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ABSTRACT 
 

Software vulnerabilities might be exploited badly which might eventually lead to a loss of confidentiality, 
integrity, and availability which translated into a loss of time and money. Although several studies 
indicated that complexity in software is the main cause of vulnerabilities, still the argument is poorly 
designed and maintained. Moreover, some studies have already related complexity to vulnerabilities and 
found that this cannot be generalized. In this work, we explored that what are the factors that contribute 
more to make a software vulnerable. Several feature selection techniques were applied to find the 
contribution of each feature. Five classifiers are used in this study to predict the vulnerable classes. The 
dataset is collected from twelve Java applications, where these applications are analyzed and based on 
complexity, code coverage, and security. The studied applications are varying in its characteristics 
regarding a number of code lines, used classes; application size, etc. The result indicates that complexity in 
all its components (size, depth of inheritance, etc.) can be utilized in predicting vulnerabilities.  

Keywords: Software Vulnerabilities, Software Complexity, Fault Prediction, Relation, Code Complexity 

1. INTRODUCTION 

Software vulnerabilities are one of the increasing 
problems with highest societal impact. Large 
corporations and individuals face these problems 
since they depend heavily on software systems. 
These exploited software vulnerabilities lead to a 
loss of confidentiality, integrity, and availability 
which translated into a loss of time and money. 
Several studies indicated that the main cause of 
vulnerabilities is software complexity [1]. Software 
practitioners hypothesize that ill-designed and 
maintained systems tend to be vulnerable. 
However, some studies have already studied the 
connection between complexity and vulnerabilities 
and found that this cannot be generalized [2],[3]. 
Morrison et al. [3] could not find any noteworthy 
relationship among complexity and vulnerabilities 
in their Microsoft study. They recommended using 
some security-specific metrics in vulnerability 
prediction models.   

Machine learning and data mining methods have 
been utilized to construct vulnerability prediction 
models [4], [5].  These models are constructed with 
the assumption that the more complex the system 
is; it has a bigger chance to be vulnerable.  It will 
be a matter of which features to be used as 

predictors which are usually determined by 
experience and empirical knowledge. 

In this work, authors try to develop a prediction 
model of the relationship between software 
vulnerabilities and quality characteristics of 
software products. The ultimate goal is to use this 
developed model to predict these relationships in 
newly developed software where these data are not 
yet available. These models will help in managing 
software systems security issues, which will 
eventually reduce and mitigate the risks of 
implementing new systems. 

Vulnerability exploration can be done in different 
phases throughout the software development 
lifecycle. In the literature, several models were 
suggested to approximate the number of 
vulnerabilities with a different variation of accuracy 
[6]. 

In pursuit of studying vulnerabilities, the data 
usually are drawn from public vulnerability 
databases: National Vulnerability Database (NVD) 
[7], or the Open Source Vulnerability Database [8]. 
This assumes that in order to predict vulnerabilities 
using any model, they have to be discovered first. 
This assumption excludes predicting vulnerabilities 
in newly released systems. Another reason is the 



Journal of Theoretical and Applied Information Technology 
31st July 2018. Vol.96. No 14 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4691 

 

fact that the precision of these models depends on 
the number of known vulnerabilities for a software 
application [9]. 

2. RELATED WORK 

There is no clear census on what metrics can be 
used in predicting software vulnerabilities. Most 
studies tried to establish correlation or 
predictability, however, the overall findings are not 
sufficient. In this section, an exploration of the 
related work will be presented. Shin and Williams 
[10] provided indications that defect prediction 
models can be utilized to predict vulnerabilities. 
Nevertheless, defect prediction models will not 
work since they include other issues other than 
vulnerabilities. Alenezi and Yasir [11] found the 
most common vulnerabilities in open source web-
based project system. Their study depicts that most 
of the vulnerabilities may compromise the whole 
system especially in terms of security. 

Chowdhury and Zulkernine [12] found that 
software metrics such as complexity, coupling, and 
cohesion to be strongly correlated with 
vulnerabilities. Shin and Williams [13] studied if 
complexity metrics can be used in predicting 
vulnerabilities. Their results indicated a correlation 
between complexity metrics and vulnerabilities in 
the Mozilla JavaScript Engine. Shin et al. [14] 
studied the relation of complexity, code churn and 
developer activity metrics with vulnerabilities. 
Javed and Alenezi [15] also found out the relation 
of vulnerabilities and their usual solving time and it 
seemed evident from their research that they 
prolong over time with even new versions of 
software’s, thus requiring an in time solution rather 
than leaving it for later fix. Chowdhury and 
Zulkernine [16] explored complexity, coupling and 
cohesion metrics as predictors of vulnerabilities. 
They empirically demonstrated the study using 
fifty-two releases of Mozilla Firefox. They 
demonstrated the feasibility of building productive 
vulnerability prediction model. 

