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ABSTRACT 
 

The term "Cloud" has turned out to be universal in our life since it manages a large portion of our activities. 
Truth be told, cloud benefits are achieved in the vast majority of our social, scholastic, and business tasks. 
The technological era we are currently living in, is almost based on Internet services. A novel load balancer 
called Community-Based Cloud Load Balancing Approach (CBCLBA) for distributing tasks to their 
appropriate server is proposed. The main goal of this paper is to adopt a community based algorithm that 
takes into considerations tasks time constraints. Our proposed algorithm is implemented on a dataset that is 
brought from Google.  The proposed algorithm shows that when considering two real time parameters, 
namely; Scheduling Class and Priority, the number of missed deadline tasks decreases comparing to the case 
when ignoring the two mentioned parameters. Finally, we believe that this is the first kind of work that utilizes 
concepts from sociology in designing cloud load balancing approaches. 

Keywords: Cloud Load Balancing, Cloud Computing Approaches, Google Clusters-usage traces, Real time 
 
1. INTRODUCTION  
 

Cloud computing has become a core concept when 
it comes to cloud services [1]. Most of the 
companies, universities, and manufactures around 
the world publish their services to people by 
targeting what has been called Cloud. Moreover, 
today’s life has witnessed a great revolution in the 
field of cloud computing [2]. Hundreds (or maybe 
thousands) of web applications developed and 
deployed every day to the cloud. These applications 
are designed either to be for general or for special 
purposes depending upon market’s demands. 
Nowadays, cloud computing has changed the way of 
where and how application computations are going 
to be processed. It has given a lot of attention by the 
research community and is now considered as a 
reliable computing model for different application 
domains.  However, developers tend not to use cloud 
computing for their real time applications. But now, 
there are many researches in cloud computing field 
working to develop real time applications and utilize 
the strength of cloud [3]. In general, application users 
send their requests as Tasks to a particular cloud 
service of interest, then it responds back when the 
request processed. Some of requests (tasks) have 
time constraints (e.g., deadlines) to be executed 
before.  Therefore, this kind of tasks need to be 
responded immediately and any latency may lead to 
missing the deadlines of tasks. This case is not 

desired because it breaks the reliability feature of the 
application and eventually makes users unsatisfied 
[4]. Our Motivation in this work is that the cloud 
computing literature has a sever lack in algorithms 
that deal with real time tasks. The need for real time 
algorithms in cloud computing has become a critical 
issue since many of the available web services on the 
cloud need to be responded immediately. For 
example, cars auctions web sites provide different 
web services, some of which are considered as real 
time tasks such as bidding function service. This 
kind of services (tasks) should be responded 
immediately at the user bids, while other services 
such as user settings are not considered as real time 
tasks (regular tasks). 

 In this paper, a novel algorithm for real time tasks 
load balancing is proposed. The proposed method 
takes into consideration the time constraints of tasks 
(i.e., scheduling class and priority of tasks). The 
proposed algorithm also uses concepts from 
sociology (e.g., social communities and 
assortativity) in designing its strategies for assigning 
tasks to servers.  This work uses a dataset provided 
by Google (Google Cluster-Usage Traces) [5].  The 
ultimate goal of this work is to building a social 
inspired algorithm for dealing with real time tasks 
and prevent missing their deadlines as much as 
possible. This paper is divided into six sections, the 
next section states the contribution in this paper, and 
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section 3 shows what has been developed in the 
literature. Section 4 explains our methodology in the 
proposed method. Section 5 discuss the obtained 
results and the results of the benchmarking 
algorithms. Finally, we conclude our work in Section 
6. 

2. CONTRIBUTION 

The main contribution of this paper is designing a 
novel community-based real time load balancer. The 
proposed load balancer is inspired from sociology 
concepts (social community and assortative mixing) 
and is called Community-Based Cloud Load 
Balancing Approach (CBCLBA). CBCLBA takes 
into considerations the time constraints of tasks (e.g., 
scheduling class and priority) before assigning them 
to the appropriate servers for execution. 
 
