
Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4584

BLACK BOX EVALUATION OF WEB APPLICATION
SCANNERS: STANDARDS MAPPING APPROACH

MALIK QASAIMEH1*, ALA’A SHAMLAWI2, TARIQ KHAIRALLAH3
Princess Sumaya University for Technology, Amman, Jordan

m.qasaimeh@psut.edu.jo1, Alaa.shamlawi@gmail.com2, Tariq.khairallah@gmail.com3

ABSTRACT

The Secure Development Life Cycle (SDLC) of web applications aims to enhance the quality attributes of
released applications. Security is among of the important attributes during the penetration testing phase. Web
Application Vulnerability Scanners (WAVS) help the developers to identify existing vulnerabilities that
could compromise the security and privacy of data exchanged between the client and web server during the
development and deployment phases. WAVS are used during the deployment phase to continuously evaluate
the security of web applications by checking for possible vulnerabilities that can threaten the client services.
This paper evaluates the effectiveness and accuracy of five WAVSs (Acunetix WVS, Burp Suite, NetSparker,
Nessus and OWASP ZAP) to identify possible vulnerabilities of web applications. The selected scanners are
among the top ten recommended web vulnerability scanning software for 2017. The method of black box
testing was adopted to evaluate the five WAVSs against seven vulnerable web applications. The evaluation
is based on different measures such as the vulnerabilities severity level, types of detected vulnerabilities,
numbers of false positive vulnerabilities and the accuracy of each scanner. The evaluation is conducted based
on an extracted list of vulnerabilities from OWASP and NIST. The accuracy of each scanner was measured
based on the identification of true and false positives. The results show that Acunetix and NetSparker had the
best accuracy with the lowest rate of false positives.

Keywords—Web Application Security Scanners, Evaluation, Owasp, Nist, Security Vulnerabilities.

1. INTRODUCTION

Secure software development aims to activate
security development early during the software
development life cycle [1]. In the era of internet of
things (IoT) it is expected that web applications will
be increasingly integrated with sensor-based systems
to provide vital services [2] (e.g. smart homes and
cities, transportation and logistics and healthcare
services) and web-based applications requiring users
and sensors to input critical data in order to complete
certain transactions to enable smart services [3].
Security measures should be properly configured in
order to secure the information exchanged over the
web application as well as ensuring the security of
the hosting web server. It is said that “the best
defense against cyber-attacks is a good offense” [2],
which is achieved by testing the web application for
any possible vulnerabilities during the verification
phase, as described by different Software Security
Development Lifecycle (SSDL) institutions, such as
Microsoft’s Security Development Lifecycle (SDL)
[4], Touch Points [5] and Comprehensive
Lightweight Application Security Process (CLASP)
[6]. Vulnerabilities scanning tools are useful during
penetration testing in order to reduce opportunities

to exploit potential vulnerabilities early during the
SSDL. WAVSs are defined as automated programs
that examine web applications for potential security
vulnerabilities such as Cross-Site Scripting (XSS),
SQL Injection, directory traversal, insecure
configurations, and remote command execution
vulnerabilities [7, 8]. Most web application
vulnerability scanners classify vulnerabilities into
four categories: High, Medium, Low, and
Informational [9]. Some scanners also consider
Critical as a category. These categories are described
below:

High: A vulnerability which when exploited
allows attackers to take complete control of the web
application and server. It allows attackers to access
the application’s database, modify accounts, and
steal sensitive information. XSS and SQL injection
are examples of high severity vulnerabilities which
should have the utmost priority for fixing if detected
by a scanner.

Medium: A vulnerability which when exploited
allows attackers to access a logged-in user account
to view sensitive content. It allows attackers access
to information that helps them exploit other

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4585

vulnerabilities, or better understand the system so
they can refine their attacks. Open redirection is an
example of a medium severity vulnerability which
allows an attacker to redirect a user to a malicious
website. Medium severity vulnerabilities should be
addressed at the earliest possible opportunity if
detected by a scanner.

Low: A vulnerability that has a minimal impact
or cannot be exploited by an attacker. Cookies not
marked as HttpOnly is an example of a low severity
vulnerability. Marking Cookies as HttpOnly makes
the cookie unreadable by client-side scripts and
hence provides an additional layer of protection
against XSS attacks. Low severity vulnerabilities are
worth investigating and fixing if the time and budget
allows.

Informational: These are not considered
vulnerabilities, rather they are alerts that provide
information about the web application. Examples
include NTLM Authorization Required and
Database Detected (MySQL). No action is needed
for these informational alerts.

Black box and white box testing are the main
approaches for the security evaluation of web
applications. White box testing studies the internal
structures of applications, however web applications
usually consist of multiple technologies and
programming languages, including the client- and
server-side languages, therefore the such testing may
fail to capture all security flaws and vulnerabilities
due to the code complexity [10]. Black box testing,
also known as dynamic security evaluation, includes
an analysis of the application execution under a
certain conditions and inputs (i.e. functions) to
identify possible vulnerabilities [11]. This approach,
also known as penetration testing, consists of the
following phases [10]:

 Crawling and identifications: in this phase the
scanner operations include browsing all possible
links and web directories. One of the main
challenges in this phase is crawling pages that
require human input, such as user passwords. The
main objective of this phase is to obtain the
HTML format of all server replies. By the end of
this phase the scanner identifies the entry points
that require special input, such as the username
and password. The forms and functions such as
the GET and POST are also identified in this
phase. The scanner should also be able to identify
the application structure and functionality to

extract information that will be useful in the next
phase.
 Parsing and attack: in this phase the scanner

generates or uses already existing data from
directories expected to match the real data
input required by the web application. Fuzz
testing is deployed in this phase to generate
and submit data of different sizes. Some
scanners use malicious input patterns to
identify the possible vulnerable response
from the web server. The identified actions
from the crawling phase along with input
filled are sent to the server to observe its
reply.

