
Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4548

MODEL-BASED TEST CASE PRIORITIZATION: A
SYSTEMATIC LITERATURE REVIEW

1MUHAMMAD LUQMAN MOHD SHAFIE, 2WAN MOHD NASIR WAN KADIR

1,2Department of Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia, 81310
Skudai, Johor, Malaysia

E-mail: 1luqman_1993@yahoo.com.my, 2wnasir@utm.my

ABSTRACT

Re-testing all test cases during regression testing is costly and time-consuming. These problems motivate
researchers to come up with various techniques to overcome them. One of the techniques is Test Case
Prioritization that prioritizes test cases in test suite by ordering them according to a desired objective goal.
Model-based is one of the approaches which utilizes the system models to make prioritization. The main
purpose of this systematic review is to identify and categorize the current state-of-the-art while providing a
baseline for future research in model-based Test Case Prioritization. A general search term related to model-
based approach was used during the study search in selected digital libraries ranging from 2005 to 2016 to
find primary studies that propose model-based approach. A total of 32 primary studies consisting of 21
combinations of conference proceedings, workshop, and symposium and 12 journal articles were finalized
after going through a strict selection process. A sum of 48 distinct approaches with their respective
characteristics and models used have been identified, and some general constraints of model-based Test Case
Prioritization have been highlighted. Future research is recommended to put more focus in detailing the
introduced category to benefit the researchers and practitioners.

Keywords: Model-Based, Test Case Prioritization, Regression Testing, Systematic Literature Review.

1. INTRODUCTION

A fully developed software system cannot be

considered as completely done. Changes in a
software system are inevitable and will continuously
occur over time because of many factors [1]. As
software system changes, parts of the system are
modified, added and discarded to satisfy the changes.
When changes are implemented in a system, they are
re-tested to ensure that no new bugs or defects
introduced during the modification. This phase is
necessary to ensure that the quality of the system is
in top-notch [1] and is particularly known as
Regression Testing. The sole purpose of Regression
Testing is to make sure that modifications and
changes made to the particular software system did
not create any negative impact on it [2].

Regression Testing is proved to be one of the most

expensive phases in a software development life
cycle [3]. Hall et al. [4] stated that almost 80% of the
testing budget is spent mostly in Regression Testing.
This circumstance occurs mainly because software
always undergo modifications and new versions are
introduced from time to time to cope with these

changes. As a result, the test suite tends to grow in
size because new test cases might be added to cover
the modified elements for the testing purpose [5]. As
the implication, the cost will increase continuously
and at a point, re-executing the whole test suite will
not be relevant anymore. Apart from that,
Regression Testing also consumes much time during
the process. These problems are evidenced by a
report from an industrial collaborator stating that one
of its products with 20,000 lines of code requires
seven weeks for the entire test suite to be carried out
[6]. This bothersome situation will undoubtedly
affect the testing phase significantly in many aspects.

Because of these reasons, researchers had come

up with diverse techniques to solve this issue. In their
survey, Yoo et al. [2] classified Regression Testing
into three main categories which are Test Suite
Minimization (TSM), Test Case Selection (TCS) and
Test Case Prioritization (TCP). TSM techniques
eliminate any obsolete or redundant test cases
permanently from the test suite [7] while TCS
techniques select test cases from the test suite
according to a certain criterion [8]. Last but not least
TCP techniques aim to re-order test cases from the

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4549

original test suite according to a certain goal in a
manner that the test cases which serve the goal the
most are given the highest priority [9]. All of these
techniques possess their strengths and weaknesses in
Regression Testing. However, in this paper, we will
only retain our focus in TCP, more specifically the
model-based approach.

Model-based TCP was firstly introduced by Korel

et al. [10] who implemented a different approach in
prioritizing test cases. In this particular approach,
instead of using the system codes, the system models
are utilized to prioritize test cases [10]. Activity
diagram, Extended Finite State Machine (EFSM),
sequence diagram and use case diagram are some of
the models used during prioritization process in the
studies we selected [11-14]. One of the advantages
of model-based over code-based is cheaper
execution cost [10]. Besides, analyzing models
would be faster than the source codes, and early
feedback can be achieved since models are an
abstraction of the actual code which make them
simpler to analyze compared to the system itself [3].
Early feedback here means that some bugs can be
observed or identified in the system models even
before the code is tested by tracing the models back
to the requirements to spot for inconsistency. Code-
based approaches on the other hand require code
knowledge in order to prioritize test cases which
means prioritization cannot begin until the source
code is available and most of them are language
dependent so testing process will become
troublesome in cases where the program is written in
various programming languages [5]. Catal et al. [3]
in their study encouraged researchers to develop
more model-based prioritization methods because
according to them, the percentage of studies
published concerning model-based is growing
however at a slower pace. This statement is in
tandem with the findings made by Yoo et al. [2]
when they stated in their discussion that model-
based regression testing approaches are getting more
attention. They also predicted that model-based
regression testing approaches would be of crucial
importance in the forthcoming because of higher
level regression testing and scalability. Higher level
regression testing means that regression testing can
be moved from structural level to functional level
because model-based approaches can act as an
intermediary between requirements and testing
activities. Scalability means that model-based
approaches can scale up better than code-based
approaches when dealing with industrial scale
software system. Despite that, earlier surveys
revealed that the number of papers published related

to developing new model-based approaches is not
very encouraging. According to Catal et al. [3], only
four papers proposed or used model-based approach
between 2001 and 2009 and six were published
during 2009 and 2010 period. However, that survey
was pretty much out-of-date. To the best of our
knowledge, no latest review has been done that
specifically focuses on model-based TCP. Therefore,
we feel that there is a need to conduct this review to
observe the current progress in model-based TCP
and for the sake of future research. Some related
works are discussed later in this section.

Driven from the statements above, the motivation

or the purpose of this systematic review is to (i)
identify and categorize the current state-of-the-art of
model-based TCP while providing a baseline or
starting point for future researchers in improving the
model-based approaches in TCP and to (ii) identify
how the existing approaches can handle the common
constraints in model-based TCP from their category
perspective. The first contribution of this review is
that all known model-based TCP approaches starting
from 2005 until 2016 were searched exhaustively in
well-known digital libraries and organized
systematically based on their characteristics in this
review. In addition, a quality assessment score is
provided for each study to assist researchers in
finding quality studies. Therefore, this review can
act as a baseline or starting point which can be used
for researchers that are curious and eager to learn
more about model-based TCP. Secondly, this review
contributes by introducing six general categories that
clustered all the existing approaches based on their
characteristics. This categorization can be useful
because it provides a clearer indication of future
research of how a better method can be proposed by
observing which category performs better and vice
versa. Also, a classification of the models used in the
existing approaches was also provided. This
classification can come in handy for observing the
trend and providing assistance on which model to be
considered when proposing new approaches. Lastly,
this review analyzes how the existing approaches
address the common constraints in model-based
TCP. It can save a lot of researchers’ time by just
referring to this review rather than inspecting every
study available in the literature and can assist future
research to propose a better approach that can
ultimately improve prioritization result. There are
also several interesting points related to model-based
TCP that are not included in this review. They are
the evaluation of prioritization effectiveness of each
approach, background study for each mentioned
model, full comprehensive categorization and

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4550

thorough analysis of model-based TCP limitations in
each approach. This topic is discussed more in
Section 5 about discussion and implications for
future research.

There exist some related review papers that

mentioned model-based TCP. For example, the
systematic mapping study [15] conducted by Catal
et al. [3] is quite similar with our study when it
comes to the discussion about model-based
prioritization method in one of their RQs. However,
the main difference is that their study is a mapping
study that discusses the current trend of TCP while
ours is a systematic literature review (SLR). Catal et
al. [3] in their explanation to distinguish SLR and
mapping study also described that SLR has specific
RQ and related to the outcomes of empirical studies
while mapping study has general RQ and related to
research trends. Furthermore, the SLR conducted by
Singh et al. [9] is also quite similar to our study
because they conducted a systematic review about
TCP and did mention some of the studies which are
included in our review but treated them as a
modification-based approach because these studies
also incorporate code changes in their approaches.
Nevertheless, their main intention is to summarize

the current state-of-the-art of TCP as a whole.
Therefore, the discussion on model-based TCP is
pretty much in general, and only some model-based
studies are included. In addition, Yoo et al. [2] did a
survey on Regression Testing that includes TCP as
one of the three major techniques used. Their work
also mentioned model-based TCP, but the major
distinction is that their survey targets a wider scope
which covers major branches in regression testing.
Thus, only a small number of model-based studies
are included with the less detailed discussion. Apart
from that, the studies that are conducted by Joshi et
al. [16] and Mohanty et al. [17] apparently focused
on model-based TCP based on the title of their study.
Nevertheless, both studies only include a few papers
from model-based TCP as compared to ours.
Therefore, the discussion is not thoroughly made for
model-based. Besides, their studies also include
discussion on code-based and requirement-based
TCP which make their center of attention not
entirely on model-based. The key element that
makes this particular SLR distinct is its center of
attention that specifically focuses on the model-
based approach in TCP. Also, the review papers
mentioned earlier only included some model-based
studies compared to ours might be because of fewer

Table 1: Distinction between Existing Similar Studies.