3. RELATED WORKS 

Cloud computing developers try to develop 
algorithms for load balancing that satisfy users’ 
needs and meet application’s goals in terms of 
reliability. Some of the works try to fix the issue of 
real time during tasks scheduling, while other works 
try to balance the distribution (load) to servers taking 
into considerations time constraints of tasks [6]. 
Although the severe lack and the gaps existed in the 
real-time cloud load balancing literature, a few 
researchers worked on critical issues that are related 
to cloud load balancing. Lee et al., in [7] proposed 
an algorithm that improved what has been called 
VMM scheduler to be convenient for soft real time 
system applications. The algorithm they developed 
tried to overcome the issue of delay when assigning 
real time tasks.  In their proposed method, the 
authors used a strategy that is based on allocating the 
required resources for tasks at the time they need. 
Belgaum et al. [8] proposed an algorithm for dealing 
with real time scheduling for services. Their 
algorithm has the ability to rank services based on 
the usage-history of these services.  Their algorithm 
also enables users to immediately (real time) access 
the higher ranked services by communicating with 
the past users who accessed that services. Another 
work that deals with the real time issue was 
performed by Wu et. al. [9] who suggested a real 
time load balancer for mitigating the load on 
particular servers. 
 
4. METHODOLOGY 

4.1 The Proposed Algorithm 
The goal of this paper is to propose a novel 

community based load balancer for distributing tasks 
to servers in an unbiased and even way.  The 

proposed load balancer is called Community Based 
Cloud Load Balancing Approach (CBCLBA) 
because its design uses social-community concepts. 
This paper uses Google cluster-usage traces dataset 
brought from Google [5].  Basically, a Google 
cluster is a set of servers that are connected to each 
other. Google clusters share a common management 
system that assign tasks to machines. Loads arrive at 
clusters in the form of jobs. Each job includes one 
task or more, each of which is accompanied by a set 
of resource requirements used for assigning tasks 
onto the convenient servers.  Also, each task in turn 
consists of multiple processes; to be executed on a 
single server. 

In this work, we consider n clusters C where Cn 
represents a vector of clusters C1, C2, ..., Cn . We 
also consider m Servers S where Cn[Sm] represents 
clusters servers C1[S1], C1[S2], ..., Cn[Sm]. Each 
task has its own requirements to be executed and 
each server has its own specs (e.g., capacity) for 
executing tasks.  On the other hand, we use the 
concept of assortative mixing [10] from sociology, 
which is of two social actors (e.g., two individuals) 
represents their tendency to attach to each other. 
Regarding to tasks, we consider information such as 
resources requirements (e.g., CPU and memory), 
scheduling class, and priority as the norms and 
values of tasks. We also consider servers 
information such as server capacity in terms of CPU, 
memory and other parameters (e.g., the probability 
of machines failure in a particular cluster) as the 
norms and values of servers. We also take the degree 
centrality [11] into our considerations for servers; 
this community measurement reflects the number of 
tasks that are currently loaded on a particular server. 

In our proposed algorithm, tasks and servers will 
be formed as a complex network that can be 
represented as a graph, of which the vertices (Nodes) 
V are the tasks and servers where Vl represents a 
vector of vertices V1, V2 , ..., Vl , while the edges E 
are the relations (ties) among tasks and servers 
where Em represents all the edges among network 
nodes E1 , E2 , ..., Em . All the edges among tasks and 
servers can be determined and formed according to 
the decision of the proposed load balancer. 
CBCLBA has a queue for all the incoming tasks 
aiming at later assigning each task to its convenient 
server for execution. When tasks arrive to CBCLBA, 
it considers that every task has a weak relation (tie) 
to every single server in the available clusters. 
CBCLBA, then, calculates the strength of the 
relation between each pair (task and server). After 
calculating ties strength among tasks and servers, 
some ties may become strong. The strength of a tie 
between a task and a server depends on the values of 
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task Status and Server Status. When a tie between a 
task and a server become strong, CBCLBA 
calculates the assortativity level for each strong tie 
(between a task and a server). The assortativity level 
will determine whether this task is assigned to a 
particular server. The assortativity level cannot be 
calculated if the relation between a task and a server 
is weak. In CBCLBA, it is possible for a task to have 
strong ties with many servers but based on the 
assortativity level, this task will be assigned to one 
server that will execute that task. 
 
