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ABSTRACT 
 

In this article, monitoring and control issues of the social and epidemiological situation have been analyzed. 
Emergency situations caused by infectious diseases represent the greatest danger in the social and 
epidemiological sphere. Analysis of infectious morbidity involves determining the quantitative 
characteristics of the dynamic series, the trend of growth, reducing or stabilizing the incidence, identifying 
causative factors, in specific areas and for different groups. The criterion of fuzzy controllability was 
obtained for solving the problem of forecasting and monitoring the epidemiological situation. A new 
mathematical model and algorithm for solving the task of monitoring and controlling the social and 
epidemiological situation on the basis of  its  interval implementation have been described. The social effect 
will be expressed in increasing  the safety of  human life.  As a consequence, it will be possible to carry out 
preventive measures in the necessary areas. 
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1. INTRODUCTION  
 

Methods of predicting an epidemiological 
situation have been actively developing since the 
beginning of the XX century. Epidemiological 
predictions are made for different terms, and 
depending on those terms they serve different 
purposes. Basically, three types of prediction are 
made, they are long-term prediction for a period of 
several months to several years, medium-term for a 
period of two months to six months and short-term 
predictions for several weeks ahead that are used in 
operational control and in detection of epidemic 
outbreaks. In recent years, the number of works on 
this subject has been growing rapidly due to the 
deployment of information surveillance systems 
and the emergence of large amounts of statistics 
available for analysis. The most useful is the 
medium-term prediction for a period of two months 
to six months, used in tactical control. Due to 
various factors, it is less precise than short-term 
prediction, but gives enough time to prepare for 
possible emergencies and holding preventive 
measures. When making strategic decisions, one 
can not do without long-term predictions for the 
year ahead or more. In most cases high quality of 
such predictions is impossible, nevertheless it is 

required, for example, in estimating necessary 
volumes of medicines and vaccines production, 
equipping medical institutions and training 
personnel. Today the world has found itself in a 
situation where "old" and "new" infectious diseases 
have high potential to uncontrolled spread and, with 
an unprecedentedly high rate. The urbanization, the 
growing deterioration in the socio-ecological and 
sanitary and hygienic conditions of the lives of 
hundred millions of people in the developing and 
developed countries of the world, the increasing 
migration flows and the globalization processes of 
the economy contribute to the rapid spread of 
infectious diseases. Ironically, today the real threat 
comes from high biotechnology-genetic 
engineering and molecular biology. The fact is that 
modified microorganisms can become the root 
cause of severe epidemics, for example, as a result 
of their uncontrolled “exit” from scientific 
laboratories and industrial enterprises in 
industrialized countries of the world due to man-
made accidents or natural disasters. Mathematical 
modeling of various situations is used as one of 
prognosis tools. 

Mathematical modeling of the infectious 
disease risk dynamics is actively used by specialists 
in solving  number of applied problems, such as 
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planning various protective measures, treatment of 
infectious patients [1, 2, 3].  Upon that, in finding 
way to the final result different approaches have 
been implemented. 

The foundation of mathematical methods’ 
application in the study of epidemics was laid by 
Daniil Bernoulli in the middle of the 17th century. 
He first applied the simplest mathematical 
apparatus to assess the effectiveness of preventive 
vaccinations against natural smallpox. It was 
followed by a considerable break, which 
culminated in the work of the English scholar 
William Farr. He studied and simulated the 
statistical mortality rates of England (Wales) from 
the smallpox epidemic in 1837-1839. He for the 
first time obtained mathematical models of 
smallpox epidemic's “movement” indicators in the 
form of statistical regularities, which allowed him 
to make a prognostic model of this epidemic. At the 
beginning of the XX century, the statistical 
approach of W. Farr in the study of epidemics was 
redefined and then developed in the works of John 
Brownley, in which he analyzed the statistical 
patterns of epidemiological indicators' “movement” 
using relatively unknown methods of mathematical 
statistics. Due to these researchers, at the beginning 
of the 20th century, the foundations of the modern 
theory of epidemics mathematical modeling were 
formulated, the first prognostic models of 
epidemics (measles, chicken pox, malaria, etc.) 
were developed, their basic properties were studied, 
and analytical formulas for predicting epidemics 
were obtained. In the 1920s, the analytical approach 
was further developed among British scientists. 
Theoretical works of these scientists are widely 
quoted today and are used by scientists of the West 
in the analysis and prognosis of epidemics 
(outbreaks) of actual infections. With the advent of 
the first electronic computing machines in the mid-
1950s, the next stage in the development of 
epidemics mathematical modeling  began to take 
shape, and it was then that the number of scientific 
papers and publications on mathematical and 
computer modeling of epidemics began to increase 
rapidly. In the works of that time the more and 
more composite mathematical models began to 
appear, in which random factors of the epidemic 
process played an essential role, therefore most 
models of this period had a probabilistic character, 
and the working apparatus was the theory of 
probabilities and random processes. In the works of 
that time the more and more composite 
mathematical models began to come out, in which 
random factors of the epidemic process played an 
essential role, therefore most models of this period 

