
Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4726

ON THE IMPACT OF REAL TIME PARAMETERS INTO THE
DESIGN OF CLOUD LOAD BALANCERS

1ALI HUSSEIN ALI ALNOOH, 2 DHUHA BASHEER ABDULLAH
1,2Department of Computer Science, College of Computer Science and Mathematics,

 University of Mosul, Nineveh, Iraq
E-mail: 1ali.hussein.alnooh@google.com, 2rtdm_2005@yahoo.com

ABSTRACT

The term "Cloud" has turned out to be universal in our life since it manages a large portion of our activities.
Truth be told, cloud benefits are achieved in the vast majority of our social, scholastic, and business tasks.
The technological era we are currently living in, is almost based on Internet services. A novel load balancer
called Community-Based Cloud Load Balancing Approach (CBCLBA) for distributing tasks to their
appropriate server is proposed. The main goal of this paper is to adopt a community based algorithm that
takes into considerations tasks time constraints. Our proposed algorithm is implemented on a dataset that is
brought from Google. The proposed algorithm shows that when considering two real time parameters,
namely; Scheduling Class and Priority, the number of missed deadline tasks decreases comparing to the case
when ignoring the two mentioned parameters. Finally, we believe that this is the first kind of work that utilizes
concepts from sociology in designing cloud load balancing approaches.

Keywords: Cloud Load Balancing, Cloud Computing Approaches, Google Clusters-usage traces, Real time

1. INTRODUCTION

Cloud computing has become a core concept when
it comes to cloud services [1]. Most of the
companies, universities, and manufactures around
the world publish their services to people by
targeting what has been called Cloud. Moreover,
today’s life has witnessed a great revolution in the
field of cloud computing [2]. Hundreds (or maybe
thousands) of web applications developed and
deployed every day to the cloud. These applications
are designed either to be for general or for special
purposes depending upon market’s demands.
Nowadays, cloud computing has changed the way of
where and how application computations are going
to be processed. It has given a lot of attention by the
research community and is now considered as a
reliable computing model for different application
domains. However, developers tend not to use cloud
computing for their real time applications. But now,
there are many researches in cloud computing field
working to develop real time applications and utilize
the strength of cloud [3]. In general, application users
send their requests as Tasks to a particular cloud
service of interest, then it responds back when the
request processed. Some of requests (tasks) have
time constraints (e.g., deadlines) to be executed
before. Therefore, this kind of tasks need to be
responded immediately and any latency may lead to
missing the deadlines of tasks. This case is not

desired because it breaks the reliability feature of the
application and eventually makes users unsatisfied
[4]. Our Motivation in this work is that the cloud
computing literature has a sever lack in algorithms
that deal with real time tasks. The need for real time
algorithms in cloud computing has become a critical
issue since many of the available web services on the
cloud need to be responded immediately. For
example, cars auctions web sites provide different
web services, some of which are considered as real
time tasks such as bidding function service. This
kind of services (tasks) should be responded
immediately at the user bids, while other services
such as user settings are not considered as real time
tasks (regular tasks).

 In this paper, a novel algorithm for real time tasks
load balancing is proposed. The proposed method
takes into consideration the time constraints of tasks
(i.e., scheduling class and priority of tasks). The
proposed algorithm also uses concepts from
sociology (e.g., social communities and
assortativity) in designing its strategies for assigning
tasks to servers. This work uses a dataset provided
by Google (Google Cluster-Usage Traces) [5]. The
ultimate goal of this work is to building a social
inspired algorithm for dealing with real time tasks
and prevent missing their deadlines as much as
possible. This paper is divided into six sections, the
next section states the contribution in this paper, and

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4727

section 3 shows what has been developed in the
literature. Section 4 explains our methodology in the
proposed method. Section 5 discuss the obtained
results and the results of the benchmarking
algorithms. Finally, we conclude our work in Section
6.

2. CONTRIBUTION

The main contribution of this paper is designing a
novel community-based real time load balancer. The
proposed load balancer is inspired from sociology
concepts (social community and assortative mixing)
and is called Community-Based Cloud Load
Balancing Approach (CBCLBA). CBCLBA takes
into considerations the time constraints of tasks (e.g.,
scheduling class and priority) before assigning them
to the appropriate servers for execution.

