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ABSTRACT 
 

We consider Markovian multi-server queues with two class of customers: high and low-priority ones, and 
presented a framework for a control problem of such queuing system. Most authors have used Brownian 
control problems (BCP) as formal diffusion limits and also BCPs are used for queuing network control 
problems too. In this paper, we also suppose formal diffusion limit to control a queuing system where our 
problem becomes a control problem with the dynamics of Brownian motion. In a related problem, but 
simpler, a minimum trajectory has been achieved and is provided as the solution of a stochastic differential 
equation in one dimension and then for a multi-dimensional problem follows. 

Keywords: Optimal Control, Brownian Control, Queuing System. 
 
1. INTRODUCTION  
 

 In many cases, finding the optimal control policy 
of a multi-dimensional problem like multi-class 
multi-server queuing system becomes a Browian 
control poroblems (BCPs). The BCPs have a 
reduction to a one-dimensional problem and 
therefore a cost function possesses a minimum 
trajectory. Harrison [14] used BCPs as formal 
diffusion limits to find fundamental of identifying 
and analyzing the near optimal policies for a multi-
class queuing system. Since then, many authors 
studied fluid and diffusion control problems to 
provide optimal solutions for the BCPs and also 
suboptimal policies for the queuing system (see 
[19]). 

The queuing system in this paper is motivated by 
a cloud computing system, where a in such system 
there are several virtual machines in the server pool 
that each of those virtual machines have a particular 
combination of resources to allocate, and the job 
classes refer to different type job streams like the 
work that authors considered in [20]. In the relation 
to the cloud computing, abandonment intensities are 
frequently mentioned as key measures of system 
performance.  

In this paper, we analyze queuing systems with 
multiple class of different customers. Customer 
abandonment is an important feature in a wide 
variety of situations that may be encountered in the 

service systems such as cloud computing centers. 
This paper is also related to the control of a 
Markovian servicing systems where there is a pool 
of several servers that serve to different job classes. 
Figure 1 shows the concern of this paper. In this 
work, we assume a BCP to formulate a general 
framework to control a queuing network service. 
J.M. Harrison and A. Zeevi [16] provided the 
Hamilton-Jacobi-Bellman (HJB) equation for the 
BCP to have a unique solution and also M. Armony 
and C. Maglaras [1] studied the other control 
problem with the different objective function. In 
this paper we follow these two work to build a BCP 
for a single queue and to show that a trajectory 
solution exists. Then we solve a stochastic 
differential equation to determine the solution. We 
also follow the job in the paper [2].  

Despite of that The BCPs make available a 
simplification of the control of queuing system for 
use, and in compare with the classical method with 
respect to the convenient, the BCPs may be more 
difficult to use. 

Unlike the “conventional” heavy traffic 
parameter regime considered in some researches 
such [19, 21, 22], and other recent studies, 
presenting high-quality service along with high-
resource utilization can be attained in the Halfin-
Whitt regime.  
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Whitt claimed in [23] that in order to design a 
system of large-scale services such call centers and 
allowance customer to abandon, this regime is the 
best regime to consider. 

Some researchers in some research studies has 
studied and analyzed the control policy of BCPs. 
Fleming et al [6] used the approximation of this 
regime to analyze a wireless network, while authors 
studied the load balancing in [5]. The 
approximations of performance of a congested 
communication link is studied in [7]. For systems 
that consist a large number of servers (e.g., cloud 
computing [20]), it is appropriate to consider a 
heavy traffic regime like the one that Halffin and 
Whitt [10] proposed. Some authors worked on the 
number of customers in queue and also the number 
of idle servers and could scale down these 

parameters by a factor of N  while time is not 
scaled (see [15,17,18]). 

Our contribution in this paper is the extending 
multiclass version of the diffusion model. The main 
contributions are the describing a multi-class 
generalization in order to the system modeling, and 
also we consider a finite-horizon cost scale for the 
diffusion control problem and see that the related 
Hamilton-Jacobi-Bellman (HJB) equation gives a 
smooth solution, which is the value function in the 
sense of mathematical analysis. 

