
Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5031

AUTOMATIC DATA MODELING TRANSFORMATION
APPROACH OF NOSQL DOCUMENT AND COLUMN

STORES TO RDF

1ABDELJALIL BOUMLIK, 2NASSIMA SOUSSI, 3MOHAMED BAHAJ

Department of Mathematics and Computer Science, Faculty of Sciences and Technology, University
Hassan 1, Settat, Morocco

E-mail : 1boumlik.abdeljalil@gmail.com, 2nassima.soussi@gmail.com, 3mohamedbahaj@gmail.com

ABSTRACT

In this paper, we have proposed a mapping system that makes heterogeneous NoSQL data available in
common machine-readable format. In fact, we aim to virtualize the data stored in different NoSQL
databases with a specific focus on document and column oriented databases types (considered as the most
used ones) using Resource Description Framework (RDF) in order to contribute in the interoperability
between applications that exchange data and process it as machine-understandable information, especially
in the web application domain and offering more opportunities for novel services and applications that have
such needs. In addition, our approach is very useful to carry out some operations that are not currently
supported by NoSQL database systems, also to unify their heterogeneous data models. The proposed
algorithms are based on a set of procedure and methods that we execute at each stage depend on the input
file and as per the mapping rules that we already define. The obtained results via our application were
encouraged and reflect exactly what has been expected and specified.

Keywords: NoSQL-to-RDF, Column-Oriented Database, Document-Oriented Database, Unified NoSQL
Database, Interoperability

1. INTRODUCTION

In recent years, the volume of data in the
web has a widely expansion with a dizzying speed
due to the rapid growth of social media, mobile
applications, web technologies, scientific data,
economic data and others generating a significant
amount of unstructured data every minutes. This
problem has led to the emergence of numerous
technologies offering more robust database
management systems dedicated specially for Big
Data such as NoSQL and Semantic web worlds
representing the subject of this paper.

The Semantic Web [1] is an extension of
the current web in which information is given well-
defined meaning, better enabling computers and
people to work in cooperation; it is largely
recognized by its ability to exchange data over the
web relying on RDF format. This Framework
allows representing data with a set of RDF triples;
each triple contains a subject, predicate and object.
It is promoted by Open Data and Linked Open Data
thanks to its way of connecting data by linking
objects representing by unique identifiers. Besides
of Semantic Web, NoSQL [2] have experienced a

widely expansion due to its high ability to manage
Big Data [3]. It is a no relational database
management system dedicated to manage
heterogeneous and unstructured data. This systems
avoids join operations and supports dynamic
schemas design offering to web users a high
flexibility and scalability. Since this two systems
aim to make the big data processing smarter,
therefore establishing a bidirectional connection
between them is a very relevant need. In addition, a
considerable number of RDF data management
problems require the intervention of Big Data
infrastructure. All these raisons have motivated us
to write the current paper, which is, to the best of
our knowledge, the first work proposing a detailed
mapping solution for NoSQL-to-RDF direction so
as to carry out some operations not supported by
NoSQL systems and to unify the heterogeneous
NoSQL databases model.

In our proposed approach, we have chosen
to use the RDF model for representing the NoSQL
data because this model is considered as a standard
for exchanging information on the web in addition
to its characteristic of being interpretable and
exploitable by machines, so as to contribute in

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5032

interoperability between applications and minimize
human intervention. In this regard, we have
established a mapping system that convert NoSQL
data which is supposed to be exploitable by
machines to RDF format, with a specific focus on
column and document-oriented databases
considered as the most used ones.

Regarding document-oriented databases,
we will focus on these handling data encapsulated
in a JSON format. In fact, this type of databases
takes advantages of JSON flexibility that allow
users to manipulate the data without defining its
schema in advance, the same is an important plus-
value that will facilitate the rapid integration of data
from different sources, therefore, the elimination of
an enormous part of schema design problems and
challenges that requires considerable efforts and
knowledge to be addressed properly.

The remainder of this paper is organized as
follows. Section II exposes a brief description of the
most recent approaches and discuss related works
by providding a comparison study. Section III
present a theory background of the different types
of NoSQL databases and Semantic Web data model
(RDF). Section IV presents our main contribution
starting with the description of our proposed
solution by detailing all procedures used in our
model transformation algorithm of document and
column oriented databases to RDF, then we give
some examples for each database type. Section V,
describes the application that we have developed so
as to validate and improve our proposed solution.
Finally, section VII concludes this work and
suggests some future extensions of this approach.

2. RELATED WORKS

Recently, significant and considerable
efforts have been invested in the definition of tools
which allow transforming several kinds of data
sources into RDF format.