4.1.1   Calculating the Status of Tasks 

In CBCLBA, to calculate tasks status we consider 
Tl is a task that came to CBCLBA. Each task has a 
priority Tl(P),  amount CPU needed for processing 
Tl(CNeeded), amount of memory needed Tl(MNeeded), 
and scheduling class Tl(SchC). These parameters are 
available in the dataset we used in this work. We also 
planned to calculate the deadlines of tasks using 
some parameters available in the dataset used. 
 
4.1.2   Calculating Tasks Deadlines 

Regarding to tasks information in the used dataset, 
there are two parameters available, namely, Start 
Time (Tlst) and End Time (Tlet). These two 
parameters can be used in finding the deadlines of 
tasks. Before that, we should find the execution time 
of each task cTl , which can be calculated as follows: 

    
Tl l l

C T et T st   

The deadline of a task δ(Tl) represents the 
maximum response time for a particular task. Task 
deadline is important to be considered when 
calculating the status of a particular task since we are 
dealing with real time tasks. The deadlines of tasks 
are not included in the dataset used. Therefore, we 
propose to calculate tasks deadlines based on the 
information provided by the dataset as follows: 

 
 

    /  ( )
l Tl Tl l

T C C T SchC    
(1) 

Where CTl   denotes the execution time of the task Tl 
and Tl(SchC) is the scheduling class of that task. We 
form this equation to be appropriate with the dataset 
parameters since it makes sense when including the 
scheduling class of a task and express the latency 
sensitive concept that was used in the dataset.  
According to Equation 1, the high the value of 
sensitivity to latency, the close the deadline is. This 
fact is reflected in our proposed equation for 
deadline calculations. Furthermore, Equation 1 is 
also used for benchmarking purposes. 

It should be mentioned that when a task assigned 
and migrated to its server, CBCLBA will recalculate 
the deadlines of tasks. Each task at CBCLBA has to 
spend an amount of time (processing time) until it is 

assigned to a particular server. The processing time 
of tasks ptTl in CBCLBA will be further subtracted 
from the deadline calculated in Equation 1 and used 
later by the assigned server for tasks to meet their 
deadlines as follows: 

   /( ) ( ) 
l l l l l

T cT cT T SchC ptT     
(2) 

This means that Equation 1 will be used in 
CBCLBA, while Equation 2 is used after the 
assignment. This, actually, is reasonable because 
each task at CBCLBA consume time during the 
assigning process, which must be taken into 
considerations before migrating tasks to their 
servers. 

Based on the aforementioned parameters, we 
calculate the status values of tasks at CBCLBA, in 
which each task has its own status value; this value 
represents the status of this task in the community of 
tasks. A task status Ψ(Tl) is the collective value of 
the resource requirements and the urgently of a task 
and can be calculated as follows: 

( ) ( ( ) ( ))
l l l

T T T     
(3) 

Where ρ(Tl) represents the resource requirements of 
task Tl , which is: 

( ) ( ) ( )
l l Needed l Needed

T T C T M    
(4) 

and υ(Tl) represents the urgently of executing a task 
(or how urgent a task to be executed) and can be 
calculated as follows: 

   ( )
l l l

T T P T SchC    
(5) 

Now, Algorithm 1 shows the steps of calculating 
tasks status at CBCLBA. 
 

Algorithm 1 Steps for calculating tasks status 
        at CBCLBA 

INPUTS: CPU and memory requirements,  
priorities, and scheduling class of tasks 
    for all Task ∈ (Tl) at CBCLBA do 

Calculate deadlines using  
                   Equation 1 
Calculate task status using  
                  Equation 3 

    end for 
 

For the sake of the parameters and the 
experiments to be performed in a more convenient 
way in terms of the variety in the values of 
parameter, all the parameters have been normalized. 
 
