
Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4690

DISCOVERING THE RELATIONSHIP BETWEEN
SOFTWARE COMPLEXITY AND SOFTWARE

VULNERABILITIES
1YASIR JAVED, 2MAMDOUH ALENEZI, 3MOHAMMED AKOUR, 4AHMAD ALZYOD

1,2College of Computer & Information Sciences Prince Sultan University Riyadh 11586, Saudi Arabia
3,4The Faculty of Information Technology and Computer Sciences, Yarmouk University, Irbid, Jordan

ABSTRACT

Software vulnerabilities might be exploited badly which might eventually lead to a loss of confidentiality,
integrity, and availability which translated into a loss of time and money. Although several studies
indicated that complexity in software is the main cause of vulnerabilities, still the argument is poorly
designed and maintained. Moreover, some studies have already related complexity to vulnerabilities and
found that this cannot be generalized. In this work, we explored that what are the factors that contribute
more to make a software vulnerable. Several feature selection techniques were applied to find the
contribution of each feature. Five classifiers are used in this study to predict the vulnerable classes. The
dataset is collected from twelve Java applications, where these applications are analyzed and based on
complexity, code coverage, and security. The studied applications are varying in its characteristics
regarding a number of code lines, used classes; application size, etc. The result indicates that complexity in
all its components (size, depth of inheritance, etc.) can be utilized in predicting vulnerabilities.

Keywords: Software Vulnerabilities, Software Complexity, Fault Prediction, Relation, Code Complexity

1. INTRODUCTION

Software vulnerabilities are one of the increasing
problems with highest societal impact. Large
corporations and individuals face these problems
since they depend heavily on software systems.
These exploited software vulnerabilities lead to a
loss of confidentiality, integrity, and availability
which translated into a loss of time and money.
Several studies indicated that the main cause of
vulnerabilities is software complexity [1]. Software
practitioners hypothesize that ill-designed and
maintained systems tend to be vulnerable.
However, some studies have already studied the
connection between complexity and vulnerabilities
and found that this cannot be generalized [2],[3].
Morrison et al. [3] could not find any noteworthy
relationship among complexity and vulnerabilities
in their Microsoft study. They recommended using
some security-specific metrics in vulnerability
prediction models.

Machine learning and data mining methods have
been utilized to construct vulnerability prediction
models [4], [5]. These models are constructed with
the assumption that the more complex the system
is; it has a bigger chance to be vulnerable. It will
be a matter of which features to be used as

predictors which are usually determined by
experience and empirical knowledge.

In this work, authors try to develop a prediction
model of the relationship between software
vulnerabilities and quality characteristics of
software products. The ultimate goal is to use this
developed model to predict these relationships in
newly developed software where these data are not
yet available. These models will help in managing
software systems security issues, which will
eventually reduce and mitigate the risks of
implementing new systems.

Vulnerability exploration can be done in different
phases throughout the software development
lifecycle. In the literature, several models were
suggested to approximate the number of
vulnerabilities with a different variation of accuracy
[6].

In pursuit of studying vulnerabilities, the data
usually are drawn from public vulnerability
databases: National Vulnerability Database (NVD)
[7], or the Open Source Vulnerability Database [8].
This assumes that in order to predict vulnerabilities
using any model, they have to be discovered first.
This assumption excludes predicting vulnerabilities
in newly released systems. Another reason is the

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4691

fact that the precision of these models depends on
the number of known vulnerabilities for a software
application [9].

2. RELATED WORK

There is no clear census on what metrics can be
used in predicting software vulnerabilities. Most
studies tried to establish correlation or
predictability, however, the overall findings are not
sufficient. In this section, an exploration of the
related work will be presented. Shin and Williams
[10] provided indications that defect prediction
models can be utilized to predict vulnerabilities.
Nevertheless, defect prediction models will not
work since they include other issues other than
vulnerabilities. Alenezi and Yasir [11] found the
most common vulnerabilities in open source web-
based project system. Their study depicts that most
of the vulnerabilities may compromise the whole
system especially in terms of security.