 Analysis: In this phase the scanner analyzes
the server response, which is generally
influenced by the data submitted. The
scanner also classifies the server response
and observe the valid ones. The scanners
list errors that help in the classification of
possible vulnerabilities. For example, if an
error was related to XSS, the scanner
concludes that XSS vulnerability may exist.

1.1 motivation
The current study is motivated by the diversity

of the available commercial and open source tools
available for testing and evaluating the security of
web applications that can produce relatively quick
results. However, the numbers and categorization of
detected vulnerabilities differ from one scanner to
the other. Some tools will be successful in
identifying all “true” vulnerabilities while
maintaining a low false positive rate, while others
will fail in the detection of true positive
vulnerabilities and have a considerably high false
positive rate [12]. For example A study conducted
by WhiteHat Security revealed that 86% of tested
web applications had on average 56% of
vulnerabilities per web application, at least one of
which was classified as serious. Another study
conducted by Symantec executed 1400 scans to find
that 76% of websites have at least one serious
vulnerability, and 20% of servers consist of critical
vulnerabilities [7]. This research is also motivated by
the needs for selecting the appropriate WASs for
testing and evaluating the web application during the
development phases SDLC.

1.2 Contribution
In this paper five state-of-the-art WAVSs

(Acunetix WVS, Burp Suite, NetSparker, Nessus
and OWASP ZAP) were evaluated to assess their
capabilities for detection of web application
vulnerabilities. The aim of this paper is to answer the
three following research questions:

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4586

RQ1: what is the number of vulnerabilities that are
detected by the selected WASs categorized by
severity level?

RQ2: what is the number of vulnerabilities that are
detected by the selected WASs categorized by their
types?

RQ3: what is the accuracy of each WAS based on
the analysis of false positive rates?

The investigated vulnerabilities were extracted
from NIST and OWASP standard based on a
mapping criteria that analyze the similarities and
differences between each standard. The scanners
were evaluated against seven intentionally
vulnerable applications designed for the purpose of
WAVSs evaluation. The evaluated is based on
different measures such as the vulnerabilities
severity level, types of detected vulnerabilities,
numbers of false positive vulnerabilities and the
accuracy of each scanner. The accuracy of each
scanner was measured based on the identification of
true vs. false positive results. The latest versions of
the scanners were used to perform the tests and to the
best of our knowledge no previous work has been
conducted using these versions. The use of seven
web applications increased the granularity and
diversity of this work, as most of the previous work
tested the scanners against one or two web
applications at most.

1.3 Road Map
The remainder of this paper is organized as

follows: section 2 describes the related work
previously performed, section 3 outlines the
preliminary investigations, section 4 discusses the
methodology adopted for this paper and the
evaluation criteria, section 5 presents the results and
a discussion of the findings, section 6 presents final
remarks and a conclusion is presented in section 7.

2. RELATED WORK
Several research papers have addressed the

issue of evaluating the effectiveness of web
application security scanners. Some authors
performed their study on only open-source or
commercial tools, while some combined open-
source and commercial tools. Table 1 shows a
comparison and analysis of the related work. The
table illustrates the evaluated scanners, selected
vulnerabilities, testbeds, measures and the
publication date for the related studies.

Doupé, Cova and Vigna [13] evaluated ten
WAVS: Acunetix, AppScan, Burp, Grendel-Scan,
Hailstorm, Milescan, N-Stalker, NTOSpider Paros,

w3af and Webinspect. The scanners were selected to
cover a wide range of both open source and
commercial scanners. The evaluation focused
mainly on the capabilities of the selected WAVS
against XSS, SQL injection, code injection and
broken access controls. Each of the mentioned
vulnerabilities were detailed into multiple sub-
categories to enable the evaluation process for a total
of seventeen different vulnerabilities. The authors
chose to develop their own test application called
wackopicko, which is fully functional and enables
the evaluation process to test the scanner under a
realistic conditions. The results show that the
running time of N−Stalker is higher than Acunetix,
Webinspect and Burp, which provide competitive
results of true positive vulnerabilities detection. The
authors also note that the crawling process is
challenging and needs further investigation to
improve the automated identification of
vulnerabilities.

Bau, Bursztein, Gupta and Mitchell [14] authors
evaluated eight commercial scanners, namely
Acunetix WVS, Cenzic HailStrom Pro, HP
WebInspect, IBM AppScan, McAfee SECURE, N-
Stalker QA Edition, QualysGuard PCI, and Rapid7
NeXpose. They used black box scanning to test the
scanners against a custom web application with
known vulnerabilities. The vulnerability categories
targeted in this study are XSS, SQL Injection, Cross
Channel Scripting, Session Management, Cross-Site
Request Forgery (CSRF), SSL/Server
Configuration, and Information Leakage. The results
presented focused on the fact that all scanners were
successful in the detection of straightforward XSS
and SQL injection vulnerabilities, but failed to detect
second order (stored) forms of XSS and SQL
injection vulnerabilities.