4.1.3   Calculating the Status of Servers 

In the same way of calculating the status of tasks 
at CBCLBA, we calculate the status of cluster 
servers.  As mentioned before, a cluster has many 
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servers and each server has its own specs.  Each 
server Cn[Sm] has a particular capacity of CPU 
Cn[SmC] and memory Cn[SmM].  Moreover, each 
cluster has a different probability of having a Server 
Failure SF than the servers in other clusters.  
Therefore, the probability of a server failure at a 
cluster PrSF(Cn) is fixed within the same cluster and 
is varied among different clusters. Each server 
within a cluster has a number of tasks assigned to it 
(load).  The number of these connections plays a 
significant role in consuming server resources.  In 
the context of complex networks and social 
communities, these connections represent the degree 
centrality of a server d(Cn[Sm]).  Therefore, it is 
important to consider this issue at CBCLBA. To 
avoid having unbalanced servers load, we consider 
the degree centrality of each server when calculating 
server status.  The status of a server Ψ(Cn[Sm]) in a 
particular cluster can be calculated as follows: 

            Pr
d Cn Sm

Cn Sm R Cn Sm SF Cn
      (6) 

 

Where R(Cn[Sm ]) represents the collective values 
of the server Cn[Sm] CPU and memory capacities as 
follows: 

       ( [ ]) [ ] [ ]R Cn Sm Cn Sm C Cn Sm M   (7) 

The term d(Cn[Sm]) will significantly contribute in 
distinguishing the servers that have heavy load than 
the other servers with light load. This consideration 
is fair enough for servers and the proposed load 
balancer. Algorithm 2 shows the steps for 
calculating the status of servers. 
 

Algorithm 2 Steps for calculating servers status 
                        at CBCLBA 

INPUTS: Servers capacities in terms of CPU 
                  and memory 
    for all Server  ∈ Cn[Sm] defined at  
    CBCLBA do 
           Calculate  the degree centrality (Server  
                                 Load) 
           Estimate the probability of failure at 
                             cluster Cn 
        Calculate  server Status using Equation 6 
    end for 

 
4.2 Assigning Tasks to Servers 

After calculating the status of tasks and servers by 
CBCLBA, the next procedure is performing the 
assignment process. Before we explain the technique 
we used in the assigning process, many facts on our 
work should be described and explained. As 
mentioned, the dataset we used consists of tasks and 
servers. This combination formed a complex 
network, of which the nodes are the tasks and 

servers, and the edges represent the relations among 
nodes (task and servers). According to the pre-
experiments performed on part of the dataset, the 
degree distribution of this network reflects a power 
law distribution (long-tail distribution) [12] as 
shown in Figure 1., which is expected because the 
number of tasks executed (or assigned) are 
significantly much greater than the number of 
servers. Since the degree distribution of our 
CBCLBA network follows a power-law distribution, 
it can be said that our network is considered to be a 
scale-free network according to [13] and [14]. 

In scale-free networks, the concept of preferential 
attachment [15] plays an important role in attaching 
nodes to each other. 

 
Figure 1: Degree Distribution of CBCLBA Nodes. 
 

In the context of our work, the concept of 
preferential attachment can be expressed by the 
assortitivity level of two nodes. CBCLBA will take 
into consideration the assortativity level between a 
task and a server when assigning tasks to servers. 
The question now is how CBCLBA assigns a task 
with a status of Ψ(Tl) to a server with a status of 
Ψ(Cn[Sm])?. To answer this question, the values of 
status for tasks and servers should be studied and 
analyzed in a way that helps CBCLBA to make the 
convenient decision. 

Now, according to the preliminary experiments 
performed (taking different samples of data values 
for tasks status), we found that the distribution of 
status values follows a power-law distribution as 
shown in Figure 2. 

 
Figure 2: Distribution of Tasks Status. 
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This, in fact, is very interesting finding since it 
enables us to classify status values to classes (or 
communities) [16]. Moreover, this finding confirms 
the fact that most of tasks are regular tasks with low 
or medium scheduling class and with low or medium 
priorities. 