had a probabilistic character, and the working 
apparatus was the theory of probabilities and 
random processes. This stage in the development of 
mathematical modeling of epidemics was 
associated with an “impact” on the epidemiology of 
“pure” mathematicians, who managed to create 
many abstract models, but with a very limited 
epidemiological content. The next stage in the 
development of mathematical modeling of 
epidemics, which refers to the second half of the 
XX century, was associated with rapid progress in 
the field of computer technology. In the 1960s and 
1970s new types of deterministic and stochastic 
(probabilistic) models of epidemics, targeted at 
studying the regularities of socially significant viral 
and bacterial infections’ development, were 
developed in Western countries. However, despite 
the high complexity of such models and the 
sophistication of the mathematical apparatus, most 
of the models continued to have an abstract 
character, i.e. they were loosely associated with the 
formulation and solution of practical problems of 
epidemiology. The fact is that the leading research 
centers studying epidemics in the United States and 
in Western Europe at that time were located in 
universities or in medical schools at universities 
that were rather far from the real problems of 
epidemiology and its real practice. Epidemiologists 
perceived abstract mathematical models of 
epidemics and outbreaks badly and could not 
combine them with practical needs. Thus, in the 60s 
of the XX century, in the West, there was a serious 
gap between the “pure” theory of mathematical 
modeling of epidemics and the real practice of 
applying this theory in epidemiology.  

Early studies which had planned paths of 
overcoming the specified gap were done in the 
1960s in the USSR by an academician O.V. 
Baroyan and the prof. L. A. Rvachev [4-5]. They 
developed a new methodology for mathematical 
modeling of epidemics - epidemiological dynamics. 
The research of Russian scientists is devoted to the 
problem of monitoring, forecasting the spread of 
various types of epidemics [6-10].  

In Kazakhstan, the problems of monitoring 
and preventing plague epidemics are dealt by the 
Kazakh Scientific Center of Quarantinable and 
Zoogenous Infections named after M. Aikimbayev 
and territorial plague control stations [11]. The 
works of Sokolova and her students are devoted to 
the problems of applying artificial intelligence to 
forecasting the epidemiological conditions [12-13 
A mathematical model was developed in [14], 
taking into account the dynamics and interrelation 
of the abiotic and biotic factors characterizing the 
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epidemiologic situation in the investigated focus 
The proposed model [14] was studied by G.Ch. 
Toikenov. [15], where the problem of 
controllability was not considered and the main 
result is the development of an expert system based 
on the processing of specialists' data. 

In this article we suggest to study the 
controllability of the epidemiological model on the 
basis of fuzzy and interval analysis, which has 
allowed to obtain an effective controllability 
criterion, and also find the optimal control. 

 

2. METHODS 

At present, there are various forecasting 
methods, one of which is the statistical method of 
forecasting, denoting the observed value of the 
morbidity rate at time t as yt., we obtain a time 
series in the form of yt equidistant values sequence, 
which should be considered as one of the possible 
implementations of the random process of 
morbidity. For most infections, as well as for 
ARVI, seasonal rise is common, and close values of 
the indicators often repeat from year to year. Severe 
seasonality is taken into account in any forecast for 
more than a month. In the simplest case, data for a 
certain calendar period (week, month of the year) is 
considered separately. Let T be a period of 
seasonality, then forecast ˆyt, ˆyt+1, ...,ˆyt−1+T  can 
be calculated for each section of the morbidity 
process based on the sets of known values {yt−T , 
yt−2T, yt−3T, ...}, ..., {,yt−1, yt−1−T , yt−1−2T , 
...}  respectively. So, the common way of getting 
estimates of the expected morbidity [A practical 
guide for designing..., 2008] - simple averaging: 
ˆyt=_nj=1 yt−jT /n, where n is the number of 
available observations. This approach is widely 
used in calculating the level of ordinary morbidity. 
For example, the methodology for calculating 
epidemic thresholds for flu and ARVI in 
Kazakhstan assumes averaging the data for calendar 
weeks of each year with the same number for the 
last 5-10 years. This method of predicting assumes 
that yearly incidence is invariable and observations 
during each year are the following realization of the 
same random process. 

