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ABSTRACT 
 

A generalized form of Shewhart chart, known as Exponentially Weighted Moving Average (EWMA) 
control chart is frequently exercised to monitor small shift in the process mean. Aptly tune, it is claimed to 
be robust to slight deviation in normality. For that to be successful, the weighting constant (𝝀) shall be set 
quite small. However, too small of the value may reduce the effectiveness of the chart in shift detection, a 
phenomenon known as the inertia effect. Thus, meticulous approach ought to be exerted to tune the 
traditional EWMA chart under non-normality. Recurrent use of robust control charts is now seen in quality 
control literature as one of the few solutions to cope with non-normality. In line with this, a novel EWMA 
control chart was proposed in this paper. The proposed chart was constructed using a highly robust 
breakdown point location estimator, known as modified one-step M-estimator (MOM). Monte Carlo 
simulation approach was used to model and evaluate performance of the proposed chart when process data 
was subjected to non-normality using skewed distributions. Two separate cases were considered: (i) when 
both mean and standard deviation of the process were known and (ii) when the mean was unknown and 
estimated from an in-control Phase I sample. While demonstrating a mediocre power to detect shift in the 
first case, an outcome on simultaneous effect of parameter estimation and non-normality for the proposed 
chart indicated a reversal. Besides equipped to regulate false alarm rate following an increase in the level of 
skewness of the distribution, the proposed chart also possessed the best-shift detecting ability in extreme 
non-normal cases as observed in this paper. This was demonstrated using average run length (ARL) when 
the underlying distribution of Phase I and Phase II data were matched.  

 
Keywords:- Average Run Length (ARL), EWMA Control Chart, Skewed Distribution, MOM, Robust 

Process Location.  
 
 
1.  INTRODUCTION 

 
Parametric control charts are generally designed 

based on an assumption of a specific underlying 
process distribution, such as normality. 
Nonetheless, parametric EWMA control chart is not 
quite restricted by this principal [1]. Aptly tuned 
(designed), EWMA control chart could be robust to 
non-normality, in a sense that the in-control 
performance of the chart remains stable even when 
the underlying distributional assumption is not met 
[2]. Whilst other researchers may have claimed 

otherwise on a broader scope of analysis (see, e.g.  
[3] and [4]), the robustness of EWMA control chart 
to non-normality is allegedly true when process 
data follow either gamma distribution or student-t 
distribution [2]. For this to take effect, however,  
 
value of the weighting constant 𝜆 ought to be set 
quite small, as low as 0.05. As the value increases, 
EWMA control chart may no longer retain the 
advantage. Yet, EWMA control chart designed with 
a small value of 𝜆 is vulnerable to the inertia effect; 
potentially delaying EWMA reaction to a shift. 
This may happen when EWMA plotting statistic is 
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at odds with the direction of the shift [5]. 
The ongoing discussion on some conceivable 

ways to maintain EWMA robustness without much 
loss in its shift detection properties called forth the 
use of robust techniques. In many areas of 
statistical approach, robust estimation is 
particularly useful when some degree of deviation 
in the distributional assumption is observed. This is 
due to the good properties possessed by robust 
statistics under this condition. A good case in point 
is their high resistance to outlying values, which is 
defined by the breakdown point (BP).  

To date, numerous works on robust control 
charts have been proposed; aiming to restore charts’ 
ability to some degree when they are used for 
monitoring mean of non-normal processes. 
Langenberg and Iglewicz [6] and Rocke [7] 
proposed using  trimmed mean on Shewhart control 
limits. Abu-Shawiesh and Abdullah [8] 
recommended plotting Hodges-Lehmann (HL) 
instead of 𝑋ത and had shown that it is far superior 
than the traditional Shewhart chart under mixed 
normal and skewed distributions. Another dominant 
robust location estimator that has been applied in 
many works related to quality control is the sample 
median. Highly robust, the median estimator has 
been used almost exhaustively to amplify 
performance of the traditional control charts when 
data is heavily skewed or contaminated. The 
median chart based on EWMA control structure 
was first introduced by Castagliola [9]. On 
Shewhart structure, the effect was investigated by 
Khoo [10]. Following that, several papers have 
been published, concentrating on a duo merit 
provided by the median chart; i.e. its simplicity and 
its robustness against deviation from normality 
[11], [12].  

The charting structure of a usual sample median, 
however, has some drawback. Because median 
control charts are more outlier-resistant than the 
mean charts, in general, they yield less efficiency 
than the latter [12], [13], [14]. The current study 
adds to the existing literature in the form of 
following contribution. We have suggested a highly 
robust location estimator known as modified one-
step M-estimator (MOM) to be applied on EWMA 
charting structure. The aim is to provide a robust 
structure of control charting under severe non-
normality without much loss in responsiveness to 
actual mean shift. If achieved, the proposed chart 
shall be a good substitute to a median chart when 
small mean shifts are of interest under limitation to 
fulfill the normality assumption.  It will be shown 
that when sampling from a normal or moderately 
skewed distribution, the MOM estimator has a 

smaller standard error than the sample median. This 
in turn, shall help to maintain sensitivity of the 
EWMA control chart in ideal circumstances. 

When testing hypotheses, method based on a 
20% trimmed mean is recommended as a 
compromise between the mean and median if the 
goal is to maintain good power under normality, 
and yet, still achieve high power under non-
normality [15]. Close relationship between Phase II 
control charting and hypothesis testing has been 
debated for a while. See Woodall [16] for a review. 
Thus, an attempt to monitor Phase II process 
through a control chart based on MOM is an 
expedient strategy since the MOM estimator, which 
is also based on a trimming approach was 
suggested by Wilcox and Keselmen [17] to 
overcome major drawbacks of any trimmed means.  

To assess the impact of MOM on EMWA control 
charting when the chart is used to monitor Phase II 
processes, simulation procedure is conducted to 
evaluate the average run length (ARL) of various 
process mean shifts under normal and skewed 
distributions. The performance of the proposed 
chart is then compared to the three existing EWMA 
control charts. These existing charts are constructed 
based on mean, mid-range and median estimators. 