Regarding relational databases, the RDB-
to-RDF [4,5] mapping is considered recently as a
very pertinent research topic. In fact, various
mapping methods are defined (Triplify, Virtuoso,
eD2R, D2RQ, R3M, etc.…). in addition to the main
used one R2RML, and several implementations
already exist [6].

Likewise, various solutions exist to map
CSV and spreadsheets data to RDF such as
XLWrap [7], Mapping Master [8], Tarql [9] and
Vertere [10]. The XLWrap mapping language is

based on an RDF-centric mapping approach that
allows mapping of information stored in different
spreadsheets to arbitrary RDF graphs independent
from the representation model. Mapping Master or
M2 language is based on an extension of the OWL
Manchester Syntax; this method converts data from
spreadsheets into the Web Ontology Language.
Tarql is a command-line tool for converting CSV
files to RDF using SPARQL 1.1 syntax. Vertere is
a spreadsheet-to-RDF conversion tool based on
templating mechanism.

Concerning XML-to-RDF, several
mapping tools have been developed in order to
ensure this conversion. The XSPARQL [11] is a
mapping language which combines XQuery and
SPARQL so as to query XML and RDF data using
the same framework and transform data from one
format into the other. On the other hand, there are
numerous mapping tools based on XSLT
technology such as a generic transformation of
XML data into RDF named AstroGrid-D [12],
XML Scissor-lift [13] solution uses Schematron’s
instructions to validate the mapping rules tests, and
Krextor library [14]. Similarly, different method
exist based on XPath, we quote as example the
Tripliser [15] and XML2RDF [16],[17].

On the other hand, and in order to deal
with the interoperability challenges related to
syntax and semantic heterogeneity between NoSQL
databases, several approaches have been proposed
to address the adaptation challenge of these
databases into RDF stores, so as to unify their data
model and make it machine-readable, however, all
existing approaches have the same and common
weakness since they propose limited set of
transformation rules without considering the
required high level of abstraction to ensure this
interoperability.

We expose recent methods: xR2RML in
papers [35], [36] and RDF-ization in paper [37] that
generally consist of transforming the raw data from
different sources to RDF, including NoSQL ones.
Although, these approaches do not propose a strong
transformation algorithm to ensure this migration,
but they illustrate just some features supported by
their solution only. In addition, no one of them
supports column-oriented databases.

The authors in [18] propose a systematic
attempt at characterizing and comparing NoSQL
stores for RDF processing; they study just their
mapping applicability but they don’t trait the

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5033

interoperability between these two heterogeneous
systems.

The work described in [19] performs
hybrid query processing by integrating both SQL
and NoSQL data into a common data format
(RDF); during this process, the authors have
developed a very basic mapping algorithm for
transforming NoSQL data (MongoDB) to RDF.

From the above analysis, it has been
apparent that most recent contributions in this field
contains limited rules and applied just to NoSQL
document-oriented databases, with a specific focus
on ones having JSON format as a data model, while
they don’t define a clear algorithms or
correspondence rules to ensure a better semantic
preservation during data exchange compared to our
work. In this paper, we present a novel solution in
terms of scope, methodology and techniques to
generate Linked Data based on column-oriented
databases in addition to document-oriented ones by
establishing and advanced, automatic and well-
arranged conceptual correspondence algorithms
designed with a global functionalities and
components that transform each database model to
its equivalent RDF components characterized by a
simple and powerful structure of triples (Subject-
Predicate-Object) very similar to human language
(Subject-Verb-Object), in one single system called
NoSQL2RDF.

3. THEORY BACKGROUD

3.1 NoSQL Databases
As we mentioned previously, NoSQL is a

no relational database management system
dedicated to manage heterogeneous and
unstructured data [20]. From our investigation, we
can categorize NoSQL database in two major areas
that we present below:
- Key/Value Store Databases or ‘the big hash

table’: Amazon S3 (Dynamo) [21] , RIAK
[22].

- Schema-Less, which comes in multiple flavors
and differenct formats as below: Document-
Oriented Databases (CouchDB [23] and
MongoDB [24]), Column-Oriented Databases
(Big Table [25] and Cassandra [26]) and
Graph Databases (Neo4j [27]).

In this paper, we are interested specifically
in Document-Oriented and Column-Oriented
Databases, that we present in the next paragraphs.

3.1.1 Document-oriented stores
Document-Oriented databases are most popular
among other NoSQL types for deeper nesting
structures that offers high performance, availability
and automatic scaling. This type of database
encapsulates “key-value” concept, while key is an
ID of the document and the value is the document
itself, which can be retrieved by an ID. Data is
stored as a collection of documents D equivalent to
records in relational databases.

There are various formats that can be
relies on a structure or metadata for document-
oriented databases such as XML, YAML, JSON
and BSON, but most of the time, it relies on JSON
(JavaScript Object Notation), hence there is no
restriction to use same schema format, which
means, each document can contain similar or
dissimilar data structure. In this work, we made the
choice to use document-oriented stores with
JSON/BSON data model [28] as illustrated in
figure 1, due to their utilization and reputation
around the globe such as CouchDB and MongoDB
to provide general solutions based on popular tools.