At present time, compartmental models 
have become widely spread. There are stochastic 
compartmental models of the epidemic spread 
when implementing an active detection of the 
diseased that allow to predict the development of 
the epidemic process in the population, taking into 
account the spatial transmission of the disease. In 
this connection, the community where epidemic 
takes place is divided into several groups 

(compartments) based on the values of 
characteristics that are important from the epidemic 
point of view [16-17].  
 
3.  PROBLEM FORMULATION  

Figures should be labeled with "Figure" 
and tables with "Table" and should be numbered 
sequentially, for example, Figure 1, Figure 2 and so 
on (refer to table 1 and figure 1).  
The controllability of a nonlinear system described 
by ordinary differential equations is studied in the 
work. 

𝑥ሶ ൌ 𝑓ሺ𝑥, 𝑢, 𝑡ሻ                  (1) 
where  𝑓ሺ𝑥, 𝑢, 𝑡ሻ– is n-vector elements of which are 
continuously differentiable function of its 
arguments, x is n-dimensional state vector of the 
system, u is m-dimensional vector control. 

The following restrictions are given to the 
control 

 
𝑢ሺ𝑡ሻ ∈ 𝑈 ൌ ሼ𝑢ሺ𝑡ሻ: െ𝐿௜ ൑ 𝑢௜ሺ𝑡ሻ ൑ 𝐿௜, 𝑖 ൌ 1, 𝑚, 𝑡 ∈ ሾ𝑡଴, 𝑡ଵሿሽ  (2) 

 
In [14] a mathematical model has been 

proposed describing the epidemiological situation 
in the studied region. The following abiotic factors 
are used in the proposed mathematical model: 

1w  – solar activity (the Wolf number), 

2
w  – temperature (mean monthly temperature in 

the study area), 

3w  – the total rainfall for the month,  

4w  – the maximum daily rainfall for the month,  

5w  – the level of underground waters, 

6w  – permeability of soil; 

biotic factors: 
𝑥ଵ– the total number of carriers of the epidemic 
(fleas),  
𝑥ଶ – the number of infectious carriers of the 
epidemic, 
𝑥ଷ– the total number of vectors of the epidemic 
(gerbils), 
𝑥ସ– the number of infectious vector of the 
epidemic. 

The factors
 6,1, iiw  are independent. 

The values of the factors 3,1, iwi
 at time t are 

determined using time series. The values of the 

factors 6,4, iwi  are determined from 

geophysical data on the studied area. Dynamics of 
factors 𝑥௜ ሺ𝑖 ൌ 1, 2ሻ  at time t is described by the 
equations:   
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𝑥ሶଵ ൌ 𝑓ଵ൫ w ൯𝑥ଵ െ 𝑓ଶ൫ w ൯𝑥ଵ െ 𝑏ଵ𝑢ଵ, (3) 
 
 

𝑥ሶଶ ൌ 𝜇ଵ𝑥ଶ ቀ1 െ
௫మ

௫భ
ቁ െ 𝑐ଵ𝑥ଶ      (4) 

 
where the function 𝑓ଵ  determines the birth 

rate of a population, the function 𝑓ଶdetermines  the 
mortality of a population depending on abiotic 
environmental factors. The coefficient   𝜇ଵ defines 
the probability of infection of one individual in unit 
time. 

The coefficient 𝑐ଵ defines the rate of 
natural enhancement and mortality in patients-
carriers. The fertility function  𝑓ଵ is given as 
follows : 

 
𝑓ଵ൫ w ൯ ൌ ∑ 𝑓ଵ೔

ሺ w
௜
ሻଷ

௜ୀଵ   (5) 
 

𝑓ଵ೔
ቀ w

௜
ቁ ൌ 𝑎௜𝑒

ି
ሺ w

೔
ష w෣

೔
ሻమ

഑೔
మ

, 𝑖 ൌ 1, 3 (6) 

 

where   wෝ ௜  determines the most favorable 

value of the i–th abiotic factor for the life of the 

carrier, 𝜎௜  -the width of the interval centered  at the 

point wෝ ௜making possible the activity of the carrier. 

Numerical values of the parameters  wෝ ௜  

and 𝜎௜  are available from the relevant directories. 

The coefficients 𝑎௜   determine the degree of 
influence of the i–th abiotic factor on the fertility of 
the carrier. 