The proposed method in this article concentrates 
on two separate cases: (i) when the in-control mean 
and standard deviation of the process are known 
and (ii) when the in-control mean is unknown and 
estimated from Phase I sample. It is noted that the 
effect of parameter estimation on EWMA chart 
based on mid-range and median estimators had 
been investigated by Nazir et al. [11] in a recently 
published paper. Yet, rather than limiting Phase I 
samples to normal data as adhered by the previous 
study, we let the underlying distribution in Phase I 
varies according to the distribution of subsequently 
monitored Phase II samples. Whilst this approach 
allows us to monitor location shifts in the out-of-
control situation, it also enables us to keep tab on 
the robustness of all charts in the presence of no 
shift.  

The outline of the paper is structured as follows. 
In Section 2, the structure of EWMA control chart 
is presented. Explanation of the appointed location 
estimators may be referred in Section 3. The set-up 
for the simulation procedure for Case I, together 
with the results are delineated in Section 4. 
Following that, Section 5 is dedicated for Case II 
study. Illustrative examples are provided in Section 
6. The final section, Section 7, summarizes the 
conclusion for this study. 
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2.  DESCRIPTION OF EWMA CONTROL 
STRUCTURE 

 
Roberts [18] proposed a generalized form of 

Shewhart chart, in which the plotting statistic is 
now composed of two components; i.e. the current 
information and the past information. The structure 
is known as the EWMA chart and it is classed 
under the memory-type chart.  The plotting statistic 
and the control limits for the chart are given as: 

 
𝐸௜ ൌ λ𝜃෠௜+ሺ1 െ λሻ𝐸௜ିଵ ;  for i = 1, 2, …, m       (1) 

𝑈𝐶𝐿ாௐெ஺ ൌ  𝜃଴ ൅ 𝐾𝜎ఏ෡ ටሺ
஛

ଶି஛
)                 (2a) 

𝐿𝐶𝐿ாௐெ஺ ൌ  𝜃଴ െ 𝐾𝜎ఏ෡ටሺ
஛

ଶି஛
)      (2b)  

 
where i defines the subgroup number, λ ∈ ሺ0,1ሻ is 
the weighting factor, and together with K, they 
determine the in-control performance of the chart. 
Here, K is a positive coefficient. The location 
estimator, 𝜃෠, is used to monitor a shift from the 
assumed in-control process parameter (𝜃଴) and 𝜎ఏ෡  
is the standard deviation of  𝜃෠.  The initial value of 
the plotting statistic in (1) is usually taken as  𝐸଴ ൌ
𝜃଴. Under this setting: 𝜃෠ ൌ 𝑋ത and (𝜆, 𝐾ሻ  ൌ  ሺ1, 3ሻ, 
the control structure is reduced to the usual 
Shewhart control chart with 3𝜎 limit. 
   When 𝜃଴ is unknown and requires to be estimated 
from Phase I samples, then, the EWMA charting 
statistic is given by: 
 
𝐸௜ ൌ λ𝜃෠௜+ሺ1 െ λሻ𝐸௜ିଵ ; for  𝐸଴ ൌ 𝜃෠଴                    (3) 
 
The estimated control limits for Phase II 
applications are now defined as in equation (4a) 
and (4b). 

𝑈𝐶𝐿෣ாௐெ஺ ൌ  𝜃෠଴ ൅ 𝐾𝜎ఏ෡ ටሺ
஛

ଶି஛
)                         (4a) 

𝐿𝐶𝐿෢ ாௐெ஺ ൌ  𝜃෠଴ െ 𝐾𝜎ఏ෡ටሺ
஛

ଶି஛
)            (4b) 

 
It cannot be ignored that an expression for the 
asymptotic standard error for 𝜃෠ ൌ MOM is not 
available. Thus, the control limits for the proposed 
chart is developed empirically through two series of 
Monte Carlo simulations which will be explained 
later in Section 4. For fair comparison, control 
limits for the existing charts are developed via the 
same way. For a review on the asymptotic standard 
error for mean, median and mid-range, the reader is 
referred to Nazir et al. [11].  
 

3.  LOCATION ESTIMATORS  
     

 Suppose the above-mentioned EWMA chart is 
used to monitor a population location parameter 
signified by θ. Thus, 𝜃෠ denotes an estimator that 
could be attained from a subgroup of size n. In this 
article, 𝜃෠ may come from one of these four location 
estimators; modified one-step M-estimator (MOM), 
median, mid-range or mean. Explanation of each 
estimator is presented as follows.   

  
3.1 Modified One-Step M-estimator (MOM) 

Proposed by Wilcox and Keselman [17], this 
median based estimator is defined as: 

  𝜃෠ ൌ
∑ ௑ሺ೔ሻ

೙ష೔మ
೔స೔భశభ

௡ି௜భି௜మ
                         (5) 

where 
 
𝑋ሺ௜ሻ   =   the ith ordered observation 
i1      =    number of observations Xi such that 
                (Xi – Median) < -2.24(MADn) 
i2          =   number of observations Xi such that                                   
          (Xi – Median) > 2.24(MADn)        (6)  
  

MADn is set to 𝑀𝐴𝐷 0.6745⁄ , where 1 0.6745⁄  
is the normalizing constant for the parameter of 
interest, 𝜎. The constant in the outlier detection 
criteria is fixed at 2.24 prompted by the desire to 
achieve greater efficiency under normality when 
subjected to small sample size [16]. This estimator 
achieves the highest possible BP at 50% ensuing 
the use of MADn in the rules [17].  

Unlike the classical trimmed mean, MOM 
engages asymmetric trimming. Via this approach, 
amount of trimming is not fixed prior to the 
procedure. Rather, the trimming is done 
accordingly based on the shape of the data 
distribution. On a skewed data, more trimming will 
be carried out on the tails, whereas for symmetric 
heavy-tailed distribution, the trimming will be 
conducted equally on both sides, and no trimming 
is needed on a normal distribution.  

