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ABSTRACT 
 

Recognition of human activities is a challenging task due to human’s tendency to perform activities not 
only in a simple way, but also in a complex and multitasking way. Many research attempts address the 
recognition of simple activities, but little work targets the recognition of complex activities. Currently 
research on complex activity recognition using sensors is growing in many application domains. This paper 
provides an analysis of the most prominent complex sensor-based activity recognition. We analyze the 
structure and working methodology of the existing complex activities recognition systems, discuss their 
strengths and weaknesses. In addition, we evaluate existing proposals from three different perspectives 
including overall system evaluation, performance evaluation, and dataset evaluation. 
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1. INTRODUCTION  
 
Recent years witnessed an explosive growth in 
the field of pervasive computing [1]. This growth 
was the result of the rapid development of 
microelectronics that allows sensors and mobile 
devices with massive features such as small size, 
and low cost. As a result, multiple levels of 
people can deploy sensor and mobile devices in 
their daily lives. 

One of the promising research themes in 
pervasive computing is activity recognition. 
Activity recognition refers to monitoring the user 
and their environment using computing devices 
and infers a user's activities from user-triggered 
events. Four basic steps can describe this. 
Initially, appropriate sensors are attached to 
objects/users and environments to monitor user 
behavior within the environment. Then the 
perceived information is collected, stored, and 
processed using the appropriate representation 
and analysis techniques. After that, a suitable 
activity recognition model will be developed to 
allow reasoning and manipulation. Finally, a 
reasoning algorithm is developed to allow users 
to derive activities based on received data [2]. 
These tasks can be summarized in three main 
steps: activity monitoring, modeling, and 
recognition, respectively. 

The increasing interest in Human Activity 
Recognition (HAR) research stems from the 
wide range of applications that it can serve, such 
as medical, military to security applications. 
Medical applications gain a lot of interest and 
contain a variety of subsequent applications that 
include, healthcare monitoring and diagnosis, 
child and eldercare, and rehabilitation. For 
instance, physical activity routines like walking, 
running or cycling are required as a part of 
treatment for patients suffering from diabetes, 
cardiovascular disease, insomnia or obesity. 
Todays, sports and gaming applications are 
growing faster because of their flexibility in 
accuracy and privacy than medical applications. 
For example recognition of the cricket batting 
strokes using sequences of body and bat postures 
[3]. Microsoft Kinect [4] is one of the famous 
interactive games for activity recognition, 
reflecting the physical movement in a virtual 
character. Leisure and entertainment applications 
are also considered to increase the quality of life 
e.g. home and office automation [5], [6]. 
Security, surveillance, and military applications 
are considered the most critical. For example, 
soldiers activities as well as other conditions 
such as their locations, health status, and safety, 
are very important [7]. 
Humans perform activities at different levels of 
granularity, so the term 'activity' must be 
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clarified. An activity can be classified into three 
main classes: atomic, simple, and 
composite/complex. An atomic activity refers to 
any indivisible activity such as holding a cup. A 
simple activity is an ordered sequence of atomics 
within a given time interval, like making tea. A 
collection of two or more simple activities that 
occur within a given time interval, is considered 
a complex activity. Complex activities can be 
executed sequentially or in parallel (i.e. 
concurrent and interleaved) as illustrated in 
Figure 1. Concurrent activity is a collection of 
simple activities occurring simultaneously. For 
example, a user can drink coffee while reading a 
book. Interleaved activity is a collection of 
simple activities switching between their atomic 
activities. For example, while cooking dinner in 
the kitchen, a user may go to the living room to 
answer a phone call and come back to resume the 
dinner.  The most common human activities that 
could be recognized are classified into seven 
groups: ambulation, transportation, phone usage, 
daily activities, exercise, military, and upper 
body activities [7]. 

The problem of activity recognition can be 
viewed from three dimensions; the complexity of 
the activity, the monitoring mechanisms, and the 
modeling and recognition approaches as shown 
in Figure 2. For the complexity of the activity, 
most of the existing work on activity recognition 
focuses on the simplified scenarios involving the 
recognition of single activity performed by a 
single. However, in real world human performs 
activities in complex scenarios. Monitoring 
mechanisms have also increased from vision-
based methods to single/multi sensor monitoring 
methods as explained in section 2.1. Finally, 
modeling and recognition approaches (e.g. data-
driven, knowledge-driven, or hybrid) applied for 
simple scenarios cannot be applied directly to 
complex application scenarios.  

Although the work on HAR-based on sensors 
has started decades ago, the number of research 
attempts in sensor-based HAR is not enough 
compared to vision-based HAR. In addition, 
these attempts focused on the problem of 
recognizing the individual activity of a single 
user [8]–[22].  Given the increase in HAR 
applications and considering the nature of 
humans to perform complex activities in random 
(i.e. interleaved and concurrent) scenarios, a 
systematic review with an in-depth 
comprehensive overview on the recent work 
accomplished in the field of complex HAR will 
be of high scientific value.   

This paper provides a systematic analysis 
with an in-depth comprehensive overview on the 
recent work accomplished in the field of 
complex HAR. In this paper, we will track the 
lifecycle of the HAR process (e.g. monitoring, 
modeling, and recognition) with a focus on 
comparing various modeling and recognition 
approaches and methods and highlighting the 
strengths and weaknesses of these methods. In 
addition, these previous attempts will be 
evaluated from three different aspects: overall 
system comparison, performance evaluation, and 
dataset comparison.   

In this paper, section 2 presents an 
overview of the activity recognition process and 
identifies its main steps. Next, in section 3, we 
review the baseline modeling and inference 
techniques of complex activities, specifying their 
main structure and working methodology, and   
summarizing their strengths and weaknesses. In 
section 4, we discuss the most obvious 
challenges to the problem of complex human 
activity recognition. Finally, section 5 evaluates 
the models analyzed based on a set of pre-
defined aspects of evaluation. 

 
2. GENERAL STRUCTURE OF HUMAN 

ACTIVITY RECOGNITION PROCESS 
 
From machine learning perspective, activity 
recognition is a pattern classification problem 
that requires the following standard stages: (i) 
data acquisition and preprocessing, (ii) data 
segmentation, (iii) feature extraction and 
selection, and (v) learning/inference. For activity 
recognition, these stages are organized in two 
main stages: (i) activity monitoring; and (ii) 
modeling and recognition, of the activity as 
shown in Figure 3. In general, the process works 
as follows. Initially, datasets are acquired from 
individuals performing activities. the Dataset is 
divided into a specific time windows to  extract 
relevant/core information through the feature 
extraction. Subsequently, machine-learning 
techniques are used to create an activity model.  
A quick overview of theses stages is presented in 
the following subsections. 
 
