
Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4029

 RESOURCE-AWARENESS: A STRATEGY FOR RESOURCE
OPTIMIZATION AND RELEVANT SERVICE DISCOVERY IN

AD-HOC MOBILE CLOUD

1DOMINIC AFURO EGBE, 2BETHEL MUTANGA MURIMO
1Department of of Information and Communication Technology, Durban University of Technology (DUT),

South Africa
2Department of Information and Communication Technology, Mangosuthu University of Technology,

Durban, South Africa

E-mail: 1domafuro@gmail.com , 2mutangamb@mut.ac.za,

ABSTRACT

The challenges of limitation in devices’ resources and dynamic context is an inherent characteristic of
mobile environments. These challenges have strong implication on service discovery efficiency. While
service discovery operations may create resource-burden on mobile devices, service-relevance is impacted
by changes in device context. Generally, discovery mechanisms aim to discover services relevant to
consumers’ requirements hence service-relevance is based on service functionalities. However, due to
changing context in mobile environments, service functionalities alone are insufficient to address service-
relevance with regards to resource capability. Consequently, discovered services may fail to match the
resource capabilities of client devices, leading to resources wastage. Addressing this challenge requires
proactive discovery mechanisms that can adapt to context change based on devices’ resource capabilities
and service functionalities. In this paper we designed and prototyped an adaptive service discovery
mechanism. The mechanism monitors client devices to collect context data used to adapt to changing
resource-context before discovering services. This approach recorded high precision and recall rates and
reduced processing time, while relative quality of service discovery was significantly enhanced - meaning
resource usage in optimized.

Keywords: Resource-Awareness, Adaptive, Resource-Efficient, Service Discovery, Relevant Services.

1. INTRODUCTION

The increasing quest to achieve ubiquitous
computing and the surge in the number of e-service
providers has resulted in Ad-hoc Mobile Cloud
Computing (AMC) gaining significant research
attention in recent years [1].

The widespread use of mobile devices and
increasing availability of fast wireless mobile
Internet connectivity are, among others, the driving
factors behind AMC computing paradigm [2]. This
paradigm exploits advancements in the capabilities
of current mobile devices to create low-cost, ad-hoc
or opportunistic resource provisioning platform.
Over the last decade, mobile devices have evolved
and gotten better in terms of hardware and
functionality. Nonetheless, these devices are still
subject to the impediment of resource limitation
that centres on limited memory, storage capacity
and battery dependence [3] [4].

To address this characteristic resource challenge,
Mobile Cloud Computing (MCC) has been the ideal
computing infrastructure to support mobile devices
[4]. The idea takes advantage of the Cloud
infrastructure to provide scalable server-side
processing. This kind of processing helps to relief
client devices of computationally complex and
resource-intensive operations. MCC also leverages
the potentials of mobile devices by providing
remote data storage, access to vast online resources,
and computational capabilities [5].

Although MCC provides efficient mechanism for
e-services delivery, the cost of IT infrastructure
makes it very expensive to fully realize in remote
areas. Issues such as inaccessibility of the Cloud
due to weak or absence of Internet connectivity,
high Internet subscription charges, high energy
consumption (due to wireless uplink connection
from mobile devices) and latency are other potential
research challenges facing mobile MCC [4], [6].

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4030

Furthermore, service relevance is influenced by
the dynamic context of mobile devices while
discovery efficiency hinges on the resource
capability of the device consuming the service.
These issues are still open in the MCC domain [7].
In attempt to address these challenges, AMC
computing model proposes a network of mobile
devices that acts as Cloud provider by enabling
each device to provide its resources to others within
the network [1], [8]. Essentially, this model has
offered leverage for the evolution of the concept of
mobile web services, which advocates the need to
enables mobile devices not only as conventional
web service requesters but as providers as well [9].
These web services are provisioned from mobile
devices, accessed and invoked by peer nodes [10].

Nevertheless, being a service offering platform,
discovering relevant services is, in addition to other
benefits, a fundamental requirement that defines the
overall usefulness of AMC. Unfortunately, this vital
requirement for service discovery efficiency faces
two unique challenges:

1.2 Unpredictable Context Change

Generally, mobile environments are prone to
unanticipated changes in local context, which may
include user preferences, environmental variables
and hardware resources (available battery and
memory). Due to the unique nature of AMC,
hardware resource context plays a vital role in
service discovery. For instance, if a device’s battery
is in say level “at the first launch of a service
request and after a period, when a similar operation
is performed the battery level drops to say x-k, then
there is a change in resource context (battery) of the
device. Such unanticipated context change can
impede the discovery of relevant services, because
discovered services might no longer match the
capabilities of the device in its current resource
state, resulting in resource wastage and low client
satisfaction [11]. To address the impact of dynamic
context on service discovery, context-aware
applications are emerging to exploit the dynamism
in mobile environments to provide new and
innovative services to mobile consumers [12].

1.3 Resource Limitation

Resource limitation of mobile devices poses
another critical challenge because service discovery
is generally considered a resource-intensive
process, especially in mobile domains [13]. The
challenge of inadequate resources is overwhelming
in AMC environment because resource-constrained
devices act as service providers in addition to
running other conventional tasks. Another challenge

is that, resources are not only scarce, they are
dynamic as well. Addressing these challenges
makes it imperative to advocate the development of
adaptive service discovery mechanisms that can
weigh the resource capability of client devices and
use the weight to determine which services would
be relevant to the device. The lack of such
techniques can lead to a situation where a device
may run out of limited resources while consuming
and or providing a service.

Generally, current literature shows several
scholarly proposals that offered various service
discovery techniques. However, most of these
techniques are traditionally designed for Cloud and
Mobile Cloud discovery mechanisms. Therefore,
these techniques do not adequately consider the
challenges with regards to the peculiarity in AMC
[14], [15], [16]. On the other hand, current state-of-
the-art in AMC has not fully explored hardware
resource as a component of device context in
determining the relevance of discovered services.
Whereas the relevance of a service is measured not
only by the service’s ability to fulfil the required
functionality but also by matching the resource
capabilities of the target device [17]–[19].