Each document Di contains a set of
Key/Value pairs (Pi j = (Ki

j, Vi
j)), Di = {(Ki

1,Vi
1),

(Ki
2,Vi

2), ..., (Ki
m,Vi

m)} with j∈[1,m]; such value
may have a simple (Number, String) or complex
(Array, embedded document) type. Formally, these
documents are grouped into collections C = {D1,
D2,..., Dn}.

Figure 1: Meta-model Of Document-Oriented Stores
Based On JSON/BSON.

3.1.2 Column-oriented stores
The Column-Oriented Database has a special
structure dedicated to accommodating many
columns (up to several millions) for each line. The
main benefit of using columnar databases is that
you can quickly access a large amount of data, also
it is ease of scaling because data is stored in
columns, that’s why they are mainly used for
keeping non-volatile, long-living information and

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5034

in scaling use cases. The stored data is based on the
sort order of the column family.

This type of NoSQL database offers a high
scalability in data storage and flexible schema due
to the number of columns that can change from one
row to another. We can consider that a column
exists if contains a value. At first blush, the
Column-Oriented Database looks very like
relational database, but the concept is completely
different. The model of column-oriented database,
as illustrated in figure 2, is composed of a set of
tables; each table contains in its turn a set of rows T
= {R1, R2, ..., Rn}. Each row can be represented as
Ri = (IDi, (CFi

1, CFi
2…, CFi

m)) with IDi is a row id
and CFi

j is a column family of the row Ri. A
column family can contain a numerous columns
CFi

j = {(Ci
j1, vi

j1), (Ci
j2, vi

j2), …, (Ci
jp, vi

jp)}.

Figure 2: Meta-model Of Column-Oriented Stores

3.2 Semantic Web: RDF Stores

The RDF is a graph model designed to
formally describe web resources and metadata to
enable automatic processing of such descriptions.
Developed by the W3C, RDF is the basic language
of the Semantic Web widely used. Several common
serialization formats are in use, we quote as
example: Turtle [29], N-Triples [30], N-Quads [31],
JSON-LD [32], Notation 3 (N3) [33], RDF/XML
[34]. In this study, we are only interested about
RDF/XML serialization syntax that we described in
figure 3.

Figure 3: Meta-model of RDF Store’s Concept

4. FRAMEWORK DESCRIPTION

This section presents important phases in
the proposed framework, that leads to the
realization of our goal using the architecture
illustrated in Figure 4, it is consisting of layers,
which are NoSQL databases as input, Data models,
NoSQL2RDF converter, and finally the generation
of RDF triple stores. We describe below the details
of each phase.

Figure 4: Global Architecture of NoSQL To RDF
Mapping System

 Phase 1: Filtering and Extracting of data

In this phase from our mapping system, we have
started by applying a filtering operation of the
targeted NoSQL data that needs to be extracted and
exploited by machines. After depth analysis, we
chose to use JSON format to represent data for all
document-oriented databases like MongoDB. From
other hand, we used the column-oriented tables to
represent data of oriented column databases.

 Phase 2: Mapping process

This phase is referring to the Data model layer,
which can distinguish between the type of databases
(document or column oriented) that will be
processed and moved to NoSQL2RDF layer which

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5035

makes the reel conversion based on the input
database type.

- For NoSQL document-oriented databases, the
generated JSON file is retrieved using the
JSON2RDF component that decompose this
collection of documents and transform them to
a list of data in order to facilitate access to each
one and convert it to its equivalent clause in
RDF model via DocumentConverter
component. Finally, the main component
JSON2RDF concatenates the previous results
and generates the equivalent RDF file.

- For NoSQL column-oriented databases, and in
order to avoid reinventing the wheel, we
challenged ourselves to process this type of
NoSQL databases, by adding to our mapping
layer NoSQL2RDF the new component
Table2Json which is in charge of converting
the column-oriented database model,
represented as an oriented column table to a
JSON format based on a set of matching rules
that express the semantic correspondence
between these two models. Thereafter, we
continue the same previous conversion process
using the core component JsonToRDF to
generate the equivalent RDF file.

5. PROPOSED FRAMEWORK

In this section, we present briefly our
contribution and the solution by detailing all
procedures used in our proposed model of
transformation algorithms for both document and
column oriented databases to RDF stores (global
schema in figure 4), and then we give some
examples for each database type to simplify the
logic.

