© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

SYSTEMATIC LITERATURE REVIEW FOR MALWARE VISUALIZATION TECHNIQUES

¹PRITHEEGA MAGALINGAM, ¹GANTHAN NARAYANA SAMY, ²WAFA MOHD KHAIRUDIN, ²MOHD FIRHAM EFENDY MD SENAN, ²ASWAMI FADILLAH BIN MOHD ARIFFIN, ²ZAHRI HJ YUNOS

¹Advanced Informatics School, Universiti Teknologi Malaysia (UTM AIS), Malaysia

²Cyber Security Malaysia (CSM), Malaysia

E-mail: ¹mpritheega.kl@utm.my, ¹ganthan.kl@utm.my, ²wafa@cybersecurity.my, ²firham@cybersecurity.my, ²aswami@cybersecurity.my, ²zahri@cybersecurity.my

ABSTRACT

Analyzing the activities or the behaviors of malicious scripts highly depends on extracted features. It is also significant to know which features are more effective for certain visualization types. Similarly, selecting an appropriate visualization technique plays a key role for analytical descriptive, diagnostic, predictive and prescriptive. Thus, the visualization technique should provide understandable information about the malicious code activities. This paper followed systematic literature review method in order to review the extracted features that are used to identify the malware, different types of visualization techniques and guidelines to select the right visualization techniques. An advanced search has been performed in most relevant digital libraries to obtain potentially relevant articles. The results demonstrate significant resources and types of features that are important to analyze malware activities and common visualization techniques that are currently used and methods to choose the right visualization technique in order to analyze the security events effectively.

Keywords: Visualization Technique, Malware, Features, Analytics, Security Event

1. INTRODUCTION

Malware, or short for "malicious software," refers to a type of computer program designed to infect a legitimate user's computer and inflict harm on it in multiple ways [1]. Malware visualization is a field that focuses on detecting, classifying and representing malware features in a form of visual representation that can be used to convey more information about a particular malware [2]. Recently, visualization techniques are applied to detect and visualize the behavior of the malware [3]. Analyzing malware activities or the behaviors of malicious scripts are highly depended on the extracted features. These features play a significant role for visualization analytical technique [4].

Visualization of data analysis helps to perceive patterns, trends, structures, and exceptions in the

most complex data. Although visualization techniques are recently gaining wide attention, there are also a few issues with this technique that need to be considered. Firstly, the quality of data influences the output of the visualization [5]. Irrelevant and abnormal data have to be filtered out and only meaningful information is included in the display. Secondly is the size of the data. Too many information visualized in a single graph can result in poor image quality and users may not understand the interpretation of the graph [5]. Therefore, data should be aggregated into individual events so that it is visually readable and understandable.

Visualizing features to gain intuition about malware activity remains a challenge in this field [5], [6], [7]. Malware data analysis requires more than one type of measurement and observation [8]. Further, based on the experiments done in recent <u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

<u>www.jatit.org</u>

studies, malware data are becoming large in quantity [9], unstructured and more dynamic [10] that makes it difficult to differentiate the valuable and irrelevant data for malware analysis.

The scope of this paper focused on identifying resources for feature extraction, reviewing the most appropriate visualization techniques and selecting the best visualization technique in order to study the behavior of malware. Finally, based on the reviewed articles an effective malware visualization technique that can perform a visualization for descriptive, prescriptive, diagnostic and predictive analytic is developed. However, this paper does not cover one or multiple features with several visualization tools to visualize the results.

2. SYSTEMATIC LITERATURE REVIEW (SLR) METHODOLOGY

We investigated the resources that can be used to identify malware activities and explored different types of visualization techniques for malware analysis. There are four phases involved in this SLR method as shown in Figure 1 below.