Above all, the fact that in AMC hardware
resources are limited coupled with the resource-
intensive nature of service discovery operations,
emphasizes the necessity to design resource-aware
mechanisms for discovering services in AMC. Such
mechanisms will introduce a balance between
discovering relevant services and efficient resource
utilization.

Broadly, there are two schools of thought or
paradigms in the solution space of AMC service
discovery. The first leverages on the resource-rich
Cloud to develop agent-based or broker-based
service discovery frameworks. The idea is to push
resource-intensive service discovery operations to
the Cloud to minimize resource burden placed on
mobile devices.

Example, in [17] the authors developed a
complex semantic-based service discovery process
mediated by a Cloud broker. Similarly, [10]
proposed a cloud-based framework for mobile web
service discovery for resource constrained
environments.

The framework adopts the typical Cloud model
to offer discovery-as-a-service – DaaS. Also, in
[20], [21] context-aware Offloading Decision and
Discovery Algorithms were implemented to
determine when it is beneficial to offload energy-

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4031

intensive execution to the Cloud and discover the
right service respectively.

The second school of thought advocates efficient
service discovery in pure AMC settings, focusing
on using device context to determine service
relevance. In exploring this idea, [22] highlighted
the core requirements for a reliable mechanism for
efficient service discovery in AMC. While [11]
developed a device-aware service discovery
mechanism and a limited resource-aware service
adaptation for pervasive environments is proposed
by [23]. In addition, other authors have proposed a
service discovery mechanism that utilizes user
preferences, user rating and device profile to
achieve relevant service discovery and rating [24].

While the first paradigm does not fully reflect the
ideal AMC (infrastructure-less), proposals in the
second school of thought are not focused on
studying the impact of device resource capability on
relevant service discovery.

To bridge the gap between the above two schools
of thought, this paper focuses on achieving an Ad
hoc service discovery platform. The aim is to
develop a resource-aware service discovery
mechanism for AMC environments. To achieve this
aim, we consider resource capabilities of devices as
vital constituent of device context. The emphasis is
on utilizing device context as a tool to enhance
relevant service discovery in an adaptive and
resource-efficient manner.

In the remainder of the paper, web service and
web service discovery are used interchangeably
with service and service discovery respectively.

The remainder of this paper is organized as
follows: section 2 describes three levels of resource
usage optimization in AMC. While section 3,
presents the proposed solution approach, which
includes formulation of resource-aware service
discovery and ranking algorithms. The architecture
of the proposed mechanism is then described in
section 4. Prototype results and analysis are
presented in section 5. The paper is concluded in
section 6.

2. RESOURCE OPTIMIZATION IN AMC
SERVICE DISCOVERY

A good service discovery mechanism for
AMC should be lightweight or not resource-
intensive. That is, it should adopt techniques that do
not weigh down the resources of mobile devices.
Generally, resource-intensiveness is introduced
using semantic or ontology techniques, which are
usually employed to enhance service discovery

efficiency [25]. Basically, there are two levels in
the service discovery process where resource-
intensiveness can be minimized as discussed in this
section:

2.1 Web Service Description Level

Web service description is a fundamental part of
the web service development cycle because it
makes it possible to group, discover and invoke
web services. Web services employ the Cloud
concept of software as a service (SaaS) to deliver
software entities over the network. Therefore, for a
web service to be discovered and subsequently
invoked, it must first be specified or described.
Web Service Description Language (WSDL) is the
de facto standard for specifying web services.

A web service description technically consists
of the information model, functional capabilities,
non-functional parameters, and the technical
specifications of a service. Essentially, the
technique for web service specification has the
tendency to introduce resource burden, especially in
AMC, where resource scarcity is a critical
challenge [19]. Consequently, resource usage
optimization in AMC must begin from service
description level, by adopting a lightweight service
description approach.

2.2 Web Service Matchmaking Level

Matchmaking operation is a core component in

the service discovery task because it that
determines the relevance of returned services with
respect to requesters’ need. This discovery
component deals with the intelligent decision
making of comparing users’ requirement against
available services. Playing a decision-making role
denotes that knowledge is being processed at this
stage to enable discovery mechanisms to decide
which services to retrieve or leave out. In any case,
web service matchmaking requires computational
resources. Consequently, it is imperative that the
design and implementation of matchmakers for
AMC environments take into consideration
resources scarcity.

However, increasing demand for high
performance in service discovery with regards to
robustness, accuracy, and efficiency has intensified
research efforts enhance matchmaking in a manner
that does not favour mobile devices. Therefore, the
state-of-the-art in Cloud and Mobile Cloud
computing advocates semantic enhancements to
service matchmaking [13], [15]. Unfortunately,

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4032

though such semantic enhancements bring huge
improvement, they equally create additional
computational burdens [13], [26].

The above underscores the fact that optimizing
resource utilization at the service matchmaking
level cannot be overlooked in the context of
achieving efficient service discovery in AMC.

3. RESOURCE-AWARE SERVICE
DESCRIPTION AND MATCKMAKING

Resource-awareness plays key role in AMC
service discovery. This role is, in this paper,
considered key to determining the relevance of
discovered services. Current solution approaches in
the literature have predominantly used other
context parameters such as QoS, user ratings and
preferences, device features etc. [11], [24].
However, we argue that the definition of service
relevance should be extended beyond meeting
users’ requirements to also matching the client
device’s resource capabilities. To establish the
forgoing argument, we propose the incorporation of
device context into web service description and
matchmaking processes in place of semantic
enhancement. This approach is aimed first, at
enhancing the discovery of relevant services. And
second, minimizing the huge computational
demand associated with semantic techniques.

