
Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5069

TOWARDS MORE ACCURATE AUTOMATIC
RECOMMENDATION OF SOFTWARE DESIGN PATTERNS

ABEER HAMDY1,2, a , MOHAMED ELSAYED 1, b
1Faculty of Informatics and Computer Science, British University in Egypt,

Elshorouk city, Egypt
2Computers and Systems Departments, Electronics Research Institute,

Cairo, Egypt
Email: aAbeer.hamdy@bue.edu.eg , bMohamed.sayd@bue.edu.eg

ABSTRACT

Design pattern is a high-quality reusable solution to a commonly occurring design problem in certain
context. Using design patterns in software development improves some of the quality attributes of the
system including productivity, understandability and maintainability. However, it is hard for novice
developers to select a fit design pattern to solve a design problem. The paper proposes a text retrieval based
approach for the automatic selection of the fit design pattern. This approach is based on generating a vector
space model (VSM) of unigrams and topics to the catalogue of patterns. The topic is a set of words that
often appear together. Latent Dirichlet Allocation topic model is adopted to analyze the textual descriptions
of the patterns to extract the key topics and discover the hidden semantic. The similarity between the target
problem scenario and the collection of patterns is measured using an improved version of the popular
Cosine similarity measure. The proposed approach was assessed using Gang of four design patterns catalog
and a collection of real design problems. The experimental results showed the effectiveness of the proposed
approach which achieved 72 % precision.

Keywords: Design Pattern Selection; DP Recommendation; Gang of Four, Text Mining, Information
Retrieval, Topic Modelling, Vector Space Model.

1. INTRODUCTION

Software design is the most challenging activity in
the software development life cycle. Design
patterns are standardized and well documented best
practices used by experienced software developers.
Using patterns in software development leads to an
increase in software reusability, quality and
maintainability, in addition to reducing the technical
risk of the project by not having to develop and test
a new design [1], [2].

However, the existence of a large number of design
patterns makes the selection of a fit design pattern
for a given design problem a difficult task to the
experienced developer, and makes it a challenging
task for the inexperienced one who is not familiar
with design patterns. To overcome this difficulty, a
supporting tool that automatically suggests to the
developer the right design pattern for a given design
problem during the design phase becomes a
necessity.

Recently, a number of research studies were
conducted to address this issue. Some of these
studies developed techniques for suggesting the
suitable pattern based on analyzing the UML design
diagrams [3], [4]. Other techniques are interactive
or semi-automatic techniques where the user is
provided with a set of questions formulated from the
design pattern descriptions after which, the fitting
design pattern is determined according to the
answers provided by the user [5], [6]. Some studies
used text classification and text retrieval techniques
[7], [8], [9], [10] while others recommended design
patterns based on anti-patterns detected in the design
documents or the code [11], [12]. Some studies used
Case Based reasoning (CBR) technique where the
fit design pattern is selected according to the
previous experiences of pattern usage stored in a
knowledge base in the form of cases [13], [14].

This paper is contributing in the proposal of a novel
approach for automating the process of selecting the
fit design pattern (from a repository of patterns) to
solve a given design problem. The proposed
approach is based on extending the unigram features
of the traditional vector space model [15], [16] with
topics generated by Latent Dirichlet Allocation

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5070

(LDA) topic model [17], [18]. The recommended
pattern will be the one most similar to the target
problem. Similarity is measured using a modified
version of the Cosine similarity called Improved
Sqrt-Cosine similarity measure (ISCS). The
motivation for this approach could be summarized
as follows:
1. The proposed approach allows the developers to
describe their design problems in natural language.
2. The task of design pattern recommendation is
analog to the text retrieval task.
3. The ability of topic models to analyze a collection
of documents to find out the patterns of word-use
(topics) and how to attach documents that share
similar topics.
4. Topic model which were used to solve other
similar problems in software engineering like
mining bug report repositories for the purpose of
automating bug triage [19]. Bug reports are short
documents written in natural language same as
design problem scenarios. Mining bug repositories
is similar to mining a repository of design pattern
descriptions.

The structure of the paper is as follows: Section 2
introduces Gang of four design patterns. Section 3
explains the proposed approach while section 4
discusses the experiments and the results. Section 5
discusses the previous work in the field of design
pattern selection. Finally, section 6 concludes the
paper and recommends ideas for extending this
work.

