Palm.
Mining hierarchical temporal patterns in
multivariate time series. In Advances in
Artificial Intelligence ’04, pages 127–140,
2004.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5602

[21] J. Bresson, C. Agón, and G. Assayag.
Openmusic 5: A cross-platform release of the
computer-assisted composition environment.
In 10th Brazilian Symposium on Computer
Music, Rio de Janeiro, Brazil, 2005.
Brazilian Computing Society.

[22] J. Bresson, C. Agon, and G. Assayag.
Openmusic: visual programming
environment for music composition, analysis
and research. In Proceedings of the 19th
ACM international conference on
Multimedia, MM ’11, pages 743–746, New
York, NY, USA, 2011. ACM.

[23] A. Cont. Antescofo: Anticipatory
synchronization and control of interactive
parameters in computer music. In Proc. of
ICMC ’08, 2008.

[24] T. H. Cormen, C. Stein, R. L. Rivest, and
C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition,
2001.

[25] P. Couprie. Three analysis models for
l’oiseau moqueur, one of the trois rêves
d’oiseau françois bayle. Org. Sound, 4(1):3–
14, Jan. 1999.

[26] K. Dahan and M. Laliberté. Réflexions
autour de la question d’interprétation de la
musique électroacoustique. In Proc. of JIM,
2008.

[27] R. Dechter, I. Meiri, and J. Pearl. Temporal
constraint networks. Artif. Intell., 49(1-
3):61–95, 1991.

[28] M. Desainte-Catherine, A. Allombert, and
G. Assayag. Towards a hybrid temporal
paradigm for musical composition and
performance: The case of musical
interpretation. Computer Music Journal, To
appear in fall, 2012.

[29] M. Desainte-Catherine and N. Brousse.
Towards a specification of musical
interactive pieces. In Proc. of the XIX
Colloquium on Musical Informatics (CIM),
Firenze, Italy, 2003.

[30] J. Echeveste, A. Cont, J.-L. Giavitto, and
F. Jacquemard. Formalisation des relations
temporelles entre une partition et une
performance musicale dans un contexte
d’accompagnement automatique :
Accompagnement musical automatique. In
Journal Européen des Systèmes Automatisés,
2011.

[31] J. Forget. Un Langage Synchrone pour les
Systèmes Embarqués Critiques Soumis à des
Contraintes Temps Réel Multiples. PhD in

Computer science, Université de Toulouse,
Toulouse, Novembre 2009.

[32] H. Garavel. Reflections on the future of
concurrency theory in general and process
calculi in particular. Electron. Notes Theor.
Comput. Sci., 209:149–164, 2008.

[33] T. Gautier, P. Le Guernic, and L. Besnard.
Signal: A declarative language for
synchronous programming of real-time
systems. In Proc. of FPCA ’87, 1987.

[34] R. Gennari. Temporal resoning and
constraint programming - a survey. CWI
Quaterly, 11:3–163, 1998.

[35] A. Gräf. Interfacing pure data with faust. In
Proc. of the 5th International Linux Audio
Conference (LAC) ’07, 2007.

[36] J. Gutiérrez, J. A. Pérez, C. Rueda, and F. D.
Valencia. Timed concurrent constraint
programming for analyzing biological
systems. Electron. Notes Theor. Comput.
Sci., 171(2):117–137, 2007.

[37] N. Halbwachs, P. Caspi, P. Raymond, and
D. Pilaud. The synchronous data flow
programming language lustre. In
Proceedings of the IEEE, volume 79, pages
1305–1320, September 1991.

[38] N. Halbwachs, F. Lagnier, and C. Ratel.
Programming and verifying real-time
systems by means of the synchronous data-
flow language lustre. IEEE Transaction on
Software Engineering - Special issue:
specification and analysis of real-time
systems, 18:785–793, 1994.

[39] J. Haury. La grammaire de l’exécution
musicale au clavier et le mouvement des
touches. Documents numériques, 11(3-
4):127–148, 2008.

[40] D. Janin. Modélisation compositionelle des
structures rythmiques: une exploration
didactique. Revue Francophone
d’Informatique Musicale, 2. To appear in
Fall, 2012.