As revealed in section 2, resource usage
optimization can be ensured at two critical levels in
the web service discovery process – service
description and matchmaking levels. Consequently,
this section presents two approaches of utilizing
device context to achieve optimal resource usage in
AMC service discovery.

3.1 Context-based Service Description

Lack of expressiveness and resource-
intensiveness are respectively the weakness of
syntactic and semantic service description
approaches. That is, while syntactic service
description can only capture limited non-functional
service parameters, their semantic counterparts
require huge computational resources, which is not
suitable for AMC environment. Achieving a
balance between these constraints for enhancing
relevant service discovery in AMC environment is
challenging.

In this section, a resource-friendly approach to
service description based on Web Service
Description Language Mobile (WSDL-M) is
introduced [11]. This approach uses WSDL-M to
provide a light-weight and more expressive service
description that captures device context as non-
functional parameters. Effectively, by this concept,
web service providers are enabled to specify the
resource requirement, among other non-functional
parameters of offered services in their service
description. A graph-based context model as
depicted in Figure 1 is utilized in this service
description approach. From Figure 1, in each web
service description, providers specify the types of
device features support by the offered web service
as well as its battery and memory requirements.

Figure 1: AMC Device Context Model

One of the fundamental service discovery
challenges in AMC environment is how to find and
invoke services that would function within the
capabilities of the client device. Nevertheless, the
need for a highly customized web service discovery
process that considers the current diversity of client
devices has been neglected by many discovery
solutions. For instance, different mobile devices
support varying features such as frames, callback,
cookies etc. Therefore, the rendering or functioning
of a web service may be impaired if consumed by a
client device that lacks some capabilities that
enhances the web service’s performance. The
proposed context model incorporates device
features to help address the above problem. For
instance, employing device profile and device
resource context can enhance discovery of services
that are tailored to the capability of individual
devices. Some of the commonly used device
features include, but not limited to screen pixel
height, maximum href height, screen pixel width,

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4033

supportCSS, frames, cookies, and support body
colour as listed in [11].

With this proposed lightweight and expressive

web service description approach, web service
capabilities such as battery and memory
requirement represented with numeric scales (0, 1).
That is, the numeric values symbolize the impact a
web service may have on the battery and memory
of a client device. These values simply tell whether
a service is resource-hungry or not. Example, zero
(0) symbolizes that the service is less battery or
memory intensive, while one (1) implies the
contrary. With this information built into web
service descriptions, it becomes possible for web
service capabilities to be matched with the client
device’s resource capabilities during matchmaking.
Such device capability-based matching can boost
the prospect of realizing a discovery process that
optimizes resource usage in addition to enhancing
relevant service discovery.

3.2 Context-based Matchmaking and Service

Relevancy Ranking

Service matchmaking is one of the most crucial
tasks in the service discovery process. On the other
hand, in AMC environment, the task is considered
the most resource-intensive operation [13], [19] To
achieve minimal resource burden, this section
presents the discussion of a proposed resource-
friendly relevant service discovery algorithm. First,
it involves no semantic and ontology techniques,
which are the chief cause of computational
bottlenecks. Second, it utilizes device context to
makes the discovery process adapt to context
change. This discovery or matchmaking process is
composed of two operations: i) keyword-based
matching and ii) web service resource-based
relevancy ranking.

3.2.1 Keyword-based Matchmaking

Algorithm

Keyword-based matchmaking algorithm is
considered appropriate in AMC because it is
envisioned that this environment mobile providers
will constitute small computing communities with
common needs. Therefore, the volume of web
services offered through AMC platform can be
assumed to be relatively small, compared to other
conventional service provisioning platforms like
Cloud or Mobile Cloud. The above assumption
makes keyword-based matchmaking more ideal
compared to the semantic counterpart. This high

preference for keyword approach is informed by the
fact that semantic techniques are usually necessary
in domains with vast number of complex web
services. So, deploying semantic in AMC domain
will amount to resource waste apart from creating
unnecessary computational burden to client
devices. Therefore, this paper employs a keyword-
based service matchmaking algorithm adapted from
[9] as shown in Table-1.

The idea in the algorithm is to measure the
semantic distance between the synonyms of a
service request keyword and an actual web service.
The smaller the semantic distance between them,
the closer their relation is. The algorithm therefore
returns all web services that are closely related to
the keyword used in the service request. This
technique aims at reducing the volume of services
retrieved by first matching them against the current
device’s context.

Resource wise, the advantage of this discovery
approach is that from the client’s side, smaller
number of returned services can be viewed as
reduced processing time, which corresponds to less
resource burden. In addition, the integration of
device context parameters into the algorithm
enhances that capability of the discovery process to
be adaptive to context change. This makes is
possible to still discover relevant services when
there is a context change because the discovery
mechanism tracks such changes and adapts the
discovery process accordingly.

3.2.2 Resource-based Matchmaking

Algorithm

Ranking of retrieved web services have recently
been utilized by several discovery mechanisms to
measure the degree of relevance of a service to a
client. However, current AMC service discovery
mechanisms predominantly adopted the user-
centered approach. Such approaches disregard or
partly consider the device-centered dimension
while focusing mainly on the web service
functionality. The problem with this approach is
that it is possible for a web service to satisfy a
requester’s requirement but not match the resource
capability of the client’s device. Contrary to this,
our approach considers a dual perspective where a
web service is said to be relevant if it fulfils users’
requirement and matches the current context of the
target device. Essentially, in this paper, device
context refers to the combination of hardware
resource capabilities and supported device features.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4034

Ultimately, the idea of utilizing device context
here attempts to strike a balance between fulfilling
clients’ requirements and not jeopardizing the
service provisioning function in an AMC. To
achieve this goal the proposed relevancy ranking
algorithm depicted in Table 2 is based on device
context. The algorithm employs two context
measures (relevancy parameters) to compute the
relevancy score of each web service retrieved.
These parameters are:

Resource weight (Rw): this weighting parameter
derives its value from the resource context (battery
level, available memory) of the target device. The
proposed discovery mechanism assigns resource
weights to web services according to their resource
requirement as specified in the service description.