Chowdhury and Zulkernine [12] found that
software metrics such as complexity, coupling, and
cohesion to be strongly correlated with
vulnerabilities. Shin and Williams [13] studied if
complexity metrics can be used in predicting
vulnerabilities. Their results indicated a correlation
between complexity metrics and vulnerabilities in
the Mozilla JavaScript Engine. Shin et al. [14]
studied the relation of complexity, code churn and
developer activity metrics with vulnerabilities.
Javed and Alenezi [15] also found out the relation
of vulnerabilities and their usual solving time and it
seemed evident from their research that they
prolong over time with even new versions of
software’s, thus requiring an in time solution rather
than leaving it for later fix. Chowdhury and
Zulkernine [16] explored complexity, coupling and
cohesion metrics as predictors of vulnerabilities.
They empirically demonstrated the study using
fifty-two releases of Mozilla Firefox. They
demonstrated the feasibility of building productive
vulnerability prediction model.

Neuhaus et al. [17] studied the possibility of having
correlations between C language include statements
and vulnerabilities. They applied machine learning
methods to predict vulnerabilities in Firefox and
Thunderbird. Zimmermann et al. [18] were able to
find only a weak correlation between various
metrics and vulnerabilities. Their used metrics
included code churn, code complexity,

dependencies, and organizational measures. They
constructed two predictors in Windows Vista, one
was on code churn measures, code complexity
metrics, dependency measures, code coverage
measures and organizational measures and one was
on dependencies between binaries.

Nguyen and Tran [19] employed dependency
graphs as predictors of vulnerable components.
They used two versions of Firefox JavaScript
Engine to validate their predictors. Smith and
Williams [20] employed SQL hotspots as predictors
of vulnerable components. They found that more
SQL hotspots in a component usually tend to
indicate having vulnerabilities in that component.
They used WordPress and WikkaWiki to validate
their predictors.

A common criticism of static analysis tools is that
they can produce many false positives [19].
However, recent studies have shown that
vulnerability warnings from static analysis tools are
not so unreliable after all. A collective opinion has
emerged about static analysis tools which are the
fact that they produce a lot of false positives [21].
However, recent research reports indicated that
warnings generated by these tools are not
unreliable. Walden and Doyle [22] studied the
warnings generated by the Fortify SCA tool are
strongly correlated to NVD vulnerabilities.
Edwards and Chen [23] also studied the warnings
generated by the Fortify SCA tool are strongly
correlated to NVD vulnerabilities. Gegick et al.
[24] & [25] showed a statistically significant
correlation between static analysis tools warnings
and vulnerabilities. Zheng et al. [26] indicated that
static analysis tools are effective in finding security
vulnerabilities after three large-scale industrial
systems study.

Decan et al.[27] used npm packages report to find
the vulnerabilities where he rated the vulnerabilities
according to high, medium and low. It is found in
research that how the vulnerabilities are detected
and fixed. It is found that around 40% of
vulnerabilities move on to next release thus are not
fixed. It hasn't established any relationship with
classes but has pointed that there are no automated
tools available for detection of vulnerabilities. Kula
et al.[28] used the most common set of Java
libraries for detection of vulnerabilities but they
focused on the popularity of model and bug fixes. It

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4692

also looked into more appropriate navigation and
updating system and found CRAN to be the most
appropriate one.

Choudhary et al. [29] evaluated the similar study on
Eclipse project taken from GitHub. Their research
looked into software vulnerabilities prediction
where each feature was evaluated using data mining
algorithms. They selected the following attributes

 Commits,
 Refactorings,
 Bugfixes,
 Authors,
 Loc-Added,
 Max-Loc-Added,
 Avg-Loc-Added ,
 Loc-Deleted,
 Max-Loc-Added,
 Avg-Loc-Added,
 Codechurn,
 Max-Codechurn,
 Avg-Codechurn,
 Max-Changeset

as existing metrics while

 Avg Commits,
 Time,
 Line of Code

were considered as new change metrics. They used
four classes to divide their parameters their study
reveals that Random forest performs better in their
case while they only analyzed based on precision,
recall, and fault.

Moser et al. [30] also conducted a similar kind of
study where he did static analysis on Eclipse
change logs while the metric taken were

 weighted, Average age,
 Code Churn (Max, Avg, Normal).
 Loc (Max, Avg Deleted)
 ChangeSet (Max, Avg)

and their observation was that decision tree
performs better than other algorithms. They also
analyzed the model according to precision and
recall. They found their model to be performing
better around 80%.