4.1 Document-Oriented Stores Model to RDF
Transformation

At this stage, we will detail our conversion
algorithm for document-oriented database model
(JSON/BSON) to RDF by describing the principals
procedures (JsonToRdf and DocumentConverter)
used to achieve this aim.
4.1.1 Procedure JsonToRdf
The first procedure “JsonToRdf” takes a JSON File
as input and generate at the end an equivalent RDF
file. Firstly, it decomposes the JSON file to extract
all documents encapsulated in this input file, and
stores them in a list for further use, then, it glances
through this list of documents and convert each one
to its equivalent in RDF via DocumentConverter
sub procedure that will be presented in the next
paragraph.

Input : jsonFile
Output : RDFfile
Begin

RDFfile = ‘’
nsLabel = ‘ns’; nsValue = jsonFile.getPath()
ReadJsonFile(jsonfile)
List Documents = jsonFile.getDocuments()
If (Documents.isEmpty() = False)
Then

RDFfile += '<rdf:RDF xmlns
="http://www.w3.org/1999/02/22-rdf-syntax-ns#" '

RDFfile += nsLabel+'="'+nsValue+'">'
For (i =0; i< Documents.getLenght(); i++)

RDFfile +=
DocumentConverter(Documents[i], nsLabel)

End for
End if
RDFfile += '</rdf:RDF>'
Return RDFfile

End

4.1.2 Sub procedure DocumentConverter
This sub procedure concists to glances through
document’s children and convert them to an RDF
equivalent components by adopting the rules
defined in table 1 which represents the semantic
correspondance of each component between
JSON/BSON and RDF.

Table 1: Correspondence Rules Between JSON and RDF.

JSON
component

RDF component

JSON Path Xmlns:NS (Namespace)
Document <rdf:Description/>
Id IdAttribute (rdf:about)
Key (type =
Simple)

<NS:KeyName/>

Key (type =
List) For
Disordered
List

<NS:KeyName >
<NS:Bag>
<rdf:li>Data</rdf:li> </NS:Bag>
</NS:KeyName >

Key (type =
List) For
Ordered List

<NS:KeyName ><NS:Seq>
<rdf:li>Data</rdf:li></NS:Seq>
</NS:KeyName >

Key (type =
Embedded
Document)

<NS:KeyName><NS:Bag>
<rdf:li><rdf:Description/></rdf:li>
</NS:Bag></NS:KeyName>

Input : JsonDocument, nsLabel
Output : TextFile
Begin
TextFile = ' '
ReadJsonFile(Jsonfile)
If (JsonDocument.isEmpty() = False) Then
 TextFile += '<rdf:description'
 List Children = JsonDocument.getChildren()
 For (i =0; i< Children.getLenght(); i++)

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5036

 Key = Children[i].getKey()
 Value = Children[i].getValue()
If (Key = '_id') Then
 TextFile += 'rdf:about = "'+Value+'" >'
Else
 TextFile += '>'
End if
If (Value.getType() = simpleValue) Then
 TxtFile += '<'+nsLabel+':'Key+'>'+Value+'</'+
nsLabel+ ':'+Key+'>'
ElseIf (Value.getType() = Array()) Then
 TextFile+ ='<'+nsLabel+':'Key+'>'
 TextFile+ ='<rdf:Bag>'
For (j=0; j< Value.getLenght(); j++)
TextFile+ ='<rdf:li>'+Value[j]+'</rdf:li>'
End For
TextFile +='</rdf:Bag>'
TextFile += '</'+nsLabel+':'+Key+'>'
ElseIf(Value.getType() = ComplexeType)Then
If (Value.getLenght() = 1) Then
TextFile += DocumentConverter(Value, nsLabel);
Else
TextFile += ‘<rdf:Bag>’
 For(k =0; k<Value.getLenght(); k++)
 TextFile += ‘<rdf:li>’
 TextFile +=
DocumentConverter(Value[k], nsLabel)
 TextFile += ‘<rdf:li>’
 End For
 TextFile += ‘</rdf:Bag>’
End If
End If
End For
TextFile += '</rdf:description>'
End If
Return TextFile
End
4.1.3 Technical implementation
To test and validate our solution, we used the below
case study in which we consider a JSON file
illustrated in the figure 5 containing two documents
encapsulating a set of PhD students information
with different types such as name, age, status,
experiences and diplomas having simple type
(Number or String), List and Embedded document
type respectively. Starting from this JSON file, we
have established the equivalent RDF file
(represented in figure 6) based on the conversion
algorithm defined previously.