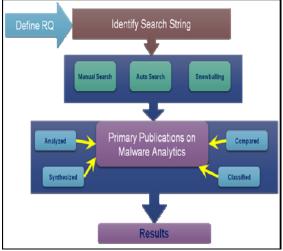


Figure 1: Systematic Literature Review Methodology

At the first phase, appropriate digital resource are identified and research questions are formulated using recent criteria called Population, Intervention, Comparison, Outcome, and Context (PICOC) used by Kitchenham and Charters [11]. Next at the second phase, primary studies are searched from various databases and the selected articles are evaluated based on its relevance and quality. The results are then synthesized, analyzed and reported in the third phase. At the final phase, the results are discussed and interpreted. The studied articles were selected based on the following two metrics namely relevance to data visualization technique and tools and contribution of system and visual techniques. The first metric focuses specifically on visualization systems, visualizations of code security, binary files, or visual cryptanalysis. While for the second metric, the authors studied several visualization tools and function present the related work to achieve the objectives of this work.

2.1 Formulating Research Questions

Research questions (RQ) are formulated in order to review about malware visualization techniques:

- 1) Which resources are significant for extracting useful features for malware visualization analysis?
- 2) What are the visualization techniques that have been in use recently for visualizing security events?
- 3) How to select the right visualization technique?

The first RQ is aimed to show the source of features to feed the visualization system. Next, RQ2 is aimed to review types of visualization techniques used in recent researches. The final RQ is aimed to identify the proper method to select the right visualization technique.

3. AN OVERVIEW OF RECENT MALWARE DETECTION TECHNIQUES

Researchers are focusing more in the field of malware detection and analysis due to the increasing rate of malware attacks on computers and networks. As a result, different types of malware detection techniques have been proposed and this is illustrated in Figure 2 [4]. Among the detection techniques, visualization has become the most popular and highly used detection technique. Visualization techniques are recently used in many security applications including viewing static data [12], monitoring network traffic [13], visualization of software security [14], visualization of cybersecurity data [15], managing networks [16] and visualizing malware behaviors [17], [18], [19].

31st August 2018. Vol.96. No 16 © 2005 – ongoing JATIT & LLS

www.jatit.org

E-ISSN: 1817-3195

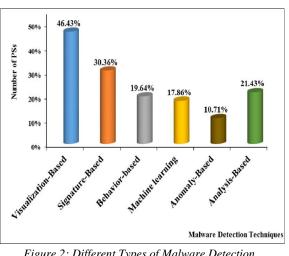


Figure 2: Different Types of Malware Detection Techniques

However, visualizing features to gain intuition about malware remains a challenge in this field [6] [7]. The common visualization techniques have been designed for specific use-cases and they are not supportive for security data analytics.

Since malware data are multivariate [8], choosing a suitable visualization technique will be hard enough without providing an in-depth understanding about the significant malware attack features. We used three research questions as stated earlier in the previous section to further discuss about the malware resources and features, existing visualization techniques and guide to choose the correct visualization method for malware security data analytics.

3.1 RQ1: Which Resources are Significant for Extracting Useful Features for Malware Visualization Analysis?

Visualization analysis is performed based on features extracted from various resources. These features contain information or symptoms caused by malware. Table 1 shows 10 common symptoms of malware infection. Thus, it is important to identify from which resources the features can be extracted in order to produce an effective visualization technique.

TABLE 1: Common Symptoms of Malware Infection

No.	Malware sign	Symptoms	Pre-actions
1	Slowdown	Slow down your	Lack of RAM memory

org		-	E-13514. 1817-3193
		operating system, Internet speed or the speed of your applications	Fragmented system Lack of space on your hard drive or maybe a hardware issue affecting your drive
2	Pop-Ups	Unexpected pop-ups appear on the system	Don't click any suspicious pop- up windows Don't answer unsolicited emails/messages Be careful when downloading free applications
3	Crashes	Programs or system crash constantly	Run a complete scan on the system with a good antivirus product
4	Suspicious Hard Drive Activity	Disk continues to exhibit excessive activity even when you don't use it and there is no program or download running at that moment	Always run security checks on hard drive
5	Running out of hard drive space	Malware activity fills up all the available space in the hard drive and cause it to crash	Check if your physical storage space has been increasing lately or if some of your files disappeared or changed their names
6	Unusually high network activity	Not connected to the Internet through browser, and there is no program that may connect to online servers to download or upload any data, but high network activity can still be observed.	Is there any update (OS, APP, etc) at that moment? Is there any program or application that's downloading or uploading any data? Is there a large download that you started and forgot about, which may still be running in

Journal of Theoretical and Applied Information Technology 31st August 2018. Vol.96. No 16

© 2005 - ongoing JATIT & LLS

ISSN: 1992-8645

New Browser

New Toolbars

Homepage,

And/Or

unwanted

websites

7

8

9

10

Happens

when visit a

website and

click a link or

accidentally

www.jatit.org

the background?