 
3.2 Median  

The estimate provided by median separates the 
lower half of the data to its upper half. The usual 
sample median 𝑋෨ is computed as: 
 

𝜃෠  ൌ ቐ

ଵ

ଶ
൤𝑋

ቀ
೙
మ

ିଵቁ
൅ 𝑋

ቀ
೙
మ

ାଵቁ
൨ ,           𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 

𝑋
ቀ

೙
మ

ା
భ
మቁ

,                                   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
   (7)                     

           
As robust as MOM, efficiency of 𝑋෨ also rivals 

the sample mean when tails of the distribution 
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becomes heavier, irrespective of the sample size 
[19]. On normal data, the efficiency is set at 64% 
[20]. However, a finding from simulation study by 
Özdemir [21] reveals that the squared standard error 
of 𝑋෨ is relatively greater than MOM on normal data 
as well as contaminated data.  

 
3.3 Mid-Range 

This estimator is characterized by the minimum 
and maximum order of statistics of a random 
sample with size n. The mid-range (MR) of a 
sample is the average between the lowest and the 
highest order of statistics: 

 

          𝜃෠ ൌ
௑ሺభሻା௑ሺ೙ሻ

ଶ
 ;                                   (8) 

 
where 𝑋ሺଵሻ and 𝑋ሺ௡ሻ are the respective order of the 
statistics. Owing to this arrangement, as little as one 
outlying value would render the estimator useless. 
Highly influenced by outliers, the mid-range 
estimator has 0% BP. Yet, its pronounced 
efficiency in the case of platykurtic distribution 
commended the estimator as an alternative to the 
sample mean.  
 
3.4 Mean 

For normally distributed data, it is regarded as 
the most efficient estimator. Yet, sample mean 𝑋ത is 
very receptive to outlying values, with 0% BP and 
its standard error is extremely sensitive to the 
changes in the tails of the distribution [20]. The 
estimator is defined as a linear function of data and 
the formula is given as follows:  

 

           𝜃෠ ൌ
∑ ௑೔

೙
೔

௡
                     (9) 

 
Based on these estimators; MOM, median, mid-
range and mean, there are four EWMA control 
charts to be designed, evaluated and compared 
using the ARL. Accordingly, these charts are 
identified as EWMA-MOM, EWMA-𝑋෨, EWMA-
MR, and EWMA-𝑋ത throughout this article. The 
appraisal is first conducted for Case I, i.e. when the 
process parameters are known. Later, the analysis is 
extended to cover performance of the charts when 
the in-control mean of the process is estimated in 
Phase I (Case II).  
 
4.  CASE I (KNOWN PARAMETERS):  

PERFORMANCE EVALUATION AND 
SIMULATION PROCEDURE  

 
Performance of the charts are based on the 

average run length (ARL), which is defined as the 

average number of points plotted on the chart 
before going off the limits. This criterion is used to 
assess in-control and out-of-control state of the 
process, where ARL0 denotes the in-control ARL 
and ARL1 refers to the out-of-control ARL. A high 
value of ARL0, accompanied by low values of ARL1 
is always desirable; as they signify a good control 
chart.  

When several charts are being evaluated, 
common approach is to fix ARL0 for a desired shift 
size 𝛿 at the ideal condition. Then, ARL1 of the 
charts are compared. Chart with smaller ARL1 
outweighs its competitors. Value of λ, however, 
shall be selected carefully as it may influence the 
calculation of ARL, which further determined the 
robustness and sensitivity of the EWMA chart 
under the non-ideal condition. The relationship 
between λ and the usual EWMA chart performance 
was expressed succinctly in the beginning of this 
paper. Considering its impact toward EWMA chart 
performance, a moderate value of λ ൌ 0.13 is 
selected in this study. This value was recommended 
by Crowder [22] when  a shift size 1.0 is of interest. 
Accordingly, K is taken as 2.88 based on Lee, Khoo 
and Yap [23]. For EWMA-𝑋ത chart, the designated 
parameters give ARL0 ≅ 500, for certain when 
process is ideal, i.e. normally distributed. We note 
that the pre-specified ARL0 value of 500 is a widely 
used choice in literatures.  

The ARL are estimated by means of simulation 
using SAS Version 9.4 software. The procedures 
are taken as follows. First, we generate 1,000,000 
samples of size 𝑛 ∈ ሼ5,10ሽ and simulate the mean 
(𝜃଴) and the standard deviation (𝜎ఏ෡) of the chosen 
distribution (as described later) for the estimators. 
We further generate 15,000 Phase II samples of size 
n from the selected distributions under in-control 
state and apply them on the charts. Note that, in this 
study, we assume data are independent and 
identically distributed. The chart statistic, 𝐸௜ is 
computed and noted when it falls outside the limit 
(𝐸௜ ൐ 𝑈𝐶𝐿ாௐெ஺  or 𝐸௜ ൏ 𝐿𝐶𝐿ாௐெ஺ ). When this 
occurs, a signal is triggered and the corresponding 
in-control run length, i.e.  time i, is recorded. The 
process is repeated for 10,000 simulation runs. 
With that, ARL0 is attained by averaging the value. 
Ultimately, a shift in the form of 𝛿 is introduced in 
the process, in which 𝛿 is set for {0.1, 0.15, 0.2, 
0.25, 0.5, 0.75, 1, 1.5, 2.0, 2.5, 3.0}. Analogous to 
ARL0, identical steps are taken to procure ARL1 
with respect to the 𝛿. 

 
4.1 Simulation Outcomes 

This section discusses the performance of the 
EWMA chart for non-normal data using skewed 
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distributions, when mean and standard deviation of 
the process are known. Specifically, Weibull 
distribution with various shape 𝛽 parameters is 
considered. The designated 𝛽𝑠 correspond to a 
specific skewness coefficient of 𝛼ଷ ∈
ሼ0.5, 1, 2, 3ሽ. Meanwhile, scale parameter of the 
Weibull is fixed at 1. To get more insight on in-
control performance of the EWMA chart under 
asymmetric distribution, two additional 
distributions are considered. They are lognormal 
and Gamma distributions.  