Reference

Distinction

Model-
based TCP

studies
included
(Included
in current

study)

Associated existing study Current study

[3]

Systematic mapping study Systematic literature review

16 (7)
General research questions Specific research questions
Reviews all types of TCP approaches
generally

Reviews specifically model-based
TCP

[9]

Related approaches are treated as
modification-based

Related approaches are treated as
model-based

5 (4)
Focuses on wider scope which is all
approaches in TCP

Focuses on narrower scope which is
only model-based TCP approaches

[2]
Survey Regression Testing approaches
(TSM, TCS, TCP) in general

Reviews all approaches in model-
based TCP specifically

4 (3)

[16]

Survey on code-based, requirement-
based and model-based TCP
approaches

Reviews only on model-based TCP
approaches

3 (2)
General discussion on model-based
TCP and only few studies included

Thorough discussion on model-based
TCP and more studies included

[17]

Survey on code-based, requirement-
based and model-based TCP
approaches

Reviews only on model-based TCP
approaches

2 (1)
General discussion on model-based
TCP and only few studies included

Thorough discussion on model-based
TCP and more studies included

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4551

publications that were made during the period. So,
we can say that our study is the latest and updated
review made for model-based TCP. Table 1
summarizes the distinction between the current
study and similar studies in the literature which are
explained earlier. The first column shows the
references of the associated existing studies. The
second column which consists of two sub columns
describe the distinction between the existing similar
studies and the current study. Lastly, the third
column shows the number of model-based TCP
studies that are included in the associated studies
while the number in the bracket represents the
number of those studies that are included in the
current study

The systematic review procedure outlined by

Keele [18] was referred where necessary to guide the
construction of this systematic review. Based on the
guideline, we formulated a set of research questions
(RQs) that will assist in clarifying the aims of the
review stated earlier. From the RQs constructed, we
were able to come out with a general search string
which is utilized into five selected digital libraries in
the effort to find the related studies to answer the
corresponding RQs. Then, the search results from all
digital libraries were scrutinized and refined in
various aspects to ensure that the most relevant and
high-quality studies are chosen. Using a particularly
designed data extraction form, crucial and related
information was excerpted from the 32 finalized
studies to be analyzed and evaluated to address the
RQs on model-based TCP. The remainder of this
paper elaborates our systematic review of the model-
based approaches in TCP. Section II presents a more
detailed elaboration of model-based TCP as the
background information. Section III explains the
research method while Section IV demonstrates the
execution and results of the research method. Then,
Section V discusses the findings and their
implications for future research. Section VI presents
the threats to the validity of this systematic review,
and lastly, Section VII concludes this systematic
review.

2. BACKGROUND

TCP is a technique under regression testing in

which test cases are re-ordered from the original test
suite according to a particular purpose in a manner
that the test cases serving the purpose the most are
given the highest priority [9]. We took the definition
of TCP problem proposed by Elbaum et al. [19] into
consideration for this systematic review which is
stated below:

Given: T, a test suite; PT, the set of permutations
of T; f, a function from PT to the real number.
Problem: Find T’ ∈ PT such that

ሺ∀𝑇ᇱᇱሻሺ𝑇ᇱᇱ ∈ 𝑃𝑇ሻሺ𝑇ᇱᇱ ് 𝑇ᇱሻሾ𝑓ሺ𝑇ᇱሻ 𝑓ሺ𝑇ᇱᇱሻሿ ሺ1ሻ

In this definition, PT serves as the set of all
possible sequences f T, while f is the function when
implemented to ny of the sequences, yields an award
value for that particular sequence. In short, the
definition expects that the higher award values are
preferable than the lower ones. The f function is the
most crucial part that represents the approaches used
to prioritize test cases. There are some possible goals
when referring to prioritization in this context.
Elbaum et al. [19] also stated some of the goals of
their study which are:

 To increase the rate of early faults detection
when executing test suite.

 To increase the code coverage under test at
a faster pace when executing test suite.

 To increase their confidence in the system’s
reliability at a faster rate

 To increase the possibility of revealing
faults associated with particular code
changes earlier in the testing process.

Over time, researchers have proposed numerous

approaches for TCP. All of these approaches can be
divided into two main categories which are code-
based and model-based. In code-based TCP, test
cases are prioritized by utilizing the source code
information of the software system. A survey
conducted by Mahdian et al. [5] stated that the vast
majority of test selection strategies were code-based.
A study carried out by Catal et al. [3] also proved
that the most investigated prioritization method was
coverage-based that conquered 40 percent of all the
various techniques they had gathered. Coverage-
based is a kind of code-based prioritization where
the more coverage achieved by a test suite, the more
chances faults can be revealed earlier during the
testing process. Coverage in this context means the
code coverage of the software system for example
statement, function or code block. The downside of
code-based is that code knowledge is needed to
prioritize test cases [5] which means prioritization
cannot begin until the source code is available.
Another drawback of code-based is that most of
them are language dependent [5] so the testing
process will become troublesome in cases where the
program is written in various programming
languages.

On the other hand, model-based prioritization

manipulates the models of the software system to

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4552

perform prioritization [20]. Any kind of TCP
approaches that use the system models in it can be
categorized as a model-based approach. Some
examples of system models are use case diagram,
sequence diagram, state machine diagram and
activity diagram. Figure 1 illustrated an EFSM
model retrieved from Korel et al. [10] which is used
in their proposed work to perform prioritization. The
primary advantage of model-based prioritization is
that execution of the system models is rather faster
than the execution of the system codes itself during
testing [10]. The reason is that system models are at
a higher level of abstraction thus capturing system’s
behaviors and structures are less complex compared
when using the source codes [21]. Therefore, model-
based prioritization is considerably inexpensive
compared to code-based prioritization which is both
resource-wise and time-wise [10]. Nevertheless,
model-based prioritization also possesses their own
weaknesses. One of the major flaws is its
dependence on the correctness and completeness of
the system models [14]. This topic regarding model-
based prioritization will be discussed more
thoroughly in the next section when we address our
research questions.

3. RESEARCH METHOD

This systematic review was produced in tandem
with the guidelines proposed by Keele [18]. The
methodology consists of five crucial steps which are
research questions, search strategy, study selection
process, study quality assessment and data extraction.

In the first subsection, the research questions that
addressed the aims of this whole review were
defined. The search strategy will explain the design
of searching the studies that are possibly relevant to
the defined research questions. Next, the study
selection process illustrated how the primary studies
were scrutinized and filtered to include the ones that
are related to this systematic review. The fourth
subsection described how the refined studies were
evaluated by implementing the formulated quality
assessment criteria. The last sub-topic clarified how
the information was extracted from the selected
studies.

3.1 Research Questions

The most crucial part in any systematic review is
to specify the research questions because they steer
the whole systematic review methodology process
[18]. To accomplish the motivations of this
systematic review, we had formulated the following
research questions (RQs) to help to answer the aims
of this review.

RQ1. How to categorize the existing approaches
in model-based TCP based on their characteristic?
RQ2. How the existing approaches address the
inherent constraints in model-based TCP from
their category perspective?

To answer RQ1, we first identified all the existing
model-based TCP approaches from related studies in
the literature from a certain time period. From the
selected studies, we extract the important
information that will be used to answer RQ1 and

Figure 1: Example of EFSM.

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4553

RQ2. From the collected information, we introduced
several general categories that group these existing
approaches based on their characteristics. To address
RQ2, we first recognized the common problems
faced by researchers when proposing new model-
based TCP approach. From the drawbacks identified,
we reflect on how the existing approaches overcome
those drawbacks from the perspective of the
introduced categorization.

3.2 Search Strategy

As a starting point, all primary studies related to
the research questions will be searched. To design
the search terms, we constructed a search string to be
used for paper searching in digital libraries. The
general search string is “model-based test case
prioritization”. Additionally, possible synonyms and
alternative spelling were also considered when
searching to prevent the risk of overlooking or
missing relevant studies. For example, the synonyms
for the keyword “case” would be “suite” and their
alternative spelling would be “cases” and “suites”.
The synonyms and alternative spelling for all
keywords in the search string were connected using
the Boolean operators AND and OR appropriately.
The final search string is as follow: ((((((((((model-
based) AND test) OR tests) OR testing) AND case)
OR cases) OR suite) OR suites) AND prioritization)
OR prioritizing).

 The formulated search string was then used in the

search query. The selected digital libraries are shown
below with their respective address.

 ACM (dl.acm.org)
 IEEE Xplore (ieeexplore.ieee.org)
 Science Direct (www.sciencedirect.com)
 SpringerLink (www.springerlink.com)
 Web of Science

(apps.webofknowledge.com)

All the electronic sources mentioned earlier were

selected because they have been mentioned and
proven to be relevant in software engineering studies
[3, 9, 18]. It should be noted that each digital library
has different requirements in their search query.
Therefore, necessary adjustments were made to the
search string when applied to each digital library to
get a correct and precise search result. Furthermore,
the period of the published studies was limited to
2005 until 2016. The reason 2005 was chosen is that
our early investigation indicated that the first formal
approach in model-based was introduced by Korel et
al. [10] during the year 2005 based on the citation
number.

3.3 Study Selection Process
After all studies that are possibly related to the

research questions were identified, different level of
inspections was made by the reviewers. These steps
are performed to ensure duplicate and irrelevant
studies are excluded. Preliminarily, studies were
retrieved from the selected digital libraries listed
previously by querying the constructed search string
suitably for each digital library. Next, in stage 2
namely duplicates removal, the results were filtered
to discard any duplicate studies. This duplicate
phenomenon occurs because some studies were
stored in more than one digital library. The title-
based exclusion concentrated on reviewing the titles
according to whether the title of a particular study
was related to the research questions or vice versa.
In this case, only titles that might be related to
model-based TCP and use English as the
communication language were included. Then, the
remaining studies were refined further by
undergoing abstract-based exclusion. The studies’
abstracts were reviewed to verify that only studies
which proposed a model-based approach in TCP
were taken into account.

3.4 Study Quality Assessment

Besides the general inclusion/exclusion criteria
done in the previous section, a quality assessment is
also necessarily important. Some of the rationales
why quality assessment is important is to provide a
more detailed inclusion/exclusion criterion, to filter
out mediocre works and to weight the significance of
individual studies when results are being synthesized
as stated by Keele [18].