Parvez, Zavarsky and Khoury [15] evaluated
two commercial scanners, Acunetix WVS and IBM
AppScan, and one open source scanner, OWASP
ZAP. Their evaluation was performed against a
custom web application with intentional
vulnerabilities. This work focused on only two web
application vulnerabilities, XSS and SQL Injection.
The analysis revealed that the scanners show some
improvement over previous studies in the detection
of second order XSS and SQL Injection
vulnerabilities.

Makino and V. Klyuev [16] evaluated two open-
source scanners, OWASP ZAP and Skipfish. The
evaluation was performed against two vulnerable
web applications, the Web Application Vulnerability

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4587

Scanner Evaluation Project (WAVSEV) and the
Damn Vulnerable Web Application (DVWA). The
vulnerabilities investigated were SQL injection,
Stored and Reflected XSS, Local and Remote File
Inclusion, Command Injection, and CSRF. The
results compared the performance of the two
WAVSs and found that OWASP ZAP is superior to
Skipfish.

Suteva, Zlatkovski and Mileva [17] evaluated
six free/open source scanners, namely NetSparker
Community Edition, N-Stalker Free 2012, OWASP
ZAP, W3AF, Iron WASP and Vega. The evaluation
was performed against a vulnerable web application
called WackoPicko [13]. The tested vulnerabilities
were XSS, SQL Injection, Command Injection, File
Inclusion, File Exposure, and several other
vulnerabilities. The total number of detected
vulnerabilities and the number of false positives
were identified. The results showed that NetSparker
performed better than the other tested scanners.

A recent study by El Idrissi et,al. [18] was
conducted on eleven WAVSs. Five were commercial
tools (BurpSuite, Acunetix, Netsparker, AppSpider

and Arachni), and six were open-source tools
(Wapiti, SkipFish, W3AF, IronWASP, ZAP and
Vega). The scanners were evaluated against the
WAVSEV application. The tested vulnerabilities
were XSS, SQL Injection, Local and Remote File
Inclusion, and Path Traversal. The results show that
most scanners have better detection rate for XSS and
SQL injection vulnerabilities compared to other
types of vulnerabilities. The authors focused on
comparing the performance between commercial
and open-source tools. The results show that some of
the open-source tools like ZAP and Vega have better
results than other commercial tools such as
AppSpider and Arachni.

Table 1: Comparison And Analysis Of The Related Work

Ref.
No

Evaluated scanners Evaluated
vulnerabilities

Testbeds Measures date

[13] Acunetix 1 7 4, AppScan
Burp, Grendel-Scan, Hailstorm,
Milescan, N-Stalker,
NTOSpider, Paros, w3af,
Webinspect

Cross-Site Scripting,
SQL Injection, Code,
Injection, Broken Access
Controls

WackoPicko

Accuracy,
execution
times and
Threat scores

2010

[14] Acunetix, Cenzic, WebInspect
Rational AppScan, McAfee
SECURE, N-Stalker
QualysGuard PCI, NeXpose

Cross-Site Scripting SQL
Injection,
Cross Channel Scripting,
Session Management,
Cross-Site Request
Forgery

Drupal,
phpBB,
Wordpress

Scanner
footprint,
Vulnerability
detection,
false positive

2010

[15] Acunetix,
Rational AppScan,
ZAP

SQL Injection,
Stored XSS

WackoPicko,
Scan-bed

Detection rate
for SQLI and
XSS

2015

[16] ZAP, Skipfish SQL injection,
cross site scripting,
file injection,
Command execution,
request forger

DVWA
WAVSEP

Detection
rate, false
positive rate

2015

[17] NetSparker, N-Stalker,
OWASP, ZAP, W3Af, Iron
WASP, Vega

SQLI, XSS, Session ID
Injections, File exposure
Parameter manipulation
Directory traversal, logic
flow, forceful browsing,
weak passwords

WackoPicko False positive
rate

2013

[18] BurpSuite, Acunetix, Wapiti,
SkipFish, Netsparker, W3AF,
AppSpider, IronWASP,
Arachni, ZAP, Vega

Common vulnerabilities
such as XSS, SQLI and
uncommon
vulnerabilities such as
Missing Function Level
Access Control with a
total of 10 vulnerabilities

WAVSEP Precision,
Recall, and F-
measure

2017

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4588

3. PRELIMINARY INVESTIGATIONS

WAVSs can be found as open source
(completely free of charge) or commercial tools with
varying costs. The commercial tools usually offer a
free trial version for customers and evaluators,
however they lack support and features available in
non-trial versions. Selecting one scanner over
another requires considering several aspects that can
be summarized by the following guidelines [8]:

 The scanner should support the protocol
and authentication scheme used by the web
application.

 The scanner should support the main types
of input delivery methods and be able to
detect vulnerabilities in the web application
with a low false positive rate.

 The scanner should be within the technical
abilities of the person who is going to use
it.

 The scanner should be stable, and regularly
updated with the latest security updates to

cover the ongoing vulnerabilities being
discovered.