 

 

Figure 1: A schematic model of the system 

 

 

Figure 2: A Considered Queuing Model 

Let consider that there are m different job 

classes that indicated by 1,2,...,i m . There is a 

pool of servers with N  identical and independent 
servers, with identical capabilities and resources. 
Servers are able to serve all jobs from any given 

class, and we consider that the service intensity i  

depends on the each class i  that is being processed. 
We consider that jobs of each class arrive to the 

system at arrival intensity of i  and each of them 

needs a single service before they depart. We also 
allow customers to abandon the system when they 
wait in the queue. We consider that abandonment 

occurs with abandonment intensity i  (per 

customer) for class i .  

We define the quantity ( )c
QL t related to the 

BCPs which is the weighted average queue length 

by ( ) ( )c i
Q i Q

i

L t L t , where ( )i
QL t are the 

number of jobs of class i in the queue at time t . 

Note that ( )c
QL t  does not meet its minimum 

trajectory, and specially, minimizing different 

functionals of ( )c
QL t  may increase to different 

optimizing policies.  

In this paper we want to present that the quantity 

corresponding to ( )c
QL t  in the BCP has a 

minimum trajectory when the service rate of all job 

classes are equal (but i j   1 ,i j m  ). We 

also proved it by reducing the dimension to one 
dimension and using its solution. To ease of using 
notation we consider only two classes where our 
model can be applied to any arbitrary number of 
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classes. In the considered model, customers are able 
to quit from queue. 

2. PROBLEM DEFINITION 

WE consider two different classes of jobs and 
model the problem. The queuing system that we 
considered is shown in Fig. 2. We consider that it is 
Poisson arrivals and exponential services. In this 
paper, we restrict ourselves to 2 classes to ease of 
computation and formulation, that is, the system 
under consideration is a multi-class queue with 

arrival rates of ; 1, 2i i   to each queues and 

abandonment rates i  from queue i . Also, we 

consider that there are finite number, N , of 
identical servers in the server pool that serve to 

classes with the service rate i regarding to class i  

of costumers. Also we consider that there is a 
dynamic manager in the service pool that schedules 
the servers to the incoming jobs. 

We define two quantities 0 1,i i
Q QL L  to show the 

queue length of the class i  and the number of jobs 
of class i  where are under service, respectively. 
With regards to the definition of these quantities, 
the number of costumer of class i  in the system 

is 0 1i i i
Q Q QL L L  . Let show the arrival process 

and the potential of service completion by ( )iA t  

and ( )iP t , respectively, of class i  until time t . 

Similarly, we define a Poisson process ( )iB t  with 

the abandon rate of i , to count abandonments of 

queue i  in the considered system. Note that the 
processes of arrival process, the potential of service 
completion and abandonments of queue of each 

classes are independent. By the definition of ij
QL  

1, 2i  , 0,1j  , they are the variables that we 

define the state of system by them. In case of the 
any non-idling policy, we do have three variables 

10 11
Q QL L , 20

QL  and 21
QL . 

In this paper, following Bell and Williams [3], 

the process 1 2( ; )    is considered where ( )i t  

is the time dedicated to the class i  until time t , 
totaled on all servers, so the control policy and the 

process  are related. Note that the processes ( )i t  

are constant or increasing processes. By this 
notations and their definition, one can represent the 
number of class- i  served jobs through a server 

until time ( )i t  by ( ( ))i i tP  for 1;2i  . Also 

this is equal to the number of jobs of class- i   that 
one unit server has completed their service until 

time t . Similarly, we consider ( )iW t  be the 

dedicated waiting time of jobs in all classes until 
time t , where it can be expressed as an integral 

until time t  of the variable 0 ,i
QL  and in addition 

( ( ))i i tB W  gives us the amount of abandonments 

jobs from class i  until time t . 