We choose the mortality function 𝑓ଶ in the 
following way:  

 

𝑓ଶ൫ w ൯ ൌ ∑ 𝑓ଶ೔
ቀ w

௜
ቁଷ

௜ୀଵ               (7) 

 

𝑓ଶ೔
ቀ w

௜
ቁ ൌ 𝛽௜

⎝

⎜
⎛

1 െ 𝜀 𝑒
ି

൭ w
೔
ష w෣

೔
൱

మ

഑೔
మ

⎠

⎟
⎞

, 𝑖 ൌ 1, 2    (8) 

 

𝑓ଶయ൫ w ൯ ൌ 𝛽ଷሺ1 െ 𝜀𝑒
ି

ቆ w
య

ష w෣
య

ቇ
మ

഑య
మ ሻ/ w

ସ
 .   (9) 

 
In formulas (8)-(9) ratio  determines the 

natural mortality of the carrier.  The coefficients 

𝛽௜determine the efficiency degree of influence of 
the i–th abiotic factor on the mortality of the 
carrier. 

To predict the values of factors 𝑥௜ ሺi ൌ
3,4ሻ at time t the  model is suggested: 

 
𝑥ሶଷ ൌ 𝑓ଷሺ w ሻ𝑥ଷ െ 𝑓ସሺ w ሻ𝑥ଷ െ 𝑏ଶ𝑢ଶ, (10) 

 
 

𝑥ሶସ ൌ
௫మ

௫భ
𝑥ସ ቀ1 െ

௫ర

௫య
ቁ െ 𝑐ଶ𝑥ସ,                

                        
where 𝑓ଷdetermines  the birth rate, the 

function 𝑓ସ  determines the mortality of vectors 
depending on abiotic environmental factors. The 
coefficient 𝑐ଶ determines the mortality of vector 
patients. Fertility 𝑓ଷ  and mortality 𝑓ସ functions 
respectively similar to the functions 𝑓ଵ and  𝑓ଶ.  

In contrast to the Volterra model in (3)–
(10) the controls 𝑢ଵ and 𝑢ଶ are given, defining anti-
epidemiological actions. The coefficients  𝑏ଵ and 𝑏ଶ 
specify the influence of control on the population 
dynamics of carriers and vectors. 

In [15] for (3-10) model:  identification 
algorithms of parameters 𝑎௜, 𝛽௜, 𝑏௜ were developed; 
the existence and solution of the corresponding 
Cauchy problem for a fixed control was proved. 

As is obvious, the model (3)-(10) is fully 
immersed in a more general model (1)-(2).   

In the classical control theory the problem 
of controllability [18] is usually studied (Problem 
1): is there a control satisfying the constraint (2) 
and takes the system (1) from the initial state. 

 

00 )( xtx    (11) 

 
to the finite given state   
 

  11 )( xtx  .                  (12) 

 

for the fixed time  01 tt  . 

The initial values of the state vector 0x  in 

equation (11) can be set according to actual 
measurements. At the same time, for the problem of 
monitoring the epidemiological situation, transfer 
of the system in a set, allowing to provide a 
convenient interpretation is relevant, but not a fixed 
value at a finite time in the formula (12).  

In this regard, based on the theory of fuzzy 
sets, we introduce for the state variables x of 
system (1) corresponding to the linguistic variables 
in the following way[19]. 

Each state variable 𝑥௜ put in compliance 

with the linguistic variable 𝑥௟௜௡௚௨௜௦௧௜௖, ni ,1 . As 

in model (3)-(10) system state variables have a 
quantitative character and higher value of them 
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increases the risk of an epidemic outbreak, the 
following values of linguistic variables are 
proposed: TermLin[1]="perfect level", 
TermLin[2]="optimal level", TermLin[3]="comfort 
level", TermLin[4]="moderate level", 
TermLin[5]="permissible level", 
TermLin[6]="critical level" and 
TermLin[7]="catastrophic level". 

A numerical interval  jiji xx ,max,,min, ,   

meets each j-th value of the i- th linguistic variable  

𝑥௟௜௡௚௜,௝, and the set  
7

1
,max,,,min, ,

j
jiji xx  

 must cover all possible values of the variable 

 jiji xx ,max,,min, , .  In particular, it is assumed that 

 

     


,,
7

1
,max,,,min,

j
jiji xx . 