Table 1 and 2 give in-control performance of the 
four charts for the skewed processes. For fair 
comparison, ARL0 under the ideal condition (i.e. 
normally distributed data) is also presented. The 
tabulated values show that the EWMA-𝑋෨ chart 
performance is almost identical to the EWMA-𝑋ത 
chart. The distribution of the sample median 𝑋෨ is 
very close with the N(𝜃଴, 𝜎෤) where 𝜎෤ is the standard 
deviation of the 𝑋෨௜ [24]. As such, the designated 
optimal parameters for the EWMA-𝑋ത chart would 
yield a comparable simulation result for the 
EWMA-𝑋෨ when process is ideal.   

In general, Table 1 and 2 shows that ARL0 for all 
charts digress from the nominal value as degree of 
skewness increases. Performance of the EWMA-
MOM chart is akin to the EWMA-𝑋෨ chart when 𝛼ଷ 
is quite small but outweighs the latter as data 
becomes heavily skewed. Meanwhile, performance 
of the EWMA-MR chart is visibly worse than its 
counterpart as level of skewness rises. Increasing n 
from 5 to 10, however, helps to boost the 
performance of all charts.  

While changes in in-control performance of the 
EWMA-𝑋ത chart is consistent throughout Weibull, 
lognormal and Gamma distributions for the same 
level of skewness and sample sizes, a more distinct 
pattern is exhibited by the proposed method 
(MOM).  The EWMA-MOM chart is highly robust 
when underlying distribution of the data assumes 
lognormal. Moreover, the chart provides slight 
advantage over the median chart when 𝛼ଷ is set 
between 1.0 to 2. This is evident in each case of the 
distribution when we consider both sample sizes.  

 
Table 1: In-control ARL for n = 5 for the known 

parameter case 
 

 Distributio
ns 

𝜶𝟑 EWM
A-
MOM 

EWM
A-𝑋ത 

EWM
A-MR 

EWM
A-𝑋෨ 

 Normal 0.
0 

484.75 504.92 488.22 507.13 

 Weibull      
 2.2266 0.

5 
487.41 512.62 501.67 518.30 

𝜷 1.5688 1. 473.99 487.03 455.45 463.86 

0 
 1.2123 1.

5 
440.98 454.45 406.77 311.41 

 0.9987 2 385.80 415.49 349.27 361.55 
 0.7637 3 298.21 337.40 273.70 284.59 
 Lognorma

l 
     

 0.1656 0.
5 

483.00 519.97 492.10 445.42 

𝝎 0.3170 1.
0 

467.63 477.02 422.60 478.66 

 0.4484 1.
5 

441.37 436.30 353.18 426.45 

 0.5593 2 415.07 397.03 313.40 396.48 
 0.7315 3 358.23 332.32 256.29 343.64 
 Gamma      
 15.4 0.

5 
471.38 499.05 472.92 488.66 

𝜶 3.913 1.
0 

466.59 481.89 447.05 463.37 

 1.788 1.
5 

445.84 454.06 397.18 410.97 

 0.983 2 385.27 415.42 355.15 354.21 
 0.442 3 265.06 347.23 298.19 256.68 

 
Table 2: In-control ARL for n = 10 for the known 

parameter case 
 

 Distributi
on 

𝜶𝟑 EWM
A-
MOM 

EWM
A-𝑋ത 

EWM
A-MR 

EWM
A-𝑋෨ 

 Normal 0.
0 

488.85 508.78 487.43 508.56 

 Weibull      
 2.2266 0.

5 
494.17 503.42 485.32 508.10 

𝜷 1.5688 1.
0 

504.08 490.60 445.57 482.82 

 1.2123 1.
5 

496.44 475.35 396.50 451.32 

 0.9987 2 452.25 452.30 352.99 408.61 
 0.7637 3 364.37 399.36 289.06 347.46 
 Lognorma

l 
     

 0.1656 0.
5 

468.49 472.33 468.31 512.02 

𝝎 0.3170 1.
0 

488.85 482.21 399.91 469.92 

 0.4484 1.
5 

480.06 475.23 341.83 467.30 

 0.5593 2 454.00 439.76 298.80 444.19 
 0.7315 3 421.72 390.41 257.57 405.95 
 Gamma      
 15.4 0.

5 
487.31 502.95 459.95 499.02 

𝜶 3.913 1.
0 

492.89 500.26 427.31 479.07 

 1.788 1.
5 

490.06 481.62 376.48 461.86 

 0.983 2 441.66 450.75 354.16 417.34 
 0.442 3 316.65 400.68 312.12 315.37 

 
Table 3 and 4 provide the out-of-control 

performance of the four EWMA charts when 
underlying distribution of the data is set for 
Weibull. The results show that ARL1 of all four 
charts decreases as level of skewness increases. 
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Note also that ARL1 decreases as n increases. In 
general, the use of different estimators dictates 
EWMA ability to perform on small range of 𝛿 and 
bears little to no importance when 𝛿 ൐ 1.  The 
EWMA-MR and EWMA-𝑋ത chart tied up when 
process is not heavily skewed. Both charts possess 
smaller ARL1 than the robust methods (MOM and 
𝑋෨), except on a few occasions when the robust 
methods overtake the duo. The EWMA-𝑋ത chart 
retains its advantage in detecting small shifts as 
level of skewness increases, but the EWMA-MOM 
chart is doing a fairly good job in catching up 
behind it.  