Run a complete

scan with your

security solution

soon as

as

5341

There are several resources that can be considered for malware visualization analysis. Hence, these resources play significant role to analyze specific information about malware based on the features extracted from the resources. Examples of features extracted from the resources are shown in Table 2.

accessed	a pop-up	as soon as possible	extracted f	rom the resources are sho	wn in Table 2.
without your input	window		TAE	BLE 2: Example of Extracted	Features
	Warning signs		Resource	Features	Authors
Unusual messages or	Programs opening and closing automatically Windows operating system shutting down or restarted	Back up all the important files	Network traffic	Packets features: Tcpdump: Pcap: Timestamp Ethernet: SRC MAC, DST MAC IP: SRC IP, DST IP, type TCP: SRC port, DST port, Flag ICMP: type, code UDP: SRC port, DST port	Goldring [20], Pearlman and Rheingans [21], Mansman et al.[22]
programs that start automatically	without reason Strange windows in the booting process or if windows informs you that you've lost access to some of your drives	and run antivirus check	CPU	CPU Sessions features: process ID Running file name: netscape, outlook, winword, ieplore, explorer, msaccess, powerpnt, excel, acrord32, winzip32 cpuUser, cpuIdle, cpuSystem, cpuOther iostat:Reports input/output statistics for CPUs and disks.	Goldring[20], Dini et al. [23], Amos et al. [24], Ham and Choi [25], Ucci et al. [26]
	Antivirus solution doesn't seem	Contact the antivirus		lsof: Outputs a list of all open file descriptors and the processes using them.	D:: (1 [22]
Your security solution is disabled	to work anymore or if the update module	manufacturer and notify them the problem.	Memory	Free memory Used memory vmstat: Reports memory statistics	Dini et al. [23], Amos et al.[24] Ucci et al. [26]
	seems to be disabled Friends telling you	Verify whether	Bluetooth and Wi-Fi status	WiFi on WiFi off Consumption	Dini et al. [23], Ham and Choi [25]
Friends informing that	that they received suspicious emails from you or instant	those emails or messages were sent from one of your accounts.	API	Sequence events Shows a list of running processes along with process statistics.	Ucci et al. [26]
they are getting strange messages from you	messages from your social media account, which often	Make sure you logged out from all your accounts Set strong	Strings	Author signatures File names Code fragments System resource information	Ham and Choi [25], Ucci et al. [26]
	include attachments or links	passwords for your accounts	File system accesses	Number of created/modified/deleted files Size of created files Number of hidden files	Amos et al. [24], Ucci et al. [26]

E-ISSN: 1817-3195

31st August 2018. Vol.96. No 16 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

<u>www.jatit.org</u>

E-ISSN: 1817-3195

Registry	Number of created/modified/deleted registry keys	Dini et al. [23], Ucci et al. [26]
----------	--	---------------------------------------

Based on our reviews on the literatures above, there is a need to map the features to display the realtime cybersecurity status using interactive tools for example the charts, tables or graphs. Appropriate visualization technique is important to show the network progress and problems in real-time.

According to [10] features are classified into four main categories, namely, static, dynamic, hybrid and applications' metadata that can be used for the visualization. However, the current literatures only mention a specific category, for instance, static features to visualize security incidents. Therefore, the limitations of this paper are not discussing the combination of four categories together rather discussing them in a separate manner.

3.2 RQ2: What Are The Visualization Techniques That Have Been Recently Used for Visualizing Security Events?

We reviewed articles and books and the results showed that several visualization techniques such as line, pie, column and histogram graphs have been widely used for visualizing security events. [5] stated in their recent article that one of the main advantages of using visualization techniques is that it provides good decision making. There are several visualization techniques have been used for visualizing security events. Table 3 describes different types of visualization techniques used for security purposes.