[41] P. Jouvelot and Y. Orlarey. Dependent vector
types for data structuring in multirate faust.
Computer Languages, Systems and
Structures, 2011.

[42] G. Keil. La cause d’un événement. eléments
d’une métaphysique descriptive de la
causalité entre événements. Revue de
Philosophie: Causalité, (89):1–10, April
2006.

[43] M. Köhler, D. Moldt, and H. Rölke.
Modelling mobility and mobile agents using
nets within nets. In Proc. of the 24th
international conference on Applications and

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5603

theory of Petri nets (ICATPN) ’03, pages
121–139, Berlin, Heidelberg, 2003.
Springer-Verlag.

[44] G. Kurtag, M. Desainte-Catherine, J.-L.
Di Santo, and P. Guillem. Pédagogie de
l’électroacoustique, du geste musical à la
composition assistée par ordinateur. In Proc.
of the Journées d’Informatique Musicale
(JIM) ’07, 2007.

[45] R. Langerak. Bundle event structures: a non-
interleaving semantics for lotos. In M. Diaz
and R. Groz, editors, Proc. of the Fifth
International Conference on Formal
Description Techniques for Distributed
Systems and Communication Protocols
(FORTE) ’92, volume C-10 of IFIP
Transactions, pages 331–346, Twente,
Holland, 1992. North-Holland.

[46] F. Laudisa. Le principe de causalité entre
empirisme logique et néokantisme. Revue de
Philosophie: Causalité, (89):11–20, April
2006.

[47] H. A. López, C. Palamidessi, J. A. Pérez,
C. Rueda, and F. D. Valencia. A declarative
framework for security: Secure concurrent
constraint programming. In ICLP, pages
449–450, 2006.

[48] F. Maniatakos, G. Assayag, F. Bevilacqua,
and C. Agón. On the architecture and
formalisms for computer-assisted
improvisation. In Proc. of Sound and Music
Computing (SMC), 2010.

[49] R. Marczak, A. Allombert, and M. Desainte-
Catherine. Real-time temporal control of
musical processes. In Proc. of the
International Conferences on Advances in
Multimedia (MMEDIA) ’11, 2011.

[50] S. Martello and P. Toth. Knapsack problems:
algorithms and computer implementations.
John Wiley & Sons, Inc., New York, NY,
USA, 1990.

[51] I. Meiri. Combining qualitative and
quantitative constraints in temporal
reasoning. Artificial Inteligence, 87(1-
2):343–385, 1996.

[52] A. Mihalic and L. Pottier. Migrer des œuvres
avec électronique temps réel vers faust. In
Proc. of Journées d’informatique musical
(JIM) ’11, 2011.

[53] J. D. A. Moreno, S. Passos, and M. Toro. On-
line assembling mitochondrial DNA from de
novo transcriptome. CoRR, abs/1706.02828,
2017.

[54] P. Muñoz and A. Hurtado. Programming
robot devices with a timed concurrent

constraint programming. In In Principles and
Practice of Constraint Programming (CP)
’4. LNCS 3258, page 803. Springer, 2004.

[55] N. Muscettola, P. H. Morris, and
I. Tsamardinos. Reformulating temporal
plans for efficient execution. In Proc. of
Principles of Knowledge Representation and
Reasoning, pages 444–452, 1998.

[56] M. Nielsen, C. Palamidessi, and F. Valencia.
Temporal concurrent constraint
programming: Denotation, logic and
applications. Nordic Journal of Computing,
1(9):145–188, 2002.

[57] M. Nyman. Experimental Music: Cage and
Beyond, chapter 1, pages 1–50. Cambridge
University Press, London, UK, second
edition, 1999.

[58] C. Olarte and C. Rueda. A Declarative
Language for Dynamic Multimedia
Interaction Systems. In Proc. of Mathematics
and Computation in Music, volume 38,
Berlin, Germany, july 2009. Springer.

[59] C. Olarte, C. Rueda, G. Sarria, M. Toro, and
F. Valencia. Concurrent Constraints Models
of Music Interaction. In G. Assayag and
C. Truchet, editors, Constraint Programming
in Music, chapter 6, pages 133–153. Wiley,
Hoboken, NJ, USA., 2011.