For example, a web service with battery and
memory requirement status of [0, 1] is assigned a
weight of 1 unit. While another service with battery
and memory specified as [0, 0] is assigned a weight
of 2 units; where zero (0) is interpreted as being
resource-efficient with a corresponding score of 1
unit. Similarly, one (1) means resource-inefficient
and is assigned a score of 0 units. Therefore, the
resource weight (Rw) of a web service is the sum of
its battery and memory requirement ratings.

Features weight (Fw): each web service earns a
unit score (1) for every device feature that it
supports. So, the feature weight is the sum of the
score of device features supported. The feature
weighting idea enabled us to define the relevance
and consequent ranking of a web service as
function of its resource and feature weight.

Following the proposed context model of
Figure1, it is assumed that there exists:

 services webpublished/ ss

 keywordmatch that services/ wwW

 features supported service/ ccC

 profile device ofset),(/ yxppP and

 features supported device sclient'/ ddD

Table 1: Keyword-based Service Matching Algorithm
Orininally from [9]

Input: a keyword (w), device context
Output: list of Web services matching the

keyword
Take a keyword input w Ɛ W,
where W is a set of provided web services

Form a set N of the synonyms of the keyword
entered
Foreach ni Ɛ N
 Retrieve n if (name match keyword)
 Exclude stop words
 Store the retrieved web services into set R
End
Foreach r Ɛ R
 Filter our services do not match device context
 Store remaining service into set T
End
//Calculate the semantic distance between “n” and
“r”
Foreach ni Ɛ N
 Foreach rj Ɛ R

 d =

 End
 Add rj to list of retrieved web services (L)
 if rj is closely related to ni

End

Table 2: Service Relevancy Ranking Algorithm

Input: Set of web services W Ɛ L
 Set of: resource profile:P
 Set of web service supported features: C
 Set of device supported features: D and
 Minimizing factor: M
Output: Resource-aware ranked
 list of web services (RaRnk)
1 Initialize RaRnK
2 //compute resource and features weight for
3 // each web service using (2) and (3)
4 Foreach wi in W do
5 Call resource weight function (RwWi)
7 Call Features weight function (FwWi)
8 End
9 // Rank web services with priority
10 // to resource profile
11 Foreach wi Ɛ W do
12 Sort (wi: Rwwi, Fwwi) = RanK
13 End
14 RaRnK = RaRnK + RanK
15 Return RaRnK

The resource and features weights are
generated by their corresponding
functions; the resource weight function

 ...rwf and the features weight function

 ...fwf of (1) and (2) respectively.

Therefore, given a web service wi Ɛ
W, the resource and feature weights can be

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4035

computed based on equations 2 and 3
respectively.

 FWfwR rwiw , (1)

 MdcfwMDCWfwF jk
i

ifwiw ,,,, (2)

From equation (2) the features weight
function fwf calls an Object

Relationship Function, ƒ in equation (4),
which computes the relation between two
objects using arithmetic operation and the
Normalized Google Distance – NGD [9].
The function yxf , generates values in

the range 1...0k . Where 5.0k
implies that x and y are related while

5.0k means they are not related.

),(

,
yxsim

yx
yx

y

 ……(3)

From (2), we introduced a minimizing factor
(M) meant to ensure that the resource weight
remains a dominant score in the rating processes.
That is, to avoid the chances of having to rank a
less resource-efficient web service that supports
more device features as being the best at the
expense of a more resource-efficient counterpart.
To achieve this, “M” is set to a default value of
0.05. The implication of this small value of “M” is
that based on equation (2), a less resource-efficient
web service must support at least 20 more features
for it to be ranked better than a resource-efficient
one. However, we assume that no single web
service that will support up to 20 device features,
which makes the above condition infeasible.

4. AMC RESOURCE-AWARE SERVICE

DISCOVERY ARCHITECTURE

The architecture of the proposed resource-aware

relevant service discovery mechanism (RaRSDiM)
is shown in Figure 2. The architecture consists of
two layers:

Figure 2: AMC Service Discovery Architecture

the context generation layer (CGL) and the
interaction and processing layer (IPL). These two
layers consist of three main components with
modules that run in them or within the layer. The
three main components are the Node monitor,
Lightweight database, and the Discovery engine.

4.1 Context Generation and Storage Layer

An important consideration for the proposed

mechanism is the utilization of static context
(device profile) and dynamic context (resource
profile) to enhance service discovery in AMC
environment. This goal is achieved in this

if x, y are

if x, y are
strings

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4036

mechanism via the context generation and storage
layer. This layer is made up of components that
provide or store context data relevant to the
discovery process. There are two components in
this layer – node monitor and lightweight database.

4.1.1 The Node Monitor (NoM) Component

 Dynamic device context can impede relevant

service discovery in AMC domains. This inherent
characteristic of mobile environments poses the
challenge of discovering relevant services [23]. In
addressing this challenge, the node monitor
component of the proposed mechanism monitors
device context and provides the relevant context
data used in the service discovery process. Two
modules run in the NoM component – Device
Resource Monitor and the Context Manager. The
Device Resource Monitor monitors the dynamic
context (also referred to as resource profile) of a
mobile device.

For example, whenever a service request is
launched the device resource monitor collects
information about the current battery level and the
available memory of the requesting device as
discussed in section 3. The context manager on the
other hand interacts with the device resource
monitor and the lightweight database to make
context data available. During this interaction the
context manager retrieves dynamic context and
static device context from the device resource
monitor and lightweight database respectively for
use in performing discovery operation.