Neuhaus et al. [17] studied the possibility of having 
correlations between C language include statements 
and vulnerabilities. They applied machine learning 
methods to predict vulnerabilities in Firefox and 
Thunderbird. Zimmermann et al. [18] were able to 
find only a weak correlation between various 
metrics and vulnerabilities. Their used metrics 
included code churn, code complexity, 

dependencies, and organizational measures. They 
constructed two predictors in Windows Vista, one 
was on code churn measures, code complexity 
metrics, dependency measures, code coverage 
measures and organizational measures and one was 
on dependencies between binaries.  

Nguyen and Tran [19] employed dependency 
graphs as predictors of vulnerable components. 
They used two versions of Firefox JavaScript 
Engine to validate their predictors. Smith and 
Williams [20] employed SQL hotspots as predictors 
of vulnerable components. They found that more 
SQL hotspots in a component usually tend to 
indicate having vulnerabilities in that component. 
They used WordPress and WikkaWiki to validate 
their predictors. 

A common criticism of static analysis tools is that 
they can produce many false positives [19]. 
However, recent studies have shown that 
vulnerability warnings from static analysis tools are 
not so unreliable after all. A collective opinion has 
emerged about static analysis tools which are the 
fact that they produce a lot of false positives [21]. 
However, recent research reports indicated that 
warnings generated by these tools are not 
unreliable. Walden and Doyle [22] studied the 
warnings generated by the Fortify SCA tool are 
strongly correlated to NVD vulnerabilities. 
Edwards and Chen [23] also studied the warnings 
generated by the Fortify SCA tool are strongly 
correlated to NVD vulnerabilities. Gegick et al. 
[24] & [25] showed a statistically significant 
correlation between static analysis tools warnings 
and vulnerabilities. Zheng et al. [26] indicated that 
static analysis tools are effective in finding security 
vulnerabilities after three large-scale industrial 
systems study. 

Decan et al.[27] used npm packages report to find 
the vulnerabilities where he rated the vulnerabilities 
according to high, medium and low. It is found in 
research that how the vulnerabilities are detected 
and fixed. It is found that around 40% of 
vulnerabilities move on to next release thus are not 
fixed. It hasn't established any relationship with 
classes but has pointed that there are no automated 
tools available for detection of vulnerabilities. Kula 
et al.[28] used the most common set of Java 
libraries for detection of vulnerabilities but they 
focused on the popularity of model and bug fixes. It 
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also looked into more appropriate navigation and 
updating system and found CRAN to be the most 
appropriate one. 

Choudhary et al. [29] evaluated the similar study on 
Eclipse project taken from GitHub. Their research 
looked into software vulnerabilities prediction 
where each feature was evaluated using data mining 
algorithms. They selected the following attributes 

 Commits,  
 Refactorings, 
 Bugfixes,  
 Authors,  
 Loc-Added,  
 Max-Loc-Added,  
 Avg-Loc-Added ,  
 Loc-Deleted, 
 Max-Loc-Added, 
 Avg-Loc-Added, 
 Codechurn, 
 Max-Codechurn, 
 Avg-Codechurn, 
 Max-Changeset 

as existing metrics while  

 Avg Commits,  
 Time,  
 Line of Code  

were considered as new change metrics. They used 
four classes to divide their parameters their study 
reveals that Random forest performs better in their 
case while they only analyzed based on precision, 
recall, and fault.  

Moser et al. [30] also conducted a similar kind of 
study where he did static analysis on Eclipse 
change logs while the metric taken were  

 weighted, Average age,  
 Code Churn (Max, Avg, Normal).  
 Loc (Max, Avg Deleted)  
 ChangeSet (Max, Avg)  

and their observation was that decision tree 
performs better than other algorithms. They also 
analyzed the model according to precision and 
recall. They found their model to be performing 
better around 80%.  

 

Dan et al. [31] used different techniques and 
approaches to find the location of vulnerabilities. 
They used Java-based applications to build an 
accurate predictor and used the same project as our 
research. Their model worked around 85% for the 
prediction of their predictor for vulnerabilities. 

We based this research on these above parameters 
but we will first use the feature selection to most 
relevant attributes that can help in fixing the big 
chunk of issues while others can be controlled or 
have no contribution even. 