Visualization Techniques	Usefulness	Authors
Histogram and bar chart	To show the distribution of data. To compare values or before and after specific events. To show the comparison across the incident category.	Marty [27], Lindholm [28], Zhou [29], Pampalk et al. [30]
Link graph	Suitable for analysis using snapshots over time. To visualize data hierarchical.	Kanazaki et al. [31], Cota et al. [5]
Treemap	To represent a	Seo et al. [32],

TABLE 3: Types	of Visualization	Techniques
TADLE 5. Types	o_j visualization	rechniques

<u>Lorg</u>		E-1551N. 1017-51
	hierarchical data.	Marty [27],
	To visualize network	Cota et al. [5]
	traffic.	
	Can visualize many	
	types of data.	
	Suitable for	
	comparison.	
	Useful to discover	
Scatter plots	outliers and	Kanazaki et
Seatter piots	anomalies.	al.[31]
	Suitable for	
	continuous or	
	ordinal data type.	
	To make a	
	prediction.	Muelder et al.
Trend lines	Suitable for small	[33],
	continuous and	Cota et al. [5]
	discrete data.	
		Lindholm et
	To visualize	al. [28],
	distribution of	Kotera et al.
D . 1	quantities.	[34],
Pie chart	Suitable for	Stauffer et al.
	categorical variables	[35]
	data type.	Muhammad et
		al. [36]
	Used to display	Suclass et al
Mana	spatial or physical	Spakov et al.
Maps	distribution in two-	[37],
	dimensional space.	Marty [27]
	Suitable for ordinal	
	variables.	0.1 111
	Suitable for small	Schwabish
Line chart	continuous and	[38],
	discrete data.	Jamil et al.
	Commonly used in	[39]
	business data mining	
	Suitable for time-	
	series visualization	
	to analyze and	
	identify three	
	scenarios: (1) Gaps	Marty [27],
Timetable	in activities, (2)	Cota et al. $[5]$
	Periodicity of	
	activities and (3)	
	Temporal	
	relationships	

3.3 RQ3: How to Select the Right Visualization Technique?

Selecting the right visualization technique is proved to be effective when the users are able to understand clearly the output of the visualization. Based on the reviewed articles, there are two methods that can be used to choose the suitable visualization technique for malware analysis. These

Journal of Theoretical and Applied Information Technology 31st August 2018. Vol.96. No 16

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

www.jatit.org

E-ISSN: 1817-3195

two methods are further discussed in the following subsections.

3.3.1 Flowchart

ISSN: 1992-8645

This method shows a step by step process to select the right graph based on the dimension of data, data type and objective of the visualization. The flowchart method is illustrated in Figure 3.

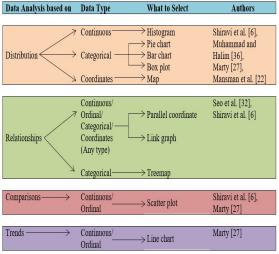


Figure 3: Flowchart That Simplifies Choosing The Right Graph For The Data To Be Visualized

Table 4 explains the maximum number of data and the appropriate data type for each visualization techniques.

Visualization	visualization Max. no. Data			
Techniques	of data	type	Usability	
Pie chart	About 10	Categoric al	Use to compare values of a dimension as proportions or percentages of the whole.	
Bar chart	About 50	Categoric al	Use to show the frequency of values of dimension or the output of an aggregation function. Each bar represents a value. The height of the bar represents the frequency count of the value.	