We have some restriction that our variables for 
1, 2i   and 0,1 j  and  0t   must meet the 

following constraints: 

 

 

11 21( ) ( )
.

( ) 0
Q Q

ij
Q

L t L t N

L t

 


 

 
That is, the total number of jobs which are being 
served, are at most equal to the number of servers. 
And the queue lengths are not negative.  
Another quantity that we want to work with is 

( )i
QL t  where it is the total number of costumers of 

class i  in the system at time t  which is 

( ) ( )i ij
Q Q

j

L t L t . The other quantity that we 

used it to show the sum of idling time of all servers 
until time t , is ( )L t . The other set of constraints 

with derivative of  , W  and L  is 
 

 

1

0

1

,

,

.

i
i Q

i
i Q

i
Q

i

L

L

L N L

W

 



 





 

Regarding to the considered quantities, for 1, 2i   

we also have following equations: 
 

0

1 2

( ) ( ) (0) ( ( ))

( ( )),

( ) ( ) ( ), (1)

( ) ( ( ) ( )).

i i
Q i Q i i

i i

t i
i iQ

L t A t L B W t

P t

t L s ds t

L t t

W

Nt t





 

  



 

  

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By the fact that i , iW , L  for 1, 2i   are non-

decreasing, our constraints are completely 
described. Since our system has N  server we 
consider a sequential system by the number of 
servers where the number of servers in the N th 

system is N . As a result, at each step, the 

parameters of the sequential systems depend on N , 
where they behave as follow: 
 

, 

 , 

.

N
i i

N
i i

N
i i

N 

 

 







 

 
Here to ease of computing we consider the case that 

,N
i iN   N

i i   and N
i i  , where by 

this simplification, one can represent the heavy 

traffic assumption 21 )( 1/N N N    as 

N   by the form of 
 

 1 1 1. (2)    

 

Where /i i i   and /i i
N
i

N N    

Now we define the scaled processes by the 
following equations: 
 

 

( ) ( ) / ,

( ) ( ) / ,

( ) ( ) / ,

ˆ ( ) ( ) / ,

ˆ ( ) ( ( ) ) / ,

( ) ( ( ) ) / ,

( ) ( ( ) ) / ,

ˆ ( ) ( ( ) (0)

ˆ

ˆ

ˆ

) / .

N N
i

N N
i

N N
i i

N N

N N
i i i

N N
i i i

N N
i i i

i N iN iN
Q Q Q

t t N

t W t N

t W t N

L t L t N

A t A t N t N

t P Nt N t N

t B Nt N t N

L t L t L N

W

W

P

B

 















 

 

 

 

 

 

Also by considering 

 
  *

1 2( ) , ,t t t    

 

and having the processes for 1, 2i   

 

 *ˆ ( ) ( ( ) ( )), N N
i i iY t N t t    

ˆˆ ˆ ˆ( ) ( ( )) ( ( )), N N N N N N
i i i i i iX t A B W t P t    

 
and by assumption the initial condition 
ˆ (0) 0N

iX  , to have homogenized quantities, we 

have the following equations: 
 

0

1 2

ˆ ˆ ˆ( ) ( ) ( )

ˆ

ˆ

ˆ

ˆ

ˆ( ) ( ) ( ),

ˆ ˆ( ) ( ).

iN N N N
Q i i i i i

tN iN N
i Q i

N N N

L t X t Y t

t L s ds Y t

Y

W

W

Y tL t

   

 

 

  

The assumption that *N  is valid when we 

consider  N  is given by * , while the control 
problem makes a connection to the family of 
queuing network control problems. Now, the 

processes ˆ N
iA , ˆ N N

i iP  and, respectively, 

ˆ N N
i iB W  converge to the mean 0 Brownian 

motions (BM) with standard derivations 

i , i  and, respectively, 0. 