3. EXPERIMENTS AND RESULT 
3.1 Data Collection 

In this section, we gathered data from twelve Java 
applications. We selected various application based 
on their usage of popularity and their wide usage in 
research as shown in the literature. Some of the 
project considered are small while others are large 
like Calculator have only 16 and Cinema have only 
24 files while other like Jfree chart having 1014 and 
Jgap have 694 files. The diversity is considered in 
order to see the impact of software vulnerabilities 
as well building a generalized solution that can 
work in all cases. Secondly, we choose the project 
that is already on GitHub as it is the biggest and 
most used repository and moreover most of the 
research is being conducted on the GitHub is shown 
in the literature. Thirdly multiple Categories of 
feature selection has been applied to collected 
results. Most of the literature referred uses the 
following algorithms so we selected the following 
three algorithms 

 ReliefFAttributeEval 
 PCA 
 CFSSubsetEVal 

Fourthly, the following algorithms are applied to 
evaluate the effectiveness of each algorithm. Our 
study includes all of the algorithms that are used as 
a part of most of the referred literature to correctly 
validated the results. The following are the set the 
algorithms selected 

 Decision table 
 Linear Regression 
 SMOReg 
 lBK and 
 Random Forest 
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Table 1 shows the list of Java applications that have 
been selected. It also shows the Github ID extracted 
from the links and number of Files that are being 
considered in each project. The number of Lines 
means Lines of code analyzed. These applications 
have been analyzed them based on complexity, 
code coverage, and security. The constructed 
dataset contains credible applications that vary in 
its characteristics regarding a number of code lines, 
used classes; application size etc. the main source 
of applications is github.com 

 

Table 1: showing the list of Java Applications considered  

Name of 
Java 
Applicatio
n 

Version Github ID Files 

ApaCLI 1.5 apache/com
mons-cli 

41 

Cinema 1.0 Pozo/telnet-
ascii-cinema 

26 

commons-
codec 

1.10 apache/com
mons-codec 

115 

commons-
lang 

3-3.4 apache/com
mons-lang 

280 

jfreechart 1.0.19 jfree/jfreech
art 

1014 

jgap 3.6.3 jgap.cvs.sou
rceforge 

694 

joda-time 2.9.7 JodaOrg/jod
a-time 

329 

jtopas 1.0 jdc0589/jTra
nslate 

64 

marc4j 2.8.3 marc4j/marc
4j 

122 

PureMVC 1.1 PureMVC/p
uremvc-
java-
standard-
framework 

51 

calculator 1.0 kranonit/cal
culator-unit-
test-
example-
java 

16 

JSON 2017101
8 

stleary/JSO
N-Java-unit-
test 

55 

 

Authors used SourceMonitor1Version 3.5 to study 
code complexity, by checking software source code 
to find out module's complexity and the amount of 
used code in the source file. We choose this tool 
due to various reasons, such as: Capability to work 
with Windows GUI or scripts using XML 
command files in addition to probability of 
checking multiple coding language such as C, C++, 
C#, VB.Net, Java, and more, ability to collect 
metrics in a quick fashion, offers Modified 
Complexity metric option, you might represent and 
print metrics in different formats, that can be 
exported and used in other tools. 

For coverage check, authors chose to use 
EclEmma2 Java Code Coverage 2.3.3. which is an 
Eclipse open source Java code coverage tool. The 
most important features of EcIEmma are: fast 
develop/test cycle, rich coverage analysis, and non-
invasive. The third used tool is 
VisualCodeGrepper3 Version 2.1.0, this tool is an 
automated code security review to check the 
security of applications. VCG supports many 
languages such as C++, C#, VB, PHP, Java and 
PL/SQL. VCG can be used as a white-box tool that 
is capable of analyzing software to find security 
issues. Some of the power points of this tool are: it 
has a config file for each language to expand the 
possibility of searching customized functions 
"written by you", find phrases embedded in 
comments that can indicate broken code.  

 
3.2 Experimental Results 

The experimental study aims to find, what are the 
factors that contribute to making a software 
vulnerable. Several feature selection techniques 
were applied to know how much each factor is 
contributing. Following is a brief description of 
these techniques. 