Dan et al. [31] used different techniques and
approaches to find the location of vulnerabilities.
They used Java-based applications to build an
accurate predictor and used the same project as our
research. Their model worked around 85% for the
prediction of their predictor for vulnerabilities.

We based this research on these above parameters
but we will first use the feature selection to most
relevant attributes that can help in fixing the big
chunk of issues while others can be controlled or
have no contribution even.

3. EXPERIMENTS AND RESULT
3.1 Data Collection

In this section, we gathered data from twelve Java
applications. We selected various application based
on their usage of popularity and their wide usage in
research as shown in the literature. Some of the
project considered are small while others are large
like Calculator have only 16 and Cinema have only
24 files while other like Jfree chart having 1014 and
Jgap have 694 files. The diversity is considered in
order to see the impact of software vulnerabilities
as well building a generalized solution that can
work in all cases. Secondly, we choose the project
that is already on GitHub as it is the biggest and
most used repository and moreover most of the
research is being conducted on the GitHub is shown
in the literature. Thirdly multiple Categories of
feature selection has been applied to collected
results. Most of the literature referred uses the
following algorithms so we selected the following
three algorithms

 ReliefFAttributeEval
 PCA
 CFSSubsetEVal

Fourthly, the following algorithms are applied to
evaluate the effectiveness of each algorithm. Our
study includes all of the algorithms that are used as
a part of most of the referred literature to correctly
validated the results. The following are the set the
algorithms selected

 Decision table
 Linear Regression
 SMOReg
 lBK and
 Random Forest

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4693

Table 1 shows the list of Java applications that have
been selected. It also shows the Github ID extracted
from the links and number of Files that are being
considered in each project. The number of Lines
means Lines of code analyzed. These applications
have been analyzed them based on complexity,
code coverage, and security. The constructed
dataset contains credible applications that vary in
its characteristics regarding a number of code lines,
used classes; application size etc. the main source
of applications is github.com

Table 1: showing the list of Java Applications considered

Name of
Java
Applicatio
n

Version Github ID Files

ApaCLI 1.5 apache/com
mons-cli

41

Cinema 1.0 Pozo/telnet-
ascii-cinema

26

commons-
codec

1.10 apache/com
mons-codec

115

commons-
lang

3-3.4 apache/com
mons-lang

280

jfreechart 1.0.19 jfree/jfreech
art

1014

jgap 3.6.3 jgap.cvs.sou
rceforge

694

joda-time 2.9.7 JodaOrg/jod
a-time

329

jtopas 1.0 jdc0589/jTra
nslate

64

marc4j 2.8.3 marc4j/marc
4j

122

PureMVC 1.1 PureMVC/p
uremvc-
java-
standard-
framework

51

calculator 1.0 kranonit/cal
culator-unit-
test-
example-
java

16

JSON 2017101
8

stleary/JSO
N-Java-unit-
test

55

Authors used SourceMonitor1Version 3.5 to study
code complexity, by checking software source code
to find out module's complexity and the amount of
used code in the source file. We choose this tool
due to various reasons, such as: Capability to work
with Windows GUI or scripts using XML
command files in addition to probability of
checking multiple coding language such as C, C++,
C#, VB.Net, Java, and more, ability to collect
metrics in a quick fashion, offers Modified
Complexity metric option, you might represent and
print metrics in different formats, that can be
exported and used in other tools.

For coverage check, authors chose to use
EclEmma2 Java Code Coverage 2.3.3. which is an
Eclipse open source Java code coverage tool. The
most important features of EcIEmma are: fast
develop/test cycle, rich coverage analysis, and non-
invasive. The third used tool is
VisualCodeGrepper3 Version 2.1.0, this tool is an
automated code security review to check the
security of applications. VCG supports many
languages such as C++, C#, VB, PHP, Java and
PL/SQL. VCG can be used as a white-box tool that
is capable of analyzing software to find security
issues. Some of the power points of this tool are: it
has a config file for each language to expand the
possibility of searching customized functions
"written by you", find phrases embedded in
comments that can indicate broken code.

3.2 Experimental Results

The experimental study aims to find, what are the
factors that contribute to making a software
vulnerable. Several feature selection techniques
were applied to know how much each factor is
contributing. Following is a brief description of
these techniques.