Based on the characteristics of power-law 
distribution, it is possible to apply Pareto Rule (or 
called 80/20 rule) on our tasks status data [17]. This 
rule is applicable when the distribution of the data 
used follows a power-law distribution.  Pareto rule 
states that about 80% of the events are caused by the 
other 20% of the population. Figure 3 depicts Pareto 
rule (80/20 rule). 

Our idea proposes that Pareto rule makes it 
possible to classify status data into three classes or 
three communities (i.e., CBCLBA is clustered into 
three different communities, each of which has its 
own characteristics and each node within any 
community 
 

 
Figure 3: Description of Pareto Rule. 

  
has relatively similar features.), as follows: 
• Low Level Community Class (LLC): containing 
the lowest 20% of the values of tasks status. 
• Medium Level Community Class (MLC): 
containing lowest 40% of the remaining 80% of the 
tasks status. 
• High Level Community Class (HLC): containing 
highest 40% of the remaining 80% of the tasks 
status. 
 

As expected the status values of servers reflect 
roughly close results to tasks as shown in Figure 4. 
The distribution of status values of servers also 
followed a power law distribution. This means that 
Pareto rule is also applicable when we classify the 
status values of servers. CBCLBA also will use the 
same classes that are listed above in classifying 
servers’ status. After classifying the status values of 
tasks and servers by CBCLBA, now it is possible to 
assign a task to a particular server. 

 
Figure 4: Distribution of Server Status. 

 
In CBCLBA, we propose that tasks and servers 

that belong to the same community class of status 
will have strong ties among them. In this case, it is 
possible for a task to have many strong ties with 
other servers under the same cluster and there exists 
many servers available as candidates to serve this 
task.  
 
4.3 Proactive Assignment Strategy (PAS) 

The strategy we propose in assigning tasks to 
servers called Proactive Assignment Strategy (PAS), 
this strategy states that a task with a status value of 
Ψ(Tl) is assigned to a particular server with a status 
value of Ψ(Cn[Sm]) if and only if the assortativity 
level between both is maximum comparing to the 
levels with all the servers that have strong ties with 
that task. In this work, a high value of assortativity 
level (close to 1) between two nodes reflects their 
strong tendency to connect and attach to each other. 
Furthermore, the candidate server should not be at its 
maximum load when it is selected for a particular 
task. In addition to the server assigned to a task, we 
propose that a task should have a second option 
(backup server) in case of original server failure 
occurs (e.g., fault tolerance). Yet, PAS strategy skips 
the backup server and re-perform the assignment 
process under one condition; if the processing time 
of the previous assignment process was relatively 
small comparing to its execution time. Practically, 
we consider this step when the time of the previous 
assignment process of the task is in the range of [≈ 
0.005%, ≈ 0.01%] from the total execution time of 
that task. This percentage came from the preliminary 
experiments we performed for part of the dataset 
used. Also, under this percentage, tasks are 
considered safe in terms of meeting their deadline 
since this amount is very small comparing to its total 
execution time and deadline. Finally, PAS strategy 
can be summarized in three cases as follows: 
• Case I (the use of original server): It is the first 
option for a task to be assigned. The original server 
represents the most appropriate server among all the 
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server that a task has strong ties with. A task will 
definitely be assigned to this server if there is no 
server failure occurs. 
• Case II (the use of backup server):  Each task at 
CBCLBA has a backup server and is considered the 
second option for a task when server failure occurs 
on the original server.  It is no guarantee that a task 
will be assigned to it because a condition must be 
satisfied before assigning tasks to their backup 
servers (see Case III). 
 
• Case III (re-assigning  tasks): As mentioned 
before, in case of the processing time is significantly 
smaller than the execution time of the task, 
CBCLBA will ignore the backup server and re-
perform the assigning process again. 
 