3. RELATED WORKS

Cloud computing developers try to develop
algorithms for load balancing that satisfy users’
needs and meet application’s goals in terms of
reliability. Some of the works try to fix the issue of
real time during tasks scheduling, while other works
try to balance the distribution (load) to servers taking
into considerations time constraints of tasks [6].
Although the severe lack and the gaps existed in the
real-time cloud load balancing literature, a few
researchers worked on critical issues that are related
to cloud load balancing. Lee et al., in [7] proposed
an algorithm that improved what has been called
VMM scheduler to be convenient for soft real time
system applications. The algorithm they developed
tried to overcome the issue of delay when assigning
real time tasks. In their proposed method, the
authors used a strategy that is based on allocating the
required resources for tasks at the time they need.
Belgaum et al. [8] proposed an algorithm for dealing
with real time scheduling for services. Their
algorithm has the ability to rank services based on
the usage-history of these services. Their algorithm
also enables users to immediately (real time) access
the higher ranked services by communicating with
the past users who accessed that services. Another
work that deals with the real time issue was
performed by Wu et. al. [9] who suggested a real
time load balancer for mitigating the load on
particular servers.

4. METHODOLOGY

4.1 The Proposed Algorithm
The goal of this paper is to propose a novel

community based load balancer for distributing tasks
to servers in an unbiased and even way. The

proposed load balancer is called Community Based
Cloud Load Balancing Approach (CBCLBA)
because its design uses social-community concepts.
This paper uses Google cluster-usage traces dataset
brought from Google [5]. Basically, a Google
cluster is a set of servers that are connected to each
other. Google clusters share a common management
system that assign tasks to machines. Loads arrive at
clusters in the form of jobs. Each job includes one
task or more, each of which is accompanied by a set
of resource requirements used for assigning tasks
onto the convenient servers. Also, each task in turn
consists of multiple processes; to be executed on a
single server.

In this work, we consider n clusters C where Cn
represents a vector of clusters C1, C2, ..., Cn . We
also consider m Servers S where Cn[Sm] represents
clusters servers C1[S1], C1[S2], ..., Cn[Sm]. Each
task has its own requirements to be executed and
each server has its own specs (e.g., capacity) for
executing tasks. On the other hand, we use the
concept of assortative mixing [10] from sociology,
which is of two social actors (e.g., two individuals)
represents their tendency to attach to each other.
Regarding to tasks, we consider information such as
resources requirements (e.g., CPU and memory),
scheduling class, and priority as the norms and
values of tasks. We also consider servers
information such as server capacity in terms of CPU,
memory and other parameters (e.g., the probability
of machines failure in a particular cluster) as the
norms and values of servers. We also take the degree
centrality [11] into our considerations for servers;
this community measurement reflects the number of
tasks that are currently loaded on a particular server.

In our proposed algorithm, tasks and servers will
be formed as a complex network that can be
represented as a graph, of which the vertices (Nodes)
V are the tasks and servers where Vl represents a
vector of vertices V1, V2 , ..., Vl , while the edges E
are the relations (ties) among tasks and servers
where Em represents all the edges among network
nodes E1 , E2 , ..., Em . All the edges among tasks and
servers can be determined and formed according to
the decision of the proposed load balancer.
CBCLBA has a queue for all the incoming tasks
aiming at later assigning each task to its convenient
server for execution. When tasks arrive to CBCLBA,
it considers that every task has a weak relation (tie)
to every single server in the available clusters.
CBCLBA, then, calculates the strength of the
relation between each pair (task and server). After
calculating ties strength among tasks and servers,
some ties may become strong. The strength of a tie
between a task and a server depends on the values of

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4728

task Status and Server Status. When a tie between a
task and a server become strong, CBCLBA
calculates the assortativity level for each strong tie
(between a task and a server). The assortativity level
will determine whether this task is assigned to a
particular server. The assortativity level cannot be
calculated if the relation between a task and a server
is weak. In CBCLBA, it is possible for a task to have
strong ties with many servers but based on the
assortativity level, this task will be assigned to one
server that will execute that task.

4.1.1 Calculating the Status of Tasks

In CBCLBA, to calculate tasks status we consider
Tl is a task that came to CBCLBA. Each task has a
priority Tl(P), amount CPU needed for processing
Tl(CNeeded), amount of memory needed Tl(MNeeded),
and scheduling class Tl(SchC). These parameters are
available in the dataset we used in this work. We also
planned to calculate the deadlines of tasks using
some parameters available in the dataset used.