1http://www.campwoodsw.com/sourcemonitor.
html
2http://www.eclemma.org/
3https://sourceforge.net/projects/visualcodegre
pp/

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4694

ReliefFAttributeEval: It is a way to evaluate the
attribute using ReliefF. It works on binary
classification and is not dependent on heuristics. It
can remove noise as well as work on repeated
sampling of attribute and thus not affected by
redundant values. [32]

PCA: Principal component analysis is a technique
that is used to find out the variation in the dataset
and then extracting strong patterns between the
attributes. These attributes are called as principal
components as these values are uncorrelated
linearly. This research uses PCA to find out the
most effective attributes of the dataset. [33]

CFSSubsetEVal: is a correlation based feature
subset finder that evaluates all the attributes and
finds the redundancy among these attributes and
focusing on the individual predictive ability to find
out highly correlated attributes to be used. [34]

This research uses ReliefF, Principal Component
analysis, and CFSSubset and then figured out what
are the most common attributes that have been
selected by these three attribute selection. Table 1
shows the attribute shortlisted by these three
algorithms whereas we have selected Potentially
dangerous code as classification or resultant
attribute.

Table 2: Showing The Important Features Selected By
Relieff, PCA And Cfssubset

ReliefF PCA CFSSubset

Classes Files Classes

Files Branches MethodClass

Max Depth Comments
Percentage

AvgStaments/
Methods

 Classes Max Depth

 MethodsClass Avg Depth

 Avg Statement/
Methods

It is evident from Table 2 that Classes has been
identified as a potential attribute while Files, Max

Depth, Method Class and Avg Statement Methods
has been identified more than once. Thus creating a
selection of ranking based on our selection of
attributes that are selected more than once by the
attribute selection attribute as it is assumed that
these attributes are much effective. So the attribute
selected as follows

Classes, Files, Method Class, Max Depth, Avg
Statement/ Methods, then the rest as Branches,
Comments Percentage, Avg Depth thus selecting
five attributes as main and three as supportive
attributes and will be used in along with the
classification attribute Potentially Dangerous code.

After evaluation of features contributing, another
experiment is to classify these classes as vulnerable
or not. The prediction model is trained using five of
the classification techniques. We use the following
classification algorithms in our study.

Decision Table: Decision table is a precise way of
selection of most impacting attributes, complex
rules can be modeled and are easier to program in a
way like programming if then else or switch cases.
[30] This research selects the decision table in order
to get a rule that provides a relative classification
that can provide high probable classification.

Linear Regression: Linear Regression is a way to
create an equation that can fit the provided dataset;
the output is linear function thus helping in building
an easy classification model where a simple linear
equation can handle all kinds of data [35]. This
research selects linear regression for the same
reason where a single equation can be provided in
order to find the potentially dangerous code where
it can rate with high probability.

SMOReg: SMO uses heuristics for training model
and is based on regression. It also supports vector
machines and is more efficient and fast [36]. This
research uses in order to build a fast and high
probabilistic training model.

IBK: IBK is a classifier based on K nearest
neighbor. It has a great advantage for case-based
reasoning [37] so this research uses this so that the
present data set can be used for classification of
new programs.

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4695

Table 3: Statistics Of The Results For Each Selected Algorithm

 Decision
table

Linear
Regression

SMOReg lBK Random
Forest

Correlation coefficient 0.8535 0.8319 0.8514 0.9276 0.9549

Mean absolute error 578.625 853.4078 877.7278 492.4167 496.0497

Root mean squared
error

1033.6739 1272.6324 1020.3108 653.1926 747.5166

Relative absolute error 35.1013 % 51.7706 % 53.2459 % 29.8717 % 30.0921 %

Root relative squared
error

55.2223 % 67.9882 % 54.5084 % 34.8957 % 39.9348 %

Table 4: Statistics Of The Results For Each Selected Algorithm For Reduced Attributes