 The scanner should be within the budget
limit of the project.

This paper aims to evaluate the scanner’s
capabilities to detect the true vulnerabilities in web
applications based on multiple vulnerable web
applications. The five WAVSs selected for this
paper were reported among the top WAVSs tools
available on the market for the year 2017, as reported
by Concise Courses [19]. Table 2 illustrates some
characteristics of the evaluated scanners such as the
vendor, version, license and the operating platforms.
In this paper the scanners were tested against seven
vulnerable web applications to increase the
granularity and diversity of the detected
vulnerabilities. The evaluation assessed the
capabilities of each scanner to detect a set of eight
vulnerabilities extracted from the NIST and OWASP
Standards. The following is a description of the
selected WAVSs tools.

Table 2. General Characteristics Of Evaluated Scanners

Scanner Vendor Version License Platform

Acunetix WVS Acunetix 11.0 Commercial Windows

BurpSuite PortSwigger 1.7.30 Commercial Linux, MAC, Windows

NetSparker NetSparker Ltd. 4.7.1 Commercial Windows

Nessus Tenable Cloud based Cloud Based Linux, MAC, Windows

OWASP ZAP OWASP 2.7.0 Open Source Linux, MAC, Windows

Acunetix WVS is a leading web vulnerability
scanner used to automatically check web
applications for vulnerabilities. Acunetix WVS is
used to discover if a website is secure by crawling
and analyzing the web application to find if there are
SQL injections, XSS, Host Header Injection and
over 3000 other web vulnerabilities [20]. Acunetix is
a commercial tool which works on Windows
operating systems only. Older versions of Acunetix
were evaluated in [14], [15], and [18].

BurpSuite is an integrated platform for security
testing of web applications. It has an advanced web
application scanner for automating the detection of
numerous types of vulnerabilities. It is available in a
free version with limited features and in a
commercial version with maximum features [21].

BurpSuite works on Linux, MAC OS and Windows
operating systems. An older version of BurpSuite
was among the scanners evaluated in [18].

Nessus is a vulnerability scanner with one of the
largest knowledge bases of security vulnerabilities
and hundreds of plugins which can be activated for
detailed customized scans. Nessus can detect
security vulnerabilities in the operating system of
targeted hosts, patches, services. It also demonstrate
the ability to propose solutions, which can mitigate
these security vulnerabilities [22]. Nessus is a
commercial tool which works on Linux, MAC OS,
and Windows operating systems. For this work a
cloud-based version of Nessus vulnerability scanner
was evaluated. Nessus vulnerability scanner was not

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4589

evaluated in any of the previous works mentioned
above.

NetSparker is a web application security
scanner which is designed to discover and audit web
application vulnerabilities such as SQL Injection and
XSS possibilities. NetSparker is used by
cybersecurity space professional and is considered
by many to be easy to use [23]. NetSparker is a
commercial tool that works on Windows Operating
Systems only. Older versions of NetSparker were
evaluated in [17] and [18].OWASP Zed Attack
Proxy (ZAP) is an open source integrated
penetration testing tool for finding vulnerabilities in
web applications. It is designed to be used by people
with a wide range of security experiences such as
developers and functional testers who are new to
penetration testing as well as being a useful addition
to an experienced pen testers toolbox [24]. OWASP

ZAP is a free tool which works on Linux, MAC OS,
and Windows operating systems. Older versions of
OWASP ZAP were evaluated in [15], [16], [17] and
[18].

The selected vulnerable applications are
designed specially to allow web developers, security
auditors and penetration testers to practice their
knowledge and testing skills, without any legal
concerns. Usually the evaluation of WAVS against a
real and live web application may pose legal
concerns, especially if the web scan is not authorized
by the web application’s owner, and the live scan
could also cause disruptions to main features and
services of the tested web application. Table 3 lists
the seven web applications and the main features of
each.

Table 3. Vulnerable Web Applications

Index Web Address Features

W1 altoromutual.com An online banking web application created by IBM to test web application
scanners, written in C#.NET with a ported JAVA version.

W2 crackme.cenzic.com/kelev
/view/home.php

An online banking web application created by Trustwave to test automated
WAVSs, written in PHP language.

W3 testaspnet.vulnweb.com Anews blog website created by Acunetix as a testing application for scanners,
written in asp.net language.

W4 testphp.vulnweb.com An online shopping web application created by Acunetix as a testing
application for scanners, written in PHP language.

W5 zero.webappsecurity.com An online banking web application created by Hewlett-Packard (HP) to test
web vulnerability scanners.

W6 www.webscantest.com A web application created by NTOSpider (now maintained by rapid7) with
several services to test web application scanners, written in PHP language.

W7 testhtml5.vulnweb.com An online social networking application created by Acunetix to test web
application scanners, written in HTML5 language

4. EVALUATION DESIGN

 4.1 Evaluation Methodology
The evaluation in this paper is based on the

approach of black box testing. That main benefit of
this approach that it is provides a similar scenario to
real, common attacks. Security testing based on back
box approach is used to evaluate web application
scanners with no prior knowledge of the web
applications’ internal structure. In addition, it is
technology independent, and hence is suitable for
testing and evaluating the efficiency of web
application vulnerability scanners regardless of the
underlying technology of the web application. The
main components of a web application security
scanner consist of three modules: the crawling,
fuzzing, and analysis and reporting modules [18]. In
black box security testing the scan starts by crawling

the web application to find all internal links to
identify the main entry points that require special
input. Then, the fuzz testing is preformed to generate
random input for each entry point identified in the
crawling step. Analysis is then performed on the
results obtained from the fuzzing process to generate
detailed reports of the vulnerabilities at the end of the
testing process [16].