2. DESIGN PATTERNS

The concept of design pattern was initiated in
software development in 1994 when four software
engineers published their book titled “Design
patterns: Elements of reusable object oriented
software” [1]. These authors are together popular
with the title Gang of Four (GOF). GOF patterns are
23 patterns. Gamma et al. [5] proposed a two
dimensional matrix categorization to the patterns
based on two criterion which are purpose and scope.
They classified the patterns based on purpose into
three categories which are creational, behavioral and
structural, while they classified the patterns based
on scope into Class inheritance and Object
composition patterns. Research studies were
conducted to classify the design patterns in general
for example Zimmer [20] organized GOF patterns
using three types or relationships which are “uses”,
“is similar to” and “can be combined with” for
example: Composite pattern can be combined with
Iterator pattern, Visitor pattern is similar to Iterator

pattern. Gamma et al. [1] defined a template to
describe the patterns which has two counterparts
which are the pattern’s problem domain and the
solution domain. The problem domain counterpart
includes the intent of the pattern and the context
where the pattern can be applied, while the solution
domain includes mainly the class diagram that
describes the static structure of the pattern,
description of the consequences of applying the
pattern and the anti-patterns. Table 1 shows the
description of the Class Adapter design pattern.

3. METHODOLOGY

Our proposed approach is based on analyzing the
corpus of pattern descriptions to extract the topics,
then transferring each design pattern description
and each problem scenario into a vector of features.
These features are unigrams and topics. The
selected pattern is the one whose vector is the
nearest to the problem vector. Figure 1 illustrates
the steps of the proposed approach which starts
with the textual preprocessing to the corpus of
pattern descriptions followed by two parallel
processes which are: 1) Topics extraction through
training an LDA model, then the generation of a
vector space model of topics (LDA VSM) for the
patterns. 2) Building a vector space model of
unigrams (Unigram VSM). Both of the unigram
and the LDA vector space models are concatenated
such that each pattern will be represented by a
vector of features which includes unigrams and
topics. The built LDA model and the unigram
VSM are used in generating a vector of features for
each target design problem scenario after the
scenario is preprocessed. Finally, the similarity
between the feature vector of the problem scenario
and each design pattern feature vector is computed
and the selected pattern is the one closest to the
problem scenario. The following subsections
discuss these procedures in more details.

3.1. Preprocessing

Each design pattern description and each design
problem scenario is pre-processed through three
activities which are: Tokenization then Noise
Removal then Stemming [15] , [16], as depicted by
figure 2. Tokenization process splits each document
at the delimiters into unigrams (tokens). Afterwards,
all the tokens are transferred into the lower case
such that words like “Object”, “object” and
“OBJECT” are treated the same. Noise removal
stage disregards the non-descriptive words like
linking verbs and pronouns. These non-descriptive
words are considered noise as they increase the size

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5071

of the Vector Space Model and do not contribute to
the retrieval process itself. Finally, the words are
normalized to their root forms through Stemming.
For example a stemmer can reduce each of the
words “creating” and “created” to the word “create”.
Porter stemming algorithm [11] was adopted in our
work.

Table1. Problem and solution domains of Class Adapter design pattern

Intent: Change the interface of a class into another interface. It let the classes work together without
modifying their source code.

Applicability: The Class Adapter pattern is used when:

- You want to reuse an existing class but its interface is not compatible with the interface you need.
- You have a class hierarchy and you need to use one or more subclasses but you need to change their

interfaces. It is impractical to subclass the subclasses to change their interface.
- You need to have classes with incompatible interfaces work together.

Solution Domain:

Structure:

Participants: -Target: Defines the interface that the Client uses.

-Adaptee: The existing class with the interface that needs to be adapted.
ꞏ Adapter: Changes the interface of Adaptee class to the Target class interface.

Collaborations: Client class invoke methods of an adapter object. In turn, Adapter invokes corresponding methods
in the Adaptee class to execute the request.

3.2. Unigram VSM

In this stage each pattern (DP) is represented as a
vector of unigrams. All the vectors have the same
size which is equal to the number of unique words
in the corpus of pattern descriptions. To build the
Unigram VSM [16], all the unique words in the
corpus of patterns are collected and each word is
given an index. The pattern vector will have zeros in
the cells that correspond to the words that do not
exist in the pattern description and ones in the cells
that correspond to the existing words. Equation 1
shows the unigram VSM of N design patterns in a
space of M unique words.

 𝑊ଵ … …. 𝑊ெ

Unigram VSM =

𝐷𝑃ଵ
.
.

𝐷𝑃ே

= ൦

𝑃ଵଵ ⋯ 𝑃ଵெ
⋮ ⋯ ⋮
. ⋯ .