4.1.2 Calculating Tasks Deadlines

Regarding to tasks information in the used dataset,
there are two parameters available, namely, Start
Time (Tlst) and End Time (Tlet). These two
parameters can be used in finding the deadlines of
tasks. Before that, we should find the execution time
of each task cTl , which can be calculated as follows:

Tl l l

C T et T st 

The deadline of a task δ(Tl) represents the
maximum response time for a particular task. Task
deadline is important to be considered when
calculating the status of a particular task since we are
dealing with real time tasks. The deadlines of tasks
are not included in the dataset used. Therefore, we
propose to calculate tasks deadlines based on the
information provided by the dataset as follows:

 

 / ()
l Tl Tl l

T C C T SchC  
(1)

Where CTl denotes the execution time of the task Tl
and Tl(SchC) is the scheduling class of that task. We
form this equation to be appropriate with the dataset
parameters since it makes sense when including the
scheduling class of a task and express the latency
sensitive concept that was used in the dataset.
According to Equation 1, the high the value of
sensitivity to latency, the close the deadline is. This
fact is reflected in our proposed equation for
deadline calculations. Furthermore, Equation 1 is
also used for benchmarking purposes.

It should be mentioned that when a task assigned
and migrated to its server, CBCLBA will recalculate
the deadlines of tasks. Each task at CBCLBA has to
spend an amount of time (processing time) until it is

assigned to a particular server. The processing time
of tasks ptTl in CBCLBA will be further subtracted
from the deadline calculated in Equation 1 and used
later by the assigned server for tasks to meet their
deadlines as follows:

  /() ()
l l l l l

T cT cT T SchC ptT   
(2)

This means that Equation 1 will be used in
CBCLBA, while Equation 2 is used after the
assignment. This, actually, is reasonable because
each task at CBCLBA consume time during the
assigning process, which must be taken into
considerations before migrating tasks to their
servers.

Based on the aforementioned parameters, we
calculate the status values of tasks at CBCLBA, in
which each task has its own status value; this value
represents the status of this task in the community of
tasks. A task status Ψ(Tl) is the collective value of
the resource requirements and the urgently of a task
and can be calculated as follows:

() (() ())
l l l

T T T   
(3)

Where ρ(Tl) represents the resource requirements of
task Tl , which is:

() () ()
l l Needed l Needed

T T C T M  
(4)

and υ(Tl) represents the urgently of executing a task
(or how urgent a task to be executed) and can be
calculated as follows:

   ()
l l l

T T P T SchC  
(5)

Now, Algorithm 1 shows the steps of calculating
tasks status at CBCLBA.

Algorithm 1 Steps for calculating tasks status
 at CBCLBA

INPUTS: CPU and memory requirements,
priorities, and scheduling class of tasks
 for all Task ∈ (Tl) at CBCLBA do

Calculate deadlines using
 Equation 1
Calculate task status using
 Equation 3

 end for

For the sake of the parameters and the
experiments to be performed in a more convenient
way in terms of the variety in the values of
parameter, all the parameters have been normalized.

4.1.3 Calculating the Status of Servers

In the same way of calculating the status of tasks
at CBCLBA, we calculate the status of cluster
servers. As mentioned before, a cluster has many

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4729

servers and each server has its own specs. Each
server Cn[Sm] has a particular capacity of CPU
Cn[SmC] and memory Cn[SmM]. Moreover, each
cluster has a different probability of having a Server
Failure SF than the servers in other clusters.
Therefore, the probability of a server failure at a
cluster PrSF(Cn) is fixed within the same cluster and
is varied among different clusters. Each server
within a cluster has a number of tasks assigned to it
(load). The number of these connections plays a
significant role in consuming server resources. In
the context of complex networks and social
communities, these connections represent the degree
centrality of a server d(Cn[Sm]). Therefore, it is
important to consider this issue at CBCLBA. To
avoid having unbalanced servers load, we consider
the degree centrality of each server when calculating
server status. The status of a server Ψ(Cn[Sm]) in a
particular cluster can be calculated as follows:

            Pr
d Cn Sm

Cn Sm R Cn Sm SF Cn
    (6)

Where R(Cn[Sm]) represents the collective values
of the server Cn[Sm] CPU and memory capacities as
follows:

 ([]) [] []R Cn Sm Cn Sm C Cn Sm M  (7)

The term d(Cn[Sm]) will significantly contribute in
distinguishing the servers that have heavy load than
the other servers with light load. This consideration
is fair enough for servers and the proposed load
balancer. Algorithm 2 shows the steps for
calculating the status of servers.