 Decision
table

Linear
Regression

SMOReg lBK Random
Forest

Correlation coefficient 0.8535 0.9134 0.9272 0.9372 0.9603

Mean absolute error 578.625 582.7637 436.0651 427.8333 397.8513

Root mean squared
error

1033.6739 820.4736 663.9729 606.6038 636.6357

Relative absolute error 35.1013 % 35.3524 % 26.4532 % 25.9538 % 24.135 %

Root relative squared
error

55.2223 % 43.8324 % 35.4716 % 32.4068 % 34.0112 %

RandomForest: RandomForest is another
classification technique that develops multiple
decision trees where each tree is extended to the
maximum extent, while the correlation between two
trees are found and each tree strength is found [38].
This research uses this algorithm as it has high
accuracy and can run on large datasets or databases.
Table 3 shows the results that are achieved using
the above selected five algorithms

It is shown in table 3 that Random forest can be
used as best classifier as well as lBK where the
correlation coefficient is above 0.9 and relative

absolute error is lower than or equal to 30%. It is
also seen that all of the selected algorithms have
more than 80% correlation coefficient that shows
that selected attributes are highly correlative
efficient.

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4696

Figure 1: Showing The Number Of Vulnerabilities
Compared To Line Of Code

Figure 1 shows the relation of lines of codes with
potential vulnerabilities although the relation might
not reveal much knowledge in form of percentage
value but it gives an indication that it doesn't matter
the size of project the vulnerabilities may exist in
both cases especially in larger projects even if there
is a community there are chances of vulnerabilities.

Compared to the analysis performed by [27] – [31]
where the results were having a value of 85%
especially by considering more number of variables
study by Choudhary et al. [29] where the prediction
and Moser et al. [30]. Our results with the reduced
number of features perform slightly better showing
that if we can detect the major violation reason a
great dealt with software vulnerabilities can be
avoided. The depth of code is also related to
potential violations as shown in Figure 2.

Figure 2 shows that depth and violations are highly
related along with the number of files. The small
lines represented the relation of files and violations
while purple line represents the depth. The higher
the depth there are more likely chances of having
the vulnerabilities.

Figure 2: Showing The Number Of Vulnerabilities With
Max Depth For Selected Projects.

The decision table algorithm returned classes as the
most relevant in decision making.

While linear regression gave the following equation

𝑃𝑜𝑡𝑒𝑛𝑖𝑡𝑎𝑙𝑙𝑦 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝐶𝑜𝑑𝑒
ൌ 4.9514 ∗ 𝐹𝑖𝑙𝑒𝑠 ൅ 136.51.02
∗ 𝑀𝑒𝑡ℎ𝑜𝑑𝑠𝐶𝑙𝑎𝑠 െ 744.6754

That shows that it is dependent on files and max
depth. Moreover, the selection of last three
attributes may not be making much effect so let's
remove and run the algorithm again with only
Classes, Files, Method Class, Max Depth and Avg
Statement/ Methods and the Table 4 is achieved.

Table 3 shows relevant attributes it shows that
results are still high coefficient. The results are
improved due to removal or less relevant attributes
and the value have gone above 90% while the
relative absolute error has been reduced especially
for linear regression and SMOreg from above 50%
to less than 36%. The result also shows that
selection of relative attributes.

Attribute selected by decision tree is still Classes
while the linear equation returned is given as below

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4697

𝑃𝑜𝑡𝑒𝑛𝑖𝑡𝑎𝑙𝑙𝑦 𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝐶𝑜𝑑𝑒
ൌ 5.1905 ∗ 𝐹𝑖𝑙𝑒𝑠 ൅ 83.02
∗ 𝑀𝑒𝑡ℎ𝑜𝑑𝑠𝐶𝑙𝑎𝑠 െ 422.61

Here looking at above equation it is shown that
methodClass is selected instead of max depth from
the previous equation and it will result in the better
predictor.

This research work focused on finding the most
optimal predictor for finding vulnerabilities.
Decision Table, Linear Regression, SMOReg, IBK,
and RandomForest were used in finding out the
most relevant factors contributing to making the
software's vulnerable. It is also evident from the
literature that software vulnerabilities are mostly
happening due to the complexity and bad design.
Thus it is required to write a clean, modular and
highly coupled software's to decrease the chance of
vulnerabilities.