𝑃ேଵ ⋯ 𝑃ேெ

൪ (1)

Where, 𝑃௄௅= {0, 1}, {𝑊ଵ, … . . 𝑊ெሽ are the unique
key words extracted from the pattern descriptions.
And 𝐷𝑃௄= {𝑃௞ଵ, 𝑃௞ଶ … . . 𝑃௞ெሽ

In order to enhance the performance of retrieving
the correct pattern and clean the noises of the
corpus; a feature weighting scheme was adopted,
where the weight of each unigram in the Unigram
VSM reflects the relative importance of this word
for a specific design pattern description within the

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5072

corpus. We adopted TF*IDF weighting scheme [7]
as it is one of the widely used schemes in the field
of information retrieval. TF*IDF stands for Term
Frequency-Inverse Document Frequency. Term
frequency TF (t,d) measures how many times a term
(t) occurs in a document (d). While Document
frequency DF (t,D) measures how many documents
in a corpus (D) the term (t) appears in. Inverse
document frequency IDF (t,D) equals to the inverse
of DF(t,D). Classical TF*IDF is computed by
equation (2) as follows:

 TF ∗ IDFሺt, d, Dሻ ൌ TFሺt, dሻ ൈ IDFሺt, Dሻ
 (2)

 Where, 𝐼𝐷𝐹ሺ𝑡, 𝐷ሻ ൌ 1/𝐷𝐹ሺ𝑡, 𝐷ሻ

TF*IDF value copes with the fact that the repetitive
words in a document usually carry a high level of
information to that document, and that the less
frequent a term is mentioned in a corpus the higher
its importance to the document in which it appears.

However, TF*IDF computed using equation (2)
does not take the document length into
consideration. Also, TF value indicates that if a term
occurs five times in a document, it is five times
more valuable than if it occurs once in the same
document, which is not true. So, other forms to
compute the TF*IDF were recommended in the
literature to make the TF*IDF values correspond to
user intuitions of the relevance of each term. In this
work, equation (3) is used to compute TF*IDF.

𝑇𝐹 ∗ 𝐼𝐷𝐹ሺ𝑡, 𝑑, 𝐷ሻ ൌ 𝑆𝑞𝑟𝑡൫𝑇𝐹ሺ𝑡, 𝑑ሻ൯ ∗ 𝐼𝐷𝐹ሺ𝑡, 𝐷ሻ ∗
1/𝑆𝑞𝑟𝑡ሺ𝑙𝑒𝑛𝑔𝑡ℎሻሻ (3)

 Where, 𝐼𝐷𝐹ሺ𝑡, 𝐷ሻ ൌ logሺ𝑁/ሺ𝐷𝐹ሺ𝑡, 𝐷ሻ ൅ 1ሻሻ

The document length could be disregarded in
equation 3, as each of the design pattern descriptions
and the problem scenarios are short documents.

Topic model (LDA)

Preprocessing

Patterns’ Bag of
words

Unigram VSM

LDA
vectors

Unigram
vectors

Concatination

Design patterns Vectors
of unigrams and topics

Similarity Measure

Selected Pattern

Design pattern
descriptions Corpus

Design Problem
Scenario

Design
Problem
vector of
unigrams
and topics

Problem
Scenario’s

Bag of words

Figure 1. Proposed framework for automatic selection of design pattern

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5073

Tokenization
Stop word
removal

Stemming

Design pattern
description

Or
 Design Problem

Scenario

Bag of key
words

Figure 2. Preprocessing stages of each design pattern description and problem scenario

3.3. Topic Model

Topic model Latent Dirichlet Allocation (LDA) is a
probabilistic generative model that allows the
discovering of topics in a collection of documents
[17], [18]. Each topic includes a group of terms (N-
grams) from the corpus that may occur together.
The terms belong to the topic with different
probabilities. In this paper we consider only 5 terms
(per topic) with highest probabilities.
The distribution of each pattern description and
problem scenario in the produced topics could also
be obtained. This distribution is based on the
appearance of the topic terms in the document of
pattern or problem and is calculated by summing all
terms’ probabilities in each topic. Therefore, each
document could be represented by a vector which
includes the distribution of the document over the
topic, which we called LDA vector. LDA vectors
hold beneficial features to the semantic similarity
between the documents. The number of topics and
number of terms per topic are parameters which
should be selected during the experiments.
In this work, LDA model is trained and topics are
extracted from the corpus of design patterns’
descriptions. Then, LDA VSM is created where
each pattern is represented by a vector which
includes the distribution of the topics over the
description of this pattern. The size of the vectors
is equal to the number of topics.
The topic distributions over the target design
problem is generated (design problem LDA vector)
using the previously trained LDA model.
Furthermore, a vector of unigrams for the target
problem is generated based on the previously built
Unigram VSM. Finally, LDA vectors are
concatenated with the Unigrams vectors for each
design pattern and each design problem.

3.4. Similarity measure

The selected pattern for a given design problem is the
pattern whose vector of unigrams and topics is the closest
to the problem’s vector. Cosine similarity (CS) is one of
the popular measures in text mining as it measures the
angle between the vectors. However, Cosine similarity is

derived from Euclidian distance which is not effective in
text mining applications (examine equations 4 and 5).

CSሺV, Wሻ ൌ
෌ ୴౟୵౟

౤
౟సభ

ඨ෍ ୴౟
మ

౤

౟సభ
ඨ෍ ୵౟

మ
౤

౟సభ

 (4)

Where, 𝑉 is the feature vector of one of one of the
patterns, 𝑊 is the feature vector of the given design
problem and n is the size of the vectors.