The selected scanners were deployed to scan
each of the seven web applications in order to
identify the possible vulnerabilities. To generate
default results the scanners were operated on default
profile mode, where no customization or tuning has
been provided to the scanners. For each web
application a report was generated by the scanner
that lists the discovered vulnerabilities. Since each

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4590

scanner has its own format and presentation, a
manual organization and classification was also
conducted at the end of the scanning process to
compare the resulted vulnerabilities between the
selected scanners. Figure 1 illustrates the
methodology phases conducted in this study.

4.2 Evaluation Criteria
The evaluation criteria were developed based

two standards proposed by leading software security
organizations and researchers to aid the formulation
of baselines for evaluating web application
vulnerability scanning tools. The first standard is the
special NIST publication 500-269 [8] proposed by
the National Institute of Standards and Technology
(NIST) to provide guidelines to measure the
usability and effectiveness of the WAVSs. It lists
some specifications for mandatory and optional
features of WAVSs. The second standard is the Open
Web Application Security Project (OWASP), which
provides a recent updated taxonomy for the top ten
most critical security risks that threaten the security
of modern web applications [25]. The NIST
Standard [8] has stated a list of fourteen
vulnerabilities that should be analyzed and identified
for a web application. This standard also provides a
baseline for the evaluation of web application
security scanners and has been used by many recent
works [26-28]. The fourteen vulnerabilities defined
in the NIST standard are listed in table 4. OWASP
2017 released a set of 10 vulnerabilities, as shown in
table 4, however some of the OWASP vulnerabilities
are feature-dependent and could not be identified by

the WAVSs. For example, A4, A9 and A10 are only
detected by source code analysis (i.e. white box
testing).

The vulnerabilities that form the basis of the
evaluation were extracted based on mapping criteria
between the NIST and OWASP. The mapping aims
to identify the overlapping vulnerabilities between
the two standards. Finally, eight vulnerabilities were
chosen to form the baseline for evaluation in this
work. The mapping criteria focused on the
correlation between the two taxonomies, since some
of the vulnerabilities listed in NIST standard can be
mapped to OWASP vulnerabilities. For example,
SQL Injection OS, Command Injection and XML
Injection are mapped to the Injection vulnerability
from the OWASP standard. It was also noticed that
some vulnerabilities are feature dependent and
others may require source code analysis to be
detected. Such vulnerabilities are also eliminated
since they are beyond the purview of black box
vulnerabilities scanning. Table 5 lists the eight
chosen vulnerabilities based on the mapping criteria.

Figure 1. Evaluation Methodology For The Wavss

Scan web applications Generate reports Analyze detected
vulnerabilities

Validate vulnerabilities
manuallyCompare resultsIdentify true and false

positives

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4591

Table 4. NIST And OWASP Vulnerabilities

NIST
Index

NIST vulnerabilities OWASP
Index

OWASP vulnerabilities

N1 Cross Site Scripting (XSS) A1 Injection
N2 SQL Injection A2 Broken Authentication
N3 OS Command Injection A3 Sensitive Data Exposure
N4 XML Injection A4 XML External Entities (XXE)
N5 HTTP Response Splitting A5 Broken Access Control
N6 Malicious File Inclusion A6 Security Misconfiguration
N7 Insecure Direct Object Reference A7 Cross Site Scripting (XSS)
N8
N9

Cross Site Request Forgery (CSRF)
Information Leakage

A8 Insecure Deserialization

N10 Improper Error Handling A9 Using Components with Known Vulnerabilities
N11 Weak Authentication A10 Insufficient Logging and Monitoring.

 N12 Session Fixation

N13 Insecure Communication

N14 Unrestricted URL Access

Table 5. Investigated Vulnerabilities Mapping Results

NIST OWASP Mapping results

V M D V D V D Investigated Vulnerabilities

N1 A7 ✓ A1 ✓ V1 ✓ Cross Site Scripting (XSS)

N2 A1 ✓ A2 ✓ V2 ✓ Injection

N3 A1 ✓ A3 ✓ V3 ✓ Broken Authentication

N4 A1 ✓ A4 ✕ V4 ✓ Security Misconfiguration

N5 - ✓ A5 ✓ V5 ✓ Sensitive Data Exposure

N6 - ✓ A6 ✓ V6 ✓ Malicious File Inclusion

N7 A9 ✕ A7 ✓ V7 ✓ Cross Site Request Forgery (CSRF)

N8 A7 ✓ A8 ✓ V8 ✓ Insecure Communication

N9 A3 ✓ A9 ✕

N10 A6 ✓ A10 ✕

N11 A2 ✓

N12 A6 ✓

N13 A2 ✓

N14 A5 ✓
 (V for Vulnerability, M for Mapping to OWASP, and D for Detectability by a scanner)

5. DETAILED VULNERABILITIES
ANALYSIS

The subsections below present and discuss the
obtained results based on the following measures:
the number of vulnerabilities detected by each
scanner, the classification of the vulnerabilities
based on their severity level, the classification of

detected vulnerabilities by their types, the number of
false positive vulnerabilities and finally the accuracy
of each scanner.