In this particular assessment, we constructed a set

of quality assessment questions to evaluate the
validity of selected studies. Each question has three
possible answers of “Yes”, “Partly” and “No” with
their score of 1, 0.5 and 0 respectively. Each study
received their corresponding quality score by
calculating the total score they got in answering each
of the assessment questions. We decided that only
studies that obtain the quality score higher than half
of the maximum score will be included in the review.
The maximum score is 5 so only studies that
obtained score higher that 2.5 were selected. The
following questions influenced by the questions
presented by Keele [18] were utilized and altered
appropriately for assessing the quality of the selected
studies:

QA1.Are the purposes of the study precisely
described?

QA2.Is the proposed approach clearly described?

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4554

QA3.Are the results and findings clearly described
and associated with the aims of research?

QA4.Is the effectiveness of the proposed approach
assessed accordingly?

QA5.Does the paper includes conclusions that are
related to the stated objectives of study?

3.5 Data Extraction

This last section of the research method focused
on extracting necessary information from the
finalized primary studies to be recorded into a form
designed for data extraction. This process was done
so that only crucial information regarding the
research questions were extracted and to consistently
arrange them while addressing the research
questions clearly. The designed data extraction form
is shown in Table 2.

 4. EXECUTION AND RESULTS

4.1 Primary Studies

Figure 2: Study selection process.

Figure 2 illustrates the stages from the searching
of studies to the selection process. A total of 2542
studies were found from the digital libraries search
described in the previous section. An overwhelming
set of articles were obtained in the initial step
because it seems that the search from digital libraries
also returned results of the individual term from the
search string thus including other unrelated domains.
Regardless of how many articles were obtained, due
to the strict methodology that must be followed, all
of them must be recorded. On the other hand, the
utilized search string also influenced the result and
the search string used in this review is sufficient but

Table 2: Data Extraction Form.

Category Data Extraction Category Description Addresses
General data Identification number Unique identifier for each primary study

Extraction date Data extraction date

Study
particulars

Title Title of primary study
Author Name of the primary study author(s)
Publication year Year of publication
Type of paper Journal, conf. paper, book chapter, etc
Publication medium Name of publisher

Study content Approach used The approach used in model-based TCP RQ1, RQ2
Model/input used Activity diagram, state machine diagram,

etc
RQ1, RQ2

Process involved What are the processes during execution? RQ1, RQ2
Effectiveness Measurement How the effectiveness of approach

measured?
RQ2

Weaknesses of
Approach

What are the identified weaknesses? RQ2

Advantages of approach How the inherent constraints in model-
based TCP is handled

RQ2

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4555

might not be the best combination available. Then,
all of the titles from the result were listed in an Excel
sheet. The duplicate removal step was done by using
the remove duplicates feature available in the Excel.
The process eliminated 212 studies, and a total of
2330 studies remained. The next step focused on
title-based exclusion where we reviewed each
individual title to select the ones related to model-
based TCP. This step disposed a large number of
2277 studies and left 53 remaining studies. The main
reason why many studies was inapplicable is that as
mentioned earlier, the individual keyword in the
search string was also used in other unrelated
domains from this review and they were also
included in the result list. Then, a more specific
filtering was done by investigating the abstract of
each remaining study to verify that only studies
which proposed a model-based approach in TCP
were taken into account and a total of 32 finalized
studies were obtained. This number includes the one
that we inspected from the references in the finalized
studies to find more approaches and found one study
which is published in 2002, earlier from our lowest
period of 2005. The reason why we insisted in
including this study although we claimed that the
first model-based TCP was introduced in 2005 is that
this study is still considered as model-based but not
as formal as the one introduced by Korel et al. [10]
in 2005. Figure 3 depicts the publication year of each
finalized study which consists of 21 combinations of

conference proceedings, workshop, and symposium
and 11 journal articles where the x-axis represents
publication year while the y-axis represents number
of papers published. Figure 4 illustrates the citation
visualization of each study where incoming arrow
means a study is referring to that particular study the
arrow is pointing to, and bigger circle means that a
study is cited more. Discussion for Figure 3 and

Figure 3: Study's publication year.

0

1

2

3

4

5

2002 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Study Publication Year

Journal Article Conference Proceeding, Workshop, Symposium

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4556

Figure 4 is presented in Section 5. The overview for
each study which includes type of paper, publication
year and publication medium is shown in Table A2
in Appendix A.

As mentioned earlier, a study quality assessment
is crucial in providing a more thorough
inclusion/exclusion criterion, filtering out average
works and weighing the significance of individual
study when results are being synthesized. After
inspecting through all of the selected studies, we
recorded the quality assessment score for each
particular study into a table for future reference. All
of the chosen studies were rewarded a quality
assessment score higher than 2.5 which is the limit
that we agreed. This finding does not mean that our
quality assessment is ineffective because, from our
investigation, all studies included were undoubted of
quality works. Therefore, none should be removed.
The quality score for all chosen studies is shown in
Table 3. From our observation, most studies that
received high quality score are from journal
publication. This is not surprising because unlike
journal publication, paper publication from
conferences are bounded to a certain number of
pages thus less information can be fitted in. This
circumstance is the reason why studies from
conferences did not received high quality score. It

also shows that the quality assessment is correct and
useful. Last but not least, we recorded all the
necessary information from all selected studies in the
data extraction form illustrated earlier for the
consistent arrangement of information retrieved
while addressing the research questions explicitly.

4.2 Model-based TCP Approaches and Their
Categories (RQ1)

After the data extraction process was done, we
identified that many types of distinctive approaches
had been proposed over the period. A total number
of 48 different approaches were revealed from the
selected studies. It is noteworthy that some papers
proposed more than one approach. Also, there were
some extended version papers from the same authors
with more detailed contents of their previous papers
which proposed the same approaches. This
circumstance occurs when a conference paper is
selected to be published in the journal article. To be
specific, the study published by Korel et al. [10] is
mostly similar with the one published by Korel et al.
[22] and Korel et al. [20] with only a few tweaking
done while studies from Tahat et al. [23] and Tahat
et al. [21] are the extended versions of those
approaches. For this particular situation, we decided
to only include approaches from Korel et al. [10] and
Korel et al. [22] because they were the earliest

Figure 4: Study’s citation.

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4557

studies published among the ones stated above and
shown different proposed approaches. Therefore, the
number of approaches discovered will not be the
same as the number of studies included. After going
through all the identified approaches, six general
categories were introduced where all the approaches
with same characteristics were clustered together in
their appropriate category. They are model
modification based (MMB), weight / complexity /
priority / risk assignment based (WAB), genetic
algorithm based (GAB), fuzzy logic based (FLB),
probability-based (PB) and graphical user interface
(GUI) based (GUIB). All these categories were
introduced so that the approaches identified can be
grouped to show the similarity in their approaches’
execution while highlighting for possible weakness.
This grouping process is also crucial to assist in
getting the general idea of how a particular approach
operates. Each of the general category and their brief
description is shown in the following subsection.
4.2.1 MMB

In this category, an approach prioritizes test cases
based on information collected from the
modification identified regarding the original model
and the modified model. The prioritization goal of
approaches in this category is to increase the
possibility of revealing faults associated to particular
code changes earlier in testing process because they
rely on code changes between the original model and
modified model to prioritize tests. EFSM is normally
used as the input model for this category of
prioritization based on the approaches in this
category. An EFSM model contains two types of
element which are the set of states and the transitions
connecting the states [23]. This model mainly
captures the behaviors of the system because it can
visualize all the possible states or behaviors the
system can be. In a particular state, a transition is
triggered that execute a sequence of actions (shift to
another state) when a specific event occurs, and the
defined condition is satisfied. A simple example for
this category is the Selective Test Prioritization
approach proposed by Korel et al. [10]. In this
particular approach, when the original source code
of the software system is modified, the original
system models will change too to reflect the
modifications. According to the authors, to identify
a transition related to a particular source code
modification is pretty easy because usually actions
in the model are implemented as functions in the
source code [20]. After these modified transitions
are spotted, the test cases that cover them will be
given high priority than the others.

4.2.2 WAB
In this category, an approach implements the

assignment of weight / complexity / priority / risk to
the nodes or edges in the system model based on
certain criteria to prioritize test cases. The
prioritization goal of approaches in this category is
to increase the rate of early faults detection because
according to Kaur et al. [24], the tests that have the
highest complexity which means having the most
fault occurrence probability are prioritized first. It is
observed that most studies in this category utilized
activity diagram for prioritization purpose [14, 24-
28]. An activity diagram is a behavioral model
because it captures the dynamic behaviors of a
system. According to Swain et al. [27], activity
diagram illustrates the sequential or parallel control
flow between the activities in a system. To clarify
this category in further detail, the path complexity
approach proposed by Kaur et al. [24] is used for
explanation. In their approach, the activity diagram
is converted to control flow graph. In brief, for each
basis test path generated from the control flow graph,
their complexity is calculated by summing the
number of nodes, weight of path, number of
predicate nodes traversed, and number of logical
conditions traversed by them. Lastly, the path with
the highest complexity will be assigned the highest
priority.

Table 3: Quality Score Result of Selected Studies.