𝑑ா௨௖௟௜ௗ ൌ ඥ2 െ 2 ∑ 𝑣௜𝑤௜
௡
௜ୀଵ (5)

Zhu et al. [21] proposed another similarity measure for
information retrieval, called Sqrt-Cosine similarity (SCS).
SCS is derived from Hellinger distance which is meant to
measure the distance between two probabilities. They
conducted text clustering experiments and proved that
using Sqrt-Cosine similarity resulted in better
performance than using Cosine similarity. Hellinger
distance and SCS are given by equations 6 and 7.
Sohangir and Wang [22] proposed a modified version of
SCS and called Improved Sqrt-Cosine similarity (ISCS) as
given by equation 8. They conducted experiments to
compare the impact of using CS, SCS, and ISCS on the
performance of each of the text classification and text
clustering techniques. It was found that ISCS is the
superior similarity measure, than CS then SCS. In this
work we used both of Hellinger distance and ISCS.

𝑆𝐶𝑆ሺ𝑣, 𝑤ሻ ൌ
෍ ඥ௩೔௪೔

೙

೔సభ

ሺ෌ ௩೔
೙
೔సభ ሻሺ෌ ௪೔ሻ

೙
೔సభ

 (6)

𝑑ு௘௟௟௜௡௚௘௥ ൌ ඨ2 െ 2 ෍ ඥ𝑣௜𝑤௜

௡

௜ୀଵ
 (7)

ISCSሺv, wሻ ൌ
෍ ඥ୴౟୵౟

౤

౟సభ

ට෌ ୴౟
౤
౟సభ ට෌ ୵౟

౤
౟సభ

 (8)

The fit design pattern for a given problem scenario
is selected based on one of the following three
cases:

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5074

Case#1: Select the Kth pattern Vk with the highest
value of ISCS (Vk ,W).

Case#2: Select the Kth pattern Vk which satisfy
equation 9.

ISCS (Vk ,W) > 𝜃 (9)

Where, 𝜃 is a threshold value for the similarity

Case#3: Select the Kth pattern Vk which satisfy
equation 10.

|𝐼𝑆𝐶𝑆௠௔௫ െ ISCS ሺVk , Wሻ | ൑ 𝜃 (10)

Where, 𝐼𝑆𝐶𝑆௠௔௫ is the maximum value of similarity
between any design pattern and the given problem
scenario, and 𝜃 is a threshold.

We adopted Case #1 in this work.

3.5. Evaluation metric

 Pattern recommendation problem can be treated as
a classification problem. Where the number of
classes is the number of design patterns included in
the corpus of design pattern descriptions (23
patterns in this paper). So we used micro-average
Precision metric to assess the proposed
methodology. It is evaluated by summing the
individual true positive rates 𝑇𝑃௜ and individual
false positive rates 𝐹𝑃௜ of all the design patterns
(classes). It is given by equation (11) as follows:

𝑀𝑖𝑐𝑟𝑜 െ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
෌ ்௉೔

೘
೔సభ

෌ ்௉೔
೘
೔సభ ା෌ ி௉೔

೘
೔సభ

 (11)

Where, m is number of design patterns, ∑ 𝑇𝑃௜

௠
௜ୀଵ is

the number of correctly recommended design
patterns. While, ∑ 𝐹𝑃௜

௠
௜ୀଵ is the number of

incorrectly recommended patterns. Macro-average
precision could also be used but we selected micro-
average level due to the imbalance in the testing
data used in the evaluation (number of problem
queries are not equal across the design patterns)

4. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of our approach, two
corpus were created. One of which includes the
textual descriptions of the GOF design patterns.
Each pattern document includes the intent and
applicability, in addition to part of the solution
domain (participants, and collaborators). GOF book
in addition to Wikipedia.com were used to prepare
a rich description document to each pattern that

includes the pattern distinctive words. The other
corpus includes 29 real design problem scenarios
collected from various sources including various
design patterns books and Wikipedia.com. We label
each design problem with the fit pattern manually.
We meant to have some design problems written
briefly or poorly to test the robustness of our
approach. Seven samples of these design problems
were defined as follows:
Problem #1: The Company class is the main class
that encapsulates several important features related
to the system as a whole. We need to ensure that
only one instance of this class is present.

Problem #2: The system should have only one
printer spooler although it can identify many
printers.

Problem#3: The system has an interface named
“Media Player”. This interface is implemented by a
concrete class Audio Player. Audio Player has
methods that play mp3 format audio files. There is
another interface AdvancedMediaPlayer which is
implemented by a concrete class
AdvancedAudioPlayer to play vlc amd mp4 format
files. It is required to have AudioPlayer class to use
AdvancedaudioPlayer class to be able to play other
formats.