 
We introduce the set of indices 

 nI kr ,..,1 , defining the list of state variables, 

on which are imposed terminal constraints. For 
example, if for the  model (3)-(10) the terminal 
constraints are imposed only on the variable 𝑥ଶ– the 
number of infectious carriers of the epidemic, then 

the set of indices  2krI   consists of a single 

element. 
Next, the following fuzzy problem of 

controllability is considered (Problem 2): does there 
exist a control satisfying the constraint (2) and 
takes the system (1) from the initial state(11) to the 
final state 

 

krjlingi IiiTermLintx  ,][)( 1         (13) 

 

for a fixed time  01 tt  . 

In (13), the index ji corresponds to the 

selected j-th fuzzy linguistic value for the i–th state 
variable. Problem 1 is a special case of the 
problem2.  

If the problem of controllability (Problem 
1) has a positive solution (that is, there is at least 

one control Uu  ensuring the transfer of 
system (1) from state (11) to state (12)), then it is 
expedient to choose a control that, task would 
deliver a minimum to some criterion min)(

Uu
uJ


 , 

(this could be energy expenditure, speed, or other) 
(Problem 3). 

Main results. By the properties imposed 
on the right part of the system of equations of the 
Cauchy problem (1), (11) for a fixed control 

Utu )( the conditions of the theorem of 

existence and uniqueness of the solution are met  

)(tx , ],[ 10 ttt   [20]. 

We rewrite the Cauchy problem (1), (11) 
in the integral recurrent form 



t

t

kk duxfxtx
0

)),(),(()( 01  .   (14) 

By the properties imposed on the right side 
of the equation (1) and restrictions on the function  

)(tu  in [21] it is proved that the method of 

successive approximations (5) converges to the 
solution absolutely and uniformly for any fixed  
control. 

Then the problem of controllability is 
reduced to studying the following problem: is there 
at least one control Utu )( , wherein  the 

solution of integral equation (14) at time  1t  

satisfies the condition (13).  

We apply the results of interval analysis 
[22] to solve this problem. Let us denote the 

interval from – L  to L ,  as v , via  
_

f  the  

interval-valued function obtained from the function 

)),(),(( ttutxf k  . 

We get interval integral equation 

substituting the interval v  in equation (14) instead 

of the function )(tu   



t

t

kk dxfxtx
0

),),(()(
___

01

_

 .    (15)  

Theorem 1. So that the studied system 
shall be controllable it is necessary and sufficient 

that the given vector, for all  krIi  the 

intersection of the set  jiji xx ,max,,min, ,   with the 

set )( 1,1

_

tx ik   is non-empty. 

The right part of the equation system (1) 
when defining (3) - (10) can be denoted 

Butxgtuxf  ),(),,( , B is the constant 

(n*m) -matrix, 𝑔ሺ𝑥, 𝑡ሻ is an n-vector elements of 
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which are continuously differentiable functions in 
their arguments. 

We rewrite system (1) in the following 
form 

Butxg
dt

dx
 ),(                (16) 

The state of the system at the initial instant 

time 0t  is considered to be known to the state of 

the system at the initial time 0t  (the initial state) 

 

0)0( xtx  .             (17) 

 
The desired state at the final time can be 

described as fixed  
 

            11)( xtx               (18) 

 
or mobile (meeting some conditions) 

                                     

kidtxc ij

n

j
ij ,1,)( 1

1




        (19) 

 

in this case, the time point 1t  can be given (fixed) 

or be based on some requirements. 
Natural constraints are imposed on 

quantitative data  
                    

]1,0[,,1,0)( tttnitix  .      (20) 

 
The following criteria can be chosen for 
performance evaluation of the system: 

                        

  
1

0

))()((1
*))()(()(0)(*

t

t
dttgtxRtgtxtuRtuJ   (21) 

or  

01 ttJ               (22) 

 

In the functional (21) 0R  is a positive-

definite mxm-matrix, 1R  is a non-negative-

definite nxn -matrix. 
The problem of optimal control with phase 

constraints (20), control constraints (2) with fixed 
(17), (18) or variable endpoints (17), (19) is 

considered. At present, the solution of such 
problems contains a number of mathematical 
difficulties. In this connection, we consider a 
number of statements of optimal control problems. 

1. The problem of optimal control with 
fixed right endpoint and fixed time. 

The problem of minimizing the functional 
(21) under the constraints (16), (2), (17), (18) is 

considered. Time 1t  is considered to be fixed. 