5.1 Vulnerabilities Severity Level
This section is aimed to answer the first research

question (RQ1). Table 6 shows the total number of
vulnerabilities that have detected by the five

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4592

scanners for the vulnerable web applications. It
illustrates that the number of detected vulnerabilities
varies to some extent from one scanner to another.
For example, in W1 the highest number of
vulnerabilities was found by OWASP Zap and the
lowest number was found by Nessus. No generalized
pattern could be concluded since the vulnerable
applications originally differ in the number of
existing vulnerabilities. The total number of

discovered vulnerabilities is not an accurate measure
and further investigation into the severity levels of
the discovered vulnerabilities is needed.
Vulnerabilities have a certain severity level which
reflects their impact on the web application if
successfully exploited by attackers. Figure 2 shows
the number of vulnerabilities classified into
informational, low, medium and high severity levels.

Table 6. Total Number Of Vulnerabilities Detected By Each Scanner Per Web Application

Vulnerable Applications Evaluated Scanners

Acunetix BurpSuite NetSparker Nessus ZAP

W1 88 93 78 33 225

W2 33 94 28 70 154

W3 57 28 48 23 88

W4 206 140 86 104 265

W5 144 49 109 24 23

W6 267 178 159 62 258

W7 34 33 27 24 26

Figure 2. Total Number Of Detected Vulnerabilities Classified By Severity Level

It can be seen from figure 2 that Acunetix was
able to detect the largest number of high severity
vulnerabilities, followed by NetSparker, however
there is a big gap between the two. BurpSuite was
third, followed by Nessus, and finally OWASP ZAP
detected a very low number of high severity level
vulnerabilities. ZAP classifies the vulnerabilities as
high, medium, and low without considering the
category of informational vulnerabilities. The results
show that ZAP detected the highest number of
medium and low severity level vulnerabilities,

however most of these vulnerabilities are not in fact
“true”, as explained in the following sections.

5.2 Types of Detected Vulnerabilities
This section is aimed to answer the second

research question (RQ2). The total number of
detected vulnerabilities classified by their type was
calculated from the results obtained by the five
scanners. As shown in table 7, Acunetix detected the
highest number of vulnerabilities related to XSS,

0

100

200

300

400

500

600

700

800

900

Acunetix BurpSuite NetSparker Nessus ZAP

N
u
m
b
er
 o
f
vu
ln
er
ab

ili
ti
es

Axis Title

High Medium Low Informational

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4593

Injection, Sensitive data exposure, broken
authentication, malicious file inclusion and CSRF,
however it was less successful in identifying security
misconfiguration vulnerabilities. The OWASP ZAP
had the lowest number of detected vulnerabilities for

most of the types listed, however the number of
detected vulnerabilities related to security
misconfiguration is very high for the OWASP ZAP,
which is will verified in the next section for the
possibilities of false positive.

Table 7. Total Number Of Detected Vulnerabilities Classified By Type

Vulnerabilities Evaluated Scanners

Acunetix BurpSuite NetSparker Nessus ZAP

V1 Cross Site Scripting (XSS) 115 66 60 54 26

V2 Injection 133 55 115 49 13

V3 Broken Authentication 2 0 0 0 0

V4 Security Misconfiguration 165 179 140 100 743

V5 Sensitive Data Exposure 143 90 113 29 11

V6 Malicious File Inclusion 2 1 1 1 11

V7 Cross Site Request Forgery (CSRF) 45 29 15 5 8

V8 Insecure Communication 22 27 25 15 0

Figure 3 shows the detection percentage for
each type of vulnerability. Security misconfiguration
had the highest percentage of 51%. OWASP states
that security misconfiguration as the most
commonly seen systems vulnerability that can be

caused by numerous actions, such as incomplete or
ad hoc configurations, open cloud storage,
misconfiguration, HTTP headers and verbose error
messages containing sensitive information [25].

Figure 3. Percentage Of Vulnerability Detection

5.3 Vulnerabilities Validation
This section is aimed to answer the third

research question (RQ3). The black box evaluation
of web applications could generate false positive
results, due to the fact that this approach is conducted
with no awareness of the internal structure and the
authenticating credentials of the web application.
Hence, the scanner might not be able to access all the
necessary information required to correctly identify
the vulnerabilities. The scanner in this type of test

mostly relies on the information obtained from
service banners and signature matching checks,
which often lead to false detection of vulnerabilities.
Hence, it is required to verify the obtained results
manually by exploiting and checking its validity.
This process consumes a considerable amount of
time and effort. There are two types of measures to
validate the propagated results by the web scanners:
false negative, which is defined as a vulnerability

12%

14%

0%
51%

15%

1% 4% 3%

Cross Site Scripting (XSS) Injection

Broken Authentication Security Misconfiguration

Sensitive Data Exposure Malicious File Inclusion

Cross Site Request Forgery (CSRF) Insecure Communication

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4594

missed by the scanner, and hence not detected or
reported; and a false positive, which is defined as a
vulnerability that the scanner mistakenly reports,
however after manual investigation it was found to
be false vulnerability [29]. In this context we focus
on validating the reported vulnerabilities against the
false positive measure.