4. CONCLUSION

Software vulnerabilities if exploited can result in
software security breaches resulting in loss or
compromise of data, confidentiality that results in
higher cost so major losses. There is a number of
studies that have been done in the area of finding
software vulnerabilities or finding its complexity
but lacks the generalized concept of finding the
contributing factor for making the software
vulnerable. We selected twelve projects based on
the varying size and popularity. We selected five
classifiers after the using the feature selection
algorithm. After studying java applications with the
aim of exploring the relationship between
complexity and software vulnerabilities, we can
conclude that there is a strong relationship. We
explored the relationship by using both multiple
classifiers and multiple feature selection
algorithms. Our finding indicates that a number of
files and the percentage of methods to classes are
main contributors to making a software vulnerable.
This strengthens the software engineering theory
that mentions modularity as the main goal in
software design. Modularity means small
components with specific goals. Reducing size,
complexity, and coupling would make the software
more modular and more secure.

REFERENCES
[1] Lagerström, Robert, et al. "Exploring the

Relationship between Architecture Coupling
and Software Vulnerabilities: A Google Chrome
Case." (2017).

[2] Y. Shin and L. Williams, “Is complexity really
the enemy of software security?,” in
Proceedings of the 4th ACM workshop on
Quality of protection, pp. 47-50, 2008.

[3] P. Morrison, K. Herzig, B. Murphy, and L.
Williams, “Challenges with applying
vulnerability prediction models,” in Proceedings
of the 2015 Symposium and Bootcamp on the
Science of Security, p. 4, 2015.

[4] Y. Shin, A. Meneely, L. Williams, and J. A.
Osborne, "Evaluating complexity, code churn,
and developer activity metrics as indicators of
software vulnerabilities, "IEEE Transactions
on Software Engineering, vol. 37, no. 6, pp.
772–787, 2011.

[5] S. Neuhaus, T. Zimmermann, C. Holler, and A.
Zeller, “Predicting vulnerable software
components,” in ACM Conference on
Computer and Communications Security (CCS),
2007

[6] O. Alhazmi and Y. Malaiya, “Prediction
capabilities of vulnerability discovery models,”
in Proc. RAMS ’06. Annu. Rel. Maintainability
Symp., 2006, pp. 86–91.

[7] National Vulnerability Database 2011 [Online].
Available: http://nvd. nist.gov/

[8] The Open Source Vulnerability Database 2011
[Online]. Available: http://osvdb.org/

[9] O. Alhazmi and Y. Malaiya, “Application of
vulnerability discovery models to major
operating systems,” IEEE Trans. Rel., vol. 57,
no. 1, pp. 14–22, Mar. 2008.

[10] Y. Shin and L. Williams,, “Is complexity really
the enemy of software security?” in ACM
Workshop on Quality of Protection (QoP),
2008.

[11] Alenezi, Mamdouh, and Yasir Javed. "Open
source web application security: A static
analysis approach." Engineering & MIS
(ICEMIS), International Conference on. IEEE,
2016.

[12] Chowdhury and M. Zulkernine, “Can
complexity, coupling, and cohesion metrics be
used as early indicators of vulnerabilities?,” in
Proc. 2010 ACM Symp. Appl. Comput., New
York, NY, USA, 2010, pp. 1963–1969 [Online].
Available:

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4698

http://doi.acm.org/10.1145/1774088.1774504,
ser. SAC ’10, ACM

[13] Y. Shin and L. Williams, “An empirical model
to predict security vulnerabilities using code
complexity metrics,” in ACM-IEEE
International Symposium on Empirical
Software Engineering and Measurement
(ESEM), 2008

[14] Y. Shin, A. Meneely, L. Williams, and J.A.
Osborne, “Evaluating complexity, code churn,
and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on
Software Engineering, vol. 37(6), pp. 772–787,
2011.

[15] Javed, Yasir, and Mamdouh Alenezi.
"Defectiveness Evolution in Open Source
Software Systems." Procedia Computer
Science 82 (2016): 107-114.

[16] Chowdhury and M. Zulkernine, “Using
complexity, coupling, and cohesion metrics as
early indicators of vulnerabilities,” Journal of
Systems Architecture, vol. 57, no. 3, pp. 294–
313, 2011

[17] S. Neuhaus, T. Zimmermann, C. Holler, and A.
Zeller, “Predicting vulnerable software
components,” in, ACM Conference on
Computer and Communications Security (CCS),
pp. 529-540, 2007.