4.4 Calculating The Assortativity Level 

As mentioned, in this work we propose to use the 
concept of assortativity between two nodes when 
assigning tasks to servers. The assortativity level of 
a pair of nodes (task and server) can be calculated 
based on the Assortativity Coefficient r [10] of the 
task and servers that have strong ties among them. 
The assortativity level is often calculated using the 
degrees (number of connections) of a pair of nodes. 
However, in this work we propose at using the status 
of tasks and servers in calculating the assortativity 
level between two nodes and can be as follows: 
Lets assume that j denotes status of the task Ψ(Tl) 
and k denotes the status of server Ψ(Cn[Sm]). The 
Assortativity level between the status of the pair (Tl 

, Cn[Sm]) can be expressed by the Assortativity 
coefficient r as follows: 

2

( )jk jk j k
jk

q

jk e q q
r




   
 
(8) 

Where qj , qk are the complementary status of the task 

Ψ(Tl) and the server Ψ(Cn[Sm]) respectively.
2
q  is 

the variance of a server status Ψ(Cn[Sm]) that task 
Tl  attempts to connect to, and can be calculated as 
follows: 

2

2 2
q k k

k k

k q kq  
   

 
   

 
(9) 

The term qk is the remaining status distribution of a 
server. The distribution of qk is derived from the total 
network server’s status distribution pk as qk can be 
calculated as: 

1( 1) k
k

j j

k p
q

jp





 
 
(10) 

Algorithm 3 describes the steps of assigning a task 
to its corresponding server and calculates the 
assortativity level between them. 
 

Algorithm 3 Assigning tasks to servers and 
calculate Assortativity among tasks and servers at 
CBCLBA 
INPUTS: tasks status Ψ(Tl) and servers status 
Ψ(Cn[Sm])   
  for all Ψ(Tl) and Ψ(Cn[Sm]) at CBCLBA  
    do 
           Assign each to its corresponding class 
           if Class(Ψ(Tl)) = Class(Ψ(Cn[Sm]))  
               Establish a strong tie between Tl                 
                 and Cn[Sm] 
           end if 
  end for 
for all Tl  has strong ties with Cn[Sm] do 
  Calculate  the assortativity coefficient r using  
                      Equation 8 
  Assign  

     Tl →Server ∈ Max(
.., [ ] , .. [ ],...,

l l l j mT Cn Sm T C n Sr r ) 

end for 
 
5.    EXPRIMENTAL RESULTS 
 
5.1   Benchmarking Methods 

This section describes the methods we benchmark 
our proposed method with. In fact, we choose 
methods that fits the parameters used in the dataset. 
These methods are described as follows: 
• Least Connection:  This approach assigns tasks to 
the servers that has less load of tasks comparing to 
other servers.  It does not take into considerations the 
capacity of the selected server and tasks 
requirements [18]. 
• Round Robin: This is a well-known approach in 
the literature, it distributes the incoming tasks to 
servers in an even way at each round [18]. 
• Shaw’s Algorithm:  this algorithm is proposed by 
[19]. It is a combination of the features of two known 
approaches in the literature; mainly from Active 
Monitoring Load Balancing (AMLB), and from VM 
Assign Load Balancing (VM-ALB). This approach 
solves the issue of ignoring the servers that have 
been selected in the current round. It assumes that 
the used servers in the current round can be 
employed  as candidate servers in the next round if 
they are available. 
 
5.2   Simulation Environment 

In this work, we designed a special-purpose 
simulator for implementing and testing the proposed 
algorithm (CBCLBA), Shaw’s Algorithm, Round 
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Robin and Least Connection algorithms.  The 
programming of the simulator is based on the 
concept of Multi-Agent. We involve the NetLogo 
modelling, which is Java-based programming. For 
all the experiments in the simulations, we in involve 
approximately 127, 400 tasks and about 50 servers. 
These data is imported from the original dataset from 
Google.For more accurate results and better 
evaluation for all the algorithms used in this work, 
we ran each experiment for four times and then use 
the average of the experiments we obtained. 
 
5.3   Performance Evaluation 

Each of the algorithms used in this work 
consumes amount of time for assigning tasks to 
servers. The time consumed depends on the 
algorithm used, which in turn depends on the 
calculations that are needed during the assignment 
process. We believe that tasks consume more time in 
CBCLBA than the other algorithms used. However, 
the benchmarking approaches are not optimal and 
they are for general purposes. For example, if we 
have real time tasks that need to be assigned and 
executed by some servers, it is necessarily needed to 
have a load balancer that takes into account the 
deadlines of tasks and prevents tasks from missing 
their deadlines as much as possible. 