 
 
Table 3: Out-of-control ARL for n = 5 for the known 

parameter case 
 

𝜷 𝜶𝟑 𝛿 EWMA
-MOM 

EWMA
-𝑋ത 

EWMA
-MR 

EWMA
-𝑋෨ 

2.226
6 

0.
5 

0.1 139.24 134.89 129.21 134.00 

0.1
5 

69.77 69.08 68.40 68.68 

0.2 41.73 41.25 41.08 41.35 
0.2

5 
27.69 27.14 27.55 27.83 

0.5 8.72 8.75 8.71 8.70 
0.7

5 
5.06 5.06 5.08 5.06 

1 3.64 3.62 3.62 3.63 
1.5 2.38 2.40 2.40 2.39 

2 1.94 1.93 1.93 1.93 
2.5 1.61 1.61 1.62 1.62 

3 1.19 1.20 1.20 1.20 
       
1.568
8 

1.
0 

0.1 125.80 127.43 120.41 120.20 
0.1

5 
67.91 67.19 66.22 66.67 

0.2 40.65 41.47 40.47 39.95 
0.2

5 
27.35 27.37 27.80 27.47 

0.5 8.78 8.81 8.90 8.74 
0.7

5 
5.07 5.08 5.11 5.12 

1 3.65 3.63 3.62 3.64 
1.5 2.39 2.39 2.42 2.40 

2 1.92 1.93 1.92 1.91 
2.5 1.61 1.63 1.64 1.64 

3 1.21 1.20 1.20 1.21 
       
1.212
3 

1.
5 

0.1 119.82 119.03 110.37 86.22 

  0.1
5 

66.07 65.78 63.78 51.41 

  0.2 40.34 40.19 40.57 34.22 
  0.2

5 
27.55 27.80 27.42 24.07 

  0.5 8.84 8.87 8.89 8.40 
  0.7

5 
5.13 5.13 5.11 4.96 

  1 3.65 3.63 3.64 3.55 
  1.5 2.39 2.39 2.38 2.37 
  2 1.91 1.92 1.91 1.91 
  2.5 1.65 1.64 1.65 1.63 

  3 1.21 1.20 1.19 1.18 
       
0.998
7 

2 0.1 109.39 112.34 104.49 105.70 
0.1

5 
63.91 64.72 62.59 63.62 

0.2 40.23 40.59 40.49 41.07 
0.2

5 
28.03 27.55 27.86 27.92 

0.5 8.97 8.89 9.10 9.08 
0.7

5 
5.18 5.14 5.17 5.19 

1 3.64 3.65 3.63 3.65 

1.5 2.40 2.39 2.41 2.40 
2 1.90 1.91 1.91 1.90 

2.5 1.66 1.65 1.67 1.67 
3 1.20 1.20 1.19 1.19 

       
0.763
7 

3 0.1 97.89 103.35 96.22 96.99 
0.1

5 
60.51 61.78 60.65 60.82 

0.2 40.94 40.79 40.77 40.75 
0.2

5 
28.80 28.09 28.89 28.89 

0.5 9.16 9.14 9.28 9.29 
0.7

5 
5.23 5.17 5.18 5.21 

1 3.65 3.65 3.63 3.63 
1.5 2.42 2.40 2.41 2.41 

2 1.91 1.90 1.91 1.91 
2.5 1.70 1.69 1.70 1.69 

3 1.16 1.18 1.16 1.15 
Note:  
The bold values represent the best performance at specific 𝛿 and 
𝛼ଷ 
 

Table 4: Out-of-control ARL for n = 10 for the known 
parameter case 

 
𝜷 𝜶𝟑 𝛿 EWMA

-MOM 
EWMA

-𝑋ത 
EWMA

-MR 
EWMA

-𝑋෨ 
2.226
6 

0.
5 

0.1 81.34 79.47 76.54 77.83 

0.1
5 

37.53 37.04 36.98 37.01 

0.2 22.23 22.00 22.17 21.83 
0.2

5 
15.00 14.85 15.13 14.97 

0.5 5.43 5.47 5.47 5.42 
0.7

5 
3.41 3.38 3.41 3.40 

1 2.54 2.54 2.54 2.53 
1.5 1.88 1.87 1.88 1.87 

2 1.31 1.32 1.33 1.33 
2.5 1.02 1.01 1.01 1.02 

3 1.00 1.00 1.00 1.00 
       
1.568
8 

1.
0 

0.1 78.15 77.06 72.61 75.16 
0.1

5 
36.93 36.92 37.24 37.57 

0.2 22.07 21.89 21.97 22.13 
0.2

5 
14.89 14.99 15.26 15.06 

0.5 5.49 5.46 5.52 5.51 
0.7

5 
3.38 3.42 3.39 3.40 

1 2.53 2.52 2.54 2.54 
1.5 1.87 1.86 1.87 1.86 

2 1.32 1.33 1.34 1.33 
2.5 1.01 1.01 1.00 1.01 
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3 1.00 1.00 1.00 1.00 
       
1.212
3 

1.
5 

0.1 75.58 75.53 69.21 71.61 

  0.1
5 

37.04 37.19 37.29 36.83 

  0.2 22.10 22.06 22.72 22.42 
  0.2

5 
15.11 14.98 15.57 15.15 

  0.5 5.53 5.48 5.53 5.50 
  0.7

5 
3.40 3.41 3.39 3.40 

  1 2.54 2.53 2.55 2.53 
  1.5 1.86 1.87 1.87 1.86 
  2 1.34 1.34 1.35 1.34 
  2.5 1.00 1.01 1.00 1.00 
  3 1.00 1.00 1.00 1.00 
       
0.998
7 

2 0.1 70.95 73.24 68.55 70.22 
0.1

5 
36.64 37.07 36.86 36.10 

0.2 22.47 22.36 22.73 22.41 
0.2

5 
15.25 15.12 15.47 15.38 

0.5 5.51 5.48 5.56 5.51 
0.7

5 
3.41 3.42 3.42 3.42 

1 2.54 2.53 2.53 2.55 

1.5 1.87 1.86 1.87 1.87 
2 1.35 1.34 1.36 1.36 

2.5 1.00 1.00 1.00 1.00 
3 1.00 1.00 1.00 1.00 

       
0.763
7 

3 0.1 68.33 69.78 66.94 68.05 
0.1

5 
35.98 36.81 37.48 36.70 

0.2 22.66 22.56 23.50 22.79 
0.2

5 
15.60 15.61 15.93 15.58 

0.5 5.58 5.50 5.58 5.56 
0.7

5 
3.41 3.42 3.41 3.42 

1 2.54 2.54 2.54 2.54 
1.5 1.87 1.87 1.88 1.87 

2 1.38 1.35 1.37 1.37 
2.5 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 
Note:  
The bold values represent the best performance at specific 𝛿 and 
𝛼ଷ 

 
5.  CASE II (UNKNOWN PARAMETER): 

PERFORMANCE EVALUATION AND 
SIMULATION PROCEDURE  

     
    Because the estimate is substituted for the 
unknown process parameter 𝜃଴, it is of interest to 
examine the impact of estimation on the Phase II 
run length distribution and hence, the robustness of 
the proposed charts. To achieve the target, both 
Phase I and Phase II underlying distributions are 
assumed to be the same, whilst shifts are introduced 
to monitor the charts’ reaction in the out-of-control 
state.  