4.1.2 The Lightweight Database Component

A lightweight database (SQLite) embedded in

Android devices can used to host mobile web
services as well as store static contexts that may be
required for the discovery system. That SQLite has
a self-contained library with no server component,
no need for administration, a small code footprint,
and limited resource requirements makes it highly
suitable for resource-constrained environments like
AMC.

4.2 Interaction and Processing Layer

This layer consists of the discovery engine and

other modules that facilitate both internal and
external interactions. Internal interaction happens
between a service requester and his mobile device
while external interaction refers to the
communication between a client device and
providing/host device. The first kind of interaction

occurs when a mobile user initiates a service
request. On the other hand, the operation that
involves a client device requesting a service from a
host is termed external interaction.

4.2.1 Service Request Manager Module

Service requests are constructed through the

request manager and subsequently used to query
nearby AMC nodes for required services. Basically,
the service request manager performs two main
roles: provides user interface that allows users to
enter a word or phrase representing the name of
desired web service; constructs an XML or JASON
message using the word or phrase entered by
requesters. The constructed message is then
forwarded to the discovery engine for processing by
the same module.

4.2.2 The Discovery Engine (DiEn)

Component

DiEn is a principal component of the proposed
service discovery mechanism. Principally, the
proposed service discovery and ranking algorithms
are implemented by the DiEn component. To
function, DiEn interacts with the node monitor
component to obtain context data.

Basically, DiEn performs service discovery and
ranking functions through its discovery and ranking
modules:

4.2.2.1 Discovery Module (DisM)

Responsible for adapting service requests based

on the provided context information to discover
relevant services. DisM performs its function by
receiving the XML or JASON service request
message from the Request Manager and then
incorporates device context data extracted from the
Node Monitor component. These contexts
information now serves as additional request
parameters. The processing of expanding the
original service request by adding device context is
termed service request adaptation. The adapted
service request is forwarded to the providing
device.

4.2.2.2 Ranking Module (RnkM)

Retrieves services and ranks them according to
their relevancy weight as described in section 3.
The ranked list of web services is then returned to
the service request manager.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4037

A distinctive feature of RaRSDiM is that at any
time a service request is launched, the requesting
device’s current context is, in addition to the search
keyword, used as constraint parameters to filter and
rank returned services. Potentially, this feature:
enable the discovery process to be proactively
adapts to changes in device context, reduce the
number of retrieved services, ensure that clients
discover services that match their resource
capability, and makes invocation of retrieved
services easy and user-friendly by returning
matched services in a ranked list. These benefits
sum up to fulfil two aims: (i) discovery of relevant
services and (ii) optimization of device resource
usage.

Service request Listener Module: Since AMC
peers communicate through a network, the service
request listener module listens and responds to
incoming service requests from clients. Such
interaction which represents sending and receiving
service request is mediated by the service request
listener module. In addition to intercepting service
requests from potential clients, the request listener
directly communicates with the lightweight
database to access hosted web services or other
static context data.

Though each AMC node has a request
listener module, the module is only in active mode
from the service provider’s side. This design is
aimed at avoiding redundancy, which can lead to
energy waste.

5 EXPERIMENTATION AND

EVALUATION

To investigate service discovery based on the
proposed approach, a web service description
document directory was created using SQLite
database, which is embedded in Android platforms.
That is, the mobile device acting as service provider
uses SQLite database to host web service
documents of the services it provides. Using
SQLite DB to hold descriptions of sample web
services enabled the experimentation of service
discovery without having to implement real mobile
web services.

These web service description documents
were obtained from WebserviceList, WebserviceX
and XMethods, which are online web service
directories. To effectively test the proposed service
discovery approach, these sample service
description files were first extended following the

WSDL-M standard as discussed earlier. Other
notable proposals in the literature adopted the same
approach [11], [24]. To perform discovery
operations, the proposed Discovery Engine first
extracts keywords (representing individual web
service names) from the service description files
found in the description document directory marked
with the tag <wsdl:documentation> and their
corresponding hardcoded capabilities.

5.1 Setup of Experiment

The experimental setup consisted of six android
mobile devices. These devices included a Hisense
HS-U939 smartphone, an HP-Slat 7 HD tablet. The
other four were G-TiDE E77, Sony Xperia E1,
Infinix X506 and Samsung Galaxy X2
smartphones, all running Android 4.2.2. In each of
these devices the RaRSDiM engine prototype was
installed, which enables them to discover
themselves as peer nodes forming an Ad-hoc
Cloud.

In the experimentation, Hisense HS=U939,
Infinix X506, Sony Xperia E1, G-TiDE E77 and
Samsung Galaxy X2 served as the providing
devices. This was done by setting RaRSDiM
prototype TO run on provider/host mood. On the
other hand, the HP-Slat 7 HD device acted as a
client – that is, it client mood was activated on it.
The preference for HP-Slat 7 HD device as the
client was based on its screen size, which helps to
provide a better view of the experimental results.

To achieve inter-node connection and
communication, Wi-Fi Direct technology with the
capability to create P2P ah-hoc network was
utilized. With this technology, a host device
automatically functions as a hotspot provider. And
by using native Java Sockets (java.net.ServerSocket
and java.net.Socket), the host device receives,
processes, and sustains incoming connection
instances (an instance of java.net.Socket pointing to
the url of the server device) initiated by a client
device.

The experiments were carried out with 1000
modified (based on the WSDL-M standard) web
service description documents obtained from online
web service directories as explained in section 5.