2.1 Activity Monitoring 
Activity monitoring is concerned with collecting 
data from sensing devices attached to users or 
objects in the surrounding environment. For 
observable sources of activity monitoring, 
activity recognition can be classified into two  
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Figure 1: Examples of Sequential, Interleaved, and Concurrent Activity Execution. 

 

 
Figure 2: Three Dimensional Characterization for Activity Recognition [2] 

main categories: vision-based activity 
recognition and sensor-based activity 
recognition. The first category is considered the 
vanguard in this area of research. Where the 
sensing devices are fixed at predetermined points 
of interest to obtain activities resulting from a 
direct interaction of the users with such devices. 
Cameras are considered the most common 
external sensors for activity recognition. 

Therefore, sensed data are video sequences 
that require computer vision techniques (e.g. 
feature extraction and selection, modeling, 
segmentation etc.) Although it has a broad 
research interest, vision-based activity 
recognition faces some limitations such as 

privacy, pervasiveness, and complexity [7]. 
Intelligent homes are typical examples of 
external sensors [23]–[25]. They are able to 
recognize different levels of human activities 
(i.e. simple or complex) by retrieving data from 
the sensors attached to the target objects with 
which people interact. However, nothing can be 
done if the user is outside the range covered by 
the sensors or perform activities that do not 
require interaction with the target objects.  

The limitations of vision-based activity 
recognition and the growth in pervasive 
computing motivate the research direction 
toward sensor-based activity recognition. In 
sensor-based activity recognition, sensors are 
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attached to the user/environment. These sensors 
measures the user movement (e.g. accelerometer 
or GPS), the environment variables (e.g. 
temperature and humidity), or the physiological 
signals (e.g. heart rate and inspiration rate) [7].  
The generated sensor data takes the form of time 
series of various parameter values or 
environment changes [2]. 

For sensor-based HAR, the wide range of 
available sensors can be classified with respect 
to the method they are employed in activity 
monitoring applications into two categories: 
wearable sensors and environmental sensors [2]. 
Wearable sensors are sensors attached to human 
body whether directly or indirectly to give 
signals when the user performs activities. The 
most common types of wearable sensors are 
acceleration and physiological sensors [7]. 
Wearable sensors suffer from some limitations 
such as obtrusiveness and continuous operation. 
A complete review of the latest human activity 
monitoring systems based on wearable sensors 
can be found in [26]. Environmental sensors are 
sensors/tags deployed in surroundings to monitor 
activities through object-use interaction. Such 
environmental sensors monitor humans' behavior 
through temperature, humidity, audio, etc. then 
provide the context information about an 
individual's surroundings, so they are usually 
used in addition to other wearable sensors. 

For pervasive and mobile computing, 
wearable sensors are more suitable, while 
environmental sensors suits the applications of 
intelligent/smart environments/homes. However, 
both types can work together in some 
applications. The activity monitoring stage begin 
with two main steps: (i) data acquisition and 
preprocessing, (ii) data segmentation as briefly 
presented below. 
2.1.1 Data acquisition and preprocessing 
There is no standard data acquisition process for 
HAR; the process depends on the application 
scenario. However, the authors in [7] presented 
an architecture for the data acquisition process 
for HAR systems. First, raw data is collected 
using a number of wearable sensors and sensors 
installed in the environment. An integration 
device (e.g. cell phone, a PDA, a laptop) 
preprocesses the collected sensor data and 
forwards the processed data to an application 
server using a suitable communication protocol 
(e.g. TCP/IP or UDP/IP). All these steps are not 
necessarily employed in every HAR system. 
 
 

2.1.2 Data segmentation 
For HAR, smart places would be equipped with 
sensing devices that would generate continuous 
data streams that should be segmented   for two 
reasons. First, human activities are performed for 
a relatively long time compared to the sensor 
sampling rate, so classifying activities using 
continuous data streams is a difficult task. 
Second, the training stage of the classification 
process requires the maintenance of   a training 
dataset for specific activity streams identified by 
the corresponding labels. Therefore, it is difficult 
to retrieve important and useful information from 
continuous stream of sensor data. The role of 
data segmentation is to identify specific 
segments of continuous data streams that contain 
information about activities to be classified.  

Several methods were proposed to address 
the problem of sensor data segmentation. The 
most notable are segmentation based on sliding 
window, segmentation based on energy, and the 
contextual segmentation. In segmentation based 
on sliding window, a time window is moved 
over the data series to extract data segments. The 
size of the window could be static or dynamic 
with a fixed number of events that affects the 
accuracy [27]–[30]. However, the nature of 
human is to perform activities with different 
lengths, not as machines, so not all the instances 
of an activity have the same duration or the same 
number of events with other activities. Energy-
based segmentation is based on the fact that 
different activities are carried out at different 
intensities (i.e. energy levels of sensing devices). 
Therefore, sensor data could be segmented by 
thresholds in its energy levels [31]. In the 
segmentation based on contextual sensors, the 
data of specific sensors are segmented using 
information derived from other placed sensors 
[32] or from the surrounding context 
information, such as location [33]–[35]. 
However, heavy preprocessing is required, 
depending on the location. 

   
2.2 Activity Modeling and Recognition 
We have seen that in order to obtain a continuous 
time series of sensor readings, we pass through 
activity monitoring; in which data acquisition 
and segmentation are accomplished. Then in 
activity modeling, the segmented raw data pass 
through feature extraction and selection to obtain 
a dataset of extracted features required for 
building the activity model. In the next 
subsections sections, the most noticeable 
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remarks on feature extraction, selection and 
learning methods will be presented. 
2.2.1 Feature extraction and selection 
This stage reduces incoming data segments into 
a number of discriminative features for the 
captured activities. Feature extraction finds the 
main characteristics of a data segment that 
accurately represent the original data. The 
extracted feature vector is then fed as input to 
classification algorithms instead of the full data 
segment.  

Features can be extracted from time series 
data using either statistical method or structural 
method. The statistical feature extraction method 
extracts features based on the quantitative 
characteristics of the sensed data. The most 
common statistical feature extraction methods 
are the Fourier transform and the Wavelet 
transform [7]. The structural methods are used 
for data which contain an inherent, identifiable 
organization such as image and time-series data 
[36]. The nature of the sensed signal decides 
which of these feature extraction methods to 
choose.  

The features extracted from the processed 
data set may contain superfluous or irrelevant 
information that negatively affects the 
recognition accuracy and increases its 
computation complexity. Feature selection 
methods select the significant features and 
remove the superfluous ones. For HAR, the most 
prominent feature selection methods are 
Minimum Redundancy and Maximum Relevance 
(MRMR) [37], and Correlation-based Feature 
Selection (CFS) [38]. 