[60] C. Olarte, C. Rueda, and F. Valencia.
Concurrent constraint programming: Calculi,
languages and emerging applications. In
Newsletter of the ALP, volume 21, 2008.

[61] F. Pachet. Playing with virtual musicians: the
continuator in practice. IEEE Multimedia,
9:77–82, 2002.

[62] C. Patiño-Forero, M. Agudelo-Toro, and
M. Toro. Planning system for deliveries in
Medellín. ArXiv e-prints, Nov. 2016.

[63] G. Percival, T. Anders, and G. Tzanetakis.
Generating targeted rhythmic exercises for
music students with constraint satisfaction
programming. In Proceedings of the 2008
International Computer Music Conference,
Belfast, UK, 2008.

[64] A. Philippou and M. Toro. Process Ordering
in a Process Calculus for Spatially-Explicit
Ecological Models. In Proceedings of
MOKMASD’13, LNCS 8368, pages 345–
361. Springer, 2013.

[65] A. Philippou, M. Toro, and M. Antonaki.
Simulation and Verification for a Process
Calculus for Spatially-Explicit Ecological
Models. Scientific Annals of Computer
Science, 23(1):119–167, 2013.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5604

[66] L. Planken, M. de Weerdt, and N. Yorke-
Smith. Incrementally solving stns by
enforcing partial path consistency. In Proc.
of International Conference on Automated
Planning and Scheduling (ICAPS) ’10, pages
129–136, 2010.

[67] V. R. Pratt. The duality of time and
information. In Proc. of CONCUR’92, LNCS
630, pages 237–253. Springer-Verlag, 1992.

[68] M. Puckette. Pure data. In Proceedings of the
International Computer Music Conference.
San Francisco 1996, 1996.

[69] M. Puckette. Using pd as a score language.
In Proc. of ICMC ’02, pages 184–187, New
York, NY, USA, 2002.

[70] M. Puckette, T. Apel, and D. Zicarelli. Real-
time audio analysis tools for pd and
max/msp. In Proc. of ICMC ’98, Ann Arbor,
USA, 1998.

[71] N. Ranaivoson. Réflexion sur la mise en
place des structures logiques dans un logiciel
de partitions musicales interactives. Master’s
thesis, Université de Bordeaux, 2009.

[72] J. M. C. Restrepo, A. F. Z. Palacio, and
M. Toro. Assembling sequences of DNA
using an on-line algorithm based on debruijn
graphs. CoRR, abs/1705.05105, 2017.

[73] M. Robine. Analyse automatique du doigté
au piano. In Proceedings of the Journées
dInformatique Musicale (JIM) ’07, Lyon,
France, 2007.

[74] P. V. Roy. Multiparadigm programming in
mozart/oz. In Second International
Conference (MOZ) ’04, volume 3389 of
Lecture Notes in Computer Science,
Charleroi, Belgium, October 2004. Springer.

[75] C. Rueda, G. Assayag, and S. Dubnov. A
concurrent constraints factor oracle model
for music improvisation. In Proc. of the
XXXII Conferencia Latinoamericana de
Informática (CLEI) ’06, 2006.

[76] C. Rueda and C. Olarte. Using stochastic
ntcc to model biological systems. In CLEI
2005 (31st Latinoamerican Conference on
Informatics), 2005.

[77] C. Rueda and F. Valencia. Proving musical
properties using a temporal concurrent
constraint calculus. In Proc. of the 28th
International Computer Music Conference
(ICMC) ’02, 2002.

[78] C. Rueda and F. Valencia. On validity in
modelization of musical problems by ccp.
Soft Computing, 8(9):641–648, 2004.

[79] C. Rueda and F. Valencia. A temporal
concurrent constraint calculus as an audio
processing framework. In SMC ’05, 2005.

[80] C. Rueda and F. D. Valencia. Formalizing
timed musical processes with a temporal
concurrent constraint programming calculus.
In Proc. of Musical Constraints Workshop in
Theory and Practice of Constraint
Programming (CP) ’01, 2001.