Problem#4: It is required to use an existing user
interface toolkit in developing software applications
that work on different platforms. Hence, it is
important to include a portable window abstraction
in the toolkit such that the user can create a window
without being committed to a certain
implementation as the window implementation is
related to the application platform.

Problem#5: The system approves purchasing
requests. There are four approval authorities and the
selection of the approval authority depends on the
purchase amount. If the amount of the purchase is
higher than one million dollar, the owner is the one
who approves. However, if it ranges from 500k to
less than one million, the CEO is the one who
approves and if it ranges from 25k to less than 500k,
the head of the department is the one who approves.
Finally, if the purchase is less than 25k, the vice is
the one who approves. The system needs to be
flexible such that the approval authority for each
amount of money can change at run time.

Problem #6: A menu consists of a set of choices
and a mechanism for a user to specify which choice
they want. There are a variety of styles of menus.

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5075

One menu style is to print a number in front of each
string (e.g., 1, 2, and so on) and let the user enter a
number to make a choice. Another menu style prints
a letter in front of each string (e.g., A, B, and so on)
and lets the user enter a letter to make a choice. Still
another menu style prints each string out, and lets
the user type in the first few characters of the string
to make that choice. In general, all of the menus
must provide a way to add entries to the menu,
delete entries, display the menu, and obtain the
user's choice. It should be extremely easy for us to
modify the program so that it uses a different menu
style whenever needed.

Problem # 7: The developer of a game desires the
player to be able to pick up and drop off a variety of
elements which exist in the environment of the
game. Two types of these elements are bags and
boxes, each of which may contain individual
elements as well as other bags and boxes.

Pre-processing was performed using the natural
language toolkit NLTK [23]. While, Genism [24]
was used for training the LDA topic model.
Experiments were tried with the number of topics
set equal to 5, 8, 10 and 20. Number of terms per
topic was set equal to the number of topics. The
best precision obtained during experiments is about
72 % which occurred when setting the number of
topics equal to 8 or 10. Table 2 depicts the sample
of the topics generated. It shows the most important
five terms in each topic and their probabilities.
Table 3 depicts samples of the results. It shows for
each problem scenario listed above, both the correct
and the first three recommended design patterns
using the proposed approach. It should be noted
that although problem #2 is written briefly, the
proposed approach was able to select the right
pattern. According to table 3, a wrong pattern
(Adapter) was selected for problem #6. But experts
agreed that Adapter pattern could fit this problem
scenario. All design problem scenarios of failed
cases were reviewed and it was noted that either
these cases do not include descriptive words of the
pattern, or are not well written such that the
recommended pattern could fit same as the case of
problem #6.

For the purpose of assessing our proposed
approach, two extra experiments were conducted.
In the first experiment, both of the design patterns
and the problem scenarios are represented using
vectors of unigrams only. While in the second
experiment, patterns and problems are represented
using vectors of topics only. ISCS similarity

measure was used in the first experiment while
Hellinger distance was used in the second
experiment. It was found that our proposed
approach is superior to both of the VSM of
unigrams approach and topics only approach in
terms of micro-average precision as illustrated by
table 6. Tables 4 and 5 list the first three selected
patterns in case of using topics only and in case of
using unigrams only. As shown by table 4, topic
only based approach failed to recommend patterns
for some problems and recommended wrong
patterns for others. This is because each of the
pattern descriptions and problem scenarios are short
documents and topics do not hold enough
information to differentiate between the patterns.
As depicted by table 5, unigrams only approach
failed to recommend the fit patterns for some
problems like problem#2 which our proposed
approach succeeded to recommend the correct
pattern for. We found out that integrating topics and
unigrams in representing the patterns and the
problems improved the precision of the
recommendation process and does not have a great
influence on the size of the traditional unigram
VSM.

5. LITERATURE REVIEW

The current research for automatic recommendation
of the fit design pattern can be categorized into four
approaches which are: UML based, question-answer
model based, case based reasoning, anti-patterns
based and finally text based approach. The
following subsections review the previous research
in each of these approaches.

5.1. UML based approach

Kim and Khwand [3], Kim and Shen [4] use class
and collaboration diagrams of the analysis phase to
select patterns for the design phase. To achieve this
purpose they generate a meta-model for each design
pattern from its UML diagrams.
However, this approach has two limitations which
are: 1) the meta- models of some patterns will be
similar as some patterns are similar in their structure
but they have different intent for example, State
versus Strategy patterns and Façade versus Adapter
patterns. 2) This approach is not scalable due to the
overhead resulting from generating the meta-
models. In addition, the increase in the number of
patterns causes an increase in the similarity between
the meta-models).