For easy deployment of web service
description (WSDL) documents into the host
device, we created a web interface (with Java and
QSL and hosted on a free server). The web

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4038

interface utilizes the WebSocket technology (part
of Java EE 7), which defines an API for
establishing socket connections between a web
browser and a server and creates a persistent
connection for bi-directional and real-time
client/server communications. With this interface,
we were able to remotely push WSDL files to the
host device. To receive pushed services, the host
device requires Internet connection to be able to
perform an uncomplicated process of registration
that enlists it as a web service subscriber with the
web interface.

5.2 Performance Evaluation

The proposed mechanism is evaluated based on
recall and precision rates, relative quality of
relevant service discovery (RQoRSD), processing
time and resource optimization as depicted in
Figures-3 to 7. The main essence was to ascertain
the impact of using device context information in
driving resource usage optimization in the
discovery of relevant services in AMC
environment.

These evaluation parameters are defined in [24],
[27] as:

sturnedServ

slevantServturned
e

Re

ReRe
Pr (4)

slevantServPublished

slevantServturned
RRate

Re

ReRe
 (5)

100*
ReRe slevantServturned

tServsFilteredOu
RQoRSD

(6)

5.2.1 Precision and Recall Rates Analysis

A service in this experiment is either relevant
or not relevant depending on its resource
requirement and supported device features. A total
of one thousand web service description documents
(representing 1000 web services) were used in this
experiment: the number of published relevant
services was kept constant while varying the
number of published services by 200 services.
Published relevant service and published services
were represented by their respective service
descriptions in the web service description
document directory.

We varied the number of published services to
influence the independent variables (retrieved
services and retrieved relevant services). Five
service requests were performed under two
scenarios: 1) with the context module disabled and
2) with the context module enabled. The aim was to
study the RaRSDiM’s performance with regards to
recall and precision. Data obtained in the recall and
precision experiments are shown in Tables 3 and 4
respectively.

Results as presented in Figure 3 indicate that
RaRSDiM performs at peak recall rates of 39% and
72% for operation with and without device context
respectively. Higher recall rate here explains the
fact that without device context, more similar
services are retrieved because the constraint
condition is whether a service matches the keyword
or not. However, when the same experiment was
conducted while using device context information
as additional constraint conditions for service
retrieval, result obtained indicated the opposite.
That is, fewer services are retrieved, which is why
we have lower recall rate. Retrieving fewer services
is advantageous to AMC scenario due to the limited
resource capability of mobile devices.

Table 3: Recall Rate Outcome.
Published
services

Recall
without
device
context

Recall with
device
context

0 0 0
200 0.39 0.19
400 0.51 0.21
600 0.57 0.29
800 0.59 0.29
1000 0.72 0.35

Table 4: Precision Rate Outcome
Published
services

Precision
without
device
context

Precision
with device
context

0 0 0
200 0.25 0.56
400 0.21 0.52
600 0.18 0.53

On the other hand, as depicted in Figure 4,

when RaRSDiM is evaluated with regards to
precision rate, its performance revealed a reverse
trend as against that obtained when evaluated based
on recall rate. That is, RaRSDiM recorded higher
precision rate of 56% when device context is
utilized as against 25% without device context.
This result is indicative of the fact that the service

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4039

request adaptation technique adopted in the
proposed discovery mechanism helps to narrow
down the number of retrieved services to only those
that meet the client device’s current context,
thereby increasing precision rate.

Figure 3: Recall Rate

Figure 4: Precision Rate

It is understandable that having high precision
and low recall has the inevitable implication of
possibly leaving out some relevant services.
However, it can be argued that although some
relevant services may be left out, they may not
necessarily be relevant in terms of meeting the
current resource requirement of the client device –
which is the idea behind the filtering approach
advocated in this paper. Therefore, the proposed
solution approach can deliver an effective service

discovery system for resource-constrained
environments.

5.2.2 Relative Quality of Relevant Service

Discovery

As defined in equation (6), RQoRSD is a vital
parameter used to measure the impact of device
context information on the quality of service
discovery. In Figure 5, results obtained from
RaRSDiM representing the RQoRSD for six
different service requests are shown.

On the average, RaRSDiM demonstrates a 73%
improvement in relevant service discovery. This
performance enhancement is contributed by the
proposed context-aware service discovery strategy,
which reduces the number of retrieved relevant
services. This reduction invariably increases the
number of filtered-out services. Consequently, the
precision rate is positively impacted, resulting in
improved quality of service discovery.

In the same experiment, it was observed that
there was irregularity in RQoRSD across the six
service requests. This lack of a defined pattern in
the outcome of RQoRSD can be attributed to the
dynamic nature of AMC environment, which makes
changes in device contexts not to occur in any
distinct pattern. This result is achieved through the
Node monitor feature, which extracts the current
context of the client device whenever a service
request is initiated.

5.2.3 Processing Time Evaluation

As much as the use of context information can
help improve service discovery, especially in AMC
domain, context overhead may impact on
processing time and processing time has a
phenomenal implication for computing resources
(battery, memory). This consideration makes it
necessary to evaluate CaRSDiM with regards to
processing time.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4040

Figure 5: Quality of Service Discover

In this experiment, first, we launch service

request via RaRSDiM request manager interface
and recorded the number of relevant services
retrieved and the overall response time, which
accounts for communication, service matching, and
context matching time. Second, the same service
request was re-launched, but in two steps: a)
searching and retrieval and b) filtering and ranking.
The first operation in the second stage involves
initiating a service request with RaRSDim context
module disabled. With this operation, web services
matching the entered keyword are retrieved and the
time taken to complete the processes (service
matching time without context) is reported. The
second operation then utilises device context to
filter the services retrieved in the first stage. In this
step, the experiment is only concerned with
determining the context matching time.

Figure 6 is based on Table 5 and demonstrates
the effect of device context on processing time.
From the result, RaRSDiM attained a shorter
maximum processing time of 94ms in all three
services requests executed with device context.
While without device context, processing time
increased by a maximum of 213ms.