A detailed discussion about various feature 
extraction and selection techniques with 
examples are out the scope of this paper and 
previously covered in [7].  
2.2.2 Activity learning methods 
In this section, existing modeling and 
recognition approaches for HAR are classified 
into three prominent approaches that includes; 
data-driven (bottom-up), knowledge-driven (top-
down), or hybrid approaches. For each approach, 
the methodology, strengths, weaknesses, and 
implementation techniques will be introduced. 

In data-driven HAR; HAR systems has three 
options; use machine learning tools, use data 
mining techniques, or use a time series based 
classification. In a machine-learning context, 
pre-existing datasets are used to construct an 
activity model using machine-learning 
techniques, and then inference of activity is done 
on obtained sensor data using previously learned 

activity models. On the other hand, data mining 
techniques extract a set of discriminative patterns 
for each class of activity from a set of given 
examples or observations. New observations are 
recognized by computing the likelihood between 
these observations and discriminative patterns. In 
time-series based classification [39], [40], a 
sequence of discrete events forms an activity, 
and activities are identified by searching for a 
match between defined subsequences called 
"Motifs" with similar behavior appearing 
frequently in time series data. However, this 
approach is sensitive to the order of the events 
[41]. 

The advantages of the data-driven approaches 
are their ability to deal with  uncertainty using 
well-established machine learning techniques, 
and the use of temporal information to capture 
short-term and long-term temporal dependencies 
[42]. However, the data-driven methods require 
large amounts of datasets to learn the activity 
models that lead to the data scarcity or the “cold 
start” problem. Data-driven approaches also lack 
reusability and applicability problems due to 
human nature in performing activities in 
different ways as a result, an activity model for 
one user does not match others [2]. 

For knowledge-driven HAR, knowledge 
engineers and domain experts specify activity 
models by capturing domain knowledge about 
activities, and then the inference of activities 
could be done using artificial intelligence-based 
reasoning techniques. This approach gains the 
benefits of being semantically clear, logically 
elegant to capture of the semantics of the domain 
clearly and support automatic reasoning. In 
addition, it is easy to capture and model domain 
structure and heuristics, and defined knowledge 
models could be reused and shared between 
applications. However, knowledge-driven HAR 
systems require a priori knowledge that is 
difficult to find the most optimal model of the 
activities and sensor data. Moreover, these 
models lack uncertainty and total dependence on 
the expertise of experts [2], [43]. 

A combination of data-driven and 
knowledge-driven techniques forms hybrid 
activity recognition approaches. This 
combination has the ability to solve activity 
recognition problems by combining contextual 
information with probabilistic machine learning 
models. However, large datasets are still needed 
to train the activity models. 
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The taxonomy of recent approaches for 
modeling and recognition of complex HAR is 
illustrated in Figure 4. 

 

 

Figure 3: General Stages of Human Activity 
Recognition Process  

 

 

Figure 4: Modeling and Recognition Approaches for 
Complex HAR 

 
3. EXISTING APPROACHES FOR 

MODELING AND RECOGNITION OF 
COMPLEX HUMAN ACTIVITIES 

 
In this section, we will review current research 
attempts for complex HAR using data-driven, 
knowledge-driven, and hybrid approaches. In the 
following subsections, existing HAR models for 
each approach are briefly analyzed according to 
their structure and working methodology. In 

addition, their strengths and weaknesses are also 
summarized.  
3.1 Data-driven Approaches for Modeling 

and Recognition of Complex Human 
Activities 

In this section, we investigate the common data-
driven approaches to complex HAR. 
3.1.1 Conditional random fields for complex 

HAR 
Conditional Random Fields (CRF) are structured 
prediction models combining the advantages of 
both discriminative (i.e. describing how to take a 
feature vector x and assign it a label y) and 
graphical models. An analysis of the current 
attempts for complex HAR using various 
versions of CRFs is given below. 

In [44] the authors designed a two-level 
probabilistic model for recognizing concurrent 
and interleaving activities. At the lower level, 
interleaved activities are modeled using Skip 
Chain Conditional Random Fields (SCCRFs). At 
the higher level; a correlation graph was used to 
model concurrent activities. Given a newly 
observed activity, the lower level estimates the 
probabilities of whether each activity is pursued. 
Then the computed probabilities are adjusted by 
minimizing a loss function using Quadratic 
Programming. This in turn derives more accurate 
probability of activities and takes into 
consideration the correlation between activities 
computed at the upper level. 

The authors in [45] presented an activity 
recognition system for both concurrent and 
interleaved activities similar to the other HAR 
proposed in [44]. The only difference between 
them is that the recognition accuracy of the later 
depends on the granularity of activities 
corresponding to the level of activity taxonomy 
they defined rather than types of sensors 
employed. 

In [46], the authors presented an activity 
recognition system capable of recognizing 
concurrent activities using Factorial Conditional 
Random Fields (FCRFs). This was accomplished 
using the co-temporal relations between 
activities in the same time slice besides temporal 
relations between activities across time slices. 
Initially, the model is designed to contain a set of 
hidden random variables and observed random 
variables. Then, the model involves two 
processes: learning and inference. The learning 
process uses the training data and the maximum 
likelihood parameter estimation to compute 
required parameters. The inference process is 
responsible for two tasks: computing the 
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marginal probability of each node pair required 
at learning and performing Maximum Aprior 
inference to infer the most possible sequence of 
activities states. 
3.1.2 Hidden markov model for complex 

HAR 
Hidden Markov Model (HMM) is a probabilistic 
model that consists of hidden and observable 
variables at each time step [47]. When HMM is 
used in activity recognition, activities are the 
hidden states and sensor data are the observable 
outputs.  

The authors in [48] investigated the problem 
of recognizing interleaved activities in smart 
homes.  A number of techniques was evaluated 
and compared on the basis of the CASAS dataset 
[8] as; Naïve Bayes classifier, a HMM, a HMM 
with a time window, a frequency-based HMM 
with a sliding window and a frequency-based 
HMM with a shifting window. Naïve Bayes 
classifiers result in poor accuracy due to ignoring 
the transition probabilities between activities. 
The HMM represents each activity as a hidden 
state and each sensor is considered an observable 
state. The HMM has produced greater accuracy, 
but suffers from moving slowly from 
recognizing one activity to the next.  