[81] B. Russel. Sur la notion de cause. Revue de
Philosophie: Causalité, (89):20–30, April
2006.

[82] D. Sangiorgi. Introduction to Bisimulation
and Coinduction. Cambridge University
Press, 2012.

[83] V. A. Saraswat. Concurrent Constraint
Programming. MIT Press, Cambridge, MA,
1992.

[84] V. A. Saraswat, R. Jagadeesan, and V. Gupta.
Foundations of timed concurrent constraint
programming. In Proceedings of the Ninth
Annual IEEE Symposium on Logic in
Computer Science, pages 71–80. IEEE
Computer Press, 1994.

[85] G. Sarria. Formal Models of Timed Musical
Processes. PhD thesis, Universidad del Valle,
Colombia, 2008.

[86] S. R. Schwer. Quel modèle mathématique
pour la temporalité? Technical report,
Laboratoire d’Informatique de l’Université
Paris-Nord, 2005.

[87] M. Sipser. Introduction to the theory of
computation, chapter 7. PWS Publishing
Company, United States of America, 1996.

[88] R. Stephens. A survey of stream processing.
Acta Informatica, 34:491–541, 1997.
10.1007/s002360050095.

[89] S. H. T. Sjoland, Erik Klintskog. An
interpreter for timed concurrent constraints
in mozart. Technical report, Swedish
Institute of Computer Science, 2001.

[90] G. Tack. Constraint Propagation - Models,
Techniques, Implementation. PhD thesis,
Saarland University, Germany, 2009.

[91] S. Tini. On the expressiveness of timed
concurrent constraint programming. In
Electronics Notes in Theoretical Computer
Science, 1999.

[92] M. Toro. Exploring the possibilities and
limitations of concurrent programming for
multimedia interaction and graphical
representations to solve musical csp’s.
Technical Report 2008-3, Ircam,
Paris.(FRANCE), 2008.

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5605

[93] M. Toro. Probabilistic Extension to the
Factor Oracle Model for Music
Improvisation. Master’s thesis, Pontificia
Universidad Javeriana Cali, Colombia, 2009.

[94] M. Toro. Towards a correct and efficient
implementation of simulation and
verification tools for probabilistic ntcc.
Technical report, Pontificia Universidad
Javeriana, May 2009.

[95] M. Toro. Structured interactive musical
scores. In M. V. Hermenegildo and
T. Schaub, editors, Technical
Communications of the 26th International
Conference on Logic Programming, ICLP
2010, July 16-19, 2010, Edinburgh,
Scotland, UK, volume 7 of LIPIcs, pages
300–302. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2010.

[96] M. Toro. Structured musical interactive
scores (short). In Proc. of the doctoral
consortium in ICLP ’10, Edinburgh,
Scotland, UK, 2010.

[97] M. Toro. Structured Interactive Scores: From
a simple structural description of a
multimedia scenario to a real-time capable
implementation with formal semantics . PhD
thesis, Univeristé de Bordeaux 1, France,
2012.

[98] M. Toro. Structured interactive music scores.
CoRR, abs/1508.05559, 2015.

[99] M. Toro. Probabilistic Extension to the
Concurrent Constraint Factor Oracle Model
for Music Improvisation. ArXiv e-prints,
Feb. 2016.

[100] M. Toro, C. Agón, G. Assayag, and
C. Rueda. Ntccrt: A concurrent constraint
framework for real-time interaction. In Proc.
of ICMC ’09, Montreal, Canada, 2009.

[101] M. Toro and M. Desainte-Catherine.
Concurrent constraint conditional branching
interactive scores. In Proc. of SMC ’10,
Barcelona, Spain, 2010.

[102] M. Toro, M. Desainte-Catherine, and
P. Baltazar. A model for interactive scores
with temporal constraints and conditional
branching. In Proc. of Journées
d’Informatique Musical (JIM) ’10, May
2010.

[103] M. Toro, M. Desainte-Catherine, and
J. Castet. An extension of interactive scores
for multimedia scenarios with temporal
relations for micro and macro controls. In
Proc. of Sound and Music Computing (SMC)
’12, Copenhagen, Denmark, July 2012.