Figure 5: Collection of Documents

{ _id : “http://fsts.com/phdStudent /100”,
name : “Abdeljalil Boumlik”,
age : 28,
status: “phd student”,
university : “FST”,
experiences : [“Senior Programmer”, “Support
Engineer”, “System Analyst”],
diplomas : [
{diploma : “Bac” , mention : “pretty good”},
{diploma : “Licence” , mention : “good”},
{diploma : “Master” , mention : “good”}]
}
{ _id : “http://fsts.com/phdStudent/101”,
name : “Nassima Soussi”,
age : 26,
status: “phd student”,
university : “FST”,
experiences : [“DBA”, “Computer Engineer”, “Web
Designer”],
diplomas : [{ diploma : “Bac” , mention : “good” } ,
{ diploma : “Engineering”, mention : “good” }] }

<rdf:RDF xmlns =“http://www.w3.org/1999/02/22-
rdf-syntax-ns#”xmlns:s=“http:://fsts.com/doctorate”
>
<rdf:Description rdf:about=
“http:://fsts.com/phdStudentId/100” >
<s:name> Abdeljalil Boumlik </s:name>
<s:age> 28 </s:age>
<s:status> phd student </s:status>
<s:university> FST </s:university>
<s:experiences> <rdf:Bag>
<rdf:li> Senior Programmer </rdf:li>
<rdf:li> Support Engineer </rdf:li>
<rdf:li> System Analyst </rdf:li>
</rdf:Bag> </s:experiences>
<s:diplomas> <rdf:Bag>
<rdf:li><rdf:Description>
<s:diploma> Bac </diploma>
<s:mention> pretty good </mention>
</rdf:Description></rdf:li>
<rdf:li><rdf:Description>
<s:diploma> Licence </diploma>
<s:mention> good </mention>
</rdf:Description></rdf:li>
<rdf:li><rdf:Description>
<s:diploma> Master </diploma>
<s:mention> good </mention>
</rdf:Description></rdf:li>
</rdf:Bag></s:diplomas></rdf:Description>
<rdf:Description rdf:about=
“http:://fsts.com/phdStudentId/101” >
<s:name> Nassima Soussi </s:name>
<s:age> 26 </s:age>
<s:status> phd student </s:status>
<s:university> FST </s:university>
<s:experiences>

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5037

Figure 6: Generated Equivalent RDF File

4.2 Column-Oriented Stores Model to RDF
Transformation

This paragraph describes our conversion
algorithm of Column oriented database model to
RDF based on the previous algorithm. Firstly, we
convert the column-oriented database model to
JSON model via the sub procedure TableToJson by
respecting the correspondence rules defined in table
2, and then we continue the conversion process
using the previous algorithm for transforming
JSON files to RDF.

Table 2: Correspondence Rules Between Column-

Oriented DB And JSON.

Column-oriented DB
Component

JSON Component

Record Document
ID _id
Column Family Key
Column Family’s
Columns

Value of the type Document
or Embedded Document

We will detail our conversion algorithm

for column-oriented database to RDF by describing
the principals procedures (ColumnToRDF and
TableToJson) used to achieve this aim.
4.2.1 Procedure ColumnToRdf
This procedure takes as input the column-oriented
table in order to convert it to a JSON format using
the sub-procedure TableToJson and continue the
same previous process to obtain the RDF equivalent
file.
Input : Column-Oriented Table (T[N,M])
Output : RDF file (rdfFile)

Begin
jsonFile = TableToJson(T)
rdfFile = JsonToRdf(jsonFile)
Return rdfFile

End
4.2.2 Sub procedure TableToJson
This sub procedure aim to convert the column-
oriented table to a json file by adopting the
following algorithm:
Input : Column Oriented Table (T[N,M])
Output : JsonFile
Begin
JsonFile= ‘’, ColumnLabel = ‘’
List SubColumns = Null
For(i=0; i<N; i++)
 If (T[i,M].isEmpty() = False) then //if the record
isn’t empty
JsonFile += ‘{’; //the beginning of the document
 For(j=0; j<M; j++)
 If (T[i,j].getType().isId() = True) then
JsonFile += ‘_id :’ + T[i,j] + ‘,’
 Else if (T[i,j].isEmpty() = False) then
ColumnLabel = T[i,j].getColumnLabel()
SubColumns = T[i,j].getSubColumns()
JsonFile += ColumnLabel + ‘:’ + ‘{’
 For(k=0; k< SubColumns.size(); k++)
SubColLabel = SubColumns[k].getLabel()
SubColValue = SubColumns[k].getValue()
JsonFile += SubColLabel + ‘:’
 If (SubColValue.isString() = True) then
JsonFile += ‘ “ ’ + SubColValue + ‘ ” ’ + ‘,’
 Else if (SubColValue.isNumber() = True) then
JsonFile += SubColValue + ‘,’
 Else if (SubColValue.isList() = True) then
JsonFile += ‘[’
 For (l=0; l<SubColValue.size(); l++)
JsonFile += SubColValue[l]
 If (l< SubColValue.size()-1) then
JsonFile += ‘,’
 End if
 End for
JsonFile += ‘]’
 End if
 End for
JsonFile += ‘}’ + ‘,’
 End if
 End for
JsonFile += ‘}’ //end of document
 End if
 End for
Return JsonFile
End
4.2.3 Technical implementation
The example described below presents a column-
oriented database table (table 3) named Person