Sliding window-based HMM was 
implemented in order to reduce the history of 
sensor events required for the model to 
remember, and thus increase the speed. It used a 
sliding window whose size is governed by the 
number of sensor events it contains. This 
technique provided a greater accuracy, but did 
not detect activities with fewer sensor events. A 
frequency-based sliding window HMM 
(FSHMM) labels the sensor event with the most 
frequent activity in the specified window instead 
of labeling each sensor event with an activity 
label. However, this concept of frequency slows 
the transition from one activity to the other at the 
time of transition, because the previous activity 
always has a higher frequency leading to 
inaccurately labeling the new sensor event and 
thereby degrading the performance of the 
algorithm. 

[49] proposed a recognition system for 
multitasked/complex human activities. This 
system employed a modified interleaved HMM 
(IHMM) which predicts transition probabilities 
more efficiently by recording the last object 
observed in each activity. It also employed a 
beam search of state space instead of searching 
full state space at each time step. As a result, this 
model gains the benefits of HMM for activity 

recognition and avoids its drawbacks in requiring 
large number of activities and large state space. 
3.1.3 Bayesian network for complex HAR 
[50] designed a recognition system for both 
sequential and interleaved activities. This model 
used Bayesian Network (BN) for Activity 
inference, and employed contextual information 
from both human and the environment, and other 
reliability factors. The system follows a 
multiple-layered hierarchical architecture for 
activity recognition. Firstly, data from multi-
modal sensors are collected. Secondly, various 
features are extracted from collected sensor data. 
These features are then fused, evaluated and 
sorted according to their importance. Finally, the 
selected and sorted features are passed to the 
enhanced Naïve Bayes for inference. 
3.1.4 Data mining for complex HAR 
In [51], [52] the authors proposed a pattern 
mining approach to recognize sequential and 
complex activities. At the training phase, for 
each activity, the dataset is mined for the most 
discriminative features (i.e. patterns) among 
other activities. Then, in the test phase, the 
likelihood is calculated between incoming sensor 
observation and previously computed patterns to 
obtain its activity label. The novelty of their 
approach comes from two aspects: the ability to 
recognize sequential, interleaved and concurrent 
activities from dataset containing sequential 
activities only, and the automatic adjustment of 
sliding time window during execution. 

In [53], another recent emerging pattern-
based approach was proposed that convert the 
problem of complex activity recognition into 
multiple simple activity recognition problems. 
Then, a dynamic segmentation algorithm 
segments the incoming stream of sensor 
observations into simple activity segments based 
on sensor and time dependency. For each 
segment, a combination of Random Forest (RF) 
and Emerging Patterns (EP) assigns the correct 
activity label.  
3.1.5 Time series-based complex HAR 
In [54], the authors solve the problem of 
complex activity recognition using time series 
analysis. The authors constructed a dictionary of 
specific time series patterns representing atomic 
activities, called "shaplets". A complex activity 
is composed of a set of atomic activities that can 
be concatenated producing sequential activity, or 
overlapped producing an interleaved/concurrent 
activity. Searching the learned dictionary enables 
recognizing complex activities from sensed data. 
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The authors employ a set of rules describing the 
formations of sequential and complex activities. 

Table 1 presents a summary of the strengths 
and weaknesses of the reviewed data-driven 
complex HARs.  Probabilistic methods (i.e. 
CRFs, HMM, BN) are based on the strict 
assumption that sensor data are independent. 
Therefore, they do not have the ability to 
characterize the internal relationship among raw 
sensor data streams. In addition, these models 
(i.e. CRFs, HMM, DBN) suffer from reusability 
of their structures for new classes of activity.  
Furthermore, CRFs fails to recognize interleaved 
whereas HMM and BN fails to recognize 
concurrent activity. So these models lose 
flexibility in recognizing multiple levels of 
activities [54]. The data-mining and time-series 
based methods recognize both concurrent and 
interleaved activities. The data-mining based 
method presents greater flexibility, requiring the 
initial training dataset only for simple and 
sequential activities. 

 
3.2 Knowledge-Driven Approaches for 

Modeling and Recognition of Complex 
Human Activities 

For recognition of interleaved and concurrent 
activities, existing knowledge-based approaches 
are classified into semantic reasoning-based or 
context-based complex HAR. A brief analysis of 
these approaches is presented in the following 
subsections.  
3.2.1 Semantic reasoning for complex HAR 
The use of semantic reasoning helps to create a 
generic activity recognition mechanism that can 
be easily implemented across multiple 
application domains. This could be implemented 
using ontology constructs that facilitate the 
sharing of knowledge between different 
application domains [55]. Next, we review the 
most recent work on complex HAR based on 
semantic reasoning. 

In [42], the authors use a generic model for 
composite activities using three basic elements: 
ontological activity models, temporal activity 
models, and entailment rules. Ontological 
activity models establish relationships between 
activities and the entities involved. Temporal 
activity models define relationships between 
consistent activities of composite activity. The 
entailment rules support interpretation and 
inference of composite activities written in 
Semantic Web Rule Language.  

[56] designed a generic unsupervised 
approach of recognizing multiuser concurrent 

activities. The novelty of their approach is the 
ability to automatically segment real time sensor 
data into semantically meaningful parts 
corresponding to concurrent activities. Using a 
two-level hierarchy, activity segmentation and 
recognition were accomplished. Real time sensor 
traces are segmented using pre-computed 
ontologies and similarities. These ontologies 
model the semantics of activities (e.g. object, 
location, and sensor) and the similarity between 
sensors events were computed using Wu's 
Conceptual Similarity Measure. Then, the 
recognition of every segment is inferred using a 
modified Pyramid Match Kernel capable of 
matching sensor events to ontological activity 
representation. 

In [55], modeling  of activities use a 
combination of ontology constructs of activity, 
time, and location. This combination provides a 
general representation of the knowledge of 
activities. Activity inference was implemented 
through a hierarchical five layer architecture, in 
which the inference process depends on the 
existing level as described below: sensor layer, 
atomic activity inference layer, complex activity 
inference layer, ontology layer, and the 
application layer. Sensor layer contains all 
available sensors to provide data for subsequent 
layer. The atomic activity inference layer was 
designed to infer atomic activities using machine 
learning techniques and temporal weighted 
voting mechanisms. The complex activity 
inference layer performs the reasoning on 
complex activities by calculating and adding the 
weights of the atomic activities corresponding to 
the complex activity, and then locates a match 
using a predefined threshold. The ontology layer 
provides definitions, relationships, properties, 
and rules for different activity classes, location, 
and time. The interaction with different 
applications in different domains could be done 
through the application layer. 
3.2.2 Context-based complex HAR 
Context can be defined as any information that 
describes a situation, a scenario of a person or an 
object. Therefore, context usage (e.g. location of 
user or light on/off) in activity recognition helps 
to improve recognition accuracy and reduce 
computational complexity. The most prominent 
activity recognition based on context is presented 
below. 