Each task arrives to the queue of the load balancer 
and has its own resource requirements. Some of the 
arrived tasks have deadlines to be executed before. 
These real time tasks have time constraints that 
should be taken into considerations by load balancer 
designers. 

In our simulations, we simulated four algorithms, 
of which one is the proposed algorithm (CBCLBA) 
and three are the benchmarking algorithms. First, we 
test all the algorithms in terms of missed deadlines 
tasks. We include all the tasks we have (127, 400) in 
the simulations of the algorithms performed in this 
paper. After the simulations completed, we compare 
the time of each task after assigning it to a particular 
server against its deadline regardless the algorithm 
used. We, then, counted the number of tasks that 
missed their deadlines.  This step will help us in 
evaluating the proposed algorithm. Figure 5 depicts 
the number of tasks that missed their deadlines. 

The numbers showed in the figure reflect the 
means of all the runs we performed for each 
algorithm (each algorithm is performed for 4 times). 
According to Figure 5, it is clear that CBCLBA 
outperformed all the other algorithms in terms of the 
number of missed deadlines tasks, while Round 
Robin reflects the worst performance since there are 
many tasks missed their deadlines. Also, Shaw’s 
algorithms reflect better performance than least 

connection and round robin, but it underperformed 
CBCLBA. 

 
Figure 5: The number of tasks that missed their deadlines 

during the assignment process. 
 

The findings above are not enough for judging on 
CBCLBA to be the best and outperformed the other 
algorithms. Therefore, additional analysis should be 
performed to confirm that these results are 
statistically significant comparing to the 
benchmarking methods.  To this end, it is needed to 
test and analyze the variations of all the algorithms 
and find which algorithm has less variations. We 
start with the boxplot of the variations of the 
algorithms. Figure 6 shows the detailed variations in 
terms of median and the quartiles. 
 

 
Figure 6: A boxplot that shows the variations of each 

algorithm used in terms of the numbers of missed 
deadlines tasks. 

 
This boxplot also shows that there are no outliers 

appeared, which is considered as a positive point for 
all the results. This figure also reflects the stable 
behavior of CBCLBA in terms of results variations, 
while the other algorithms reflect relatively wide 
range of variations (see Table 1). This means that the 
stability level of the proposed algorithm is higher 
than the other algorithms. 
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Table 1: The variations of algorithms in terms of the 
number of missed deadlines tasks. 

 
Algorithm 
Performed 

Variations 
Range 

Stability Level 
ST Level 

(Low, Medium, 
and High) 

CBCLBA 16 – 20 High 
Shaw 39 – 47 Medium 

Least Conn. 48 – 60 Low 
Round 
Robin 

53 – 69 Low 

 
Now, it is needed to confirm these results by using 

the One-Way ANOVA technique for the variations 
of each algorithm. It is also needed to test whether 
the mean values µ of the variations for each 
algorithms.  To do so, we have to assume and 
perform two hypothesis testing.  The first hypothesis 
assumes that the mean values of all the algorithms 
are similar and the second (alternative) hypothesis 
assumes not. Below are the forms of our hypothesis: 
 
Null Hypothesis: 
H0  : ∃ CBCLBA, Shaw, L Conn, RR: µC BC LBA 
= µShaw = µLC onn = µRR. 
Alternative  Hypothesis: 
Ha : ∃ CBCLBA, Shaw, L Conn, RR: µC BC LBA 
= µShaw = µLC onn = µRR . 
 

The results of ANOVA analysis shows that F-
statistics is 63.52 and P-Value is 1.24e − 07, this 
means that the value of P is significantly smaller 
than the value of F-Statistics. Therefore, we reject 
the Null hypothesis of similar means of the 
algorithms and accept the Alternative hypothesis. 
These findings confirm all the aforementioned 
results we discussed before. Table 2 shows the 
output of ANOVA for the used algorithms in this 
work. 
 
Table 2: One-Way ANOVA table for the variations of the 

algorithms used in terms of missed deadlines tasks. 
 