 We formulate the Hamilton function for the 
problem of optimal control 

 
 




*

1
*

0
*

0

))(),((

))()(())()(()()(),(,),(

tButxg

tgtxRtgtxtuRtututxH





 (23) 
 

We form the conjugate system of 
differential equations: 

                

],[)),()((2)()()
)(

( 101
* ttttgtxRtt

t

tg

dt

d





      (24) 

 
 We define the optimal control from 

condition (2) and the maximum of the 
Hamiltonian: 

 




















max
1

0

max
1

0
1

0

1
0

0

0

uBRifL

uBRifBR

BRifL

u





.       (25) 

 
Theorem 2.  Let the pair    ],[,)(),( 10 ttttxtu   is a 

solution of the problem above. Then vector 

function ],[),( 10 tttt   must exist and 

parameter 0  is such that 

1) 00  , ],[,0)( 100 tttt    

2) here ],[),(),( 10 tttttx   is the 

solution of the boundary value problem for the 
system of differential equations (16) and the 
corresponding conjugate system of differential 
equations (20) under the boundary conditions (11) 
and (12) and control (21). 

Proof: Since all conditions of the 
Pontryagin maximum principle [24] are satisfied 
for the formulated optimal control problem, this 
implies correctness of the theorem.   

2. The optimal control problem with a 
movable right endpoint. 
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The problem of functional minimization 
(21), under the constraints (16), (2), (17), (19) is 

considered. Time 1t  is considered to be fixed. 

Optimum control is found by formula 
(25). 
Theorem 3. Let the pair   ],[,)(),( 10 ttttxtu   

be a solution of the problem above. Then vector 
function ],[),( 10 tttt   must exist and 

parameter 0  is such that 

1) 00  , ],[,0)( 100 tttt    

2) ],[),( 10 tttt   – solution of the 

adjoint system of differential equations (24),  
satisfying the condition that there exist numbers

 
k ,...,1  such that 

,,1,)(
1

1 



k

j
jiji nict      

 

kidtxc iij
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j
iji ,1,0,0)( 1
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
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



  

 
3) for each ],[ 10 ttt   function 

 0),(,),(  tutxH  (23) with respect to a variable  

u  reaches its upper bound on the set U  for    

)(tuu  , i. e. 

 

   00 ),(),(),(),(,),(sup  ttutxHtutxH
Uu




. 

 
Proof: Since for the formulated optimal 

control problem all the conditions of the 
Pontryagin maximum principle are satisfied [24], 
this implies the validity of the theorem. 

3. The problem of optimal performance 
problem with a fixed right end   

The problem of minimizing the functional 
(22) under the constraints (16), (2), (17), (18) is 

considered. The time 1t  is not specified and is to 

be determined. 
For the problem of optimal control, we 

formulate the Hamilton function 
 

          *
0 ))(),((1),(,),( tButxgtutxH    (26) 

 

We form the conjugate system of 
differential equations:  

],[),()()
)(

( 10
* ttttt

t

tg

dt

d





       (27) 

 
 Theorem 5. Let the pair 

  ],[,)(),( 10 ttttxtu   be a solution of the 

problem posed above. Then a vector-valued 
function  ],[),( 10 tttt   must exist and a 

parameter 
0  such that 

1) 00  , ],[,0)( 100 tttt    

2) ],[),( 10 tttt  - solution of the 

adjoint system of differential equations (26), 
which together with the system (16) satisfies the 
boundary conditions (17) and (18) 

 
3) for each ],[ 10 ttt   function 

 0),(,),(  tutxH  by variable u  reaches its 

upper bound on the set U  when  )(tuu  , i. e. 

 
   00 ),(),(),(),(,),(sup  ttutxHtutxH

Uu




 

 
Proof: Since for the formulated optimal 

control problem all the conditions of the 
Pontryagin maximum principle are satisfied [24], 
this implies the validity of the theorem. 

4. Numerical algorithm for solving the 
optimal control problem with fixed ends and phase 
constraints. 

The problem of optimal control with 
phase constraints (20), with fixed ends (17) - (18) 
and constraints on control (2) is considered. At 
present, the solution of such problems contains a 
number of mathematical difficulties. 

In this connection, for the practical 
solution of the problem of optimal control, the 
penalty function method and the gradient method 
are used.  

To take into account the phase constraints 
(20) and the restrictions on the end of the 
trajectory (18), we introduce the penalty functions 

 
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where }{},{ 21 kk ММ  -some given positive 

sequences tend to infinity. 
We form a new functional  
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We replace the original problem by the 

following: find the optimal control minimizing the 

functional kJ  under constraints (16), (2), and 

(17) for the given k. The problem obtained is a 
problem of optimal control  with a free right end 
and a control constraint. We compose for it the 
Hamilton function: 
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 The following algorithm is proposed.  