Table 5: Processing Time Outcome

Matching
time
(ms)

Number of retrieved services
0 26 68 97 120 197 234
0 104 126 159 183 270 307

Non-
context-
based

0 10 17 28 33 51 94

Context-
based

0 26 68 97 120 197 234

Basically, a short processing time was because

retrieved services were tailored to current context
of the target device. Therefore, there was a
reduction in the total number of returned services.
The benefit of this outcome is that having short
processing time implies that RaRSDiM minimizes
resource consumption since long processing time
has adverse effect on both battery and memory.

Figure 6: Processing Time

5.2.4 Resource Optimization Evaluation

Due to resource scarcity in AMC environment,

one key objective of this paper is to optimize
resource utilization, to enhance effective service
discovery. To address this challenge, RaRSDiM
adopts an adaptive approach that first incorporates
the current resource context of client devices into
service requests before discovering services.

In this experiment, device resource context was
categorized into two states: critical and moderate.
Critical state is when a client device is low in both
battery and memory.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4041

In the other hand, when a client device is either
low in memory or battery but not in both, it is said
to be at normal device resource context state. The
moderate resource state was further divided into
two sub categories – moderate 1 and moderate 2 as
exemplified in Table 6. For each service request
executed, device resource context is varied from
moderate to critical. The purpose of this alteration

is to evaluate the effect of resource-aware service
discovery on resource usage optimization. With this
evaluation, we attempt to illustrate how RaRSDiM
adapts to changes in device resource context
(battery, memory) during service discovery.

Figure 7 is derived from Table 6 and depicts
RaRSDiM’s performance in this regard.

Table 6: Adaptive service discovery

Service
requests

Resource context

Percentage of retrieved services (%)

Battery and
memory
efficient
services

Only battery
efficient
services

Only memory
efficient services

Request
1

Critical (low in battery and memory) 61.5 71.4 68.0

Request
2

Moderate 1 (low in battery) 73.2 75.6 65.2

Request
3

Moderate 2 (low in memory) 54.4 78.6 62.4

From Figure 7, it was observed that although

the number of published relevant services was kept
constant at 30 services for the three executions of
the same service request, the number of retrieved
relevant services varied in all three scenarios
(Critical, Moderate 1 and Moderate 2). For
instance, at critical resource state, fourteen (14)
relevant services were returned, which is also the
smallest number of services retrieved in all the
three scenarios considered. These number of
services amounts to 63% cumulative relative
quality of relevant service discovery.

Figure 7: Resource Optimization

Furthermore, a manual inspection of the
retrieved services and their resource requirements
shows that only optimally efficient services
(efficient in battery and memory) were returned at
critical resource state. This outcome coupled with
the least number of services retrieved at critical
resource level implies that RaRSDiM can adapt to
changes in device resources in a manner that
promotes efficient resource usage.

In the same vein, considering the Moderate 1
and Moderate 2 scenarios, the same service request
generated sixteen (16) and nineteen (19) relevant
services respectively. This result indicates that both
scenarios returned higher number of services each
compared to that returned at critical resource state.
Following a manual check, on all the service
returned at the moderate resource states, it was
revealed that only services that are most efficient in
the depleted resource or both were retrieved in each
case. The implication is that when a device
requesting a service is deficient or low in a
resource, say battery, the discovery mechanism
only returns battery-efficient or non-power-hungry
services. The same thing happens when the client
device is low in memory. However, if the client
device’s resources are in critical state, that is both
battery and memory are low, RaRSDiM returns
only services that are both battery and memory
efficient. These results were achieved using a
combination of the node monitor and the discovery
engine to monitor device resource and adapt service
requests to suit a client device’s current context.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4042

6 CONCLUSION

To take advantage of changing context to

determine relevant services, a prototyped discovery
mechanism was designed in this paper. The
mechanism leverages on mobile devices' resource
capabilities and web service functionalities to
provide proactive service discovery in AMC.

Based on our findings, we can draw the
following conclusions: (i) In AMC environment,
the issues of service relevance and resource
capability of client devices are interwoven because
context consists of device resources. (ii)
Incorporating resource context information into
AMC service discovery process would introduce
such flexibility that can equip discovery
mechanisms with adaptive capability to proactively
respond to changing context while discovering
services. (iii) With regards to resource-efficiency,
optimal resource utilization is critical to achieving
service discovery efficiency in AMC domains.
More so, that although the use of context
information can enhance discovery of relevant
services in AMC environment, the unpredictable
nature of the environment due to dynamic context
presents an inherent resource challenge.

Addressing this fundamental challenge,
requires a more comprehensive context model that
considers the state of device resources in addition
to other context variables. More so, the design of
service discovery frameworks with the capacity to
adapt to context change also becomes imperative.
Considering a resource-aware service discovery
mechanism that achieved adaptive and resource-
efficient discovery of relevant services was
presented. The mechanism exploits the relationship
between service-relevance and resource capability
of devices. With this approach, it was demonstrated
that service discovery mechanisms with resource-
awareness and adaptive capabilities can enhance
resource-usage optimization and relevant service
discovery in AMC environment.

Experimental results indicated that the
proposed approach improves discovery efficiency
with regards to discovering relevant services and
minimizing resource consumption.

REFERENCES:

[1] D. Renzel, D. Kovachev, and R. Klamma,

“Mobile Community Cloud Computing:
Emerges and Evolves,” 2010 Elev. Int. Conf.
Mob. Data Manag., pp. 393–395, 2010.

[2] A. Khalifa, M. Azab, and M. Eltoweissy,

“Resilient Hybrid Mobile Ad-hoc Cloud Over
Collaborating Heterogeneous Nodes,” Collab.
2014 Proc. 10th IEEE Int. Conf. Collab.
Comput. Networking, Appl. Work., 2014.