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5076

Table2. Sample of the topics generated
Topic ID Terms per Topic and their probabilities

1 Object (0.058), operate (0.023), component (0.016), interface (0.015), responsible (0.015)
2 Subsystem (0.047), request (0.037), interface (0.029), object (0.028), class (0.027)
3 Object (0.023), strategy (0.022), algorithm (0.020), state (0.018) , client (0.017)
4 Request (0.034), operation (0.028), command (0.027) , state (0.019), receive (0.016)

Table 3. First three selected patterns and similarity values for each of the 7 design problems listed using the proposed

approach (topics and unigrams)
ID Correct

Pattern
1st Selected Pattern

2nd Selected Pattern

3rd Selected Pattern

1 Singleton Singleton (0.258) Prototype (0.184) Adapter (0.162)
2 Singleton Singleton (0.186) Visitor (0.067) Strategy (0.062)
3 Adapter Adapter (0.407) Bridge (0.307) Composite (0.216)
4 Bridge Bridge (0.422) Facade (0.230) Template (0.166)
5 Chain of

Responsibility
Chain O.R.(0.380) Observer (0.191) State (0.185)

6 Strategy Adapter (0.15) Visitor (0.139) State (0.137)
7 Composite Composite (0.011) Bridge (0.007) Visitor (0.005)

Table 4. First three selected patterns and similarity values for each of the 7 design problems listed using topics only

approach.
Problem
ID

Correct
Pattern

1st Selected Pattern

2nd Selected Pattern

3rd Selected Pattern

1 Singleton Singleton (0.277) Decorator (0.245) Visitor (0.234)
2 Singleton Strategy (0.31) Visitor (0.16) Observer (0.008)
3 Adapter Adapter (0.33) Bridge (0.175) Composite (0.124)
4 Bridge Decorator (0.19) Composite (0.177) Adapter (0.131)
5 Chain of

Responsibility
Failed Failed Failed

6 Strategy Visitor& Strategy
 (0.015)

Singleton& State
 (0.011)

Command& Template
 (0.008)

7 Composite Failed Failed Failed

Table 5. First three selected patterns and similarity values for each of the 7 design problems listed using unigrams only

approach.
Problem
ID

Correct
Pattern

1st Selected Pattern

2nd Selected Pattern

3rd Selected Pattern

1 Singleton Singleton (0.244) Adapter (0.178) Prototype (0.162)
2 Singleton Strategy (0.37) Visitor (0.015) Prototype (0.014)
3 Adapter Bridge (0.241) Visitor (0.124) Composite (0.122)
4 Bridge Bridge (0.272) Façade (0.084) Template (0.076)
5 Chain of

Responsibility
Chain (0.057) Observer (0.03) Command (0.025)

6 Strategy Strategy (0.028) Façade (0.025) Observer (0.022)
7 Composite Composite (0.204) Decorator (0.184) Visitor (0.128)

TABLE 6. Comparison between the precision of our proposed approach, Unigrams only approach and Topics only

approach
Approach Precision
Proposed
(Topics and Unigrams)

72%

Topics only 36%
Unigrams only 60%

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5077

 5.2. Question-Answer Model based Approach
This approach is a semi-automatic approach based
on providing the user with a set of “yes” or “no”
questions which the user answers with “yes”, “no”
or “don’t know”. Based on these answers, patterns
are ranked and the pattern with the highest rank is
the selected one. Palma et al. [5] constructed a Goal-
Question-Metric model (GQM) from the question-
answers to recommend patterns. In this GQM
model, the defined goal is a pattern name. The
system consists of two layers, the first layer has
conditions, where the second layer has sub-
conditions; both of the conditions and sub-
conditions are extracted from the pattern definitions.
The model was evaluated by a total of six graduate
students and two information technology
professionals. The success ratio of the system
reached 50%. Pavlie et al. [6] used the question-
answers to build an ontology-based model for
design patterns recommendations. AlSheikSalem
and Qattous [25] investigated ten patterns of GOF
catalogue and generated the questions that describe
these patterns. They proposed to build an expert
system based on these questions. They developed a
prototype expert system for three patterns only and
had four undergraduate students evaluate the
system. The students mentioned that some
questions were not easy to understand and the
prototype could not provide any recommendations
in many cases.
The main challenge that faces this approach is
constructing the questions especially with the large
number of patterns. Furthermore, the set of
questions is usually biased towards the specifics of
the design patterns themselves rather than the
software design problem.

5.3. Case Based Reasoning (CBR) approach

In CBR approach the fit design pattern is
recommended based on previous experiences
(cases) stored in a repository. Each case comprises
two main parts which are: A description of the
problem and the solution to it (fit design pattern).
Gomes et al. [13] built a repository of cases and
retrieve the closest case from the repository for a
user provided class diagram. While, Muangon and
Intakosum [14] proposed a solution based on Case
Based Reasoning (CBR) and Formal Concept

Analysis (FCA). FCA was used for forming an
index lattice for the design pattern case base.
The core shortcoming of CBR based approach is the
fact that its accuracy relies on both of the quality
and diversity of the case repository.