From this point we are allowed to consider the BCP 
for the considered problem. Since we are interested 
with trajectory solutions, we consider the arbitrary 

costs for our system. Let X  be independent BM 

with variances 2 ,i  for  1, 2i  . By using a 

control process 1 2 1 2( , , , )Y Y W W , we need to 

minimize one of following objectives: 
 

 1 1 2
1 2lim ( ( ) ( )),Q Q

t
t L t L t 


  

 
Or 
 

 1 2
1 20

( ( ) ( )) ,t
Q QE e L t L t dt  

    

 

such that the processes ( , , )QL W L  satisfy in the 

following equations: 
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0

1 2

( ) ( ) ( ) ( ),

( ) ( ) ( ), (3)

( ) ( ) ( ),

i
Q i i i i i

i
i Q i

L t X t t Y t

W t L s ds Y t

L t Y t

W

Y t

 


  

 

 


 

where iW  and L  are non-decreasing. 

 
3. CONTROL PROBLEM IN ONE-

DIMENSION 

 
Many other have studied One-dimensional control 
problem (see [12,13]). Among them Harrison, in 
[7], with regards to the classical heavy traffic 
scaling, defined a one dimensional BCP, and 
showed that it has a unique extremum trajectory. In 
the other cases the extremum is computed as the 
solution of the one-dimensional Skorohod equation. 
In this section, we use optimal control in order to 
have a unique minimizer trajectory and so its 
solution that can be found as the solution of some 
differential equation. The such equation that is used 
to find the minimum is 
 

 
( ) ( ) ( ) ,

(0) (0),

Q Q Q

Q

dL t dX t L t dt L dt

L X

    


 

 
where the notation that we used in this equation 

mean as max(0, )    and 

max(0, )    , and where X  is the relate to 

a BM. By using control variables Y  and W , the 
one-dimensional BCP is about to find the  optimal  

cost 1 2
1 2Q QL L   such that 

 
 

0

( ) ( ) ( ) ( ),

( ) ( ) ( ), (4)

(0) (0)  0,

Q

t

Q

L t X t Y t W t

L s ds W t Y t

Y W

   

 

 


 

 
and  Y  and W are non-decreasing. 
 
 
Theorem 1. Consider Eq. 4 and suppose   . 

Then there exists only one solution for Eq. 4 such 

* * * *( , , , )QL Y W L , where *Y  and *W  are 

minimal  if for any possible solution 

( , , , )QL Y W L  for Eq. 4 one has 

 
 

*              ( ) ( ),           0             (5)W t W t t 
 

 
and 

 

 
*              ( ) ( ),           0             (6)Y t Y t t 

 

 
Also, the parameter *

QL  is computed by the q  that 

satisfies in  
 

0 0
( ) ( ) ( ) ( ) ,

t t
q t X t q s ds q s ds       

 

And control variavles *W  and *Y  are computed as 
 

 

* *

0

* *

0

( ) ( ( )) ,

( ) ( ( )) .

t

Q

t

Q

t L s ds

Y t L s d

W

s





 

 




 

 
Remark. There are some result from this theorem 
that followed: 

 If    then we have multiple solutions. 

 
 In order to the relation between   and  , 

extremumality of *
QL  is valid, that is, 

if  ,  

 
*( ) ( ),         0 (8)Q QL t L t t 

 
and if    

 
*( ) ( ),         0 (9)Q QL t L t t 

 
holds. This note comes out from the proof. 
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 In the case 0  , Halfin and Whitt [6] 

obtained Eq. (8) as the weak limit of a 
queuing system. Also authors in  [15] used  
the obtained result of [6] to study the 
abandonment. 

  
 With respect of the optimal policy, Eqs. 

(8) and (9) express that the summed  
waiting time and the summed idle time are 
minimum amount. These equations also 

show that if 0QL   then 0dY   and if 

0QL   then 0dW   in the same 

condition. This, in fact, together with Eq. 4 

characterizes the solution * * *( , , )QL Y W . 