Line chart	About 50	Ordinal Interval	Use to show the frequency of the values of a dimension or the output of an aggregation function. The data points are connected by lines to help display patterns or trends.
Stacked bar	About 50 times 5	Categoric al	Use to show the frequency of values or the output of an aggregation function for two dimensions.
Stacked line	About 50 times 10	Ordinal interval	Use to show the frequency of values or the output of an aggregation function for multiple dimensions.
Stacked Pie	About 50 times 5	Categoric al	Use to compare values of two dimension as proportion or percentage of each whole
Histogram	About 50	Ordinal or continuo us	Use to indicate the shape of the distribution of values
Box plot	About 10	Continuo us or categoric al	Use to show distribution of values. The categorical dimension can be used to split into multiple box plots for comparison.
Scatter plot	Thousand s for each dimensio n	Ordinal or Continuo us	Use to examine how two data dimensions related or detect clusters and trends in data
Parallel Coordinates	Thousand s for each dimensio n up to 20 dimensio ns	Any	Use for visualizing multidimensional data in a single plot

Journal of Theoretical and Applied Information Technology 31st August 2018. Vol.96. No 16

© 2005 – ongoing JATIT & LLS

www.jatit.org

E-ISSN: 1817-3195

Link Graph	Without aggregati on: 1000	Any	Use for visualizing relationships among values of one dimension and across multiple dimensions
Мар	100	Coordina tes	Use to display data relative to a geographical location
Treemap	10000	Categoric al	Use to visualize hierarchical structures in data. Enable comparison of multiple dimensions at once.

3.3.2 Graph selection matrix

ISSN: 1992-8645

Graph selection matrix is a table representation form that demonstrates the method of choosing the right visualization technique based on the type of data is analyzed. However, this method is only applicable to scatter plot, line graph, bar charts and boxes only. Some visualization techniques are suitable for all types of data analyses while some are not. Table 5 shows the suitable visualization techniques that can be used depending on the type of data analysis.

 TABLE 5: Selecting Visualization Technique using Graph

 Selection Matrix

Selection Matrix						
Data Analysis Based on	Description	Scatte r plots	Line s	Bar s	Boxe s	
Time Series	Values display how it changed through time (yearly, monthly, etc.)	>	>	>	>	
Ranking	Values are ordered by size (descending or ascending)	>	>	>	>	
Part-to- Whole	Values represent parts (proportions	×	>	>	×	

) of a whole (for example, regional				
	portions of total sales)				
Deviation	The difference between two sets of values (for example, the variance between actual and budgeted expenses)	~	>	>	×
Distributio n	Counts of values per interval from lowest to highest (for example, counts of people by age intervals of 10 years each)	~	>	>	~
Correlation	Comparison of two paired sets of values (for example, the heights and weights of several people) to determine if there is a relationship between them	~	×	~	×
Geospatial	Values are displayed on a map to show their location	~	>	×	×
Nominal Compariso n	A simple comparison of values for a set of unordered items (for example, products, or regions)	~	×	~	×

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

making

questions are listed in Table 6.

graphs

in

<u>www.jatit.org</u>

Therefore,

5345

malware activities. They are descriptive, diagnostic, predictive and prescriptive. Figure 4 shows the proposed malware analytics visualization methods.

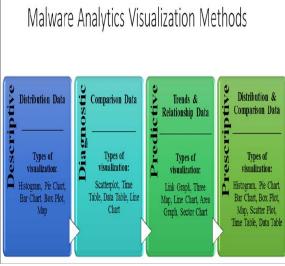


Figure 4: Proposed Malware Analytics Visualization Methods

For descriptive malware visualization, the type of data that can be used is distribution data. Distribution data is used for historical analysis of malware activities and the type of visualization is histogram, pie chart, bar chart, box plot and map. In order to display the malware activities diagnostic results, comparison data is used to identify the root cause, key patterns and unseen patterns. The type of visualization for this method is scatterplot, time table, data table and line chart.

On the other hand, predictive method is suitable for trends and relationship data. This type of data analyzes patterns in malware activities to establish trends, quantity probabilities and reduce uncertainties. The right type of visualization for this method is link graph, tree map, line chart, area chart and sector chart.

Finally, prescriptive malware visualization is used for distribution and comparison data. It specifies an optimal process to ensure measurable results and the type of visualization is histogram, pie chart, bar chart, box plot, map, scatter plot, time table and data table.