Paper
referen

ce

Score Tot
al QA

1
QA
2

QA
3

QA
4

QA
5

[29] 1 1 0.5 0 1 3.5
[11] 1 0.5 0.5 0 1 3
[30] 1 0.5 1 0 1 3.5
[31] 1 1 1 1 1 5
[25] 1 0.5 0.5 0.5 1 3.5
[32] 1 1 1 1 1 5
[12] 1 1 0.5 0.5 1 4
[24] 1 1 1 0 1 4
[10] 1 1 0.5 1 1 4.5
[22] 1 1 0.5 1 1 4.5
[20] 1 1 0.5 1 1 4.5
[13] 1 1 1 0.5 1 4.5
[33] 0.5 1 0 0.5 1 3
[34] 0.5 1 1 0.5 0.5 3.5
[35] 1 0.5 0.5 0.5 1 3.5
[36] 1 1 1 1 1 5
[37] 1 1 1 1 1 5
[38] 1 1 1 0.5 1 4.5
[28] 1 1 0.5 0 1 3.5
[14] 1 0.5 0.5 0.5 1 3.5
[39] 1 1 1 0 1 4
[40] 0.5 1 0.5 0.5 0.5 3

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4558

[41] 1 0.5 0.5 0 1 3
[26] 1 0.5 0.5 1 1 4
[27] 1 1 1 0.5 1 4.5
[23] 1 1 1 1 1 5
[21] 1 1 1 1 1 5
[42] 1 1 0.5 0.5 1 4
[43] 0.5 0.5 0.5 0.5 1 3
[44] 1 0.5 0.5 0 1 3
[45] 1 1 1 1 1 5
[46] 1 1 1 0 1 4

4.2.3 GAB

In this category, a subset of soft computing,
which is known as genetic algorithm (GA), is
utilized by adapting their process into test cases
prioritization using model-based approach. GA is
one of the approaches in soft computing, a search
algorithm that imitate the way nature evolves species
using a natural selection of the fittest individuals as
its main inspiration [46]. Based on the study
conducted by Sabharwal et al. [46], the test that have
the highest information flow (IF) score which is
calculated using GA are prioritized first. This IF
metric is utilized to compute the complexity of a
node which also determines the probability of fault
occurrence of a node. Therefore, the prioritization
goal of approaches in this category is to increase the
rate of early faults detection. This prioritization goal
is also stated in the study from Wang et al. [42]. All
the identified approaches applied GA in their
implementation with added metaheuristic algorithm
in several studies. For example, Nejad et al. [34]
designed four memetic algorithm based on GA. Each
of them is different in term of its local search
algorithm which are stochastic local search, hill
climbing, random iterative improvement and
simulated annealing. These local search algorithms
are incorporated to improve prioritization result.
Meanwhile, Wang et al. [42] introduced a hybrid GA
which combined GA and particle swarm
optimization (PSO) to keep the best information of
local individual during iteration process. Most of
them utilized activity diagram in their approaches, a
behavioral model as the input model [34, 42, 46]. An
example for this category is the Combination of
Basic IF metric & GA approach proposed by
Sabharwal et al. [46]. In their proposed approach, the
activity diagram is converted into control flow graph,
and a set of test paths that cover all branches are
generated. Then, weight is assigned to all nodes in
the control flow graph using Basic IF model and
complexity for each path is calculated by summing
the weighted nodes a particular path traversed.
Decision nodes of the control flow graph will form
the chromosomes to be utilized in the GA part. The

number of bits in the chromosomes is determined by
the number of decision nodes in the control flow
graph. The chromosomes’ fitness value is calculated
by applying the complexity obtained using the Basic
IF model for the path that satisfies the decision nodes
direction. Lastly, the chromosome will undergo
crossover and mutation to find the chromosome with
the highest fitness value. The chromosome value
with the highest fitness value will represent the
decision nodes an are referred to find the highest
priority path. Then the other tests are prioritized
based on the fitness value.
4.2.4 FLB

In this category, the fuzzy logic concept is
applied to a particular approach to prioritize test
cases. There are only three from all of the selected
studies that were considered as fuzzy logic based.
Two of them utilized the Event Sequence Graph
(ESG) [30, 32] while the other one used symbolic
execution tree (SET) [38]. The studies that utilized
ESG described that their approaches are coverage-
based while the study that used SET created fuzzy
input sets that aim to give high priority to tests with
larger coverage. Therefore, it can be deduced that the
prioritization goal of the approaches in this category
is to increase the code coverage under test at a faster
pace when executing test suite. According to Belli et
al. [30], ESG portrays a system’s behavior
interacting with user’s actions. SET is a model
generated from the symbolic execution of a system
which depicts all achievable execution paths of the
model, based on symbolic inputs, as well as any
constraints on those inputs [47]. The approach from
Rapos et al. [38] is used for the explanation because
it illustrates the whole fuzzy logic concept in TCP
clearly. For starter, the fundamental steps in a
common fuzzy control system are fuzzification,
inference, composition, and defuzzification. In this
approach, first, they determine the input and output
set which map to the fuzzification and
defuzzification in the fuzzy control system. The
input set consists of test suite size, SET size, relative
test case size and output significance with each of
them having three fuzzy sets of small, medium and
large. In this case, the information from the SET
model is used to determine their values. The output
set consists of test case priority that has four fuzzy
sets of low, medium, high and very high. Next, a set
of rules is designed which maps to the inference step
in the fuzzy control system. An example rule taken
from that study is small test suite size, small SET
size, small relative test case size with low or medium
output significance yields a high priority test case.
The steps mentioned earlier explained generally how
fuzzy logic based prioritize test cases in an easy way

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4559

to understand. The implementation of the other two
approaches are more complex to be explained here,
but the concept of fuzzy logic is still applied in them.
4.2.5 GUIB

In this category, an approach utilizes the GUI
components of the system to prioritize test cases in
model-based testing. Majority of the approaches in
this category used a unified model from a study
conducted by Bryce et al. [31] because most of them
are actually from the same study. Basically, each of
the related approaches is used as criteria to be fitted
into a generic function “OrderSuite” that yield
prioritized test suite based on the chosen criteria. We
treated each approach differently because their
individual concept can still be applied as a
standalone approach. This unified model was
designed by them, so it can test both the GUI and
web application during test prioritization. This
model is considered as a behavioral model because
it captures the different states the GUI or web
application are currently in based on the event
triggered by users such as opening menus, checking
checkboxes, selecting radio-buttons, and clicking
button. We take some approaches from the study
conducted by Bryce et al. [31] for a brief explanation.
First is the 1-way Parameter-value Interaction
Coverage-based which prioritize test cases by giving
highest priority to those that cover the maximum
number of parameter values that do not appear in the
previously selected tests. In this context, the term
“parameter” is the widgets while “value” is the
setting for the widgets. For instance, the “vehicle”
dropdown is a parameter with the selected value “car”
or the “male” checkbox parameter with value “true”.
Another example approach is Unique Window
Coverage Count-based which prioritize test cases
that cover unique windows which had not been
covered in the previously selected test. The term
“window” here means a GUI window for GUI
application and a page for a web application. These
terms that pair the elements between GUI and web
application are what that made the unified model.
Based on the approaches, the prioritization goal is
considered to be increasing the code coverage under
test at a faster pace when executing test suite. To
prove this, the 1-way Parameter-value Interaction
Coverage-based tries to cover all the parameter
values available as fast as possible during testing
while the Unique Window Coverage Count-based
tries to cover all the unique windows as early as
possible.
4.2.6 PB

In this category, an approach combines the
probability calculation and uses the probability score
of test cases to prioritize them. In the selected studies,

only one approach is considered to be in this
category which is the Reinforcement Learning &
Hidden Markov Model (RL-based HMM) approach
[45]. The study introduced and used a new model
called extended digraph in their approach.
According to them, this extended digraph is a
behavioral model that supports more set of
information than the traditional model regular
digraph and also offers better performance. The
steps of this approach are quite complex and lengthy
to be explained thoroughly in this review, so only a
brief description is provided. The first step is to
determine initial RL-based HMM parameters based
on the generated test cases from MBT techniques.
Next is to train an RL-based HMM with maximum
likelihood using Baum-Welch algorithm. Baul-

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4560

Welch is an algorithm that determines the most
optimal model as that with the most likelihood of the
estimated parameters [48]. Finally is to compute the
test cases forward probabilities using forward
algorithm and prioritize test cases. Emam et al. [45]
stated that the prioritization of their approach is
based on the quantity of changes that can be
generated in GUI state by performing each sequence
of actions. Higher quantity of changes mean more
critical events or larger volumes of computations
which give higher possibilities of uncovering faults
during testing. They prioritize test cases with higher
forward probabilities that have more chances of
containing such events. So, it can be said that the
prioritization goal of this category is to increase the
rate of early faults detection.
4.2.7 Distribution of existing approaches

Figure 5 illustrates the distribution pie chart of
the existing approaches in their respective category.
Table 4 shows all the introduced categories with
their respective studies. Discussion for Figure 5 and
Table 4 is presented in Section 5. The full lists of all
approaches with their respective descriptions are
shown in Table A1 in Appendix A.

Table 4: Model-based TCP Categories with Associated
Studies.

No Category Associated Study
1. MMB [10-12, 22, 35-37, 41]
2. WAB [13, 14, 24-29, 33, 40, 43, 44]

3. GAB [34, 39, 42, 46]
4. FLB [30, 32, 38]
5. GUIB [31, 45]
6. PB [45]

4.2.8 Distribution of models used

In addition to classification based on general
characteristics, we also clustered all the identified
approaches according to the models used as the input
by a particular approach. The sole reason for this
grouping is to observe the trend of what models are
currently used in performing model-based TCP and
the sense of using them. Figure 6 depicts the
distribution pie chart of the models used in all the
approaches discovered from the selected studies.
Models that are cited in less than two studies were
grouped into “Others”. Some individual study
proposed more than one approach therefore models
included in “Others” does not mean that it is only
utilized for a single approach. Table 5 represents all
the models used associated with the studies citation
that utilized them. Some approaches make use of
more than one models in their proposed approach
thus some studies will appear more than once in the
indexes. Again, in this categorization, it should be
noted that models used for studies from Korel et al.
[20], Tahat et al. [23] and Tahat et al. [21] were not
included for the same reason stated earlier in Section
4.2. We decided to only include approaches from
Korel et al. [10] and Korel et al. [22] because they

Figure 5: Distribution of existing approaches.

MMB
29%

WAB
36%

GAB
8%

FLB
6%

GUIB
19%

PB
2%

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4561

were the earliest studies published and shown
different proposed approaches.