Step 1. Let  .0k  
Step 2. The optimal control for the k-th 

iteration is calculated 
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       (28) 

where  k – solution of the adjoint system of 

differential equations     
 

 }0);(max{))()((2)( 11
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dt
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with the condition at the end 

    
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and  kх  – solution of the original system (16) 

under the initial conditions (11). 

Step 3. With the found kх  and ku   value 

of the functional kJ  is calculated. 

Step 4. If  1kk JJ    that is the 

transition to step 5, otherwise 1 kk  and the 
transition to step 2. (Here 0 -   the required 
accuracy of the calculation). 

Step 5. The pair ( kх , ku )  found is the 

optimal solution. 
The model problem was considered in the 

following assumption: the values of all abiotic 
factors correspond to their optimal values. Thus, the 
function ሺ𝑓௜൫ w ൯, i ൌ 1. .4)  are constant. 

The program of numerical calculations for 
the model problem has been developed on the basis 
of procedure library of interval computations [23]. 

The calculations for equations 
(3),(4),(10),(11)were performed with the following 
numerical parameter values: alf1=1; alf2=1;  
bet1=0.5; bet2=0.5; bk1=5; bk2:=1; ck1=0.3; 
ck2=0.3; mk1=0.2. The integration step was taken 
equal to 0.05. The point with coordinates (80, 10, 
30, 5) is defined as a starting point. Study time is 
chosen equal to T=2.5 conventional units. 

The program developed displays the 
results of numerical calculations in a table of model 
parameters' change to a text file and graph of the 
function values change. In this connection the 
graph can be saved as an image file or sent to the 
printer.  Table 1 shows a fragment of the text file 
where the values of the model parameters are 
presented in the interval form. 

 
Table 1. A fragment of the text file.  

 
N          t                    x1                     x2                     x3                     x4 
k=   1 t=0,05 = (77,00; 82,00) = (9,94; 9,94) = (30,25; 30,75) = (4,95; 4,95) 
 
k=   2 t=0,10 = (75,45; 82,53) = (9,87; 9,88) = (30,66; 31,37) = (4,90; 4,90) 
 
k=   3 t=0,15 = (74,13; 82,80) = (9,81; 9,81) = (31,10; 31,97) = (4,85; 4,86) 
 
k=   4 t=0,20 = (72,91; 82,94) = (9,75; 9,75) = (31,58; 32,58) = (4,81; 4,81) 
 
k=   5 t=0,25 = (71,76; 82,98) = (9,69; 9,69) = (32,07; 33,19) = (4,76; 4,76) 
 
k=   6 t=0,30 = (70,66; 82,95) = (9,63; 9,63) = (32,58; 33,81) = (4,71; 4,72) 
 
k=   7 t=0,35 = (69,58; 82,87) = (9,57; 9,57) = (33,11; 34,44) = (4,67; 4,67) 
 
k=   8 t=0,40 = (68,52; 82,74) = (9,51; 9,51) = (33,66; 35,08) = (4,62; 4,63) 
 
k=   9 t=0,45 = (67,48; 82,57) = (9,45; 9,45) = (34,22; 35,73) = (4,58; 4,59) 
 
k=  10 t=0,50 = (66,44; 82,36) = (9,39; 9,39) = (34,81; 36,40) = (4,53; 4,54)
………………………………………………………………………………..
 
k=  49 t=2,45 = (14,76; 51,11) = (7,26; 7,31) = (75,25; 78,88) = (3,26; 3,36)
 
k=  50 t=2,50 = (12,88; 49,63) = (7,21; 7,26) = (76,90; 80,58) = (3,24; 3,35)

 
Figure 1 presents a graph of the change of 

interval variable x1 for the following constraints on 
control: 0<=u1<=20; 0<=u2<=10. As can be seen 
from the graph the initial value for the variable x1 
corresponds to a catastrophic level. With the 
resources available on the control  for the time T 
the system on variable x1 can be brought into the 
state from "moderate" to "perfect." 
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Figure 1: Ttransition schedule 

Figure 2 shows a graph of the x1 interval 
variable change for the following constraints on 
control: 5<=u1<=15; 0<=u2<=10. Under given 
resources on control  over time T the system on 
variable x1 can be brought into the state from 
"comfortable" to "optimal". 

 

 
 

Figure 2: Shows a graph of the change in the variable of 
the interval x1. 

 
Figure 3 shows a graph of the interval 

variable change x1 under the following constraints 
on the control: 7<=u1<=11; 0<=u2<=10. Under 
given resources to control over time T the system 
with variable x1 it can result in "moderate" state. 