TABLE 6: Questions To Ask Before Selecting A Graph

3.3.3 Guidelines before selecting appropriate

In short, the goal of selecting the right visualization

technique is to ensure the output is delivered in a readable and understandable manner. It also helps

understanding the objectives of the data analysis and the type of data used are essential. For the first and second method, it is important to ask five major questions before choosing the graph. The five

decisions.

better

No	Question	Explanation
1	Do you want to compare values?	Charts are perfect for comparing one or many value sets, and they can easily show the low and high values in the data sets.
2	Do you want to show the composition of something?	Use this type of chart to show how individual parts make up the whole of something,
3	Do you want to understand the distribution of your data?	Distribution charts help you to understand outliers, the normal tendency, and the range of information in your values.
4	Are you interested in analyzing trends in your data set?	To know more information about how a data set performed during a specific time
5	Do you want to better understand the relationship between value sets?	Relationship charts are suited to showing how one variable relates to one or numerous different variables. You could use this to show how something positively effects, has no effect, or negatively effects another variable.

4. **DISCUSSION**

This paper has discussed the most resources extract features common to for security events, the visualizing types of visualization techniques and the methods to choose the right visualization techniques based on the type of data. Based on the methods to choose the suitable visualization techniques that have been described in this paper, we have categorized type of visualization into four categories in order to analyze E-ISSN: 1817-3195

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

According to [27] visualization of data is not always a straight forward process. Therefore, it is important to identify the motive of the selected visualization types in order to achieve the predefined objective. On the other hand, [36] stated that visualization technique is mainly guided by the problem statement, type of dataset and objective of presenting the visualization technique. Based on [36] also, it is crucial that the generated visualization or graph able to achieve the stated objective correctly otherwise the presented visualization technique will be meaningless.

The provided visualization tools [27, 40] should be able to answer the following questions in order to measure the effectiveness of the chosen tool.

- 1) When was the attack happened?
- 2) How the attack was happened? (It can be through effected malware from network, memory, disk, or CPU)
- What type of attack? (It can be viruses, Trojan or spyware)
- What is the differences or uniqueness with developed visualization tool with existing tools.

Moreover, [36] also stated that most of data driven frameworks might not achieve the preferred goals of visualization. This is because providing a single graph per data set or one visual graph is not always the best solution in order to achieve the desired output by the end user or decision maker. In addition, flexible approach when developing an effective software is always a desirable need, for instance, adopting an Artificial Neural Network (ANN) method is a new and effective method for choosing not only a single graph per dataset, but selecting the three best graph per dataset as mentioned in [36]. Basically, by providing several graphs definitely will give a huge picture while exploring the data set from multiple perspectives that will help correlate data and allow end user to mentally shift between visualizations smoothly in order to make effective decision [40].

Therefore, [27] explained the steps involved in information visualization process as shown in Table 7.

TABLE 7: Visualization Process

IADLE /	: Visualization Process
Step	Explanations
Define the problem	What is the data resource? What are the features that you are intended to visualize? What are the questions needed to be answered by the graph? In general, visualization should never be data driven, it should be problem driven.
Assess the availability of the data	What pieces of data do you need? What type of data you need to potentially answer the questions posed? What data is available? What logs files do you have that could help answer the problem(s) stated in Step 1? Is there an additional data that is needed apart from log files?
Process the information.	Need to extract and filter the information.
Visual transformation or graph decision	It is about choosing the right graph. How many data dimensions do you have? Is it one, two, three, etc. What type of data do you have? Is it (interval, continuous, or categorical)
View transformation	The graph generated in the previous step can be viewed in different ways. Thus, aggregation, rotating the graph, changing the scales, translate, zoom in, zoom out, data pointers, and clip could reveal some important points to the viewers.
Interpret and decide	Have you addressed all the stated question?

It is crucial to identify which features are more effective for certain visualization types. Moreover, selecting an appropriate visualization tool plays a key role in descriptive, diagnostic, predictive and prescriptive analytics. Therefore, the contribution of this research paper is a comprehensive review of extracting features to identify the malware, identify different types of visualization techniques and guidelines to select the right visualization techniques. Thus, this paper able to guide the related personnel as a point of reference in order to identify patterns, trends, structures of the malware and finally can visualize it accordingly. ISSN: 1992-8645

www.jatit.org

5. CONCLUSION AND FUTURE WORK

The main objective of this paper is to identify the appropriate malware visualization techniques based on systematic literature review methodology. Thus, we reviewed several articles in order to systematically answer three research questions.