                                                            
1http://www.campwoodsw.com/sourcemonitor.
html 
2http://www.eclemma.org/ 
3https://sourceforge.net/projects/visualcodegre
pp/ 
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ReliefFAttributeEval: It is a way to evaluate the 
attribute using ReliefF. It works on binary 
classification and is not dependent on heuristics. It 
can remove noise as well as work on repeated 
sampling of attribute and thus not affected by 
redundant values. [32] 

PCA: Principal component analysis is a technique 
that is used to find out the variation in the dataset 
and then extracting strong patterns between the 
attributes. These attributes are called as principal 
components as these values are uncorrelated 
linearly. This research uses PCA to find out the 
most effective attributes of the dataset. [33] 

CFSSubsetEVal: is a correlation based feature 
subset finder that evaluates all the attributes and 
finds the redundancy among these attributes and 
focusing on the individual predictive ability to find 
out highly correlated attributes to be used. [34] 

This research uses ReliefF, Principal Component 
analysis, and CFSSubset and then figured out what 
are the most common attributes that have been 
selected by these three attribute selection. Table 1 
shows the attribute shortlisted by these three 
algorithms whereas we have selected Potentially 
dangerous code as classification or resultant 
attribute.  
 
 

Table 2: Showing The Important Features Selected By 
Relieff, PCA And Cfssubset 

ReliefF PCA CFSSubset 

Classes Files Classes 

Files Branches MethodClass 

Max Depth Comments 
Percentage 

AvgStaments/
Methods 

 Classes Max Depth 

 MethodsClass Avg Depth 

 Avg Statement/ 
Methods 

 

It is evident from Table 2 that Classes has been 
identified as a potential attribute while Files, Max 

Depth, Method Class and Avg Statement Methods 
has been identified more than once. Thus creating a 
selection of ranking based on our selection of 
attributes that are selected more than once by the 
attribute selection attribute as it is assumed that 
these attributes are much effective. So the attribute 
selected as follows 

Classes, Files, Method Class, Max Depth, Avg 
Statement/ Methods, then the rest as Branches, 
Comments Percentage, Avg Depth thus selecting 
five attributes as main and three as supportive 
attributes and will be used in along with the 
classification attribute Potentially Dangerous code. 

After evaluation of features contributing, another 
experiment is to classify these classes as vulnerable 
or not. The prediction model is trained using five of 
the classification techniques. We use the following 
classification algorithms in our study. 

Decision Table: Decision table is a precise way of 
selection of most impacting attributes, complex 
rules can be modeled and are easier to program in a 
way like programming if then else or switch cases. 
[30] This research selects the decision table in order 
to get a rule that provides a relative classification 
that can provide high probable classification.  

Linear Regression: Linear Regression is a way to 
create an equation that can fit the provided dataset; 
the output is linear function thus helping in building 
an easy classification model where a simple linear 
equation can handle all kinds of data [35]. This 
research selects linear regression for the same 
reason where a single equation can be provided in 
order to find the potentially dangerous code where 
it can rate with high probability. 

SMOReg: SMO uses heuristics for training model 
and is based on regression. It also supports vector 
machines and is more efficient and fast [36]. This 
research uses in order to build a fast and high 
probabilistic training model.  

IBK: IBK is a classifier based on K nearest 
neighbor. It has a great advantage for case-based 
reasoning [37] so this research uses this so that the 
present data set can be used for classification of 
new programs. 
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Table 3: Statistics Of The Results For Each Selected Algorithm 

 Decision 
table 

Linear 
Regression 

SMOReg lBK Random 
Forest 

Correlation coefficient       0.8535 0.8319 0.8514 0.9276 0.9549 

Mean absolute error         578.625  853.4078 877.7278 492.4167 496.0497 

Root mean squared 
error          

1033.6739 1272.6324 1020.3108 653.1926 747.5166 

Relative absolute error    35.1013 % 51.7706 % 53.2459 % 29.8717 % 30.0921 % 

Root relative squared 
error    

55.2223 % 67.9882 % 54.5084 % 34.8957 % 39.9348 % 

 

 

Table 4: Statistics Of The Results For Each Selected Algorithm For Reduced Attributes 

 Decision 
table 

Linear 
Regression 

SMOReg lBK Random 
Forest 

Correlation coefficient       0.8535 0.9134  0.9272  0.9372 0.9603 

Mean absolute error          578.625  582.7637 436.0651 427.8333 397.8513 

Root mean squared 
error          

1033.6739 820.4736 663.9729 606.6038 636.6357 

Relative absolute error      35.1013 % 35.3524 % 26.4532 % 25.9538 % 24.135  % 

Root relative squared 
error    

55.2223 % 43.8324 % 35.4716 % 32.4068 % 34.0112 % 

RandomForest: RandomForest is another 
classification technique that develops multiple 
decision trees where each tree is extended to the 
maximum extent, while the correlation between two 
trees are found and each tree strength is found [38]. 
This research uses this algorithm as it has high 
accuracy and can run on large datasets or databases. 
Table 3 shows the results that are achieved using 
the above selected five algorithms 

 