Similarly, as in Case I, performance of the 

EWMA-MOM, EWMA-𝑋ത, EWMA-MR and 
EWMA-𝑋෨ charts are evaluated and compared using 
the ARL by means of simulation. All charts are 
constructed using design parameters of (𝜆, K) = 
(0.13, 2.88), which supposedly give the ARL0 of 
500. A total subgroup of m = 50 with a fixed 
sample size of n = 10 is chosen to monitor 
performance of the charts, conditioned on the 
Weibull distribution. While scale parameter of 
Weibull is fixed at 1, several coefficients of 
skewness 𝛼ଷ, ranging from 0 to 3 are selected to 
capture the charts’ behavior in the in-control state 
as well as the out-of-control state.  

The following simulation algorithm is used to 
obtain the unconditional run-length distribution for 
the EWMA-𝜃෠ chart based on a specific Weibull of 
𝛼ଷ. Divided into two series of Monte Carlo 
simulations, the first series is used to determine the 
standard deviation of the sampling distribution of 
the location estimator (i.e. the standard error of the 
𝜃෠, denoted as 𝜎ఏ෡). The value is determined based on 
1,000,000 simulation runs for n = 10. The second 
series involves 10,000 trials of 50 in-control Phase I 
samples of size 10. First, the average value of 𝜃෠ is 
determined and equated as 𝜃෠଴. Paired with its 
standard error 𝜎ఏ෡ , they are used to estimate the 
Phase II limits as defined by equation (4a) and (4b). 
Next, 15,000 samples from Phase II distribution 
(which is the same as the Phase I distribution) are 
then generated. From each sample, 𝜃෠௜ is computed 
and then applied to the EWMA plotting statistic, 𝐸௜ 
as defined by equation (3). The starting values are 
taken as  𝐸଴ ൌ 𝜃෠଴. The respective sample numbers 
(when either 𝐸௜ ൐ 𝑈𝐶𝐿෣ாௐெ஺  or 𝐸௜ ൏ 𝐿𝐶𝐿෢ ாௐெ஺ ) 
are signaled as out-of-control. The corresponding 
run length, i.e. the time i, is then recorded. The 
calculations are made for 𝛿 = 0, 0.1, 0.15, 0.2, 0.25, 
0.5, 0.75, 1, 1.5, 2.0, 2.5, 3.0. Once the procedures 
are completed for 10,000 times, the ARL is attained 
by averaging over the values. The outcomes are 
presented in Table 5 and Table 6.  

 
5.1 Simulation Outcomes  
    The simulation findings are divided into two 
parts. The first part covers the charts’ behavior 
under the in-control state, whilst the second part of 
the analysis detailed out the performance of all 
charts when shift occurs.   

 
Table 5: In-control ARL for n = 10 for the unknown 

parameter case 
 

  
Distribution 

𝜶𝟑 EWMA-
MOM 

EWMA-
𝑋ത 

EWMA-
MR 

EWMA-
𝑋෨ 

Normal 0.0 326.71 342.32 328.52 336.36 
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Weibull      
3.6286 0 326.58 331.52 342.12 331.59 
2.2266 0.5 329.66 331.65 330.77 336.52 
1.5688 1.0 333.80 331.09 322.47 329.81 
1.2123 1.5 332.73 329.44 306.58 326.88 
0.9987 2 331.27 324.26 298.46 312.75 
0.7637 3 307.10 312.41 266.89 294.88 

         
 The tabulated results in Table 5 indicate that in-
control ARL is less than the nominal value of 500, 
regardless of our choice of estimators. Note that, 
when process mean is unknown and estimated from 
the in-control Phase I samples, the decline in in-
control performance happens as early as when 𝛼ଷ ൌ
0. We observe the reverse in the previous case 
study as referred in Table 1 wherein value of 𝛼ଷ is 
spotted to be quite large before ARL0 value 
digresses from 500. Thus, in general, we would 
expect more false alarms when mean of the process 
is estimated from the underlying Weilbull 
distribution, except for some cases when skewness 
coefficient is set at 3. While the other three charts 
display a sure decrement in the ARL values as level 
of skewness increases, the EWMA-MOM chart, on 
the contrary, proffers the upper hand in this 
stipulated non-normal situations. We notice some 
improvement in the chart performance (increase in 
the ARL0) when 𝛼ଷ changes to 1 from .5. From then 
onwards, the EWMA-MOM chart outperforms the 
rest.  
    Meanwhile, Table 6 displays results for out-of-
control measurements. All four charts share the 
same pattern; ARL1 decreases as 𝛼ଷ increases, if 
same magnitude of shift is considered. Overall, the 
EWMA-MR chart is highly efficient when 𝛿 is set 
between 0.1 and 0.2. That is, the chart produces the 
smallest ARL1 in more than a single instance. The 
exception is when the process becomes heavily 
skewed, i.e. when 𝛼ଷ shifts to 2 and above. The 
proposed chart (EWMA-MOM) wins in this case. 
While showing a mediocre performance on slight 
non-normality, the chart provides a quick detection 
for a more heavily skewed process, especially when 
0.2 ൑ 𝛿 ൑ 0.75. At the same time, the 𝑋ത and 𝑋෨ 
charts are only better than the other two charts on a 
few rare occasions.  