The existing visualization techniques weren't able to precisely cater the need for analyzing malware dataset that are in large amount, dynamic and unstructured. We managed to identify significant resources, diverse malware features and explored methods that are suitable for selecting the right visualization technique in order to analyze the security events effectively.

Finally, we found a solution and proposed malware analytics visualization method that comprised of descriptive, diagnostic, predictive and prescriptive. The application of proposed malware analytics visualization method is currently under development stage and in future we plan to implement the application and optimize the existing method to allow for greater productivity on fewer resources with better accuracy. This study is significant and the proposed visualization method will be able to effectively perform the malware pattern analysis and predict future attacks.

Funding

This work was supported by the Cyber Security Malaysia, an agency under Ministry of Science Technology and Innovation (MOSTI) [grant number: R.K130000.7338.4B260 and R.K130000.7338.4B266].

REFERENCES:

- [1] Niemela, J., et al., *Method and apparatus for anti-virus scanning of file system.* 2018, Google Patents.
- [2] Shaid, S.Z.M. and M.A. Maarof. Malware behavior image for malware variant identification. in Biometrics and Security Technologies (ISBAST), 2014 International Symposium on. 2014. IEEE.

- [3] Han, K., J.H. Lim, and E.G. Im. Malware analysis method using visualization of binary files. in Proceedings of the 2013 Research in Adaptive and Convergent Systems. 2013. ACM.
- [4] Imran, M., M.T. Afzal, and M.A. Qadir, A comparison of feature extraction techniques for malware analysis. Turkish Journal of Electrical Engineering & Computer Sciences, 2017. 25(2): p. 1173-1183.
- [5] Cota, M., et al., Analysis of Current Visualization Techniques and Main Challenges for the Future. Journal of Information Systems Engineering & Management, 2017. 2(3): p. 19.
- [6] Shiravi, H., A. Shiravi, and A.A. Ghorbani, A survey of visualization systems for network security. IEEE Trans Vis Comput Graph, 2012. 18(8): p. 1313-29.
- [7] Zeiler, M.D. and R. Fergus. Visualizing and understanding convolutional networks. in European conference on computer vision. 2014. Springer.
- [8] Edem, E.I., et al. Analysis of Malware Behaviour: Using Data Mining Clustering Techniques to Support Forensics Investigation. in Cybercrime and Trustworthy Computing Conference (CTC), 2014 Fifth. 2014. IEEE.
- [9] Yan, W. CAS: A framework of online detecting advance malware families for cloud-based security. in Communications in China (ICCC), 2012 Ist IEEE International Conference on. 2012. IEEE.
- [10] Feizollah, A., et al., *A review on feature selection in mobile malware detection*. Digital Investigation, 2015. **13**: p. 22-37.
- [11]Kitchenham, B., Guidelines for performing Systematic Literature Reviews in Software Engineering. EBSE Technical Report. Keele University & Department of Computer Science University of Durham. 2007.
- [12] Dzemyda, G., V. Marcinkevičius, and V. Medvedev, Web application for large-scale multidimensional data visualization. Mathematical Modelling and Analysis, 2011.
 16(2): p. 273-285.
- [13] Shabtai, A., et al., Monitoring, analysis, and filtering system for purifying network traffic of known and unknown malicious content. Security and Communication Networks, 2011. 4(8): p. 947-965.
- [14] Chen, Z., et al., Malware characteristics and threats on the internet ecosystem. Journal of Systems and Software, 2012. 85(7): p. 1650-1672.