The authors in [57], [58] presented a 
Situation and Context-Aware Activity 
Recognition system (SACAAR) to infer 
concurrent and interleaved complex activities. 
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Their proposed system requires no training and minimal annotation during the setup stage.  

Table 1: Strengths and Weaknesses of Data- driven Approaches for the recognition of Complex Human Activities. 
H

A
R

 

Ref. Strengths Weaknesses 
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[44] 

 It gains the advantage of modeling 
uncertainty. 

 Requires low computational complexity 
than Factorial CRFs. 

 More scalable than Factorial CRFs. 

 Low detection accuracy. 
 Enables offline recognition  
 Ignore the effect of negative and complex 

correlations in the correlation graph. 

[45] 

 It gains the advantage of modeling 
uncertainty. 

 Recognition accuracy depends only on the 
granularity of activities not types of 
sensors employed. 

 Automatic construction of activity hierarchy 
instead of by hand. 
 Employing a fixed size sliding window 

rather than dynamic one.  

[46] 

 FCRFs utilize a structure of distributed 
states to avoid the exponential complexity 
problem. 
 Ability to recognize both sequential and 

concurrent activities using the co-temporal 
and temporal relationships among 
activities.  

 Unable to recognize interleaved activities. 
 Enables offline recognition. 

 

H
id

de
n 

M
ar

ko
v 

M
od

el
 [48] 

 Ability to recognize interleaved activities.  Low recognition accuracy by Naïve Bayes  
 Slow recognition speed using HMM. 
  Static size sliding window in SHMM. 
 Unable to recognize concurrent activity. 

[49] 
 Increased recognition accuracy for 

interleaved activities than traditional 
HMM. 

 Recognition accuracy depends on obtaining 
large data set which is difficult. 
 Unable to recognize concurrent activities. 

B
ay

es
 

N
et

w
or
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[50] 

 Robustness using reliability factors to 
avoid fusing failed sensors. 

 Unobtrusive of wearable sensors. 

 Unable to recognize concurrent activities. 
 

D
at

a 
M

in
in

g 

[51]
, 

[52] 

 Ability to recognize sequential, 
interleaved and concurrent activities in a 
unified framework. 
 Noise tolerant. 
 Dynamic adjustment of sliding window 

during execution. 
 Acceptable computational complexity. 

 Data collection should be in a more natural 
than done in a mock scenario. 
 The coefficients of score function should be 

obtained from training dataset through 
statistical learning methods rather than 
through experiments. 

[53] 
 Ability to recognize multiple numbers of 

interwoven activities. 
 Dynamic sensor data segmentation 

 
 Increased time and computational 

complexity 
 Low recognition accuracy. 

T
im

e 
 s

er
ie

s 
 

[54] 

 Ability to recognize sequential, 
interleaved and concurrent activities in a 
unified framework. 
 Enables the implementation of fast, 

reusable, and accurate classification using 
shaplets. 

 The labeling stage uses a set of predefined 
rules depending on expert knowledge. 
 Increased time complexity required for 

searching the shaplets dictionary. 

 
Initially, Context Driven Activity Theory 

(CDAT) was used to model atomic and complex 
activities. This is accomplished using two layers: 
the sensory layer, and inference layer of the 
activity. The sensory layer is responsible for 
collecting the sensors data and context 
information (e.g. spatial and temporal 

information). The activity inference layer was 
divided into three main components: the 
inference of atomic activity, the spatio-temporal 
context complexity filter, and the inference of 
complex activity. Inference of atomic activity 
uses traditional inference techniques for each 
type of sensor (e.g. decision trees for motion 
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sensors, weighted voting sliding window 
mechanism to infer RFID object use). The 
second component infers activity situations using 
context information from sensory layer and 
creates linkages between activities. For complex 
activity inference, they used the proposed 
inference algorithm in addition to a combination 
of atomic activities, situations, and activity 
linkages. 

In [59], the authors used the theory of 
context-driven activity (CDAT) and activity 
signatures for the recognition of complex 
activity. They follow the same steps for activity 
inference that is proposed in [57], but activity 
modeling was optimized by identifying 
signatures for each composite activity. In activity 
modeling, the model first defines atomic 
activities, complex activities, and contextual 
information using CDAT. Then, signatures for 
complex activities are computed using Markov 
Chain probab1ilistic models. Finally, CDAT are 
updated using the computed activity signatures 
and weights. The inference of complex activity 
use the updated CDAT and defined situations to 
concentrate on complex activities related to 
given situation besides signature concentrated 
atomic activities. 

In [60], activity modeling uses a combination 
of ontological and temporal knowledge modeling 
formalisms. The activity inference uses 
ontological reasoning (e.g. instance retrieval or 
subsumption, and equivalence reasoning) for the 
recognition of  simple activity, and a rule-based 
temporal inference method for the recognition of 
composite activity. As a knowledge driven 
approach, it depends on three knowledge bases 
coded as: static activity model, dynamic activity 
model, and context-driven model. Static activity 
model includes definitions of predefined 
composite activities, while the dynamic activity 
model represents qualitative temporal 
relationships between activities, and context-
driven model includes the rules for inferring 
qualitative temporal relationships. The activity 
inference involves three consecutive stages: the 
atomic activity inference and fusion, the simple 
activity inference, and the composite activity 
inference. The atomic activity inference and 
fusion converts the obtained data segment into 
atomics by checking the static ontology model. 
These atomics are then grouped to form an 
activity description. The simple activity 
inference infers simple activities by mapping 
incoming activity descriptions to the static 

activity model. The composite activity inference 
checks both the dynamic activity and context 
models to infer relationships between simple 
activities and infers the complex activity.  

In Table 2, we present a summary of the most 
notable strengths and weaknesses of the 
reviewed complex knowledge-driven HAR 
systems. 

 
3.3 Hybrid Approaches for Modeling 
And Recognition of Complex Human 
Activities 
The hybrid approach for complex  HAR comes 
with the least number of research attempts. 
Existing models make a combination of 
knowledge-driven and data-driven techniques to 
gain advantage of each other and avoid their 
weaknesses. The following models encode and 
use temporal knowledge, and require a dataset 
for extracting some relevant temporal patterns as 
presented below. 

In [61], [62],the authors applied a statistical 
relational framework for the recognition of 
composite activities. They use Markov Logic 
Network (MLN) to incorporate commonsense 
background knowledge to model qualitative 
temporal relationships. The authors modified the 
MLN to incorporate quantitative and qualitative 
temporal relationships. This modification was 
done by modeling background knowledge using 
both hard logical statements and soft uncertain 
evidence within a unified syntax and semantics. 