4.3 Inherent Constraints in Model-based TCP
and How They Are Handled (RQ2)

From the review done to all the selected studies,
some critical challenges in model-based TCP had
been revealed. One of the main challenges is the
absolute dependence to the system models being
used. In other words, the correctness and

completeness of the system models will ultimately
determine whether the prioritization results are

accurate or vice versa. It means even the most
sophisticated model-based TCP approaches will not
be effective if the system models utilized are
inadequate or unreliable. Sapna et al. [14]
highlighted this issue in their study of prioritizing
use cases. They asserted that, it is obvious that if a
requirement is not captured in the model, tests that
satisfy this requirement will not be generated. If this
happens, not only the prioritization result will be

Figure 6: Distribution of Models Used.

Activity Diagram
35%

Extended Finite State
Machine

9%

Sequence
Diagram

9%State Chart/Machine
Diagram

9%

Extended System
Dependence Graph

6%

Use Case Diagram
6%

Event Sequence
Graph
6%

Others
20%

Table 5: Model-based TCP Categories with Associated Studies.

No Model Associated Study
1. Activity Diagram [11, 14, 24-28, 34, 39, 41, 42, 46]
2. Extended Finite State Machine [10, 12, 22]
3. Sequence Diagram [13, 41, 44]
4. State Chart/Machine Diagram [33, 39, 43]
5. Event Sequence Graph [30, 32]
6. Extended System Dependence Graph [36, 37]
7. Use Case Diagram [14, 44]
8. Object Relation Diagram [29]
9. Combined Model (specific name not stated) [31]
10. Extended Object-Oriented System Dependence Graph [35]
11. Symbolic Execution Tree [38]
12. State Transition Diagram [40]
13. Communication Diagram [27]
14. Extended Digraph [45]

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4562

inaccurate, even the testing process itself will be
invalid. Belli et al. [30] also argued that different
models focus on different features of system under
test (SUT) thus prioritization results will possibly be
inconsistent if disparate models are used for a
particular approach. Furthermore, GÖKÇE et al. [32]
in their study stated that the proposed prioritization
approach can be influenced by modifications in the
model which proved the approach’s dependencies to
the model. From this challenge, it can be deduced
that the effectiveness of an approach can be
preliminarily assessed by judging the completeness
and correctness of the model used itself.

The model completeness challenge is addressed

by approaches in MMB category which utilized
EFSM model. EFSM model is considered to be a
complete model because of several reasons. Firstly,
it is a behavioral model as with many other models
discussed in the model-based TCP categories earlier.
The behavioral model is the right choice when it
comes to testing because based on the details of the
system shown in the model, the expected output (test
oracle) can be illustrated clearly to be compared with
the actual output of the SUT to find for defects. On
the other hand, a structural model such as a class
diagram or component diagram cannot provide
much information for testing because they do not
resemble the behavior of the SUT. Secondly, EFSM
is a complete model because it provides sufficient
details of the system. This characteristic is what that
make EFSM superior from other models discussed
in this review even though they are all behavioral
models. Although it is an abstraction (simpler
version) of the system itself, crucial details are not
abstracted out which make it executable on its own.
For this reason, EFSM can be exploited to generate
abstract test cases which can be run on the actual
system during testing. This is actually one of the
processes which are done in Model-Based Testing.
More details can be obtained from the study
conducted by Utting et al. [49].

In addition, another constraint in model-based
TCP is that an approach might be far too complex to
be understood and executed. The obvious effect of
this issue is the increase of execution time and
resource used. For the sake of clarification, an
approach proposed by Korel et al. [10] which they
claimed as a complex approach is used as an
example. The approach is the Model Dependence-
based Test Prioritization from MMB. They
elaborated this approach in further details in two of
their extended version of studies for modification
made both in the software system and models and for

modification for which models are not modified
(only source code is modified) [21, 23]. In short, this
approach makes use of model dependence analysis
to determine the patterns of how added and deleted
transitions communicate with the modified model
and lastly utilizes this information to prioritize test
cases. In their empirical study, it is highlighted that
this approach needs more analysis and gathers extra
information from the model to do prioritization than
other approaches they had proposed [23] thus
increasing execution time. Also, more resources are
required because the whole model execution trace
must be stored to compute the interaction patterns
[22]. Nevertheless, they reported that the
prioritization result using this approach was much
better and encouraging than the other approaches
proposed by them [23].

The approaches from WAB category were

introduced to overcome the complexity issue
mentioned earlier. This is because the
implementation of approaches in this category is
pretty simple and straightforward. They implement
the assignment of weight / complexity / priority / risk
to the nodes or edges in the system model based on
certain criteria in order to prioritize test cases. This
type of prioritization is proven to be competent
among other categories because it measures the
importance of nodes or edges thus giving priorities
to the test cases that cover them with a high degree
of importance which may contain faults. For
instance, the approach Degree Measure Method
(DMM) proposed by Al-Herz et al. [29] ranks
components based on fan-in degree then prioritizes
test cases that cover the highest ranked components.
The fan-in degree in this context means the number
of components that lead or traverse through this
particular component. The rationale behind this
approach is that most of the other components will
fail to get services if this high fan-in degree
component breaks down. As the conclusion, even
though the approaches in this category is not too
complex, the prioritization result is considered to be
promising, but this depends mainly on how the
weight assignment is done.

5. DISCUSSION AND IMPLICATIONS FOR

FUTURE RESEARCH

From the results obtained, it can be observed that
the quantity of study published for model-based TCP
throughout the period is more or less constant with
no significant rise or downfall (Refer Figure 3).
There is a noticeable increase in journal publication
which means that some researchers have given

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4563

serious attention to model-based TCP. There is also
an interesting pattern that can be observed in the
study’s citation in Figure 4 where the study that got
cited the most is from Korel et al. [10] published at
2005. This pattern proves that they are among the
pioneers that firstly introduced model-based TCP
into the literature and the reason why we choose the
year 2005 as the limit in the search strategy. Overall,
the growth of model-based TCP is still moderate
compared to code-based TCP. Nonetheless, more
publications have been made in this recent years as
compared to few years ago if we compare the
number with the study from Catal et al. [3].

On the other hand, WAB category dominates the

overall number of existing approaches identified
with a percentage of 36. From the review conducted
to the studies, an observable reason why most of the
approaches proposed utilized this approach is that of
its simplicity. For example, in the Tree structure
approach proposed by Sapna et al. [28], first an
activity diagram is converted into tree structure
using depth first search algorithm. After the tree
structure is obtained, weights are assigned to the
nodes and edges. In activity diagram, the nodes are
like action/activity, fork-join that handles
concurrency and branch-merge that checks Boolean
expression for possible branches to be followed. In
their approach, priority of 3, 2 and 1 are given to
fork-join, second to branch-merge and
action/activity respectively. For edges, weights are
assigned based on the product of number of
incoming dependencies and number of outgoing
dependencies for starting node and ending node of
an edge respectively. Next, the weight of each path
(scenario) is calculated by summing up the weights
of nodes and edges it traverses. Finally, all paths are
prioritized according to the value of weight. This
approach is pretty much straightforward, but its
effectiveness and prioritization result will heavily
rely on the criteria of how weights are assigned.
From Table 4 that shows model-based TCP
categories with associated studies, we can also
observe that most of the studies are in WAB category,
in tandem with WAB dominance in number of
existing approaches. Note that in distribution of
existing approaches, GUIB is the third largest
category but in categories with associated studies,
there are only two studies for GUIB. This
circumstance happens because the one study from
Bryce et al. [31] proposed eight distinct approaches
that can be treated independently. For that reason,
we separated them which caused the number of
approaches to be more that the number of studies in
GUIB category.

Another observation worth discussing is the

percentage of models used. From the results depicted
in Figure 6, it is fairly obvious that most of the
approaches used the activity diagram of the system
to perform prioritization with a percentage of 35
over other models used. A simple reason for this
circumstance is because, obviously, the most
dominant category is WAB where most of its
approaches utilized activity diagram. However, there
are also some other reasons why this model is mostly
used when proposing model-based TCP. Sharma et
al. [39] in their proposed approach defined activity
diagram as a model that is used to represent the
dynamic behavior of the system. Swain et al. [27]
stated in their study that activity diagram is a perfect
model to portray the realization of the operation in
the design phase. An activity diagram is also used to
illustrate the scenarios of relating use case and are
utilized by system’s stakeholders to comprehend
their functionality [27]. In addition, Wang et al. [42]
also stated in their study that activity diagram is a
critical basis for system testing because it has the
capability to portray the system’s work flow and
parallel activities. Not to mention that activity
diagram is a behavioral model. In testing, the
ultimate goal is to ensure that a system’s actual
behaviors conform to its desired behaviors and
behavioral model appears to be the right candidate
for this circumstance. From these statements, it can
be concluded that activity diagram is a complete
illustration of the system behavior ergo adding to the
reasons why most of the approaches used this
diagram.

We consider this study as a starting point for

researchers to further pursue this topic in the future.
However, this review is still far from perfection and
possesses several limitations that can still be
improved. There are still many factors to be
considered so that researchers and practitioners can
fully utilize the categorization of the approaches in
the future. For that reason, several recommendations
for future research are provided. Firstly, it is
recommended that further analysis should be done to
find the most successful or efficient approach
available by comparing the quality of each one of
them in term of prioritization. Additionally, further
investigation should be made so that more details
can be extracted from the categorization. Such
details are like the suitable application a category can
be implemented in, the required programming
language to implement them or the advantages and
drawbacks of using them. Moreover, the constraints
of model-based TCP mentioned in this review are

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4564

basically general which is based on the category
level. This issue can be further investigated by
elucidating weakness in individual approach and
how they can affect prioritization result.

6. THREATS TO VALIDITY

One of the major threats to the validity of this
systematic review is the search strategy process.
When automatic search from digital libraries is being
done, the general keyword “model-based test case
prioritization” has the possibility of not capturing
important studies that use uncommon terms in their
contents. We leave no stone unturned and overcome
this circumstance by also considering all possible
synonyms and alternative spelling related to the
general search term and joined them all using the
Boolean operators AND and OR appropriately as
stated previously. As the implication of using this
solution, unrelated studies were also included in the
search result. During the study selection process, a
manual title-based inclusion was thoroughly
conducted by the reviewers to ensure that no
essential studies were inadvertently excluded. A
systematic data extraction was also utilized to ensure
that no important information was missed or left
behind during the extraction of data from selected
studies. The data extraction form explained earlier
also helped in addressing the research questions
clearly and transparently.