Algorithm 2 Steps for calculating servers status
 at CBCLBA

INPUTS: Servers capacities in terms of CPU
 and memory
 for all Server ∈ Cn[Sm] defined at
 CBCLBA do
 Calculate the degree centrality (Server
 Load)
 Estimate the probability of failure at
 cluster Cn
 Calculate server Status using Equation 6
 end for

4.2 Assigning Tasks to Servers

After calculating the status of tasks and servers by
CBCLBA, the next procedure is performing the
assignment process. Before we explain the technique
we used in the assigning process, many facts on our
work should be described and explained. As
mentioned, the dataset we used consists of tasks and
servers. This combination formed a complex
network, of which the nodes are the tasks and

servers, and the edges represent the relations among
nodes (task and servers). According to the pre-
experiments performed on part of the dataset, the
degree distribution of this network reflects a power
law distribution (long-tail distribution) [12] as
shown in Figure 1., which is expected because the
number of tasks executed (or assigned) are
significantly much greater than the number of
servers. Since the degree distribution of our
CBCLBA network follows a power-law distribution,
it can be said that our network is considered to be a
scale-free network according to [13] and [14].

In scale-free networks, the concept of preferential
attachment [15] plays an important role in attaching
nodes to each other.

Figure 1: Degree Distribution of CBCLBA Nodes.

In the context of our work, the concept of
preferential attachment can be expressed by the
assortitivity level of two nodes. CBCLBA will take
into consideration the assortativity level between a
task and a server when assigning tasks to servers.
The question now is how CBCLBA assigns a task
with a status of Ψ(Tl) to a server with a status of
Ψ(Cn[Sm])?. To answer this question, the values of
status for tasks and servers should be studied and
analyzed in a way that helps CBCLBA to make the
convenient decision.

Now, according to the preliminary experiments
performed (taking different samples of data values
for tasks status), we found that the distribution of
status values follows a power-law distribution as
shown in Figure 2.

Figure 2: Distribution of Tasks Status.

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4730

This, in fact, is very interesting finding since it
enables us to classify status values to classes (or
communities) [16]. Moreover, this finding confirms
the fact that most of tasks are regular tasks with low
or medium scheduling class and with low or medium
priorities.

Based on the characteristics of power-law
distribution, it is possible to apply Pareto Rule (or
called 80/20 rule) on our tasks status data [17]. This
rule is applicable when the distribution of the data
used follows a power-law distribution. Pareto rule
states that about 80% of the events are caused by the
other 20% of the population. Figure 3 depicts Pareto
rule (80/20 rule).

Our idea proposes that Pareto rule makes it
possible to classify status data into three classes or
three communities (i.e., CBCLBA is clustered into
three different communities, each of which has its
own characteristics and each node within any
community

Figure 3: Description of Pareto Rule.

has relatively similar features.), as follows:
• Low Level Community Class (LLC): containing
the lowest 20% of the values of tasks status.
• Medium Level Community Class (MLC):
containing lowest 40% of the remaining 80% of the
tasks status.
• High Level Community Class (HLC): containing
highest 40% of the remaining 80% of the tasks
status.

As expected the status values of servers reflect
roughly close results to tasks as shown in Figure 4.
The distribution of status values of servers also
followed a power law distribution. This means that
Pareto rule is also applicable when we classify the
status values of servers. CBCLBA also will use the
same classes that are listed above in classifying
servers’ status. After classifying the status values of
tasks and servers by CBCLBA, now it is possible to
assign a task to a particular server.

Figure 4: Distribution of Server Status.

In CBCLBA, we propose that tasks and servers

that belong to the same community class of status
will have strong ties among them. In this case, it is
possible for a task to have many strong ties with
other servers under the same cluster and there exists
many servers available as candidates to serve this
task.