The authors in [63] used the hidden Markov 
model (HMM) as a probabilistic data-driven 
technique to reduce the noise and uncertainty 
limitations of HAR. However, this technique 
could not cope well with interleaved activities 
and could not detect small variations in the 
human behavior. So, the Allen's temporal 
relations were combined with HMM to solve 
these problems. Their proposed model works as 
follows: first, the input sensor streams were 
segmented and classified automatically using a 
set of trained HMM. Then, the qualitative 
temporal relationships between the identified 
behaviors were computed using Allen's interval-
based temporal calculus. Finally, these relations 
were used to reason about relationships between 
the behaviors that HMM cannot directly 
recognize. 

The strengths and weaknesses of the hybrid 
systems for HAR are presented in Table 3. 
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Table 2: Strengths and Weaknesses of Knowledge-Driven Approaches for the Recognition of Complex Human 
Activities 

 

 
Table 3: Strengths and Weaknesses of Hybrid Approaches for the Recognition of Complex Human Activities 

Ref. Strengths Weaknesses 

[61], 
[62] 

 Accurately recognize composite activities 
through combination of statistical and 
relational features. 

 Flexibility of Markov Logic by ability to 
integrate and evaluate more temporal 
relationships without redeveloping a novel 
model each time. 

 Dependency on expert experience rather than 
automatic extraction of richer background 
knowledge. 

 Insufficient evaluation using data set obtained 
from one type of sensors (e.g. RFID)  

[63] 
 Increase detection accuracy of interleaved 

activities by combining some temporal 
reasoning technique with traditional HMM.  

 Unable to recognize concurrent activities. 
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Ref. Strengths Weaknesses 
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[42] 
 Developed a unified activity recognition 

framework for simple and composite 
activity recognition. 

 Insufficient accuracy for composite activity 
recognition. 

[56] 

 Online activity segmentation and 
recognition. 
 Modeling activities using ontologies and 

inference using semantic matching results 
in generality, low engineering effort, and 
no requirement for training data. 

 Limited ability in distinguishing coarsely 
constrained activities from similar but more 
finely constrained activities. 
 Unable to recognize sequential and interleaved 

activities.  
 Sensor data segmentation algorithm is 

concentrated on specific type of sensors e.g. 
RFID or motion sensors. 

[55] 

 Ability to recognize all types of activities. 
 Modeling activity, spatial, and temporal 

ontologies provides a general knowledge 
representation model to be shared across 
various application domains and enhancing 
inference.  

 Increased response time for offline activity 
recognition that is expected to increase in on-
line recognition by adding network delay to its 
execution time. 
 

C
on

te
xt

-B
as

ed
 

[57], 
[58] 

 Flexibility in linking new activities to 
existing situations during run time. 

 Eliminate inference of complex activities 
not involved in current situation. 

 Increased computational complexity required 
for multiple atomic activities inference 
techniques. 

 Dependency on expert experience in computing 
atomic activities weights. 

[59] 

 Increased detection accuracy with reduced 
time and dataset. 
 Reduce the amount of sensor information 

required for complex activity inference by 
updating CDAT with activity signature 
and using situation in inference. 

 Increased computational complexity required 
for multiple atomic activities inference 
techniques. 
 CDAT and Application dependent; collecting 

specific sensor data whose definitions exist in 
CDAT definitions.  

[60] 

 Ability to dynamically update ontology 
models for newly recognized complex 
activities. 
 Automatic updates of sliding window-

based segmentation using feedbacks from 
activity recognition stage. 

 Increased computational complexity required at 
distributed stages of activity recognition  
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4. CHALLENGES FOR SENSOR-BASED 
RECOGNITION OF COMPLEX 
HUMAN ACTIVITIES  

 
Although sensor-based HAR started decades 
ago, there are still several challenges. In this 
section, we introduce the challenges facing 
sensor-based HAR. These challenges can be 
categorized according to sensor deployment, 
human behavior, or domain-specific challenges 
as presented below. 
 
4.1 Challenges Related to Sensor Deployment 
Challenges related to sensor deployment include: 
sensor placement, sensor obstruction, sensor 
inaccuracy, sensor failure, and the resource 
constraints. For sensor placement, sensors should 
be placed in precise positions that provide the 
best results and reduce the risk of failure or 
damage during human movement. 

Regarding sensor obstruction, the HAR 
system should not be obtrusive to require the 
user to wear much more sensors. Sensor 
inaccuracy is another challenge that results from 
the wireless communication medium and the 
surrounding environment. Moreover, sensor 
failure may result from battery exhaustion or 
inappropriate human interaction and could be 
eliminated using surrounding context 
information in addition. Finally, the resource 
constraints, such as memory and battery, are 
considered the most common challenges in all 
fields exhibiting sensing devices. 

 
4.2 Challenges Related to Human Behavior 
For challenges related to human behavior, there 
exist: the nature of the human behavior, and the 
human privacy. The nature of the human is 
performing activities in different cultures and in 
a random scenario (i.e. simple or complex). This 
natural behavior results in difficulty in activity 
specification, collection, and recognition.  For 
the human privacy, sensitive user information 
should be obtained without invading users’ 
private life, and should be transmitted and stored 
in a secured manner. 

 
4.3 Challenges Related to Application Domain 
The most obvious challenges related to the 
application domain include: the availability of 
HAR datasets, data collection, and the system 
flexibility. With respect to the availability of 
HAR datasets, there is no specific benchmarking 

data set for HAR due to the diversity of HAR 
application areas. Therefore each research group 
creates its own dataset focusing on specific 
activity set, as a result, there are few publically 
available datasets [64]. Data collection must be 
completed under realistic conditions, not in a 
mock scenario. For the system flexibility, a HAR 
system should be application independent not 
specified for a specific application, and flexible 
enough to support new users without the need to 
re-train the system. 

 
5. EVALUATION OF COMPLEX HUMAN 

ACTIVITY RECOGNITION SYSTEMS 

As reviewed in the previous sections, several 
methods have been proposed to solve the 
complex HAR problem. This section provides an 
evaluation of the previously discussed complex 
HAR systems. From the above mentioned 
challenges to the complex HAR problem. To 
carry out this evaluation, a serious of evaluation 
metrics will be defined. Initially, this evaluation 
will be approached from three different aspects: 
overall system comparison, performance 
evaluation, and dataset comparison. Each of 
these aspects is evaluated using a set of pre-
defined evaluation metrics as described in the 
following subsections. 

 
5.1 Overall System Comparison 
We compare the studied HAR systems with 
regards to specific evaluation metrics [65], which 
includes: type of system execution, 
generalization, recognition process, activity 
observation format, and system model flexibility,  
as listed in Table 4. 