 

Proof. The functions * * *, , QL Y W  and *L  are well 

defined because x  is Lipschitz in X ,  and also 
(8) has a unique solution. With regards to the Eq. 4 
and Eq. 7 and as a result of them, one can see the 

connections between parameters * *, Y W  and *
QL  

in the Eq. 9 and Eq. 10. We begin the proof with 
considering the case   . We must prove that: 

 
 

*            ( ) ( ),        0            (10)Q QL t L t t   

 

If ( , , , )QL Y W L satisfies in Eq. 4 then Eq. 5 and 

Eq. 7 are valid. We declare that the following ( )t  

is non-decreasing 
 

0
( ) ( ) ( )  . (11)

t

Qt W t L s ds   
 

With respect to the Eq. 4 one can see that both 
parameters ( )W t  and ( )Y t  are non-decreasing.  

Where 
0

( ) ( ) ( )
t

QY t W t L s ds   . 

Therefore for 0 s t   one can easily find: 

0

0 0

0 0

( ) ( ) ( )

1 1

1 1

0, (12)

Q Q

Q Q

t

Q

t t

L Ls s

t t

L Ls s

W t W s L d

d d

dY dW

 

 



 

 

 

 

 




 
 

 

Where the equality holds since integrands are 
greater than or equal zero and also because of the 
fact of monotonicity of the integrators. Also from 
the fact that s t  are arbitrary, Eq. 12 holds. With 
regards to the second equality of Eq. 4, one can see 
 

 
. .

0 0
,Q QW L ds Y L ds        

By the first equality of Eq. 4, one can see 
 

 
0

0

( ) ( ) ( )

( ) ( ) ( ).

t

Q Q

t

Q

L t X t L s ds

L s ds t



   





 

  




 

 
If    is increasing or constant with initial 

condition (0) (0)   and also if ( )Q QL L  

represents the solution associated with    

(respectively,  ) then Q QL L  (see [4]). Now, 

we can infer that the solution of this last equation is 
monotone in  . 
Next, with regards to *

Q QL L , we will have that 

*( )Q QL L  . And therefore from the Eq. 8, we 

have that 
 

 
. . * *

0 0
( )Q QW L ds L ds W      

 
Which shows Eq. 5 is valid. Now, with respect to 
the fist equation of Eq. 4 and also from Eq. 5 and 
Eq. 10 we have Eq. 7 respectively where it 
completes the proof when   . 

Now if   , then by substituting QL instead of 

QL   and also X  instead of X , swapping Y  

with W  and   with  , therefore the result 

follows. The expression of theorem is still valid for 
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this transformed problem too, and therefore 
establishes the truth of the original problem that Eq. 
5 and Eq. 6 are valid. □ 
 
Now, in the following we present a preposition to 
perform the optimal solution of the control 
problem.  
 
Proposition. If     then the given solution 

* * *( , , )QL Y W  of the theorem 1 solves Eq. 4 and 

also  
.

00

.

00

1 0,

1 0. (14)

Q

Q

L

L

dY

dW












 

 

Proof. From theorem 1 we got that * * *( , , )QL Y W  

is solution of Eq. 4 and Eq.14. Now let consider 

( , , )QL Y W  satisfy in the both Eq. 4 and Eq. 14. 

Then from Eq. 12, for all t s  we have 
 

 0( ) ( ) 1 ,

( ) ( ) 0.

Q

t

Ls
t s dY

t s

 

 
  

 
  

 

Therefore, we can see that 0  and also QL  

must solve Eq. 7. Since we saw that this equation 

has only one solution, *
Q QL L . If   then 

parametersU  and Y  can be presented by the first 
two equation of Eq. 4 as 

 

 
 
 

.1

0

.1

0

( ) ,

( ) .