4.3 Proactive Assignment Strategy (PAS)

The strategy we propose in assigning tasks to
servers called Proactive Assignment Strategy (PAS),
this strategy states that a task with a status value of
Ψ(Tl) is assigned to a particular server with a status
value of Ψ(Cn[Sm]) if and only if the assortativity
level between both is maximum comparing to the
levels with all the servers that have strong ties with
that task. In this work, a high value of assortativity
level (close to 1) between two nodes reflects their
strong tendency to connect and attach to each other.
Furthermore, the candidate server should not be at its
maximum load when it is selected for a particular
task. In addition to the server assigned to a task, we
propose that a task should have a second option
(backup server) in case of original server failure
occurs (e.g., fault tolerance). Yet, PAS strategy skips
the backup server and re-perform the assignment
process under one condition; if the processing time
of the previous assignment process was relatively
small comparing to its execution time. Practically,
we consider this step when the time of the previous
assignment process of the task is in the range of [≈
0.005%, ≈ 0.01%] from the total execution time of
that task. This percentage came from the preliminary
experiments we performed for part of the dataset
used. Also, under this percentage, tasks are
considered safe in terms of meeting their deadline
since this amount is very small comparing to its total
execution time and deadline. Finally, PAS strategy
can be summarized in three cases as follows:
• Case I (the use of original server): It is the first
option for a task to be assigned. The original server
represents the most appropriate server among all the

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4731

server that a task has strong ties with. A task will
definitely be assigned to this server if there is no
server failure occurs.
• Case II (the use of backup server): Each task at
CBCLBA has a backup server and is considered the
second option for a task when server failure occurs
on the original server. It is no guarantee that a task
will be assigned to it because a condition must be
satisfied before assigning tasks to their backup
servers (see Case III).

• Case III (re-assigning tasks): As mentioned
before, in case of the processing time is significantly
smaller than the execution time of the task,
CBCLBA will ignore the backup server and re-
perform the assigning process again.

4.4 Calculating The Assortativity Level

As mentioned, in this work we propose to use the
concept of assortativity between two nodes when
assigning tasks to servers. The assortativity level of
a pair of nodes (task and server) can be calculated
based on the Assortativity Coefficient r [10] of the
task and servers that have strong ties among them.
The assortativity level is often calculated using the
degrees (number of connections) of a pair of nodes.
However, in this work we propose at using the status
of tasks and servers in calculating the assortativity
level between two nodes and can be as follows:
Lets assume that j denotes status of the task Ψ(Tl)
and k denotes the status of server Ψ(Cn[Sm]). The
Assortativity level between the status of the pair (Tl

, Cn[Sm]) can be expressed by the Assortativity
coefficient r as follows:

2

()jk jk j k
jk

q

jk e q q
r




 

(8)

Where qj , qk are the complementary status of the task

Ψ(Tl) and the server Ψ(Cn[Sm]) respectively.
2
q is

the variance of a server status Ψ(Cn[Sm]) that task
Tl attempts to connect to, and can be calculated as
follows:

2

2 2
q k k

k k

k q kq  
   

 
 

(9)

The term qk is the remaining status distribution of a
server. The distribution of qk is derived from the total
network server’s status distribution pk as qk can be
calculated as:

1(1) k
k

j j

k p
q

jp





(10)

Algorithm 3 describes the steps of assigning a task
to its corresponding server and calculates the
assortativity level between them.

Algorithm 3 Assigning tasks to servers and
calculate Assortativity among tasks and servers at
CBCLBA
INPUTS: tasks status Ψ(Tl) and servers status
Ψ(Cn[Sm])
 for all Ψ(Tl) and Ψ(Cn[Sm]) at CBCLBA
 do
 Assign each to its corresponding class
 if Class(Ψ(Tl)) = Class(Ψ(Cn[Sm]))
 Establish a strong tie between Tl
 and Cn[Sm]
 end if
 end for
for all Tl has strong ties with Cn[Sm] do
 Calculate the assortativity coefficient r using
 Equation 8
 Assign

 Tl →Server ∈ Max(
.., [] , .. [],...,

l l l j mT Cn Sm T C n Sr r)

end for

5. EXPRIMENTAL RESULTS

5.1 Benchmarking Methods

This section describes the methods we benchmark
our proposed method with. In fact, we choose
methods that fits the parameters used in the dataset.
These methods are described as follows:
• Least Connection: This approach assigns tasks to
the servers that has less load of tasks comparing to
other servers. It does not take into considerations the
capacity of the selected server and tasks
requirements [18].
• Round Robin: This is a well-known approach in
the literature, it distributes the incoming tasks to
servers in an even way at each round [18].
• Shaw’s Algorithm: this algorithm is proposed by
[19]. It is a combination of the features of two known
approaches in the literature; mainly from Active
Monitoring Load Balancing (AMLB), and from VM
Assign Load Balancing (VM-ALB). This approach
solves the issue of ignoring the servers that have
been selected in the current round. It assumes that
the used servers in the current round can be
employed as candidate servers in the next round if
they are available.