 
 

Figure 3: Shows a graph of the interval variable change 
x1 under the following constraints on the control: 

7<=u1<=11; 0<=u2<=10. 
 

Figure 4 shows the graphs of the change in 
the variable x1 under the following control 
constraints: 7 <= u1 <= 11; 0 <= u2 <= 10 and a 

double increase in the penalty coefficient 2kМ   for 

the next iterations in the functional   
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With given resources for control over the 

time T, the system with variable x1 can be brought 
into a "moderate" state.  

Table 2 shows a fragment of the table data 
for the change in the parameter x1 with an increase 
in the penalty coefficient M. As can be seen from 
the table, even at M = 8, the computational process 
has stabilized and further increase in the penalty 
does not lead to improved results. 

 
Table 2. Dynamics of trajectory change x1 

 
N          t        M=1     M=2    M=4      M=8     M=16    M=32   M=64 
k= 1 t=0,05  = 79,75 = 79,25 = 79,25 = 79,25 = 79,25 = 79,25 = 79,25 
 
k= 2 t=0,10  = 79,49 = 78,48 = 78,48 = 78,48 = 78,48 = 78,48 = 78,48 
 
k= 3 t=0,15  = 79,23 = 77,69 = 77,69 = 77,69 = 77,69 = 77,69 = 77,69 
 
k=4 t=0,20  = 78,96 = 76,89 = 76,89 = 76,89 = 76,89 = 76,89 = 76,89 
 
k=5 t=0,25  = 78,69 = 76,06 = 76,06 = 76,06 = 76,06 = 76,06 = 76,06 
 
k=6 t=0,30  = 78,40 = 75,21 = 75,21 = 75,21 = 75,21 = 75,21 = 75,21 
 
k=7 t=0,35  = 78,11 = 74,34 = 74,34 = 74,34 = 74,34 = 74,34 = 74,34 
 
k=8 t=0,40  = 77,82 = 73,45 = 73,45 = 73,45 = 73,45 = 73,45 = 73,45 
 
k=9 t=0,45  = 77,51 = 72,53 = 72,53 = 72,53 = 72,53 = 72,53 = 72,53 
 
k=10 t=0,50  = 77,20 = 71,60 = 71,60 = 71,60 = 71,60 = 71,60 = 71,60 
 
k=11 t=0,55  = 76,88 = 70,64 = 70,64 = 70,64 = 70,64 = 70,64 = 70,64 
 
k=12 t=0,60  = 76,55 = 69,65 = 69,65 = 69,65 = 69,65 = 69,65 = 69,65 
 
k=13 t=0,65  = 76,21 = 68,64 = 68,64 = 68,64 = 68,64 = 68,64 = 68,64 
 
k=14 t=0,70  = 75,87 = 67,61 = 67,61 = 67,61 = 67,61 = 67,61 = 67,61 
 
k=15 t=0,75 = 75,52 = 66,55 = 66,55 = 66,55 = 66,55 = 66,55 = 66,55 
…………………………….. 
k=46 t=2,30 = 58,86 = 38,07 = 16,58 = 16,58 = 16,58 = 16,58 = 16,58 
 
k=47 t=2,35 = 58,08 = 37,27 = 14,25 = 14,25 = 14,25 = 14,25 = 14,25 
 
k=48 t=2,40 = 57,29 = 36,45 = 11,86 = 11,86 = 11,86 = 11,86 = 11,86 
 
k=49 t=2,45 = 56,47 = 35,61 =   9,40 =   9,40 =   9,40 =   9,40 =   9,40 
 
k=50 t=2,50 = 55,63 = 34,75 =   6,89 =   6,89 =   6,89 =   6,89 =   6,89 
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Figure 4: Ttransition schedule 
 
The results of numerical simulation in the 

graphs (fig.1-3) are consistent with the actually 
expected data. 

The simplicity of software development, 
algorithmizability the procedure of checking the 
conditions of the theorem, shows the effectiveness 
of its application. 

 
4. CONCLUSION 

In the article the dynamic model with a 
restriction on the right end on the basis of linguistic 
variables has been considered for the first time in 
theory of controllability. 

A criterion of fuzzy control has been 
obtained for forecasting and controlling  of 
epidemiological situation based on interval 
mathematics.  

On the basis of the method of penalty 
functions and the gradient method, the problem of 
optimal control with limited controls and fixed 
ends. 

The effectiveness of the obtained criterion 
was shown on the basis of  solution of the model 
problem.  
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