The results obtained from the scanners were
evaluated manually to verify the likelihood of false
positive vulnerabilities. NetSparker reported an SQL
injection vulnerability from the website
www.testphp.vulnweb.com, specifically the link:
http://testphp.vulnweb.com/listproducts.php?artist.

The payload identified by the scanner was verified
manually and it was found that the SQL injection
was unsuccessful and an error was reported. Another
example is an XSS vulnerability reported by
Acunetix in the login page of the website
www.altoromutual.com, specifically in the link:
http://www.altoromutual.com/bank/login.aspx.
The payload used by the scanner was verified
manually, however the XSS attack was unsuccessful
and an error was reported. Using a similar procedure
we verified the obtained vulnerabilities. Figure 4
illustrates the number of false positives for each
scanner in comparison with the total number of
detected vulnerabilities.

Figure 4. False Positive Count

False positives vulnerabilities is a useful
measure of web scanner accuracy. In this context the
accuracy for each scanner was obtained after
computing the ratio of correctly identified
vulnerabilities the “True Positive” to the total
number of detected vulnerabilities. As indicated in
table 8, the accuracy scores for Acunetix,
NetSparker, and Nessus were higher than 90%,
while those for Burp Suite and OWASP ZAP were
significantly lower. To improve the accuracy of

scanners a built-in exploitation functionality is
supported by some web scanners like NetSparker to
automatically validate the detected vulnerability. If
the vulnerability was successfully exploited, it is
reported as a “Certain” vulnerability. Vulnerabilities
that cannot be exploited automatically are reported
as “Possible or probable”. This improves the scanner
accuracy and shortens the time and effort required by
manual verification.

Table 8. Calculated Accuracy For Each Scanner

Vulnerability Count Acunetix BurpSuite NetSparker Nessus ZAP

True positive 763 307 487 309 758

False positive 66 308 48 31 281

Total 829 615 535 340 1039

Accuracy 91% 50% 91% 90% 73%

829

615
535

340

1039

66

308

48 31

281

0

200

400

600

800

1000

1200

Acunetix BurpSuite NetSparker Nessus ZAP

N
u
m
b
er
 o
f
vu
ln
er
ab

ili
ti
es

Axis Title

Total F+

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4595

6. FINAL REMARK

Previous studies assessed WAVSs against
either a limited number of vulnerable web
applications or a specific set of vulnerabilities. For
example, experiments in [13], [17] and [18]
evaluated the scanners against one vulnerable web
application. In [16] the scanners were evaluated
against two vulnerable web applications. Also, in
[15] the authors focused on the detection of only a
specific type of vulnerability, such as XSS and SQL
Injection. The experiment conducted in this paper
provides an updated investigations for the cuurent
version of WAVSs based on relatively wider
testbeds. The obtained result aligned with the
previous finding and also shows an improvement
for the current versions of WAVs in terms of
accuracy and low rate of false positive for both
Acunetix and NetSparker.

7. CONCLUSION AND FUTURE WORK

The SDLC of web applications consists of
many activities that aim to enhance the overall
applications’ robustness against different types of
attack. Black box testing is an important activity
used during SDLC to enhance the security of web
applications. Developers and penetration testers
utilize WAVSs to dynamically scan web
applications and investigate any possible
vulnerability before it can threaten client services.
Currently, many WAVSs are proposed and they
have different capabilities in detecting the true
positive vulnerabilities. In this paper five WAVSs
were evaluated by scanning seven intentionally
vulnerable web applications. The selected WAVs
are among the top ten scanners for the year of 2017.
A mapping approach was developed to extract a list
of vulnerabilities based on NIST and OWASP
standards. The scanners were evaluated using
different measures, such as the vulnerabilities
severity level, types of detected vulnerabilities,
numbers of false positive vulnerabilities and the
accuracy of each scanner. The number of
vulnerabilities found by the ZAP scanner was
higher than its counterparts, however manual
validation revealed that fewer false positives were
found in Acunetix and NetSparker, which means
they have higher and more accurate “true”
vulnerabilities identification. The results of this
work is limited to the set of accessible WASs
scanner at the time of the experiment and larger
varieties of both commercial and open source
scanner need to be investigated to obtain a

generalized conclusion. As a part of our future
work, we plan to develop plug-in algorithms that
enable the exploitation of the vulnerabilities to
reduce the time and effort needed for manual
validation of results.

REFERENCES:

[1] P. Salini and S. Kanmani, "Effectiveness and
performance analysis of model-oriented
security requirements engineering to elicit
security requirements: a systematic solution
for developing secure software systems,"
International Journal of Information Security,
vol. 15, pp. 319-334, June 01 2016.

[2] Z. B. Babovic, J. Protic, and V. Milutinovic,
"Web Performance Evaluation for Internet of
Things Applications," IEEE Access, vol. 4,
pp. 6974-6992, 2016.

[3] N. Teodoro and C. Serrão, "Web application
security: Improving critical web-based
applications quality through in-depth security
analysis," in International Conference on
Information Society, 2011, pp. 457-462.

[4] M. Howard and S. Lipner, The Security
Development Lifecycle: Microsoft Press,
2006.