Q Q

Q Q

W L X L

Y L X L

  

  





   

   




 

4. CHARACTERIZATION OF 
OPTIMALITY 

 

In this section we consider the standard practice for 
optimal control and continue with the 
characterization of the criteria of control problem 
by using the related Hamilton-Jacobbi-Bellman 
(HJB) equation. The problem becomes a partial 
differential equation (PDE) where its solution is the 
Bellman function V .  By using the presented state 

and control processes, the optimization problem can 
be wrote as 

  0
( , ) ( ( ), ( ( )))q Q QJ x E c L t L t dt 


   

Note that (., )J   is always well defined functional 

on the extended positive real number. 

Then we have to find the solution of the diffusion 
control problem by looking for an acceptable 
policy, by using the following value function which 
is related to the problem to minimize the functional, 

 ( ) inf (., )V q J





  

If the value function is smooth enough, then it will 
conduct to the determination of the optimal control 
policy. Here we present the HJB equation of by (cf. 
Fleming and Soner 1993,) 

 
2

2
2

1

( )1

2

( , ( )) ( ) 0 (15)

m
i

i
i i

V x

x

H x V x V x









   


 

Here, : m mH  � � �  is the Hamiltonian 
function: 
 

 
( , )

inf{ ( , ). ( , ) | ( )} (16)

H x

b x u c x u u x


  U

 

where ( , )b x u  is the drift function. 

 
Theorem 1. The HJB Equation (15) has a unique 
solution and that solution is the value function 
defined by  
 

( ) inf ( , )V x J x





  

 

Proof. We organized the proof in several steps. the 
Because the proof is somewhat lengthy and 
proceeds in several steps, we first sketch briefly the 
main ingredients. We begin by applying a standard 
truncation idea where it helps us to study of PDEs 
with a Dirichlet boundary condition. We then take a 
sequence of Dirichlet problems such that the 
boundary condition vanishes in the limit. The 
unique solutions to this sequence of truncated 

problems, denote them by 
{ }nV

, are smooth and 
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moreover, we show that these functions along with 
their first and second derivatives constitute an 
equicontinuous family. Consequently, we can 
extract a subsequence that converges uniformly on 
compact sets with the limit being the sought value 
function which satisfies the original HJB Equation 
(15). 

 

Step 1. We apply the aforementioned truncation 
argument, and consider properties of the “truncated 

problem.” Fix n N  and let 
(0, ) { :|| || }B n y y n  . Fix a policy    and 

an initial condition (0) (0, )X x B n  . We will 

be considering the diffusion X  which solves 

 
( ) ( ( ), ( ( ))) ( )dX t b X t X t dt dW t   

“killed” at the boundary of (0, )B n . Set 

inf{ 0 : ( ) (0, )nT t X t B n   
, where for a 

set S  we let S  denote its boundary. Where no 

ambiguity arises, we use n nT T 
  for brevity. Let 

0
( , ) ( ( ), ( ( )))

nT t
n xJ x E e c X t X t dt     

 

And set 

 

( ) inf ( , )n nV x J x






 

 

Fix 0r  , and set (0, ) { :|| || }B r y y r  , the 

ball of radius r  in 
mR . Then, for all [ ] 1n r  , 

we have by the standard interior estimates of 
Ladyzhenskaya and Uraltseva (1968, pp. 298–300) 

that 1|| ( ) ||nV x C 
  for all (0, )x B r , where 

1C
 is a constant depending on r  but independent 

of n . A similar estimate holds for 
( )nV x

, which 
we make explicit using the following argument. 
First, note that, and the latter can be bounded using 
Fubini’s theorem as follows: 

0
( ) [|| ( ) ||]xV x C E X t dt

   for some constant 

C  independent of n . We now have that 

[|| ( ) ||] (1 || ||)(1 )xE X t X x t   
. Thus, we 

have 2( ) (1 || ||)V x C x 
 and this implies the 

uniform bound on 
( )nV x

. 

 

Step 2. We consider a sequence of truncated 
problems and their limit. The results stated so far 

imply that 
{ }nV

 and 
{ }nV

  are bounded 
uniformly on compact sets, independent of n . 