<u>31st August 2018. Vol.96. No 16</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

- [15] Czejdo, B.D., et al., Network intrusion detection and visualization using aggregations in a cyber security data warehouse. International Journal of Communications, Network and System Sciences, 2012. 5(09): p. 593.
- [16] Liao, Q., et al., Managing networks through context: Graph visualization and exploration. Computer Networks, 2010. 54(16): p. 2809-2824.
- [17] Han, K., B. Kang, and E.G. Im, *Malware analysis using visualized image matrices*. The Scientific World Journal, 2014. **2014**.
- [18] Han, K.S., et al., Malware analysis using visualized images and entropy graphs. International Journal of Information Security, 2015. 14(1): p. 1-14.
- [19] Blank, D., A. Henrich, and S. Kufer, Using Summaries to Search and Visualize Distributed Resources Addressing Spatial and Multimedia Features. Datenbank-Spektrum, 2016. 16(1): p. 67-76.
- [20] Goldring, T. Scatter (and other) plots for visualizing user profiling data and network traffic. in Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security. 2004. ACM.
- [21] Pearlman, J. and P. Rheingans, Visualizing network security events using compound glyphs from a service-oriented perspective, in VizSEC 2007. 2008, Springer. p. 131-146.
- [22] Mansman, F., L. Meier, and D.A. Keim, Visualization of host behavior for network security, in VizSEC 2007. 2008, Springer. p. 187-202.
- [23] Dini, G., et al. MADAM: a multi-level anomaly detector for android malware. in International Conference on Mathematical Methods, Models, and Architectures for Computer Network Security. 2012. Springer.
- [24] Amos, B., H. Turner, and J. White. Applying machine learning classifiers to dynamic android malware detection at scale. in Wireless communications and mobile computing conference (iwcmc), 2013 9th international. 2013. IEEE.
- [25] Ham, H.-S. and M.-J. Choi. Analysis of android malware detection performance using machine learning classifiers. in ICT Convergence (ICTC), 2013 International Conference on. 2013. IEEE.
- [26] Ucci, D., L. Aniello, and R. Baldoni, Survey on the Usage of Machine Learning Techniques for Malware Analysis. arXiv preprint arXiv:1710.08189, 2017.

- [27] Marty, R., *Applied security visualization*. 2009: Addison-Wesley Upper Saddle River.
- [28] Lindholm, S., et al. Hybrid data visualization based on depth complexity histogram analysis. in Computer Graphics Forum. 2015. Wiley Online Library.
- [29] Zhou, M., et al. Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI. in Medical Imaging 2015: Computer-Aided Diagnosis. 2015. International Society for Optics and Photonics.
- [30] Pampalk, E., A. Rauber, and D. Merkl. Using smoothed data histograms for cluster visualization in self-organizing maps. in International Conference on Artificial Neural Networks. 2002. Springer.
- [31] Kanazaki, M., et al. Wind tunnel evaluation based design of lift creating cylinder using plasma actuators. in Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. 2015. Springer.
- [32] Seo, I., H. Lee, and S.C. Han, Cylindrical coordinates security visualization for multiple domain command and control botnet detection. computers & security, 2014. 46: p. 141-153.
- [33] Muelder, C., K.-L. Ma, and T. Bartoletti. Interactive visualization for network and port scan detection. in International Workshop on Recent Advances in Intrusion Detection. 2005. Springer.
- [34] Kotera, M., et al., *KEGG and GenomeNet, new* developments, metagenomic analysis, in Encyclopedia of Metagenomics. 2015, Springer. p. 329-339.
- [35] Stauffer, W.R., et al., *Economic choices reveal* probability distortion in macaque monkeys. Journal of Neuroscience, 2015. **35**(7): p. 3146-3154.
- [36] Muhammad, T. and Z. Halim, *Employing* artificial neural networks for constructing metadata-based model to automatically select an appropriate data visualization technique. Applied Soft Computing, 2016. **49**: p. 365-384.
- [37] Špakov, O. and D. Miniotas, *Visualization of eye gaze data using heat maps*. Elektronika ir elektrotechnika, 2007. **74**(2): p. 55-58.
- [38] Schwabish, J.A., An economist's guide to visualizing data. Journal of Economic Perspectives, 2014. 28(1): p. 209-34.

© 2005 – ongoing JATIT & LLS

		10.00
ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

- [39] Jamil, S., et al. Weighted muse for frequent sub-graph pattern finding in uncertain dblp data. in Internet Technology and Applications (iTAP), 2011 International Conference on. 2011. IEEE.
- [40] Attipoe, A.E., et al., Visualization tools for network security. Electronic Imaging, 2016. 2016(1): p. 1-8.