 

S
um

S
q

 

M
ea

nS
q

 

F
-S

ta
t.

 

P
-

V
al

ue
 

E
ff

ec
t 

4212 1404.1 63.52 1.24e-07 

R
es

id
u

al
s 

265 22.1   

Now, the final step of this analysis is to calculate 
and show the variations among all the algorithms. 
The goal of this step is to compare the variations of 
each pair of algorithms for obtaining accurate 
evaluation of the algorithms. To this end, we use 
Bonferroni test method for calculating the matrix of 
variations among all the algorithms. This technique 
is considered as a pairwise comparisons using t tests 
with pooled SD. Table 3 shows the values calculated 
for each pair of the used algorithms. 
 

Table 3: Bonferroni Test for pair-wise comparison for 
the missed deadlines variations of the proposed and 

benchmarking algorithms. 
 

 
Least 
Conn. 

Round 
Robin 

Shaw 

Round 
Robin 

0.34185 - - 

Shaw 0.03743 0.00094 - 
CBLBA 9.7e – 07 1.3e − 07 4.7e − 05 

 
In this table, it can be observed that CBCLBA 

outperformed Least Connection, Round Robin, and 
Shaw’s algorithms with negative pair values of 9.7e 
− 07, 1.3e − 07, and 4.7e − 05 respectively. 
Furthermore, Shaw algorithm reflects a close 
behaviour in terms of variations to Least 
Connection, and Round Robin with positive values 
of 0.03743 and 0.00094 respectively. The behaviour 
of the proposed algorithm seems to be more stable 
and has less variations the the benchmarking 
algorithms. 

Finally, the performance of each algorithms can 
be summarised by Table 4.  It shows the percentage 
(Ptotal) of missed deadlines tasks to the total number 
of tasks used, the stability level STLevel , variations 
level VarLevel , and real time level RTLevel. 
 
Table 4: Summarizing the performance of the algorithms 

used. 

Algorithm Ptotal STtotal 
Var 
Level 

RTLevel 

CBCLBA 1.5% High Low 
Real 
Time 

Shaw 3.6% Med. Med. 
No 

Real 
Time 

Least 
Conn. 

4.7% Low High 
No 

Real 
Time 

Round 
Robin 

5.4% Low High 
No 

Real 
Time 

According to the aforementioned results and in 
spite of the reliable performance of the proposed 
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algorithm, it has some pros and cons in terms of level 
of complexity and processing time. The proposed 
algorithm is more complex to implement than the 
other algorithms mentioned in this work. The 
processing time that each task spend in the proposed 
load balancer is more than the time consumed using 
the benchmarked algorithms, this is due to the 
former reason. The weaknesses points of the 
proposed algorithm are planned to be avoided and 
addressees in our future works since this is an 
ongoing work. 
 

6. CONCLUSION AND FUTURE WORKS 

In this paper, we propose a novel algorithm for 
designing a community-based real time load 
balancer. Our algorithm (CBCLBA) is inspired from 
sociological concepts among people such as social 
communities, assortative mixing, and degree 
centrality. We also involved time constraints for 
tasks in the design of CBCLBA such as tasks 
priority, tasks scheduling class, tasks execution 
times, and tasks deadlines. The dataset we use in this 
work is brought from Google (cluster-usage traces), 
which contains real tasks. We benchmark the 
proposed CBCLBA with three known algorithms in 
the literature, namely, Round Robin, Least 
Connection, and Shaw’s algorithm for cloud load 
balancing. According to the experimental results, 
CBCLBA outperformed the benchmarking 
algorithms in terms of the number of missed 
deadline tasks and in terms of performance 
variations. We also confirmed all the results and 
proved that the obtained performance is statistically 
significant comparing to the benchmarking 
algorithms. Moreover, it is clear that using concepts 
from sociology such as the characteristics of social 
communities, assortative mixing, and degree 
centrality are considered as powerful tools in 
designing effective load balancing algorithms. As a 
future work, we plan to develop CBCLBA and add 
more real time related parameters to reduce the 
number of missed deadline tasks and improve the 
performance of the proposed method in terms of 
time constraints. 
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