<rdf:Bag><rdf:li> DBA </rdf:li>
<rdf:li> Computer Engineer </rdf:li>
<rdf:li> Web Designer </rdf:li></rdf:Bag>
</s:experiences>
<s:diplomas><rdf:Bag>
<rdf: li><rdf:Description>
<s:diploma> Bac </diploma>
<s:mention> good </mention>
</rdf:Description></rdf:li>
<rdf:li>
<rdf:Description>
<s:diploma> Engineering </diploma>
<s:mention> good </mention>
</rdf:Description>
</rdf:li></rdf:Bag>
</s:diplomas>
</rdf:Description>
</rdf:RDF>

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5038

(TPerson) containing four columns families CFi
Name,

CFi
Address and CFi

Job defined as follow:
CF100

Name= {(LastName, “Boumlik”)}
CF100

Job= {(Place, “Casablanca”), (Company,
“CompX”)}
CF101

Name= {(FirstName, “Nassima”), (LastName,
“Soussi”)}
CF101

Address = {(City, “Khouribga”)}
CF101

Job = {(Profil, “Engineer”)}

Starting from the table TPerson, we have generated
the equivalent JSON file represented in figure 7
based on the table 2 that contains the
correspondence rules between column-oriented
database table and JSON file. Then, we have
constructed easily the equivalent RDF file
represented in figure 8 from this JSON file based
on our previous algorithms.

Table 3: Example of Column-Oriented Database Table

(TPerson).

ID Name Address Job
… … … …

100

LastName

Boumlik

Place

Casablanca

Company

CompX
101

FirstName

Nassima

LastName

Soussi

City

Khouribga

Profil

Engineer

… … … …

Figure 7: The Equivalent JSON File of TPerson Table

Figure 8: RDF Equivalent File Of Table Person

6. IMPLIMNETATION

To validate our approach, we have
developed an application, as illustrated in figure 9,
figure 10 and figure 11, with java programming
language aiming to establish a system ensuring a
mapping from NoSQL databases models
(Document and Column oriented databases) to RDF
format. The experiments were carried out on the PC
with 2.4 GHz Core i5 CPU and MS Windows
Seven Titan.

During our development, we decide to
make a single application that manage the mapping
for both databases models to RDF, for that we tried
to find a common points between these models to
base our application on it, then, we found out that
both database models can be exported to JSON
format directly or by using some open source tools
which allow us to generate the JSON files from
existing databases, like ‘sstable2json’ that was
provided by apache community to users.

This tool was giving us the possibility to
have a structured JSON file that respond to our
needs from usability and formats perspectives. The
same processing rules and stages will be applied on
JSON file generated by this tool, for column-
oriented database or the one that we create for
document-oriented database, below we present the
steps that we follow before generating the RDF
equivalent format via the application:

{ _id : 100,
Name : { LastName: “Boumlik”},
Job : { Place: “Casablanca”, Company: “CompX”},
}
{ _id : 101,
Name : { FirstName: “Nassima”, LastName: “Soussi”},
Address : { City: “Khouribga” },
Job : { Profil: “Engineer”},
}

<rdf:RDF xmlns=“http://www.w3.org/1999/02/22-rdf-
syntax-ns#”s=“http:://fsts.com/Person” >
…
<rdf:Description rdf:about= 100 >
<s:Name><rdf:Description>
<s:LastName> Boumlik </s:LastName>
</rdf:Description></s:Name>
<s:Job><rdf:Description>
<s:Place> Casablanca </s:Place>
<s:Company> CompX </s:Company>
</rdf:Description></s:Job>
</rdf:Description>
<rdf:Description rdf:about= 101>
<s:Name><rdf:Description>
<s:FirstName> Nassima </s:FirstName>
<s:LastName> Soussi </s:LastName>
</rdf:Description></s:Name>
<s:Address><rdf:Description>
<s:City> Khouribga </s:City>
</rdf:Description></s:Address>
<s:Job><rdf:Description>
<s:Profil> Engineer </s:Profil>
</rdf:Description></s:Job>
</rdf:Description>
...
</rdf:RDF>

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5039

Step 1: consists to upload the JSON file generated
from a MongoDB database or sstable2json tool
available in Cassandra distribution. This JSON file
contains a collection of documents supposed to be
represented as a Liked Data via RDF model (figure
9).

Figure 9: Upload JSON File To The Application

Step 2: at this level, our system takes as input the
generated JSON file (figure 10) in order to
transform each document in this collection, or even
each pair key/value, to its semantically equivalent
RDF triples by adopting a set of matching rules
(Table 1) to facilitate the mapping between these
two heterogeneous models (JSON and RDF). The
Concatenation of previous intermediate results
leads to generate the equivalent RDF model (Figure
11).