5.2 Simulation Environment

In this work, we designed a special-purpose
simulator for implementing and testing the proposed
algorithm (CBCLBA), Shaw’s Algorithm, Round

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4732

Robin and Least Connection algorithms. The
programming of the simulator is based on the
concept of Multi-Agent. We involve the NetLogo
modelling, which is Java-based programming. For
all the experiments in the simulations, we in involve
approximately 127, 400 tasks and about 50 servers.
These data is imported from the original dataset from
Google.For more accurate results and better
evaluation for all the algorithms used in this work,
we ran each experiment for four times and then use
the average of the experiments we obtained.

5.3 Performance Evaluation

Each of the algorithms used in this work
consumes amount of time for assigning tasks to
servers. The time consumed depends on the
algorithm used, which in turn depends on the
calculations that are needed during the assignment
process. We believe that tasks consume more time in
CBCLBA than the other algorithms used. However,
the benchmarking approaches are not optimal and
they are for general purposes. For example, if we
have real time tasks that need to be assigned and
executed by some servers, it is necessarily needed to
have a load balancer that takes into account the
deadlines of tasks and prevents tasks from missing
their deadlines as much as possible.

Each task arrives to the queue of the load balancer
and has its own resource requirements. Some of the
arrived tasks have deadlines to be executed before.
These real time tasks have time constraints that
should be taken into considerations by load balancer
designers.

In our simulations, we simulated four algorithms,
of which one is the proposed algorithm (CBCLBA)
and three are the benchmarking algorithms. First, we
test all the algorithms in terms of missed deadlines
tasks. We include all the tasks we have (127, 400) in
the simulations of the algorithms performed in this
paper. After the simulations completed, we compare
the time of each task after assigning it to a particular
server against its deadline regardless the algorithm
used. We, then, counted the number of tasks that
missed their deadlines. This step will help us in
evaluating the proposed algorithm. Figure 5 depicts
the number of tasks that missed their deadlines.

The numbers showed in the figure reflect the
means of all the runs we performed for each
algorithm (each algorithm is performed for 4 times).
According to Figure 5, it is clear that CBCLBA
outperformed all the other algorithms in terms of the
number of missed deadlines tasks, while Round
Robin reflects the worst performance since there are
many tasks missed their deadlines. Also, Shaw’s
algorithms reflect better performance than least

connection and round robin, but it underperformed
CBCLBA.

Figure 5: The number of tasks that missed their deadlines

during the assignment process.

The findings above are not enough for judging on
CBCLBA to be the best and outperformed the other
algorithms. Therefore, additional analysis should be
performed to confirm that these results are
statistically significant comparing to the
benchmarking methods. To this end, it is needed to
test and analyze the variations of all the algorithms
and find which algorithm has less variations. We
start with the boxplot of the variations of the
algorithms. Figure 6 shows the detailed variations in
terms of median and the quartiles.

Figure 6: A boxplot that shows the variations of each

algorithm used in terms of the numbers of missed
deadlines tasks.

This boxplot also shows that there are no outliers

appeared, which is considered as a positive point for
all the results. This figure also reflects the stable
behavior of CBCLBA in terms of results variations,
while the other algorithms reflect relatively wide
range of variations (see Table 1). This means that the
stability level of the proposed algorithm is higher
than the other algorithms.

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4733

Table 1: The variations of algorithms in terms of the
number of missed deadlines tasks.