In addition, the accuracy and transparency of this

systematic review are also affected by the
publication biases of the selected studies. This
situation arises because some scholars tend to
deliberately highlight the positive results of their
research while obscuring or concealing the negative
ones to prove that their proposed approach is a solid
improvement. To cope with this phenomenon, we
constructed the study quality assessment to provide
a minimum requirement for a study to be included in
the review. This solution will prevent the inclusion
of ambiguous and bias studies that can affect the
results of this review. As explained in the previous
section about the quality assessment scoring scheme,
we had carefully awarded the scores for each study
and decided only studies that have the quality score
higher than 2.5 will be included in the review.

7. CONCLUSION

The main purposes of this systematic review are
to identify and categorize the current state-of-the-art
of model-based TCP while providing a baseline or
starting point for future researchers in improving the

model-based approaches in TCP and to identify how
the existing approaches can handle the common
constraints in model-based TCP from their category
perspective. The essence of this systematic review is
to recognize the gaps in model-based approaches
thus proposing possible improvements or
contributions to fill in the gaps. These objectives
were steered by the guidelines proposed by Keele
[18] in performing SLR. In the introduction, we
interpreted what is Regression Testing, the problem
faced by practitioners when implementing it and the
techniques that are feasible in solving the problem.
A brief explanation of the TCP was elaborated then
we went deeper into describing the model-based
TCP. Next, we went into the planning of the
systematic review, the research method. After the
thorough discussion was made, two research
questions were formulated that can adequately
address the aims of this review. Five different digital
libraries were selected in order to find studies that
can possibly relate to the research questions. The
preliminary search result that contains mixed studies
was gone through general inclusion/exclusion
criteria in order to establish the studies that are most
relevant to the constructed research questions. In
addition, a quality assessment was done to the
selected studies to provide more detailed
inclusion/exclusion criteria while preventing biases
and ambiguous results. A systematic data extraction
form was used to extract only essential information
that can address the research questions. Execution
and results established illustrated that from 32
primary studies selected, a total number of 48
distinctive approaches were identified where each of
them is clustered into six general categories to
distinguish approaches with similar characteristics.
Results obtained also proved that activity diagram is
the most used model in performing model-based
prioritization because it can perfectly portray the
realization of the operation and illustrates the
scenarios of relating use case. Some of the model-
based prioritization weaknesses that worth
discussing were also elaborated. Lastly, some
recommended future research are discussed will
focus on working out the stated problems by
proposing an approach in model-based prioritization.

ACKNOWLEDGMENT

The authors would like to express their deepest
gratitude to Research Management Center (RMC),
Universiti Teknologi Malaysia (UTM) and Ministry
of Higher Education Malaysia (MOHE) for their
financial support under Fundamental Research Grant
Scheme (Vote number R.J130000.7816.4F824) and

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4565

Research University Grant (Vote number
Q.J130000.2516.19H64).

REFERENCE

[1] M. Rava and W. M. Wan-Kadir, "A Review on

Prioritization Techniques in Regression
Testing," International Journal of Software
Engineering and Its Applications, vol. 10, No.
1, 2016, pp. 221-232.

[2] S. Yoo and M. Harman, "Regression testing
minimization, selection and prioritization: a
survey," Software Testing, Verification and
Reliability, vol. 22, No. 2, 2012, pp. 67-120.

[3] C. Catal and D. Mishra, "Test case
prioritization: a systematic mapping study,"
Software Quality Journal, vol. 21, No. 3, 2013,
pp. 445-478.

[4] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell, "A systematic literature review on
fault prediction performance in software
engineering," IEEE Transactions on Software
Engineering, vol. 38, No. 6, 2012, pp. 1276-
1304.

[5] A. Mahdian, A. A. Andrews, and O. J. Pilskalns,
"Regression testing with UML software
designs: a survey," Journal of Software
Maintenance and Evolution: Research and
Practice, vol. 21, No. 4, 2009, pp. 253-286.

[6] S. Elbaum, P. Kallakuri, A. Malishevsky, G.
Rothermel, and S. Kanduri, "Understanding the
effects of changes on the cost‐effectiveness of
regression testing techniques," Software testing,
verification and reliability, vol. 13, No. 2, 2003,
pp. 65-83.

[7] C.-T. Lin, K.-W. Tang, and G. M. Kapfhammer,
"Test suite reduction methods that decrease
regression testing costs by identifying
irreplaceable tests," Information and Software
Technology, vol. 56, No. 10, 2014, pp. 1322-
1344.

[8] M. Grindal, B. Lindström, J. Offutt, and S. F.
Andler, "An evaluation of combination
strategies for test case selection," Empirical
Software Engineering, vol. 11, No. 4, 2006, pp.
583-611.

[9] Y. Singh, A. Kaur, B. Suri, and S. Singhal,
"Systematic Literature Review on Regression
Test Prioritization Techniques," Informatica
(Slovenia), vol. 36, No. 4, 2012, pp. 379-408.

[10] B. Korel, L. H. Tahat, and M. Harman. "Test
prioritization using system models", in 21st
IEEE International Conference on Software
Maintenance (ICSM'05), 2005, pp. 559-568.

[11] B. Athira and P. Samuel. "Web services
regression test case prioritization", in
International Conference on Computer
Information Systems and Industrial
Management Applications (CISIM), 2010, pp.
438-443.

[12] X. Han, H. Zeng, and H. Gao. "A heuristic
model-based test prioritization method for
regression testing", in International
Symposium on Computer, Consumer and
Control (IS3C), 2012, pp. 886-889.

[13] D. Kundu, M. Sarma, D. Samanta, and R. Mall,
"System testing for object‐oriented systems
with test case prioritization," Software Testing,
Verification and Reliability, vol. 19, No. 4,
2009, pp. 297-333.

[14] P. Sapna and H. Mohanty. "Prioritizing Use
Cases to aid ordering of Scenarios", in Third
UKSim European Symposium on Computer
Modeling and Simulation, 2009, pp. 136-141.

[15] K. Petersen, R. Feldt, S. Mujtaba, and M.
Mattsson. "Systematic Mapping Studies in
Software Engineering", in 12th International
Conference on Evaluation and Assessment in
Software Engineering (EASE), 2008, 8: pp. 68-
77.

[16] S. A. Joshi and B. Tiple, "Literature Review of
Model Based Test case Prioritization,"
International Journal of Computer Science &
Information Technologies, vol. 5, No. 5, 2014.

[17] S. Mohanty, A. A. Acharya, and D. P.
Mohapatra, "A survey on model based test case
prioritization," International Journal of
Computer Science and Information
Technologies, vol. 2, No. 3, 2011, pp. 1042-
1047.

[18] S. Keele, Guidelines for performing systematic
literature reviews in software engineering, in
Technical report, Ver. 2.3 EBSE Technical
Report. EBSE. 2007, sn.

[19] S. Elbaum, A. G. Malishevsky, and G.
Rothermel, Prioritizing test cases for
regression testing. Vol. 25. 2000: ACM.

[20] B. Korel, G. Koutsogiannakis, and L. H. Tahat.
"Application of system models in regression
test suite prioritization", in International
Conference on Software Maintenance (ICSM),
2008, pp. 247-256.

[21] L. Tahat, B. Korel, G. Koutsogiannakis, and N.
Almasri, "State-based models in regression test
suite prioritization," Software Quality Journal,
vol., 2016, pp. 1-40.

[22] B. Korel, G. Koutsogiannakis, and L. H. Tahat.
"Model-based test prioritization heuristic
methods and their evaluation", in Proceedings

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4566

of the 3rd international workshop on Advances
in model-based testing, 2007, pp. 34-43.

[23] L. Tahat, B. Korel, M. Harman, and H. Ural,
"Regression test suite prioritization using
system models," Software Testing, Verification
and Reliability, vol. 22, No. 7, 2012, pp. 481-
506.

[24] P. Kaur, P. Bansal, and R. Sibal. "Prioritization
of test scenarios derived from UML activity
diagram using path complexity", in
Proceedings of the CUBE International
Information Technology Conference, 2012, pp.
355-359.

[25] A. Gantait. "Test case Generation and
Prioritization from UML Models", in Second
International Conference on Emerging
Applications of Information Technology (EAIT)
2011, pp. 345-350.

[26] H. Stallbaum, A. Metzger, and K. Pohl. "An
automated technique for risk-based test case
generation and prioritization", in Proceedings
of the 3rd international workshop on
Automation of software test, 2008, pp. 67-70.

[27] R. K. Swain, V. Panthi, D. P. Mohapatra, and
P. K. Behera, "Prioritizing test scenarios from
UML communication and activity diagrams,"
Innovations in Systems and Software
Engineering, vol. 10, No. 3, 2014, pp. 165-180.

[28] P. Sapna and H. Mohanty. "Prioritization of
scenarios based on UML Activity Diagrams",
in First International Conference on
Computational Intelligence, Communication
Systems and Networks (CICSYN), 2009, pp.
271-276.

[29] A. Al-Herz and M. Ahmed. "Model-based web
components testing: a prioritization approach",
in International Conference on Software
Engineering and Computer Systems, 2011, pp.
25-40.

[30] F. Belli and N. Gökçe. "Test prioritization at
different modeling levels", in International
Conference on Advanced Software
Engineering and Its Applications, 2010, pp.
130-140.

[31] R. C. Bryce, S. Sampath, and A. M. Memon,
"Developing a single model and test
prioritization strategies for event-driven
software," IEEE Transactions on Software
Engineering, vol. 37, No. 1, 2011, pp. 48-64.