5.4. Anti-patterns based approach

This approach is based on identifying anti-patterns
at the design level [11] or at the code level [12] then
recommending the suitable pattern. Smith and
Plante [12] recommend patterns at the code-level,
where patterns are recommended dynamically
during the implementation phase. They identify anti-
patterns using structural and behavioral matching in
the code, and then the fit design patterns are
recommended to overcome the identified anti-
patterns. The motivation for this approach is that the
pattern catalogues include information about the
anti-patterns, in addition to the ambiguity exist with
the textual problem scenarios.
However, design pattern recommendation during
implementation phase is too late as the software has
already been designed and should be changed.

5.5. Text based approach

This approach is based on matching the design
problem textual description against design pattern
textual descriptions [7], [8], [9], [10]. Hasheminejad
and Jalili [9] proposed a two phase system. During
the first phase, the category of the patterns the
design problem belongs to is determined. Then, the
recommended pattern is retrieved based on the
Cosine similarity between the textual description of
the problem and each of the patterns that belong to
the apriori determined category. Therefore, they
trained a set of classifiers to recognize the category.
For example they trained three classifiers for GOF
catalogue to differentiate between creational,
behavioral and structural patterns. Sanyawong et al.
[7] grouped GOF patterns based on their usage into
five categories and trained five classifiers to
differentiate between these categories. They used
popular classification techniques: Naive Bayes, J48
and K-nearest neighbor (k-NN). The performances
of Naïve Bayes based classifiers were the lowest
except with one category. However, the core
challenges of these two research studies were the
need to train a large number of classifiers (one
classifier for each category) and the need for an
adequate dataset to achieve an acceptable
classification accuracy. To overcome these
challenges, Hussain et al. [10] proposed to use
unsupervised learning technique (clustering using
Fuzzy C-means) instead of classification (supervised

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5078

learning technique). Suresh [8] proposed a
framework for design pattern recommendation that
depends on two approaches which are: text retrieval
and question-answer. In this framework, the
problem is represented as a collection of unigrams
and matched against the intent of each pattern. Then
the intents of the top candidate design patterns are
displayed for the designer to select the most suitable
pattern. Nevertheless, they have partially
implemented and tested their framework. In addition
to measuring the similarity between the problem
scenario and the pattern intent only will not result in
a high recommendation accuracy.
However the work proposed in [7], [8], and [9] and
[10] suffer from one main shortcoming which is
representing each pattern and each problem as a
vector of unigrams only and did not consider the
semantic similarity between the problem scenario
and the patterns. So the performances of their
models will be very sensitive to the words used in
describing the design problems. This is the reason
we proposed to use topic model in this paper to
enhance the features included in the vector space
model to reduce the sensitivity of the system to the
quality of the problem scenario description.
Moreover, we used the Improved Sqrt-cosine
similarity (ISCS) measure instead of the Cosine
similarity. Using ISCS in addition to enhancing the
feature vectors with the topics improved the
accuracy of recommendation as illustrated in the
experiments section.

6. CONCLUSION AND FUTURE WORK

This paper proposed a novel methodology that
automatically recommends a design pattern to solve
a given design problem scenario. For this purpose
an LDA model was trained and topics were
extracted from the textual description of the design
patterns. LDA model is able to discover the hidden
semantic in a text through relating words with
similar meaning and differentiating between uses of
words with multiple meanings. Then, A vector
space model was constructed to represent each
pattern and the target problem scenario by a vector
of unigrams and topics. Improved Sqrt-cosine
similarity measure was used to measure the
similarity between the target problem and each
pattern. The fit pattern is the closest one to the
problem scenario. To test our approach we had to
build two repositories, one for the design pattern
descriptions and the other for the design problems
as there is no benchmark dataset, researchers can
use. The experimental results illustrated that our
proposed approach is promising and outperforms

the approaches based on unigrams features only or
topics features only in terms of precision.
However, the precision of the proposed approach is
still influenced by two factors which are: Firstly,
the existence of an efficient dataset to the design
patterns descriptions. This dataset should include as
much information as possible about the pattern.
Secondly, the quality of the design problem
scenarios. The more the problem scenario includes
words from the design pattern descriptions, the
higher the probability of recommending the right
design pattern. Using a lexical database like
WorldNet [26] can alleviate the influence of the
second factor on the results.
Currently, we work on extending our datasets to
include more catalogues of patterns which are
patterns of concurrency and security. In addition to,
integrating case based reasoning approach with our
proposed approach to enhance the precision.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
"Design Pattern: Elements of Reusable Object-
Oriented Software." Addison-Wesley, 1995.