Algorithm
Performed

Variations
Range

Stability Level
ST Level

(Low, Medium,
and High)

CBCLBA 16 – 20 High
Shaw 39 – 47 Medium

Least Conn. 48 – 60 Low
Round
Robin

53 – 69 Low

Now, it is needed to confirm these results by using

the One-Way ANOVA technique for the variations
of each algorithm. It is also needed to test whether
the mean values µ of the variations for each
algorithms. To do so, we have to assume and
perform two hypothesis testing. The first hypothesis
assumes that the mean values of all the algorithms
are similar and the second (alternative) hypothesis
assumes not. Below are the forms of our hypothesis:

Null Hypothesis:
H0 : ∃ CBCLBA, Shaw, L Conn, RR: µC BC LBA
= µShaw = µLC onn = µRR.
Alternative Hypothesis:
Ha : ∃ CBCLBA, Shaw, L Conn, RR: µC BC LBA
= µShaw = µLC onn = µRR .

The results of ANOVA analysis shows that F-
statistics is 63.52 and P-Value is 1.24e − 07, this
means that the value of P is significantly smaller
than the value of F-Statistics. Therefore, we reject
the Null hypothesis of similar means of the
algorithms and accept the Alternative hypothesis.
These findings confirm all the aforementioned
results we discussed before. Table 2 shows the
output of ANOVA for the used algorithms in this
work.

Table 2: One-Way ANOVA table for the variations of the

algorithms used in terms of missed deadlines tasks.

S
um

S
q

M
ea

nS
q

F
-S

ta
t.

P
-

V
al

ue

E
ff

ec
t

4212 1404.1 63.52 1.24e-07

R
es

id
u

al
s

265 22.1

Now, the final step of this analysis is to calculate
and show the variations among all the algorithms.
The goal of this step is to compare the variations of
each pair of algorithms for obtaining accurate
evaluation of the algorithms. To this end, we use
Bonferroni test method for calculating the matrix of
variations among all the algorithms. This technique
is considered as a pairwise comparisons using t tests
with pooled SD. Table 3 shows the values calculated
for each pair of the used algorithms.

Table 3: Bonferroni Test for pair-wise comparison for
the missed deadlines variations of the proposed and

benchmarking algorithms.

Least
Conn.

Round
Robin

Shaw

Round
Robin

0.34185 - -

Shaw 0.03743 0.00094 -
CBLBA 9.7e – 07 1.3e − 07 4.7e − 05

In this table, it can be observed that CBCLBA

outperformed Least Connection, Round Robin, and
Shaw’s algorithms with negative pair values of 9.7e
− 07, 1.3e − 07, and 4.7e − 05 respectively.
Furthermore, Shaw algorithm reflects a close
behaviour in terms of variations to Least
Connection, and Round Robin with positive values
of 0.03743 and 0.00094 respectively. The behaviour
of the proposed algorithm seems to be more stable
and has less variations the the benchmarking
algorithms.

Finally, the performance of each algorithms can
be summarised by Table 4. It shows the percentage
(Ptotal) of missed deadlines tasks to the total number
of tasks used, the stability level STLevel , variations
level VarLevel , and real time level RTLevel.

Table 4: Summarizing the performance of the algorithms

used.

Algorithm Ptotal STtotal
Var
Level

RTLevel

CBCLBA 1.5% High Low
Real
Time

Shaw 3.6% Med. Med.
No

Real
Time

Least
Conn.

4.7% Low High
No

Real
Time

Round
Robin

5.4% Low High
No

Real
Time

According to the aforementioned results and in
spite of the reliable performance of the proposed

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4734

algorithm, it has some pros and cons in terms of level
of complexity and processing time. The proposed
algorithm is more complex to implement than the
other algorithms mentioned in this work. The
processing time that each task spend in the proposed
load balancer is more than the time consumed using
the benchmarked algorithms, this is due to the
former reason. The weaknesses points of the
proposed algorithm are planned to be avoided and
addressees in our future works since this is an
ongoing work.

6. CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel algorithm for
designing a community-based real time load
balancer. Our algorithm (CBCLBA) is inspired from
sociological concepts among people such as social
communities, assortative mixing, and degree
centrality. We also involved time constraints for
tasks in the design of CBCLBA such as tasks
priority, tasks scheduling class, tasks execution
times, and tasks deadlines. The dataset we use in this
work is brought from Google (cluster-usage traces),
which contains real tasks. We benchmark the
proposed CBCLBA with three known algorithms in
the literature, namely, Round Robin, Least
Connection, and Shaw’s algorithm for cloud load
balancing. According to the experimental results,
CBCLBA outperformed the benchmarking
algorithms in terms of the number of missed
deadline tasks and in terms of performance
variations. We also confirmed all the results and
proved that the obtained performance is statistically
significant comparing to the benchmarking
algorithms. Moreover, it is clear that using concepts
from sociology such as the characteristics of social
communities, assortative mixing, and degree
centrality are considered as powerful tools in
designing effective load balancing algorithms. As a
future work, we plan to develop CBCLBA and add
more real time related parameters to reduce the
number of missed deadline tasks and improve the
performance of the proposed method in terms of
time constraints.