 Figure 10: Read JSON File By The Application

Figure 11: Result Of Processing JSON File To RDF

7. RESULTS AND ANALYSIS

Our approach contributes in the
interoperability between the two major pillars of
managing a large amount of data: NoSQL and
Semantic web by proposing an efficient mapping
system that makes NoSQL data (with a specific
focus on column and document-oriented database
types) available in RDF stores in order to be
exploitable semantically.

Regarding the NoSQL document-oriented
database’s model, we have interested specially to
JSON as a data tree that provide support for a
simple writing in text format, and natively
interpretable unlike XML which needs parsing and
sometimes DOM/XSLT to access its structure and
content; in addition the NoSQL databases having
JSON as a data model is considered as the most
used such as MongoDB and CouchDB. In fact, we
have started with the decomposition of JSON file in
order to extract the different documents
encapsulated in this collection, and then we have
converted all pairs for each document to their
semantic equivalent RDF components based on the
correspondence rules defined previously in table 1.

Concerning the NoSQL column-oriented
database, we have converted its data model to
JSON format by respecting the correspondence
rules defined in table 2, and then we continue the
conversion process using the previous algorithm for
transforming JSON file to RDF.

Our solution is very helpful for
organizations working entirely with NoSQL
databases and aiming to expose some data to be
exploitable semantically without spending so much
in the training of their users in the semantic
technologies new for them, in addition, this solution

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5040

is beneficial for unifying the heterogeneous NoSQL
databases model.

8. CONCLUSION

The principal aim of this paper is to
conceive an interoperability context between the
two main pillars of managing large amount of data:
NoSQL and Semantic web that offer to users a
better profit and maximum exploitation of web
resources. Through this work, we have contributed
in realizing this goal by exposing NoSQL data
which is supposed to be exploitable by machines
into RDF format in order to facilitate and improve
the interoperability between web applications
without human intervention. In fact, we have
elaborating an efficient conversion model algorithm
which transform each model of NoSQL databases
treated in our work (Document and Column
oriented database) to its equivalent RDF format. In
addition, we have developed a portable java
application that consume JSON file and makes the
transformation to RDF model.

Our subsequent work will be focused on
enhancing and reinforcing our approach by
automating the first step of filtering and extracting
data before starting the mapping process. We aim
also to support more NoSQL database types (Key-
Value and Graph Databases).

REFRENCES:
[1] Berners-Lee, T., Hendler, J., & Lassila, O. (2001).

The semantic web. Scientific american, 284(5), 28-
37.

[2] Strauch, C., Sites, U. L. S., & Kriha, W. (2011).
NoSQL databases. Lecture Notes, Stuttgart Media
University, 20.

[3] Sri, P. A., & Anusha, M. (2016). Big Data-
Survey. Indonesian Journal of Electrical
Engineering and Informatics (IJEEI), 4(1), 74-80.

[4] Michel, F., Montagnat, J., & Faron-Zucker, C.
(2014). A survey of RDB to RDF translation
approaches and tools (Doctoral dissertation, I3S).

[5] Hert, M., Reif, G., & Gall, H. C. (2011,
September). A comparison of RDB-to-RDF
mapping languages. In Proceedings of the 7th
International Conference on Semantic Systems (pp.
25-32). ACM.

[6] Villazón-Terrazas, B. & Hausenblas, M. (2012).
RDB2RDF Implementation Report.
https://www.w3.org/TR/rdb2rdf-implementations/.
Accessed October 8, 2016.

[7] Langegger, A., & Wöß, W. (2009, October).
XLWrap–querying and integrating arbitrary
spreadsheets with SPARQL. In International
Semantic Web Conference (pp. 359-374). Springer
Berlin Heidelberg.

[8] O’connor, M. J., Halaschek-Wiener, C., & Musen,
M. A. (2010, November). Mapping master: a
flexible approach for mapping spreadsheets to
OWL. InInternational Semantic Web Conference
(pp. 194-208). Springer Berlin Heidelberg.

[9] Cyganiak, R. (2015). Tarql.
https://github.com/cygri/tarql. Accessed August 15,
2016.

[10] Möller, K. (2012). Vertere-RDF.
https://github.com/knudmoeller/Vertere-RDF.
Accessed August 15, 2016.

[11] Bischof, S., Decker, S., Krennwallner, T., Lopes,
N., & Polleres, A. (2012). Mapping between RDF
and XML with XSPARQL. Journal on Data
Semantics,1(3), 147-185.

[12] Breitling, F. (2009). A standard transformation
from XML to RDF via XSLT.Astronomische
Nachrichten, 330(7), 755-760.