[3] R. Lacuesta, J. Lloret, S. Sendra, and L.
Peñalver, “Spontaneous Ad Hoc Mobile
Cloud Computing Network,” Sci. World J.,
vol. 19, 2014.

[4] H. Dinh, C. Lee, and D. Niyato, “A survey of
mobile cloud computing: Architecture,
Applications, and Approaches,” Wirel.
Commun. Mob. Comput., vol. 13, no. 18, pp.
1587–1611, Dec. 2013.

[5] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani,
and R. Buyya, “Cloud-Based Augmentation
for Mobile Devices: Motivation, Taxonomies,
and Open Challenges,” IEEE Commun. Surv.
Tutorials, vol. 16, no. 1, pp. 337–368, 2014.

[6] E. E. Marinelli, “Hyrax : Cloud Computing on
Mobile Devices using MapReduce,” M.Sc.
thesis, Sch. Comput. Sci. Carnegie Mellon
Univ. Pittsburgh, vol. 389, no. September,
2009.

[7] D. Afuro, P. Mudali, M. O. Adigun, A.
Akingbesote, and M. B. Mutanga, “Ad-hoc
Mobile Cloud Service Discovery Based on
Device Resources,” South. Africa
Telecommun. Networks Appl. Conf. 2015, pp.
273–278, 2015.

[8] K. Dejan, Y. Cao, and R. Klamma, “Mobile
cloud computing: A comparison of
application models,” arXiv Prepr.
arXiv1107.4940, 2011.

[9] Z. Zhao, X. Huang, and N. Crespi, “A system
for web widget discovery using semantic
distance between user intent and social tags,”
Soc. Informatics 4th Int. Conf. SocInfo2012,
pp. 1–14, 2012.

[10] K. Elgazzar, H. Hassanein, and P. Martin,
“Mobile Web Services : State of the Art and
Challenges,” Int. J. Adv. Comput. Sci. Appl.,
vol. 5, no. 3, 2014.

[11] E. Al-Masri and Q. H. Mahmoud,
“MobiEureka: An approach for enhancing the
discovery of mobile web services,” Pers.
Ubiquitous Comput., vol. 14, no. 7, pp. 609–
620, 2010.

[12] D. A. Egbe, M. B. Mutanga, and M. O.
Adigun, “SERVICE DISCOVERY IN AD-
HOC MOBILE CLOUD :
CONTEMPORARY APPROACHES AND
FUTURE DIRECTION,” J. Theor. Appl. Inf.
Technol., vol. 90, no. 1, pp. 101–117, 2016.

[13] L. A. Steller, “Light-weight and Adaptive

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4043

reasoning for mobile web services, Ph.D
thesis, Monash University, Australia.” 2010.

[14] G. O. Cortazar, J. J. S. Zapater, and F. G.
Sanchez, “Adding semantics to cloud
computing to enhance service discovery and
access.” pp. 1–6, 2012.

[15] M. Rodríguez-García, “Creating a
semantically-enhanced cloud services
environment through ontology evolution,”
Futur. Gener. Comput. Syst., no. 32, pp. 295–
306, 2014.

[16] A. V. Paliwal, B. Shafiq, and J. Vaidya,
“Semantics-Based Automated Service
Discovery,” IEEE Trans. Serv. Comput., vol.
5, no. 2, pp. 260–275, Apr. 2012.

[17] N. A. Saadon and R. Mohamad, “Cloud-based
Mobile Web Service Discovery framework
with semantic matchmaking approach,” in
2014 8th. Malaysian Software Engineering
Conference (MySEC), 2014, pp. 113–118.

[18] D. Bianchini, V. De Antonellis, and M.
Melchiori, “Lightweight Ontology-Based
Service Discovery in Mobile Environments,”
in 17th Int. Conf. on Database and Expert
Systems Applications, 2007, pp. 359–364.

[19] K. Elgazzar, H. Hassanein, and P. Martin,
“DaaS: Cloud-based Mobile Web service
Discovery,” Pervasive Mob. Comput., vol. 13,
pp. 67–84, 2014.

[20] A. Ravi and S. K. Peddoju, “Energy Efficient
Seamless Service Provisioning in Mobile
Cloud Computing,” 2013 IEEE Seventh Int.
Symp. Serv. Syst. Eng., pp. 463–471, Mar.
2013.

[21] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S.
N. Srirama, and R. Buyya, “A Context
Sensitive Offloading Scheme for Mobile
Cloud Computing Service,” 2015.

[22] K. Elgazzar, H. Hassanein, and P. Martin,
“Effective Web service discovery in mobile
environments,” in 2011 IEEE 36th
Conference on Local Computer Networks,
2011, pp. 697–705.

[23] M. Miraoui, C. Tadj, and J. Fattahi, “Dynamic
Context-Aware and Limited Resources-
Aware Service Adaptation for Pervasive
Computing,” Adv. Softw. Eng., pp. 1–11,
2011.

[24] K. Elgazzar, “Discovery , Personalization and
Resource Provisioning of Mobile Services,
Ph.D Thesis,” Queen’s Univ. Kingston,
Ontario, Canada, no. August, 2013.

[25] L. Sun, H. Dong, and J. Ashraf, “Survey of
Service Description Languages and Their
Issues in Cloud Computing,” in 2012 Eighth

Int. Conf. on Semantics, Knowledge and
Grids, 2012, pp. 128–135.

[26] M. Ruta, F. Scioscia, and E. Di Sciascio, “A
Mobile Matchmaker for Resource Discovery
in the Ubiquitous Semantic Web,” in 2015
IEEE Int. Conf. on Mobile Services, 2015, pp.
336–343.

[27] A. Gunawardana and G. Shani, “A Survey of
Accuracy Evaluation Metrics of
Recommendation Tasks,” J. Mach. Learn.
Res., vol. 10, no. Dec, pp. 2935–2962, 2009.