Because nV
  satisfies the HJB equation associated 

with the truncated problem, and the Hamiltonian is 

Lipschitz, it follows that 
{ }nV is also bounded 

on compact sets, independent of n . Here 
(.)  

denotes the second-order operator in the HJB 
equation, that is, the Laplacian operator, with 

weights 
2 , 1, 2, n, .i i m 

Because
{ }nV  and 

{ }nV
  are uniformly bounded on (0, )B r , it 

follows that both nV
 and nV

 are Hölder 

continuous, in the ball (0, )B r , uniformly in n . 
Again, because the Hamiltonian is Lipschitz in its 

arguments, and because nV
 satisfies the PDE with 

boundary conditions, it must be that 
{ }nV   is 

also Hölder continuous uniformly in n . Hence, the 

families 
{ }nV

, 
{ }nV

, and 
{ }nV    are 

equicontinuous and bounded. Standard results 
concerning interchange of derivatives and limits 

establish the existence of a 
1V C  such that 

nV V
, nV V   

, and nV V 
 

uniformly on (0, )B r . Standard PDE arguments 

then give the improved smoothness of V . Now, nV
  

satisfies the HJB equation with boundary condition 

and nV V
 uniformly on (0, )B r . Because the 

Hamiltonian (16) is Lipschitz, we can “pass” the 
above limits “through” the truncated HJB equation 

to establish that V  satisfies the original HJB PDE 

on (0, )B r . Because r  was arbitrary, V  must 
satisfy the original HJB Equation. Now, observe 
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that by definition of nV
 and V  , monotone 

convergence implies 

 

0
( ) ( ) inf ( ( ), ( ( )))t

n xV x V x E e c X t X t dt 




 


  

 

Thus, the proposed limit V  is the value function of 

the original control problem. That V  is finite for 
all x  follows from the bound established above, 

namely, ( ) (1 || ||)V x C x  . 

 

Step 3. The main task here is to apply a verification 

argument for functions in the class 
2C . Fix 

2W C , and a policy   . Now, application 

of the Itô differential rule to exp( ) ( ( ))t W X t  
gives  

 

( ) ( , ) inf [ ( ( ))] (17lim )t
x

t
W x J x e E W X t  


 

 

Consequently, using ( ) (1 || ||)W x C x  , we 
have that the last term on the right side of (17) 
converges to zero. Thus, we have 

( ) ( , )W x J x  , and because    was 

arbitrarily chosen, we have ( ) ( )W x V x  where 
V  is the value function. On the other hand, the 

optimal policy 
*  satisfies 

 
*( ( )) { ( ( ), ). ( ( )) ( ( ), ): ( ( ))} argminXt bxt u WXt x Xt u u U Xt    

 

almost surely for all t . Applying Itô’s differential 

rule as before, we have that 
*( ) ( , )W x J x  . 

Thus, ( ) ( )W x V x , and together with the 

previous bound establishes that W  is the value 

function and 
*  is an optimal policy. This 

concludes the proof. 

 

Remark. Let 2 )( mC � denote the class of 

functions which are twice continuously 

differentiable over 2C . Then the HJB Equation has 

a unique solution in 2C , and that solution is the 
value function.  
 
Proof. See [16]. 
 
5. REDUCTION THE DIMENSION 

 

In this section we want to show that we can reduce 
the dimension of a problem. To do that we need 
some special consideration on the parameters and 
then we are able to find minimum trajectory for 

1 2
1 2

c
Q Q QL L L   . We suppose 

 

 1 2 1 2 ,           

without losing generality we can consider 

1 2  . Also let the processes 1 2
Q Q QL L L  , 

1 2X X X   and 1 2W W W  . Write 

 

 1
1 2 2( ) ( ) ( ).c

Q Q QL L t L t       

By a control that we have for trajectory minimality 

of 1
QL  and QL , we can find trajectory minimality 

for c
QL . With regarding to the statement of the 

BCP Eq. 3 we have following equations: 
 

 
0

( ) ( ),

( ) ( ),

,    .