The decision of whether the activity 
recognition system satisfies these characteristics 
depends mainly on the application. However, an 
optimum complex HAR system should achieve 
the following characteristics. First, the execution 
should be online, especially for healthcare (e.g. 
elder care) applications. Second, user-
independent HAR should increase flexibility and 
reusability of the system. Third, the recognition 
process should obtain a continuous stream of the 
sensor and automatically identify the atomic 
activities using an efficient data segmentation 
technique. Fourth, the system should be able to 
handle periodic and sporadic activities. Finally, a 
stateful HAR system should increase robustness 
and tolerance. 
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Table 4: Metrics for Overall System Comparison [65] 

 

Table 5: Overall Systems Comparison of Complex HAR Systems 

Type Characteristics Description 

Execution 
Online The system acquires and processes sensor data in real time.  

Offline 
The system firstly records the sensor data, and then recognition is performed 
afterwards.  

Generalization 

User-
independent 

The system is optimized for working with a large number of users. 

User specific The system is customized to a specific user.  

Temporal 
The system should be robust to temporal variations caused by external 
conditions (sensor displacement, drifting sensor response) 

Recognition 
 

Continuous 
The system automatically “spots” the occurrence of activities or gestures in 
the streaming sensor data. 

Segmented 
The system assumes that the sensor data stream is segmented at the start and 
end of a gesture  

Activities 
Periodic Activities exhibiting periodicity, such as walking, running 

Sporadic The activity occurs sporadically, interspersed with other activities  

System model 

Static 
The system deals with the detection of static postures or static pointing 
gestures. 

Stateless 
The recognition system does not model the state of the world. Activities are 
recognized by spotting specific sensor signals.  

Stateful 
 

The system uses a model of the environment, such as the user’s context or an 
environment map with location of objects.  

Ref. 

Execution Generalization Recognition Activities System Model 
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[42] √   √ √  √    √ 

[56] √  √  √  √    √ 

[55]  √  √  √ √    √ 

[57] √  √  √  √    √ 

[60] √  √  √  √    √ 

[59]   √  √  √    √ 

[44]  √  √  √  √  √  

[46]  √  √  √ √   √  

[45]  √  √  √ √   √  

[48]  √ √  √ √ √   √  

[49]  √  √  √ √   √  

[50] √  √   √ √    √ 

[52] √  √  √  √   √  

[53]  √      √    √  √        √ 

[54] √   √  √ √   √  

[61] √  √   √  √   √ 

[63]  √ √   √ √   √  
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 The overall system comparison of the 
analyzed complex HAR systems analyzed 
according to previously defined comparison 
metrics (Table 4) is summarized in Table 5. 

From this comparison, several issues could 
be observed according to the taxonomy of HAR 
into Data-Driven, Knowledge-Driven, and 
Hybrid. Data-driven systems provide flexible 
HAR that is independent of the user and deals 
with continuous input data stream, thus avoiding 
the complexity required for data segmentation 
algorithms. With respect to the sequence of 
activity execution, both data-driven and 
knowledge-driven systems are capable of 
handling periodic and sporadic activities. On the 
other hand, knowledge-driven HAR surpasses 
the data-driven HAR to provide online detection 
and provide robust and stateful systems that use 
context information.  Hybrid HAR (i.e. data-
driven and knowledge-driven) combines the 
strengths of being on-line, sporadic, stateful, and 
handling continuous data stream, but requires 
building user-specific HAR systems. 
 
5.2 Performance Evaluation 
In this section, existing complex HAR systems 
are compared according to their performance. 
The performance evaluation of the HAR system 
generally follows the same evaluation metrics as 
a pattern recognition problem. The results of any 
pattern recognition can be used to calculate a 
series of evaluation values called True Positives 
(TP), True Negatives (TN), False Positives (FP), 
and False Negatives (FN). These values can be 
used to compute standard evaluation metrics 
such as accuracy,  precision, recall, and f-
measure, as illustrated in [7]. The recognition 
accuracy of the studied complex HAR depends  
mainly on two important factors: the recognition 
algorithm, and the dataset used.  

Therefore, existing HAR systems are 
compared according to one of the standard 
performance evaluation metrics (i.e. accuracy) in 
addition to the dataset used. In Table 6, the 
experimental results (i.e. accuracy) of these 
reviewed systems are introduced as reported by 
their authors. Each has its own dataset, 
environment, application scenario, and 
evaluation metrics.  

In Table 7, we noticed that the accuracy of 
data-driven systems exceeds that of knowledge-
driven systems because they are based on well-
developed machine learning models. However, 
most knowledge-driven systems are able to 
recognize simple and complex (i.e. interleaved 

and concurrent) activities, while data-driven 
systems have a better identification of specific 
types of complex activities. 

 
5.3 Dataset Comparison 
Datasets are considered one of the most critical 
challenges to the HAR problem. There are some 
publically available datasets for the single 
user/single activity HAR and few for single 
user/complex activities. Datasets play an 
important role in the recognition accuracy and 
must meet a set of design principles. These 
principles can be obtained by comparing the used 
datasets mentioned in Table 7 according to a set 
of pre-defined metrics, as shown in Table 8.  

These metrics include: Type of activities 
performed (e.g. Activities of Daily Life (ADL)), 
type of activity execution (e.g. Sequential(S), 
Interleaved (I), or Concurrent(C)), existence of 
pre-defined data collection rules, number of 
activities performed, number of participants in 
data collection, and sensors used. An optimal 
dataset should be able to recognize a variety of 
human activities and collect sequential and 
complex activities, and the sensors should not be 
obtrusive to humans. In addition, data should be 
collected according to pre-defined rules, not 
randomly, and using a sufficient number of 
participants, which increases the variations in the 
performance of the activity. From the 
comparison presented in Table 8 , there are two 
types of datasets: paper-specific datasets [12], 
[42], [49], [50], [52], [54], [55], [57], [59], [60], 
[66], and publically available datasets [8], [67], 
[68]. Most of the complex HAR systems 
analyzed in this reserarch used their own 
datasets, while some used publically available 
datasets. The scarcity of publically available 
complex HAR datasets is considered a 
challenging issue, prompting researchers to 
construct their own specific datasets. In addition, 
data collection should be accomplished on the 
basis of pre-defined collection rules not in a 
mock scenario achieved in only five datasets [8], 
[49], [50], [59], [67]. 
Regarding the dataset for human activity 
recognition, it should be collected based on a set 
of criteria's that include [70]: (i) Volunteers with 
various characteristics (e.g. type, age, height, 
weight, health conditions). (ii) Data collection at 
various seasons, weather conditions, time, and 
location. (iii) Predefined rules for data collection 
not done in a mock scenario. (v) A fully 
documented dataset that describe the whole 
process of data collection process, such as, the 
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sensors used (i.e. their positions, number and 
type), participants (gender, age, height, weight, 
and health conditions), and rules of data 
collection. 