[5] B. D. Win, R. Scandariato, K. Buyens, J. Gr,
#233, goire, et al., "On the secure software
development process: CLASP, SDL and
Touchpoints compared," Information and
Software Technology vol. 51, pp. 1152-1171,
2009.

[6] "OWASP, Comprehensive, lightweight
application security process," ed, 2006.

[7] D. Pałka, M. Zachara, and K. Wójcik,
"Evolutionary Scanner of Web Application
Vulnerabilities," in Computer Networks,
Cham, 2016, pp. 384-396.

[8] P. E. Black, E. Fong, V. Okun, and R.
Gaucher, "Software assurance tools: Web
application security scanner functional
specification version 1.0," Special
Publication, pp. 500-269, 2008.

[9] R. Lepofsky, "Web Application
Vulnerabilities and Countermeasures," in The
Manager’s Guide to Web Application
Security: A Concise Guide to the Weaker Side
of the Web, ed Berkeley, CA: Apress, 2014,
pp. 47-79.

[10] N. Khoury, P. Zavarsky, D. Lindskog, and R.
Ruhl, "An Analysis of Black-Box Web
Application Security Scanners against Stored
SQL Injection," in IEEE Third International

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4596

Conference on Privacy, Security, Risk and
Trust 2011, pp. 1095-1101.

[11] N. I. Daud, K. A. A. Bakar, and M. S. M.
Hasan, "A case study on web application
vulnerability scanning tools," in Science and
Information Conference, 2014, pp. 595-600.

[12] F. van der Loo, "Comparison of penetration
testing tools for web applications," Master’s
thesis, Computer Sceince University of
Radboud, Netherlands, 2011.

[13] A. Doupé, M. Cova, and G. Vigna, "Why
Johnny Can’t Pentest: An Analysis of Black-
Box Web Vulnerability Scanners," in
Detection of Intrusions and Malware, and
Vulnerability Assessment, Berlin, Heidelberg,
2010, pp. 111-131.

[14] J. Bau, E. Bursztein, D. Gupta, and J.
Mitchell, "State of the Art: Automated Black-
Box Web Application Vulnerability Testing,"
in 2010 IEEE Symposium on Security and
Privacy, 2010, pp. 332-345.

[15] M. Parvez, P. Zavarsky, and N. Khoury,
"Analysis of effectiveness of black-box web
application scanners in detection of stored
SQL injection and stored XSS
vulnerabilities," in 10th International
Conference for Internet Technology and
Secured Transactions (ICITST), 2015, pp.
186-191.

[16] Y. Makino and V. Klyuev, "Evaluation of web
vulnerability scanners," in 8th International
Conference on Intelligent Data Acquisition
and Advanced Computing Systems:
Technology and Applications (IDAACS),
2015, pp. 399-402.

[17] N. Suteva, D. Zlatkovski, and A. Mileva,
"Evaluation and testing of several free/open
source web vulnerability scanners," presented
at the 10th Conference for Informatics and
Information Technology, Bitola, Macedonia,
2013.

[18] S. El Idrissi, N. Berbiche, F. Guerouate, and
M. Sbihi, "Performance Evaluation of Web
Application Security Scanners for Prevention
and Protection against Vulnerabilities,"
International Journal of Applied Engineering
Research, vol. 12, pp. 11068-11076, 2017.

[19] Concise-courses. (January, 2018). Web
Vulnerability Scanners: Recommended
Vulnerability Scanning Software For 2017.
Available: https://www.concise-
courses.com/hacking-tools/web-
vulnerability-scanners/

[20] A. WVS. (Jan 2018). Acunetix WVS.
Available: https://www.acunetix.com

[21] B. Suite. (January, 2018). Burp Suite.
Available: https://portswigger.net/burp

[22] N. Professional. Nessus Professional
Available:
www.tenable.com/products/nessus/nessus-
professional

[23] NetSparker. (Janauray, 2018). NetSparker.
Available: https://www.netsparker.com/

[24] O. ZAP. (January, 2018). OWASP ZAP.
Available:
https://www.owasp.org/index.php/OWASP_
Zed_Attack_Proxy_Project

[25] OWASP. OWASP Top 10 - 2017, The Ten
Most Critical Web Application Security Risks.
Available:
https://www.owasp.org/images/7/72/OWAS
P_Top_10-2017_%28en%29.pdf.pdf

[26] C. Zhu, "Experimental study of vulnerabilities
in a web application," Master’s Thesis
Computer Science, Aalto University, 2017.

[27] A. Broström, "Integrating Automated
Security Testing in the Agile Development
Process: Earlier Vulnerability Detection in an
Environment with High Security Demands,"
Master’s Thesis in Computer Science,
Computer Science and Engineering Royal
Institute of Technology, 2015.

[28] Y. Takhma, T. Rachid, H. Harroud, M. R.
Abid, and N. Assem, "Third-party source
code compliance using early static code
analysis," in International Conference on
Collaboration Technologies and Systems
(CTS) Atlanta, GA, USA, 2015, pp. 132-139.

[29] S. Patil, N. Marathe, and P. Padiya, "Design

of efficient web vulnerability scanner," in
2016 International Conference on Inventive
Computation Technologies (ICICT), 2016,
pp. 1-6.