REFRENCES:
[1] P. Mell, T. Grance et al., “The NIST definition of

cloud computing,” 2011.
[2] D. C. Marinescu, Cloud computing: theory and

practice. Morgan Kaufmann, 2017.
[3] S. Malik and F. Huet, “Adaptive fault tolerance in

real time cloud computing,” in Services
(SERVICES), 2011 IEEE World Congress on.
IEEE, 2011, pp. 280–287.

[4] J. Zhao, Y. Xiang, T. Lan, H. H. Huang, and S.
Subramaniam, “Elastic reliability optimization
through peer-to-peer checkpointing in cloud
computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 2, pp. 491–502,
2017.

[5] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google
cluster-usage traces: format+schema,” Google
Inc., White Paper, pp. 1–14, 2011.

[6] S. Sheikh and A. Nagaraju, “A comparative study
of task scheduling and load balancing techniques
with mct using etc on computational grids,”
Indian Journal of Science and Technology, vol.
10, no. 32, 2017.

[7] M. Lee, A. S. Krishnakumar, P. Krishnan, N.
Singh, and S. Yajnik, “Supporting soft real time
tasks in the xen hypervisor,” in Proceedings of
the 6th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments,
ser. VEE ’10. New York, NY, USA: ACM,
2010, pp. 97–108. [Online]. Available:
http://doi.acm.org/10.1145/1735997.1736012

[8] M. R. Belgaum, S. Soomro, Z. Alansari, and M.
Alam, “Cloud service ranking using checkpoint-
based load balancing in real time scheduling of
cloud computing,” in Progress in Advanced
Computing and Intelligent Engineering.
Springer, 2018, pp. 667–676.

[9] Y. Wu, X. Song, and G. Gong, “Real time load
balancing scheduling algorithm for periodic
simulation models,” Simulation Modelling
Practice and Theory, vol. 52, pp. 123–134,
2015.

[10] M. E. Newman, “Assortative mixing in
networks,” Physical review letters, vol. 89, no.
20, p. 208701,2002.

[11] Y.-Y. Liu, J.-J. Slotine, and A.-L. Baraba´si,
“Control centrality and hierarchical structure in
complex networks,” Plos one, vol. 7, no. 9, p.
e44459, 2012.

[12] A. Clauset, C. R. Shalizi, and M. E. Newman,
“Power-law distributions in empirical data,”
SIAM review, vol. 51, no. 4, pp. 661–703, 2009.

[13] A.-L. Baraba´si and E. Bonabeau, “Scale-free
networks,” Scientific american, vol. 288, no. 5,
pp. 60–69, 2003.

[14] A.-L. Baraba´si, “Scale-free networks: a decade
and beyond,” science, vol. 325, no. 5939, pp.
412–413, 2009.

[15] A.-L. Baraba´si, R. Albert, and H. Jeong, “Mean-
field theory for scale-free random networks,”
Physica A: Statistical Mechanics and its

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4735

Applications, vol. 272, no. 1-2, pp. 173–187,
1999.

[16] G. Palla, A.-L. Baraba´si, and T. Vicsek,
“Quantifying social group evolution,” Nature,
vol. 446, no. 7136, p. 664, 2007.

[17] M. E. Newman, “Power laws, pareto
distributions and zipf’s law,” Contemporary
physics, vol. 46, no. 5, pp. 323–351, 2005.

[18] K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, and
J. Al-Jaroodi, “A survey of load balancing in
cloud computing: Challenges and algorithms,” in
Network Cloud Computing and Applications
(NCCA), 2012 Second Symposium on. IEEE,
2012, pp. 137–142.

[19] S. B. Shaw, “Balancing load of cloud data center
using efficient task scheduling algorithm,”
International Journal of Computer Applications,
vol. 159, no. 5, pp. 1–5, 2017.