 
Table 6: Out-of-control ARL for n = 10 for the unknown 

parameter case 
 

𝜷 𝜶𝟑 𝛿 EWMA
-MOM 

EWMA
-𝑋ത 

EWMA
-MR 

EWMA
-𝑋෨ 

3.628
6 

0.
0 

0.1 118.51 118.68 115.74 120.64 

  0.1
5 

50.92 52.36 50.72 51.88 

  0.2 26.86 26.65 26.25 26.73 

  0.2 16.25 16.36 16.62 16.32 

5 

  0.5 5.54 5.52 5.49 5.52 

  0.7
5 

3.41 3.41 3.42 3.41 

  1 2.53 2.53 2.54 2.54 

  1.5 1.88 1.87 1.87 1.88 

  2 1.31 1.32 1.32 1.31 

  2.5 1.02 1.02 1.02 1.02 

  3 1.00 1.00 1.00 1.00 

       

2.226
6 

0.
5 

0.1 115.80 115.90 108.49 113.50 

0.1
5 

51.24 50.41 49.30 51.11 

0.2 26.91 26.51 25.82 26.75 
0.2

5 
16.34 16.34 16.78 16.45 

0.5 5.49 5.53 5.57 5.54 
0.7

5 
3.39 3.41 3.41 3.43 

1 2.54 2.55 2.54 2.53 
1.5 1.88 1.87 1.87 1.87 

2 1.31 1.33 1.34 1.33 
2.5 1.02 1.02 1.01 1.01 

3 1.00 1.00 1.00 1.00 
       
1.568
8 

1.
0 

0.1 111.64 110.59 99.61 107.63 
0.1

5 
49.98 48.86 48.60 48.77 

0.2 26.42 26.22 25.89 26.61 
0.2

5 
16.46 16.76 16.63 16.34 

0.5 5.52 5.55 5.63 5.58 
0.7

5 
3.43 3.43 3.42 3.43 

1 2.54 2.54 2.55 2.54 
1.5 1.87 1.87 1.87 1.87 

2 1.32 1.33 1.34 1.34 
2.5 1.01 1.01 1.01 1.01 

3 1.00 1.00 1.00 1.00 
       
1.212
3

1.
5

0.1 106.74 106.37 94.96 101.35 

  0.1
5 

49.34 48.47 46.48 47.24 

  0.2 26.31 26.08 25.96 26.59 
  0.2

5 
16.54 16.69 16.93 16.71 

  0.5 5.58 5.57 5.64 5.58 
  0.7

5 
3.42 3.43 3.44 3.44 

  1 2.55 2.55 2.56 2.55 
  1.5 1.86 1.86 1.87 1.87 
  2 1.34 1.34 1.36 1.34 
  2.5 1.01 1.01 1.00 1.00 
  3 1.00 1.00 1.00 1.00 
       
0.998
7 

2 0.1 97.89 103.89 91.22 96.51 
0.1

5 
47.29 47.97 46.35 46.21 

0.2 25.99 26.22 26.25 26.58 
0.2

5 
16.78 16.77 17.16 16.83 

0.5 5.62 5.59 5.67 5.59 
0.7

5 
3.43 3.42 3.43 3.43 

1 2.54 2.55 2.55 2.54 
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1.5 1.86 1.87 1.87 1.86 
2 1.35 1.34 1.36 1.35 

2.5 1.00 1.00 1.00 1.00 
3 1.00 1.00 1.00 1.00 

       
0.763
7 

3 0.1 89.63 95.21 86.32 89.37 
0.1

5 
45.02 45.75 45.14 44.95 

0.2 25.98 26.26 26.49 26.76 
0.2

5 
17.26 16.97 17.67 17.32 

0.5 5.66 5.64 5.70 5.67 
0.7

5 
3.44 3.42 3.43 3.43 

1 2.54 2.55 2.55 2.54 
1.5 1.86 1.87 1.88 1.87 

2 1.37 1.36 1.38 1.36 
2.5 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 
Note:  
The bold values represent the best performance at specific 𝛿 and 
𝛼ଷ 

 
 
 6.  ILLUSTRATIVE EXAMPLES  
 

 Graphical examples are given to portray 
performance of the EWMA-MOM and EWMA-𝑋ത 
charts when mean of the process is estimated.  For 
the said purpose, forty samples of size five (n = 5) 
are generated via Monte-Carlo simulation from two 
distributions, which gives us a total of 200 
observations for each data set. The first twenty 
samples are set to be in-control, whilst the last 
twenty are the out-of-control samples. 𝜃෠଴ is 
estimated from the in-control samples that may 
come from either the normal distribution or the  
Weibull distributions. Both mean and standard 
deviation of the normal distribution are allotted to 5 
and 16, respectively. Meanwhile, the scale and 
shape (𝛽) parameters of the Weibull distribution are 
set at 2 and 0.9887, accordingly. Table 7 – 12 give 
the data for these processes.  
   The limits for both charts are constructed using 
design parameters of (𝜆, K) = (0.13, 2.88). 
Therefore, the upper and lower limits for the charts 
can be determined using equation (4a) and (4b), 
respectively. The values are attained as follow: 
 

𝑈𝐶𝐿෣ெைெ,௡௢௥௠௔௟ ൌ 5.0559; 
𝐿𝐶𝐿෢ ெைெ,௡௢௥௠௔௟ ൌ െ7.7255. 

 
𝑈𝐶𝐿෣𝑋ഥ,௡௢௥௠௔௟ ൌ 3.9703; 

𝐿𝐶𝐿෢ 𝑋ഥ,௡௢௥௠௔௟ ൌ െ6.8960. 
 

𝑈𝐶𝐿෣ெைெ,ௐ௘௜௕௨௟௟ ൌ 2.2668; 
𝐿𝐶𝐿෢ ெைெ,ௐ௘௜௕௨௟௟ ൌ 0.8241. 

 

𝑈𝐶𝐿෣𝑋ഥ,ௐ௘௜௕௨௟௟ ൌ 2.5463; 
𝐿𝐶𝐿෢ 𝑋ഥ,ௐ௘௜௕௨௟௟ ൌ 1.1871. 