[32] N. GÖKÇE, F. Belli, M. EMİNLİ, and B. T.
Dincer, "Model-based test case prioritization
using cluster analysis: a soft-computing
approach," Turkish Journal of Electrical
Engineering & Computer Sciences, vol. 23, No.
3, 2015, pp. 623-640.

[33] S. Mohanty, A. A. Acharya, and D. P.
Mohapatra. "A model based prioritization
technique for component based software
retesting using uml state chart diagram", in 3rd
International Conference on Electronics
Computer Technology (ICECT), 2011, 2: pp.
364-368.

[34] F. M. Nejad, R. Akbari, and M. M. Dejam.
"Using memetic algorithms for test case
prioritization in model based software testing",
in 1st Conference on Swarm Intelligence and
Evolutionary Computation (CSIEC), 2016, pp.
142-147.

[35] C. R. Panigrahi and R. Mall, "Model-based
regression test case prioritization," ACM
SIGSOFT Software Engineering Notes, vol. 35,
No. 6, 2010, pp. 1-7.

[36] C. R. Panigrahi and R. Mall, "An approach to
prioritize the regression test cases of object-
oriented programs," CSI transactions on ICT,
vol. 1, No. 2, 2013, pp. 159-173.

[37] C. R. Panigrahi and R. Mall, "A heuristic-based
regression test case prioritization approach for
object-oriented programs," Innovations in
Systems and Software Engineering, vol. 10, No.
3, 2014, pp. 155-163.

[38] E. J. Rapos and J. Dingel. "Using Fuzzy Logic
and Symbolic Execution to Prioritize UML-RT
Test Cases", in 8th International Conference
on Software Testing, Verification and
Validation (ICST), 2015, pp. 1-10.

[39] C. Sharma, S. Sabharwal, and R. Sibal,
"Applying genetic algorithm for prioritization
of test case scenarios derived from UML
diagrams," International Journal of Computer
Science, vol. 8, No. 3, 2014, pp. 433-444.

[40] S. Sharma and A. Singh, "Model Based Test
Case Prioritization Using Greedy Approach,"
International Journal of Emerging Trends in
Engineering and Development, vol. 6, No. 5,
2016, pp. 80-88.

[41] R. S. Silva Filho, C. J. Budnik, W. M. Hasling,
M. McKenna, and R. Subramanyan.
"Supporting concern-based regression testing
and prioritization in a model-driven
environment", in 34th Annual Computer
Software and Applications Conference
Workshops (COMPSACW), 2010, pp. 323-328.

[42] X. Wang, X. Jiang, and H. Shi. "Prioritization
of test scenarios using hybrid genetic algorithm
based on UML activity diagram", in 6th
International Conference on Software
Engineering and Service Science (ICSESS),
2015, pp. 854-857.

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4567

[43] S. Weißleder. "Towards Impact Analysis of
Test Goal Prioritization on the Efficient
Execution of Automatically Generated Test
Suites Based on State Machines", in 11th
International Conference on Quality Software,
2011, pp. 150-155.

[44] F. Basanieri, A. Bertolino, and E. Marchetti.
"The cow_suite approach to planning and
deriving test suites in UML projects", in
International Conference on the Unified
Modeling Language, 2002, pp. 383-397.

[45] S. S. Emam and J. Miller, "Test case
prioritization using extended digraphs," ACM
Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, No. 1, 2015,
pp. 6.

[46] S. Sabharwal, R. Sibal, and C. Sharma.
"Prioritization of test case scenarios derived
from activity diagram using genetic algorithm",
in International Conference on Computer and
Communication Technology (ICCCT), 2010,
pp. 481-485.

[47] E. J. Rapos, Understanding the effects of model
evolution through incremental test case
generation for UML-RT models. 2012: Queen's
University (Canada).

[48] L. E. Baum, T. Petrie, G. Soules, and N. Weiss,
"A maximization technique occurring in the
statistical analysis of probabilistic functions of
Markov chains," The annals of mathematical
statistics, vol. 41, No. 1, 1970, pp. 164-171.

[49] M. Utting, A. Pretschner, and B. Legeard, "A
taxonomy of model‐based testing approaches,"
Software Testing, Verification and Reliability,
vol. 22, No. 5, 2012, pp. 297-312.

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4568

APPENDIX A

Table A1: Full List of Approaches for Model-based TCP.

Approach Name Description
Model Modification Based (MMB)

Model Dependence-based * [11] 1. Identify differences between original and modified model
2. Identify and mark data and control dependences during modified model

execution
3. Identify most promising paths and prioritize test cases that cover those

particular paths

Improved Heuristic * [12] 1. Find the test case executing largest number of modified transitions and
execute it

2. Update the counts of modified transitions traversed during execution of
previous test case

3. Get set of modified transitions executed least number of times
4. Select a random transition in the set then select and execute a test case that

covers the transition

Selective Test Prioritization
Version 1 [10]

Assign high priority to tests that execute modified transitions (only added
transitions)

Selective Test Prioritization
Version 2 [10]

Assign high priority to tests that execute modified transitions (added and
deleted transitions)

Model Dependence-based Test
Prioritization [10]

1. Uses model dependence analysis to identify different ways in which added
and deleted transitions interact with the remaining parts of the model and
use this information to prioritize high priority tests

2. Weakness – Too complex, computing interaction pattern test distribution

Heuristic #1 * [22]

1. Give higher priority to tests executing higher number of modified
transitions

2. H#1 order prioritization based on number of modified transition,
different from Selective Test Prioritization that only has high priority set
and low priority set

3. Weakness – considering only the number of transition execution may not
have significant influence on improving early fault detection

Heuristic #2 * [22]

Modified version of H#1, give more chances to lower priority tests to be
selected

Heuristic #3 * [22]

1. Tests with higher frequency of execution of modified transitions given
higher priority than tests with lower frequency of execution of modified
transitions

2. Weakness – transition frequencies may not be the best type of info to be
used for prioritization

Heuristic #4 * [22] Modified version of H#3, give more chances to lower priority tests to be
selected

Heuristic #5 * [22]

1. Each modified transition should have same opportunity to be executed
2. Balance number of executions of modified model
3. Steps

a. Keeps counts of transitions executions
b. Randomly select first test to be executed, the count of transitions

executed on the test are updated
c. Determine set of modified transition executed least number of times,

randomly select one and execute the test that traverses that selected
transition then update the count of transitions executed on that test

d. Repeated until transition counts are the same

Model-based Regression Test Case
Prioritization technique (M-RTP)
[35]

1. Compare Extended Object-oriented System Dependence Graph
(EOSDG) models for original and modified model

2. Mark the model with the identified changes
3. Construct forward slicing to identify all model elements affected by

modification
4. Find test cases associated with affected elements

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4569

5. Prioritize according to number of affected elements covered by test case

Slice based-Regression Test
Prioritization (S-RTP) [36]

1. Steps
a. Construct Extended System Dependence Graph (ESDG) model of

original program
b. Identify changes between original and modified program
c. Update ESDG model correspond to modified program
d. Construct forward slice of ESDG using modified nodes
e. Determine nodes affected to modification
f. Find test cases that cover affected node and prioritize based on

number of affected node covered
2. Weakness – Less efficient in program with low interdependency

Heuristic based-Regression Test
Prioritization (H-RTP) [37]

1. Same with S-RTP
2. Difference – weight is assigned to each modified node and decreased

every time the corresponding test case is selected into prioritization
3. Weakness – assume all test cases have equal cost and faults are equally

severe

Concern-based * [41]

1. Two options
a. Reorganize test procedures based on number of steps originated in

modified elements in the model – allow test procedures that cover the
highest number of modified elements to be executed first

b. User can define individual risk for each activity, prioritize those with
higher risks

Weight/Complexity/Priority/Risk Assignment Based (WAB)

Minimum Independent Dominating
Set Method (MIDSM) [29]

1. Steps
a. Choose node with the highest degree
b. Delete all neighbors
c. Choose next highest degree node
d. Delete neighbors

2. Weakness
a. Which node to select when more than one with the same degree
b. Not considering importance of the direction that may impact

component importance
c. Might delete important neighbor component

Degree Measure Method (DMM)
[29]

1. Rank components based on fan-in degree
Weakness - Which component to select when more than one with same fan-in
degree

Betweenness Measure Method
(BMM) [29]

1. Steps
a. Find shortest paths between any components pairs
b. Go over all individual components and see which paths they exist
c. Highest priority to components with most existence

2. Weakness
a. Which component to select when more than one with same

betweenness measure

Branch Probability * [25]

1. Steps
a. Find minimum number of flows covering all edges
b. If there is more than one combination of activity flows to cover the

activity diagram, take the highest weight of flow to reduce TC.
c. Weight of an only one outgoing edge in a node is 1
d. Weight of n outgoing edges in a node is equal to 1
e. Weight of a flow is the product of all the weights of the edges in the

flow
2. Weakness

a. Prioritization based on possibility of usage, may not be feasible at
runtime

Path complexity * [24] 1. Convert activity diagram to control flow graph (CFG)
2. Basis path generation
3. Count number of nodes in each path

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4570

4. Calculate weight of each path by calculating total weight of all the path’s
nodes using Information Flow (IF) model

5. Count number of predicate nodes in each path
6. Count number of logical conditions within each predicate node covered

by the corresponding path
7. Calculate each path complexity by summing the four parameters values

(Number of nodes, weight of path, number of predicate nodes traversed
and number of logical conditions traversed)

3. Path with the highest weight will be the highest complexity, therefore,
assigned highest priority

System Testing for Object-
Oriented systems with test case
Prioritization (STOOP) [13]

1. Steps
a. Converts a set of sequence diagrams into graph representation,

sequence graph (SG)
b. Generate test cases from SG
c. Prioritize test cases using Sum of Message weight, Average weighted

path length, and Code weight
d. Take ranked test cases and generate test data

8. Weakness – only consider sequence diagrams for one use case at a time

Component Interaction Graph *
[33]