Q

t

Q

L X I t W t

W L s ds L t

W L are non decreasing

   

 





  

 



 

Theorem 1 (see also remark), under the conditions 
of Eq. 15, gives us the existence of the minimal 

trajectory Q  where one can find it as the solution 

of the following equation 
 

 
0 0

( ) ( ) ,
t t

Q X Q s ds Q s ds         

 

where W  and L  are presented by 
 

 
0

0

( ) ( ( )) ,

( ) ( ( )) .

t

Q

t

Q

W t L s ds

L t L s ds












 


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It is notable that the constraints that is expressed in 
Eq. 14 is a subset of the constraints in Eq. 3. 
Therefore, if we are able to find the parameters  

1 2 1 2, , , YW W Y  that solve Eq. 3, meanwhile we have 

1 2W W W   , 1 2Y Y L  , where W  and L  

are defined in Eq. 18, then we have Eq. 17 as a 

minimal trajectory QL  for Eq. 3. Now if we 

consider that 1( ) 0W t  then, parameters 1W  and 

2W W  and L  satisfy in the non-decreasing 

constraint. Therefore all constraints of Eq. 3 are 

held, and QL  from Eq.17 is the minimal of Eq. 3. 

To check the minimality of 1
QL , with regards to 

the Eq. 4, we have 1
QL from following equation: 

 

1 1
1 0

( ) ( ) ( ) ( ), (21)
t

Q QL t X t L s ds t   
where 10

( ) ( ) ( ) 0
t

dsWt s      for all t . 

Now, since the solution of Eq. 21 is monotone with 

respect to the   and since 1 0W  , 1
QL  is 

minimized. Hence, 1
QL is minimal, and also from 

minimality of QL , we have that c
QL is minimal. 

 
6. NUMERICAL SOLUTION 

By the analytical characterization of the problem, 
the objective is to compute it. In this section we 
follow our assumption of two-class queuing system 
and try to find the optimal policy numerically. 
 
In order to the numerical example, we consider a 
queuing system with two different jobs classes with 

the following parameters: the service rates  1 1   

and 2 1.5  ; the abandonment rates 1 0.5   

and 2 1  . Now we define 

 

 
1 2 2 2 2 2 1 2

1 1 1 1 1 2

( , ) ( ) ( , )

( ) ( , )

q q q q

q q

   



 

  
  

 

We call it “test quantity” and it determines the 

optimal control.  In the definition of the  , i is 

the i th element of the gradient vector of the value 

function and 1 0.5   and 2 3  . 

The test function   works as follow: 

 If 1 2 0q q   and 1 2( , ) 0q q  , then 

class 1 has the right priority and so the 

policy works like 1 1 2 1( , )q q q   and 

2 1 2 1( , )q q q    

 If  and 1 2( , ) 0q q  , then class 2 the 

right priority and so the policy works like 

1 1 2 2( , )q q q    and 2 1 2 2( , )q q q   

 If 1 2 0q q  , then all servers in the 

server pool are idle and system does not 
use its capacity 

 
7. CONCLUSION 

 
In this paper we discussed Browian control problem 
to find optimal control policy in multi-lass multi-
server queuing system. The definition of the 
queuing system is quite general and allows for 
correlation among the arriving quantities of 
different job classes. To ease of using notation and 
also formulation we consider a queuing system only 
with two classes where our model can be applied to 
any arbitrary number of classes and we build the 
parameters by considering a sequence of server. We 
formulated the problem of finding optimal control 
policy of a multi-class multi-server queuing system 
as a Browian control problem and then presented 
the solution of one dimensional control problem in 
section 3. Then in the section 4 we showed how to 
reduce the dimension of the problem to one to solve 
and to find optimal control for the Browian control 
problem. The author are suggesting and thinking to 
study the Browian control problem in the other 
regime of heavy traffic approximation and also 
considering a time dependent arrival intensity.  
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