 
 

Table 6: Notations used in Table 7, Table8 

Notation Abbreviation Notation Abbreviation 

S Sequential Activity EOA Execution of Activities 

I Interleaved Activity CR Collection Rules 

C Concurrent Activity NAC Number of Activity  Classes 

TOA Type of Activities ( e.g. ADL, sport ) NOP Number of Participants 

 
Table 7: Performance Evaluation of Complex Human Activity Recognition Systems 

Ref. 
Overall Accuracy 

Dataset 
S I C 

[42] 100% 88.26% 88.26% Paper specific dataset using simulator [42] 

[56] 82% N/A 95% CASAS  "Interleaved ADL" [8] 

[55] 95.15% 94.35% 94.35% Paper specific dataset [55] 

[57] N/A 88.5% 88.5% Paper specific dataset [57] 

[60] 100% 88.26% 88.26% Paper specific dataset using simulator [60] 

[59] N/A 95.73% 95.73% Paper specific dataset [59] 

[44] 

94% 95.3% 95.3% Chai & Yang 2005 [66] 

N/A 92% N/A Patterson et al. 2005 [12] 

N/A 86% 86% MIT Place Lab dataset (PLIA1 dataset) [67] 

[46] N/A N/A 
Recall 48.2% 

Precision 51.5% 
MIT House_n data set [67] 

[45] 
N/A 94.8% 94.8% Chai & Yang 2005 [66] 

N/A 96% 96% 
MIT Place Lab data set [46], [67] (PLIA1 

dataset) 

[48] N/A 

NBCs 66.08%, 
HMM71% 

SHMM63.55%, 
FSHMM56.75% 

N/A CASAS dataset [8] 

[49] 
N/A 97.1% N/A Patterson et al. 2005 [12] 

N/A 100% N/A Paper specific Dataset [49] 

[50] N/A 92.5% 92.5% Paper specific dataset [50] 

[52] 90.96% 88.10% 82.53% Paper specific dataset [52] 

[53]  98.15 % ~66% CASAS dataset [8] 

[54] 

96.54% N/A N/A UCI Repository [68] 

N/A ~ 95% The Opportunity Dataset [69] 

N/A 77.78 % Paper specific basketball play dataset [54] 

[61] N/A N/A 84% Patterson et al. 2005 [12] 

[63] N/A N/A N/A N/A 
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Table 8: Comparison of Datasets for Complex Human Activity Recognition  

 
6. CONCLUSION AND FUTURE WORK 
 
In this paper, we analyze the most outstanding 
complex HAR systems for single user 
environment. A three-level taxonomy has been 
introduced that organizes methods of recognizing 
complex human activities in data-driven, 
knowledge-driven, or hybrid. Little work has 
addressed the problem of complex activity 
recognition using sensors, and no attempt has 
done to analyze or compare existing work. 
Therefore, this work is considered the first 
attempt to review the most prominent complex 
HAR systems by analyzing its structure,  
 
 

 
methodology of work, and its main strengths and 
weaknesses.  

These systems were evaluated and compared 
based on three aspects related to the overall 
system comparison, performance evaluation, and 
dataset comparison. The former compared them 
using predefined evaluation characteristics; 
while the latter compared them according to the 
performance accuracy calculated in their papers, 
and the datasets are compared using a set of pre-
defined metrics. Finally, from each aspect, we 
investigate a set of design principles that should 
be addressed in future research on the complex 
HAR using sensors.  

To conclude, the decision to use a data-
driven, knowledge-driven or hybrid approach to 

Data Set TOA EOA CR NAC NP Sensors used 

Paper specific 
dataset [42] 

ADL S,I,C N/A 7 N/A N/A Using Simulator 

Paper specific 
dataset 

[55] 

Selected 
ADL 

S,I,C No 10 2 
Accelerometer, RFID, GPS, Wi-Fi sensors 
and software based context collection tools 

Paper specific 
dataset [57] 

Selected 
ADL 

S,I,C No 16 2 
Accelerometer, RFID, GPS, WLAN,  heart 

rate monitor, and Virtual sensors 
Paper specific 
dataset [60] 

Selected 
ADL 

S,I,C N/A 7 N/A 
N/A 

Using simulator 
Paper specific 
dataset [59] 

Selected 
ADL 

S,I,C Yes 16 2 
Accelerometer, RFID, GPS, WLAN,  heart 

rate monitor, and Virtual sensors 
Paper specific 
dataset  [49] 

Selected 
activities 

S,I Yes 3 1 RFID 

Paper specific 
dataset [50] 

Selected 
ADL 

S,I,C Yes 12 11 
Current flow, floor, switch, mercury, 

pressure, accelerometer, motion, vibration, 
RFID, and camera 

Paper specific 
dataset  [52] 

Selected 
ADL 

S,I,C No 26 4 
Accelerometer, temperature, humidity, 

light level , and RFID sensors 

Paper specific 
dataset  [54] 

Basketbal
l play 

actions 
S No 8 4 

Accelerometer, gyroscope and 
magnetometer 

CASAS dataset 
[8] 

Selected 
ADL 

S,I,C Yes 8 20 
Motion, temperature, humidity, contact 

switches on doors, item sensors, and 
special purpose sensors 

Chai & Yang 2005 
[66] 

Professor 
activities. 

S,I,C No 9 
 

1 
 

Wi-Fi 

Patterson et al. 2005 
[12] 

Morning 
activities 

I No 11 4 
RFID and  two gloves 

built by Intel Research Seattle 

MIT Place Lab [67] 
Selected 

ADL 
S,I,C Yes 6 1 

Accelerometers , switch, current, light, 
location, movement, humidity, pressure, 

and water/gas flow 

UCI Repository [68] 
Daily and 

sports 
activities 

S No 18 8 
Accelerometer, gyroscope and 

magnetometer 

The Opportunity 
Dataset [69] 

Selected 
ADL 

S,C No 5 4 
72 sensors of 10 different modalities 

simultaneously deployed either in objects 
or on the body 
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complex HAR, depends mainly on the scenario 
and conditions of the application. The variation 
in accuracy between different recognition 
approaches depending on many factors: available 
datasets, amount of available data, the number of 
dataset residents, and the consistency of the 
activities themselves. Therefore, for a clear 
evaluation and comparison, quantitative 
comparisons of different recognition approaches 
based on a unified environment (i.e. the same 
activities and sensor datasets) are required. In 
addition, attention should be paid to advanced 
complexity of activity (i.e. complex activity in 
multiuser environment).  
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