1. Use statechart diagram to model each component and construct CIG
2. Count max state changes and max database access of each test case
3. Calculate the objective function value
2. Prioritize test case according to decreasing value of objective function

Tree Structure * [28]

1. Steps
a. Convert activity diagram to tree structure
b. Assign weights to nodes and edges
c. Calculate path(scenario) weight
d. Prioritize scenarios

4. Weakness – Depend solely on structural aspects of the activity diagram

Structural Aspects of Use Case &
Activity Diagram * [14]

1. Steps
a. Capture data from all use case diagrams
b. Obtain actor priority and compute use case priority from use case

diagram
c. Obtain customer prioritization of use cases
d. Calculate UC priority by summing Customer Priority and Technical

Priority
e. Extract scenarios from activity diagram which is elaborated from use

case
f. Prioritize scenarios by assigning weights to nodes and edges in

activity diagram
g. Calculate weight of path (scenario) then finally prioritize by

summing the sum of the priorities starting at level 1 of the schema
and moving down adding the weights of all the nodes up to the
scenario weight

2. Weakness
a. Depend on correctness and completeness of UC an AD
b. Scenarios will not be generated if requirement not captured in AD

Greedy Approach * [40]

1. Traverse the test suite for each TC
2. Calculate number of intrastate and interstate covered by each TC
3. Define unit time
4. Calculate objective function of each TC
3. Prioritize TC by sorting in descending order of objective function

Risk-based test case Derivation and
Prioritization (RiteDAP) [26]

1. Derive unordered test case scenarios (TCS) from test model
2. Calculate sum of risks of all actions covered by TCS
5. Order TCS based on value of risk using Total Risk Score Prioritization

(TRSP) or Additional Risk Score Prioritization (ARSP)

Prioritizing Test Scenarios through
COMMACT tree
(PRITECOMMACT) [27]

1. Convert communication diagram and activity diagram to testing flow tree
(ComTree & ActTree)

2. Merge to COMMACT tree and traverse through it
3. Generate test scenarios

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4571

3. Prioritize the scenarios by calculating weights of nodes and edges and
based on main or alternate scenario

Far Element First/Last (FEF/FEL)
[43]

4. Sorts test goals according to the referenced model element’s distance in
descending/ascending order

High Branching Factor First/Last
(HBFF/HBFL) [43]

5. Sorts all test goals according to the branching factor of the referenced
model element in descending/ascending order

Many Atomic Conditions First/Last
(MACF/MACL) [43]

6. Sorts all test goals according to the number of atomic conditions in
descending/ascending order

High Positive Assignment Ratio
First/Last (HPARF/HPARL) [43]

7. Sorts all test goals according to their positive assignment ratio in
descending/ascending order

COWtest plus UIT Environment
(COW_SUITE) [44]

1. Identify & organize the graphs representing the design model structure
2. Trees derivation
3. Assign weights to the nodes
4. Integration stage selection & weighted tree derivation
8. Cowtest_ing

Genetic Algorithm Based (GAB)

Memetic Algorithm * [34] 1. Combination of GA algorithm and a local search algorithm (stochastic
local search, hill climbing, random iterative improvement or simulated
annealing)

2. Steps
a. Convert activity diagram to Control Flow Graph (CFG)
b. Use fitness function to compute paths value in AD

Use memetic algorithm to prioritize test case

Combination of Basic IF metric,
Stack & GA * [39]

1. Convert activity diagram to control flow graph (CFG) and statechart
diagram to state dependency graph (SDG)

2. Assign weight to nodes in CFG and SDG using stack-based weight and
basic IF model

3. Selection – form chromosome using decision nodes of CFG and SDG
4. Crossover - swap genes or sequence of bits in the chromosome
3. Mutation – bring diversity in population to avoid local optima

Hybrid Genetic Algorithm (GA
+PSO) [42]

1. Convert AD to CFG
2. Generate all possible independent & non-redundant paths using Depth

First Search (DFS) method
5. Find fittest test path using HGA

Combination of Basic IF metric &
GA * [46]

1. Convert AD to CFG
2. Assign weight to nodes using FAN-IN & FAN-OUT
3. Selection – Turn decision nodes of CFG into chromosomes
4. Crossover - swap genes or sequence of bits in the chromosome
5. Mutation – bring diversity in population to avoid local optima

Fuzzy Logic Based (FLB)

Gustafson Kessel Clustering * [30]

1. Steps
a. Construct set of events
b. Cluster event using GK clustering
c. Classify event into c fuzzy groups
d. Determine importance degrees of groups
e. Determine importance index of event groups
f. Order Complete Event Sequence (CES) as test cases using preference

degree
2. Weakness

a. Heavily depends on model used
b. A model usually focuses on selected features; result may differ for

other features

Cluster Analysis (FL + NN) * [32]

1. Steps
a. Construct set of events
b. Cluster the events using both Adaptive Competitive Learning (ACL)

and Fuzzy C-Means (FCM)

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4572

c. Classify events into c crisp groups (using ACL) & fuzzy qualified
groups (using FCM)

d. Determine importance degrees of groups
e. Determine importance index of event groups
f. Order CES as test cases using corresponding preference degree

2. Weakness
a. Affected by changes in model concerning the generated test

sequences
b. Only behavioral sequence-based faults are revealed, logical and/or

calculation errors are ignored

Fuzzy Control System * [38]

1. Fuzzification & defuzzification
2. Rule selection
3. Presentation of results
3. Implementation

Graphical User Interface Based (GUIB)

1-way Parameter-value Interaction
Coverage-based [31]

Select next test to maximize the number of parameters values that don’t
appear in previously selected tests.

2-way Parameter-value Interaction
Coverage-based [31]

Select next test to maximize the number of 2-way parameters value
interaction between windows

Unique Window Coverage Count-
based [31]

Prioritize tests by giving preference to test cases that cover unique windows
that previous tests have not covered

Action Count-based [31] Prioritize tests by number of actions in each test (duplicates included)

Parameter-Value Count-based [31] Prioritize tests by number of parameters that are set to values in a test case
(duplicates included)

Most Frequently Present Sequence
(MFPS) of Windows Frequency-
based [31]

1. Identify most frequently present sequence of windows in the test suite
2. Order test cases in decreasing order of number of times that particular

sequence appear in test cases

All Present Sequence (APS) of
Windows Frequency-based [31]

The frequency of occurrence of all sequences is used to order test suite

Weighted Sequence of Windows
(Weighted-Freq) Frequency-based
[31]

Assign each test case-weighted value based on all of the windows sequences
it contains and the importance of the window sequence (window sequence
importance is calculated by number of times the sequence appears in suite)

Accumulated Q-value [45]

1. Prioritize test cases based upon the number of computations activated by
the corresponding action in each test case (Q-values)

2. Rank every test case in descending order, then label the one with the
highest accumulated Q-value as highest priority

Probability-Based (PB)

Reinforcement Learning & Hidden
Markov Model (RL-based HMM)
[45]

1. Determine initial RL-based HMM parameters based on the generated
test cases from MBT techniques

2. Train an RL-based HMM with maximum likelihood using Baum-Welch
algorithm

3. Computes TC’s forward probabilities using forward algorithm and
prioritize test cases

Table A2: Overview of Selected Studies.

No. Type of
Paper

Publication
Year

Publication Medium Reference

1. Journal 2016 Software Quality Journal [21]

2. Journal 2016 International Journal of Emerging Trends in
Engineering and Development

[40]

3. Journal 2015 Turkish Journal of Electrical Engineering & Computer
Sciences

[32]

4. Journal 2015 ACM Transactions on Software Engineering and
Methodology

[45]

Journal of Theoretical and Applied Information Technology
31st July 2018. Vol.96. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4573

5. Journal 2014 Innovations in Systems and Software Engineering [27]

6. Journal 2014 International Journal of Computer Science [39]

7. Journal 2014 Innovations in Systems and Software Engineering [37]

8. Journal 2013 CSI transactions on ICT [36]

9. Journal 2012 Software Testing, Verification and Reliability [23]

10. Journal 2011 IEEE Transactions on Software Engineering [31]

11. Journal 2010 ACM SIGSOFT Software Engineering Notes [35]

12. Journal 2009 Software Testing, Verification and Reliability [13]

13. Conference 2016 1st Conference on Swarm Intelligence and
Evolutionary Computation

[34]

14. Conference 2015 6th IEEE International Conference on Software
Engineering and Service Science

[42]

15. Conference 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation

[38]

16. Conference 2012 CUBE International Information Technology
Conference

[24]

17. Conference 2011 11th International Conference on Quality Software [43]

18. Conference 2011 3rd International Conference on Electronics Computer
Technology

[33]

19. Conference 2011 Second International Conference on Emerging
Applications of Information Technology

[25]

20. Conference 2011 International Conference on Software Engineering and
Computer Systems

[29]

21. Conference 2010 International Conference on Computer and
Communication Technology

[46]

22. Conference 2010 International Conference on Advanced Software
Engineering and Its Applications

[30]

23. Conference 2010 International Conference on Computer Information
Systems and Industrial Management Applications

[11]

24. Conference 2009 First International Conference on Computational
Intelligence, Communication Systems and Networks

[28]

25. Conference 2008 IEEE International Conference on Software
Maintenance

[20]

26. Conference 2005 21st IEEE International Conference on Software
Maintenance

[10]

27. Conference 2002 International Conference on the Unified Modeling
Language

[44]

28. Symposium 2012 International Symposium on Computer, Consumer and
Control

[12]

29. Symposium 2009 Third UKSim European Symposium on Computer
Modeling and Simulation

[14]

30. Workshop 2010 IEEE 34th Annual Computer Software and
Applications Conference Workshops

[41]

31. Workshop 2008 3rd International Workshop on Automation of
Software Test

[26]

32. Workshop 2007 3rd international workshop on Advances in model-
based testing

[22]