[104] M. TORO, M. DESAINTE-CATHERINE,
and J. CASTET. An extension of interactive
scores for multimedia scenarios with
temporal relations for micro and macro
controls. European Journal of Scientific
Research, 137(4):396–409, 2016.

[105] M. Toro, M. Desainte-Catherine, and
C. Rueda. Formal semantics for interactive
music scores: A framework to design,
specify properties and execute interactive
scenarios. Journal of Mathematics and
Music, To be published., 2012.

[106] M. Toro, M. Desainte-Catherine, and
C. Rueda. Formal semantics for interactive
music scores: a framework to design, specify
properties and execute interactive scenarios.
Journal of Mathematics and Music, 8(1):93–
112, 2014.

[107] M. Toro, A. Philippou, S. Arboleda,
M. Puerta, and C. M. Vélez S. Mean-field
semantics for a process calculus for
spatially-explicit ecological models. In C. A.
Muñoz and J. A. Pérez, editors, Proceedings
of the Eleventh International Workshop on
Developments in Computational Models,
Cali, Colombia, October 28, 2015, volume
204 of Electronic Proceedings in Theoretical
Computer Science, pages 79–94. Open
Publishing Association, 2016.

[108] M. Toro, A. Philippou, S. Arboleda,
C. Vélez, and M. Puerta. Mean-field
semantics for a Process Calculus for
Spatially-Explicit Ecological Models.
Technical report, Department of Informatics
and Systems, Universidad Eafit, 2015.
Available at http://blogs.eafit.edu.co/giditic-
software/2015/10/01/mean-field/

[109] M. Toro, A. Philippou, C. Kassara, and
S. Sfenthourakis. Synchronous parallel
composition in a process calculus for
ecological models. In G. Ciobanu and
D. Méry, editors, Proceedings of the 11th
International Colloquium on Theoretical
Aspects of Computing - ICTAC 2014,
Bucharest, Romania, September 17-19,
volume 8687 of Lecture Notes in Computer
Science, pages 424–441. Springer, 2014.

[110] M. TORO, C. RUEDA, C. AGÓN, and
G. ASSAYAG. Ntccrt: A concurrent
constraint framework for soft real-time
music interaction. Journal of Theoretical &
Applied Information Technology, 82(1),
2015.

[111] M. TORO, C. RUEDA, C. AGÓN, and
G. ASSAYAG. Gelisp: A framework to

Journal of Theoretical and Applied Information Technology
31st August 2018. Vol.96. No 16

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5606

represent musical constraint satisfaction
problems and search strategies. Journal of
Theoretical & Applied Information
Technology, 86(2), 2016.

[112] C. Truchet, G. Assayag, and P. Codognet.
Omclouds, a heuristic solver for musical
constraints. In Proc. of the Metaheuristics
International Conference (MIC) ’03, Kyoto,
Japan, 2003.

[113] P. Van Roy and S. Haridi. Concepts,
Techniques, and Models of Computer
Programming. MIT Press, Mar. 2004.

[114] M. Vardi. Branching vs. linear time: Final
showdown. In Proceedings of the 2001
Conference on Tools and Algorithms for the
Construction and Analysis of Systems,
TACAS 2001 (LNCS Volume 2031, pages 1–
22. Springer-Verlag, 2001.

[115] L. Vickery. Non-linear structures for real-
time interactive musical works. In
Proceedings of the Australasian Computer
Music Conference (ACMC) ’03, 2003.

[116] L. Vickery. Interactive control of higher
order musical structures. In Proc. of ACMC
’04, Victoria University, New Zealand, July
2004. ACMA.

[117] L. Vickery. The possibilities of novel format
structures through computer controlled live
performance. In Proc. of ACMC ’11, 2011.

[118] L. Xu and B. Y. Choueiry. A new efficient
algorithm for solving the simple temporal
problem. In International Syposium on
Temporal Representation and Reasoning,
page 212, Los Alamitos, CA, USA, 2003.
IEEE Computer Society.

[119] T. Yamauchi and T. Iwatake. An interactive
installation through spatial sensing. In Proc.
of the 4th International Mobile Music
Workshop, May 2007.