[13] Fennell, P. (2014). Schematron-more useful than
you’d thought. XML LONDON 2014.

[14] Lange, C. (2011, July). Krextor-an extensible
framework for contributing content math to the Web
of Data. In International Conference on Intelligent
Computer Mathematics (pp. 304-306). Springer
Berlin Heidelberg.

[15] Rogers, D. (2011). Tripliser.
http://daverog.github.io/tripliser/. Accessed August
15, 2016.

[16] Huang, J. Y., Lange, C., & Auer, S. (2015,
September). Streaming Transformation of XML to
RDF using XPath-based Mappings. In Proceedings
of the 11th International Conference on Semantic
Systems (pp. 129-136). ACM.

[17] Huang, J. Y. (2016). XML2RDF.
https://github.com/allen501pc/XML2RDF. Accessed
October 8, 2016.

[18] Cudré-Mauroux, P., Enchev, I., Fundatureanu, S.,
Groth, P., Haque, A., Harth, A., ... & Wylot, M.
(2013, October). Nosql databases for rdf: an
empirical evaluation. In International Semantic Web
Conference (pp. 310-325). Springer Berlin
Heidelberg.

[19] Michel, F., Djimenou, L., Faron-Zucker, C., &
Montagnat, J. (2015, October). Translation of
relational and non-relational databases into RDF
with xR2RML. In 11th International Confenrence on
Web Information Systems and Technologies
(WEBIST'15) (pp. 443-454).

[20] Pratiba, D., Deepak, D., & Shwetha, S. (2016).
Comparative Analysis of NOSQL
Databases. Indonesian Journal of Electrical
Engineering and Computer Science, 3(3), 601-606.

[21] Voegels, W. (2012). Amazon DynamoDB—a fast
and scalable NoSQL database service designed for
Internet-scale applications.

[22] Docs, R. (2015). Riak documentation.
[23] Anderson, J. C., Lehnardt, J., & Slater, N. (2010).

CouchDB: the definitive guide. " O'Reilly Media,
Inc."

[24] Chodorow, K. (2013). MongoDB: the definitive
guide. " O'Reilly Media, Inc.".

Journal of Theoretical and Applied Information Technology
15th August 2018. Vol.96. No 15

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5041

[25] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., Burrows, M., ... & Gruber, R. E.
(2008). Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer
Systems (TOCS), 26(2), 4.

[26] Hewitt, E. (2010). Cassandra: the definitive guide. "
O'Reilly Media, Inc.".

[27] N. Technologies, (2013). The Neo4j Manual
v1.9.M04.

[28] Yusof, M. K. (2017). Efficiency of JSON for Data
Retrieval in Big Data. Indonesian Journal of
Electrical Engineering and Computer Science, 7(1),
250-262.

[29] Beckett, D., Berners-Lee, T., Prud’hommeaux, E.,
& Carothers, G. (2014). RDF 1.1 Turtle–Terse RDF
Triple Language. W3C Recommendation. World
Wide Web Consortium (Feb 2014), available at
http://www. w3. org/TR/turtle.

[30] Beckett, D. (2014). RDF 1.1 N-Triples: A line-
based syntax for an RDF graph.W3C
Recommendation, http://www. w3. org/TR/n-triples,
25.

[31] Carothers, G. (2014). RDF 1.1 N-Quads: A line-
based syntax for RDF datasets.W3C
Recommendation.

[32] Davis, I., Steiner, T., & Hors, A. L. (2013). RDF
1.1 JSON Alternate Serialization (RDF/JSON).
W3C Recommendation.

[33] Berners-Lee, T., & Connolly, D. (2011). Notation3
(N3): a readable RDF syntax. W3C Team
Submission. World Wide Web Consortium.
Beschikbaar op http://www. w3.
org/TeamSubmission/n3.

[34] Gandon, F., & Schreiber, G. (2014). RDF 1.1 XML
Syntax: W3C Recommendation 25 February 2014.
World Wide Web Consortium. http://www. w3.
org/TR/rdf-syntax-grammar. Accessed October 8,
2016.

[35] Michel, F., Djimenou, L., Faron-Zucker, C., &
Montagnat, J. (2015, October). Translation of
relational and non-relational databases into RDF
with xR2RML. In 11th International Confenrence on
Web Information Systems and Technologies
(WEBIST'15).

[36] Michel, F., Djimenou, L., Zucker, C. F., &
Montagnat, J. (2017). xR2RML: Relational and non-
relational databases to RDF mapping
language (Doctoral dissertation, CNRS).

[37] Gualán, R., Freire, R., Tello, A., Espinoza, M., &
Saquicela, V. (2017). Automatic RDF-ization of big
data semi-structured datasets. Maskana, 7(Supl.),
117-127.