It is shown in table 3 that Random forest can be 
used as best classifier as well as lBK where the 
correlation coefficient is above 0.9 and relative 

absolute error is lower than or equal to 30%. It is 
also seen that all of the selected algorithms have 
more than 80% correlation coefficient that shows 
that selected attributes are highly correlative 
efficient.  
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Figure 1: Showing The Number Of Vulnerabilities 
Compared To Line Of Code 

Figure 1 shows the relation of lines of codes with 
potential vulnerabilities although the relation might 
not reveal much knowledge in form of percentage 
value but it gives an indication that it doesn't matter 
the size of project the vulnerabilities may exist in 
both cases especially in larger projects even if there 
is a community there are chances of vulnerabilities. 

Compared to the analysis performed by [27] – [31] 
where the results were having a value of 85% 
especially by considering more number of variables 
study by Choudhary et al. [29] where the prediction 
and Moser et al. [30]. Our results with the reduced 
number of features perform slightly better showing 
that if we can detect the major violation reason a 
great dealt with software vulnerabilities can be 
avoided. The depth of code is also related to 
potential violations as shown in Figure 2. 

Figure 2 shows that depth and violations are highly 
related along with the number of files. The small 
lines represented the relation of files and violations 
while purple line represents the depth. The higher 
the depth there are more likely chances of having 
the vulnerabilities. 

 

 

Figure 2: Showing The Number Of Vulnerabilities With 
Max Depth For Selected Projects. 

The decision table algorithm returned classes as the 
most relevant in decision making. 

While linear regression gave the following equation 

𝑃𝑜𝑡𝑒𝑛𝑖𝑡𝑎𝑙𝑙𝑦 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝐶𝑜𝑑𝑒
ൌ 4.9514 ∗ 𝐹𝑖𝑙𝑒𝑠 ൅ 136.51.02
∗ 𝑀𝑒𝑡ℎ𝑜𝑑𝑠𝐶𝑙𝑎𝑠 െ 744.6754 

That shows that it is dependent on files and max 
depth. Moreover, the selection of last three 
attributes may not be making much effect so let's 
remove and run the algorithm again with only 
Classes, Files, Method Class, Max Depth and Avg 
Statement/ Methods and the Table 4 is achieved. 

Table 3 shows relevant attributes it shows that 
results are still high coefficient. The results are 
improved due to removal or less relevant attributes 
and the value have gone above 90% while the 
relative absolute error has been reduced especially 
for linear regression and SMOreg from above 50% 
to less than 36%. The result also shows that 
selection of relative attributes. 

Attribute selected by decision tree is still Classes 
while the linear equation returned is given as below  
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𝑃𝑜𝑡𝑒𝑛𝑖𝑡𝑎𝑙𝑙𝑦 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝐶𝑜𝑑𝑒
ൌ 5.1905 ∗ 𝐹𝑖𝑙𝑒𝑠 ൅ 83.02
∗ 𝑀𝑒𝑡ℎ𝑜𝑑𝑠𝐶𝑙𝑎𝑠 െ 422.61 

 

Here looking at above equation it is shown that 
methodClass is selected instead of max depth from 
the previous equation and it will result in the better 
predictor.   

This research work focused on finding the most 
optimal predictor for finding vulnerabilities. 
Decision Table, Linear Regression, SMOReg, IBK, 
and RandomForest were used in finding out the 
most relevant factors contributing to making the 
software's vulnerable. It is also evident from the 
literature that software vulnerabilities are mostly 
happening due to the complexity and bad design. 
Thus it is required to write a clean, modular and 
highly coupled software's to decrease the chance of 
vulnerabilities.   

4. CONCLUSION  

Software vulnerabilities if exploited can result in 
software security breaches resulting in loss or 
compromise of data, confidentiality that results in 
higher cost so major losses. There is a number of 
studies that have been done in the area of finding 
software vulnerabilities or finding its complexity 
but lacks the generalized concept of finding the 
contributing factor for making the software 
vulnerable. We selected twelve projects based on 
the varying size and popularity.  We selected five 
classifiers after the using the feature selection 
algorithm. After studying java applications with the 
aim of exploring the relationship between 
complexity and software vulnerabilities, we can 
conclude that there is a strong relationship. We 
explored the relationship by using both multiple 
classifiers and multiple feature selection 
algorithms. Our finding indicates that a number of 
files and the percentage of methods to classes are 
main contributors to making a software vulnerable. 
This strengthens the software engineering theory 
that mentions modularity as the main goal in 
software design. Modularity means small 
components with specific goals. Reducing size, 
complexity, and coupling would make the software 
more modular and more secure.  
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