[18] T. Zimmermann, N. Nagappan, and L.
Williams, “Searching for a needle in a haystack:
Predicting security vulnerabilities for windows
vista,” in International Conference on Software
Testing, Verification and Validation (ICST),
2010.

[19] V. H. Nguyen and L. M. S. Tran, “Predicting
vulnerable software components with
dependency graphs,” in International Workshop
on Security Measurements and Metrics
(MetriSec), 2010.

[20] B. Smith and L. Williams, “Using SQL hotspots
in a prioritization heuristic for detecting all
types of web application vulnerabilities,” in
IEEE International Conference on Software
Testing, Verification and Validation (ICST),
2011.

[21] Austin and L. Williams, “One technique is not
enough: A comparison of vulnerability
discovery techniques,” in International
Symposium on Empirical Software Engineering
and Measurement (ESEM), 2011.

[22] J. Walden and M. Doyle, “SAVI: Static-analysis
vulnerability indicator,” IEEE Security &
Privacy, vol. 10, no. 3, pp. 32–39, 2012.

[23] N. Edwards and L. Chen, “An historical
examination of open source releases and their
vulnerabilities,” in ACM conference on
Computer and Communications security (CCS),
2012.

[24] M. Gegick, L. Williams, J. Osborne, and M.
Vouk, “Prioritizing software security
fortification throughcode-level metrics,” in
ACM Workshop on Quality of Protection
(QoP), 2008.

[25] M. Gegick, P. Rotella, and L. Williams,
“Predicting attack-prone components,” in
International Conference on Software Testing
Verifi- cation and Validation (ICST), 2009.

[26] J. Zheng, L. Williams, N. Nagappan, W. Snipes,
J. P. Hudepohl, and M. A. Vouk, “On the value
of static analysis for fault detection in
software,” IEEE Transactions on Software
Engineering, vol. 32, no. 4, pp. 240–253, 2006.

[27] Decan, A., Mens, T., & Constantinou, E.
(2018). On the impact of security vulnerabilities
in the npm package dependency network.

[28] Kula, R. G., De Roover, C., German, D. M.,
Ishio, T., & Inoue, K. (2018, March). A
generalized model for visualizing library
popularity, adoption, and diffusion within a
software ecosystem. In 2018 IEEE 25th
International Conference on Software Analysis,
Evolution and Reengineering (SANER)(pp.
288-299). IEEE.

[29] Choudhary, G. R., Kumar, S., Kumar, K.,
Mishra, A., & Catal, C. (2018). Empirical
analysis of change metrics for software fault
prediction. Computers & Electrical
Engineering, 67, 15-24.

[30] Moser, R., Pedrycz, W., & Succi, G. (2008,
May). A comparative analysis of the efficiency
of change metrics and static code attributes for
defect prediction. In Proceedings of the 30th
international conference on Software
engineering (pp. 181-190). ACM.

[31] Dam, H. K., Tran, T., Pham, T., Ng, S. W.,
Grundy, J., & Ghose, A. (2017). Automatic
feature learning for vulnerability prediction.
arXiv preprint arXiv:1708.02368.

[32] Kononenko, I. (1994, April). Estimating
attributes: analysis and extensions of RELIEF.
In European conference on machine learning
(pp. 171-182). Springer Berlin Heidelberg.

[33] Jolliffe, I. (2002). Principal component analysis.
John Wiley & Sons, Ltd.

[34] Hall, M. A., & Smith, L. A. (1997). Feature
subset selection: a correlation based filter
approach.

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4699

[35] M. Hall and E. Frank. Combining naive Bayes
and decision tables. In Proc 21st Florida
Artificial Intelligence Research Society
Conference, Miami, Florida. AAAI Press, 2008.

[36] Seber, G. A., & Lee, A. J. (2012). Linear
regression analysis (Vol. 936). John Wiley &
Sons.

[37] Li, Chaoqun, and Liangxiao Jiang. "Using
locally weighted learning to improve SMOreg
for regression." PRICAI 2006: Trends in
Artificial Intelligence (2006): 375-384.

[38] I.H. Witten, E. Frank “Data Mining: Practical
Machine Learning Tool and Technique with
Java Implementation” Morgan Kaufmann, San
Francisco (2000)