[2] N.L. Hsueh, J.-Y. Kuo, C.C. Lin, "Object-
Oriented design: a goal-driven and pattern-
based approach," J. Softw. Syst. Model. 8 (1),
pp.1–18,2007.

[3] D.K. Kim, C.E. Khawand, "An approach to
precisely specifying the problem domain of
design patterns." Journal of Visual Languages
and Computing ,Elsevier 18, 2007, pp.560–
591.

[4] D.K. Kim, W. Shen, "Evaluating pattern
conformance of UML models: a divide and
conquer approach and case studies", Softw. Q.
J. 16 (3), 2008 pp.329–359.

[5] F. Palma, H. Farzin, Y.-G. Gu ́eh ,eneuc,
and N. Moha, “Recommendation System
for Design Patterns in Software
Development: An DPR Overview,” 3rd
International Workshop on Recommendation
Systems for Software Engineering, IEEE,
2012, pp. 1–5.

[6] L. Pavlic, V. Podgorelec, and M. Hericko, “A
Question-based Design Pattern Advisement
Approach,”Computer Science and Information
Systems , vol. 11, no. 2, 2014, pp. 645–664.

[7] N. Sanyawong, E. Nantajeewarawat, "Design
Pattern Recommendation: A Text
Classification Approach". 6th International
Conference on Information and

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5079

Communication Technology for Embedded
Systems, IC-ICTES, 2015.

[8] S. Suresh, M. Naidu, S. A. Kiran, and P.
Tathawade, “Design Pattern Recommendation
System: a Methodology, Data Model and
Algorithms,” in Proceedings of the
International Conference on Computational
Techniques and Artificial Intelligence
(ICCTAI) , 2011.

[9] S. M. H. Hasheminejad, S. Jalili, “Design
patterns selection: An automatic two-phase
method”, Journal of systems and software,
elsevier, 2012, pp. 408-424.

[10] S. Hussain, , J. Keung, A. A. Khan, “Software
design patterns classification and selection
using text categorization approach” Applied
soft computing, 2017, pp. 225-244.

[11] N. Nahar and K. Sakib, "ACDPR: A
Recommendation System for the Creational
Design Patterns Using Anti-patterns," IEEE
23rd International Conference on Software
Analysis, Evolution, and Reengineering
(SANER),2016, Suita, pp. 4-7.

[12] S. Smith and D. R. Plante, “Dynamically
Recommending Design Patterns,” in
Proceedings of the 24th International
Conference on Software Engineering and
Knowledge Engineering (SEKE) , 2012, pp.
499–504.

[13] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P.
Carreiro, J. L. Ferreira, and C. Bento, “Using
CBR for Automation of Software Design
Patterns,” Advances in Case-Based Reasoning,
Springer Berlin Heidelberg , vol.2416, 2002,
pp. 534–548.

[14] W. Muangon and S. Intakosum, “Case-based
Reasoning for Design Patterns Searching
System,” International Journal of Computer
Applications , vol. 70, no. 26, 2013, pp. 16–24.

[15] K. S. Jones and P. Willet, "Readings in
Information Retrieval," San Francisco: Morgan
Kaufmann, 1997.

[16] M. Melucci,"Vector-space model",
Encyclopedia on Database Systems,2009, pp.
3259-3263.

[17] C. Chemudugunta, P.S.M. Steyvers, “Modeling
general and specific aspects of documents with
a probabilistic topic model”, Proceedings of the
20th Annual Conference on Neural Information
Processing Systems, 2007 .

[18] D.M. Blei, J.D. Lafferty, A correlated topic
model of science. Ann. Appl. Stat.,2007,
pp.17–35.

[19] T. Zhang, J. Chen, G. Yang, B. Lee, X. Luo ,
“Towards more accurate severity prediction
and fixer recommendation of software bugs”,
Journal of systems and software, elsevier,2016.

[20] W. Zimmer, “Relationships Between Design
Patterns." In J. O. Coplien and D. C. Schmidt
(eds.), Pattern Languages of Program Design.
Reading, MA: Addison-Wesley, 1995, pp. 345-
364.

[21] S. Zhu , Lizhao Liu, Yan Wang, Information
Retrieval using Hellinger Distance and Sqrt-
cos Similarity, The 7th International
Conference on Computer Science & Education
(ICCSE 2012), Melbourne, Australia, July 14-
17, 2012.

[22] S. Sohangir and D. Wang, “Improved
sqrt‑cosine similarity measurement”, Journal
of Big Data , Springer, 2017.

[23] NTLK http://www.nltk.org

[24] Gensim: https://radimrehurek.com/gensim/

[25] O. AlSheikSalem and H. Qattous, “An Expert
System for Design Patterns Recognition”,
IJCSNS International Journal of Computer
Science and Network Security, VOL.17 No.1,
January 2017.

[26] Wordnet:
http://www.nltk.org/howto/wordnet.html