  
    Figure 1 and 2 display the EWMA-MOM and 
EWMA-𝑋ത charts, together with their respective 
control limits (UCL and LCL) for the normal 
distribution. General observation shows that the 
two methods give comparable in-control and out-
of-control performance. Even so, the first out-of-
control sample is detected at sample 22 by the 
EWMA-MOM control charts, which is one unit less 
than perceived by the EWMA-𝑋ത chart. The pattern 
persists in for the Weibull. Figure 3 and 4 presented 
the performance of the two charts under this 
scenario. Both charts are equally delayed in 
signaling out-of-control situation, unlike when the 
underlying process distribution is normal. Yet, the 
EWMA-MOM control chart still takes the lead at 
sample 26. Meanwhile, the EWMA-𝑋ത chart is one 
step behind as a signal is triggered only at sample 
27. It is worth to note that this example is provided 
to illustrate the increase in the shift of the process, 
wherein the magnitude of the shift depends on the 
in-control standard deviation of the process, i.e. 
𝛿𝜎𝜃෡.  
 
7.  CONCLUSION  
 

While charts implemented based on a normal 
distribution is efficient for normally distributed 
outputs, they may not be effective for other 
distributions. Worse, if the charts lead to erroneous 
conclusion in real data application on non-normally 
distributed outputs. Yet, in many situations, non-
normality is frequently encountered. For example, 
distribution measurement from chemical process 
and pharmaceutical data are often skewed. 
Similarly, output from service processes such as 
waiting or failure time is also suitably modeled by a 
certain right-skewed distribution. Scores of studies, 
concentrating on robust statistical controls, have 
been organized in the past to monitor small mean 
shifts under this term. Whilst findings have shown 
that outliers-resistant chart, specifically a median 
chart, typically possesses a higher ARL0 than the 
standard chart in severe non-normality cases, its 
shift detection ability is secondary to the standard 
charts, thus, leaving a room for improvement for 
future discussion. Taking a leaf out from this 
context, we have proposed an alternative outlier-
resistant chart based on EWMA design structure. 
Constructed using modified one-step M-estimator 
(MOM), this new EWMA chart performance is 
studied against mean, mid-range and median chart.  

Simulation studies are conducted to analyze 
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these four EWMA charts for skewed distributions 
when mean and standard deviation of the process 
are known. Later, we have extended the analysis by 
assuming that information on the process mean is 
not readily available and thus, the parameter is 
estimated from the in-control Phase I samples.  

Although it appears that all four charts are fairly 
robust to a violation of normality when they are 
tuned with design parameters of (𝜆 , 𝐾) = (0.13, 
2.88), this statement is merely true in the first case 
study, i.e. when none of the process parameters are 
estimated.   When a closer look is taken at the 
performance of charts with estimated parameter, all 
in-control performances are adversely affected 
(more false alarms). Nonetheless, the proposed 
EWMA-MOM chart is seen to gain control (higher 
ARL0) over the other as underlying process 
distribution becomes heavily skewed. Whilst it is 
apparent that the mid-range and mean charts, 
overall, are more efficient than the proposed 
method in the first case study, the extended 
simulation outcomes reveal the opposite. In 
addition to providing protection against rise in the 
false alarm rates, the EWMA-MOM chart also 
offers the best shift-detecting ability, considering 
various levels of skewness. These duo features are 
generally desirable for any control charts to be 
applied in the industry, thus making it the charting 
procedure we recommend to researchers. It cannot 
be ignored that all the results in this article are 
based on the assumption of independent data. If this 
assumption does not hold, the results may have to 
be re-examined.  
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Figure 1: The EWMA-MOM Chart for the  Normal Data 
  

   
Figure 2: The EWMA-𝑋ത Chart for the Normal Data 
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Figure 3: The EWMA-MOM Chart for the Weibull Data      
 

                                 
 Figure 4: The EWMA-𝑋ത Chart for the  Weibull Data 
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Table 7:  In-control data from the normal distribution  
 

 Observations     
Subgroup 
j 

Y1 Y2 Y3 Y4 Y5 𝑴𝑶𝑴𝒋 𝑿ഥ𝒋 𝑬𝒊,𝑴𝑶𝑴 𝑬𝒊,𝑿ഥ  

1 6.4688 0.3919 -0.2387 -22.4635 -0.2541 -0.0337 -3.2191 -1.1657 -1.6912 
2 6.8216 9.2187 2.3880 21.8599 -4.9471 3.3703 7.0682 -0.5760 -0.5524 
3 36.6873 -33.0936 -4.9633 0.6696 -21.6743 -4.4748 -4.4748 -1.0828 -1.0623 
4 -22.5703 25.5206 -28.6430 0.9099 5.4710 -3.8624 -3.8624 -1.4442 -1.4264 

5 
18.2757 -17.3621 -13.0970 18.5504 -13.6579 

-
14.7057 

-1.4582 
-3.1682 -1.4305 

6 26.9394 -12.4875 -2.8781 -5.2519 -3.2357 -3.7886 0.6172 -3.2488 -1.1643 
7 23.3670 -26.3294 -11.8767 -7.5094 7.7253 -2.9246 -2.9246 -3.2067 -1.3931 
8 10.1727 -17.7378 23.1720 5.2045 -4.1488 3.3325 3.3325 -2.3566 -0.7788 
9 -14.6129 -2.4844 24.3634 4.8609 -11.6282 0.0998 0.0998 -2.0373 -0.6646 
10 -15.1205 6.3878 2.0385 12.4521 2.5201 5.8496 1.6556 -1.0120 -0.3630 
11 -6.4127 -3.3150 12.7357 6.4391 -9.8706 -0.0847 -0.0847 -0.8914 -0.3268 
12 5.8414 3.8128 -7.7217 -4.6844 -16.1950 -3.7894 -3.7894 -1.2682 -0.7769 
13 1.6330 2.2610 -7.0891 4.6254 -11.4912 0.3576 -2.0122 -1.0568 -0.9375 

14 
6.9484 -9.4385 -36.4163 1.7275 -17.1490 

-
10.8656 

-
10.8656 -2.3320 -2.2282 

15 -19.3951 15.2706 -9.6233 17.2124 -5.7058 -0.4482 -0.4482 -2.0871 -1.9968 
16 3.1880 -17.8138 9.1165 3.9458 -32.9072 5.4168 -6.8941 -1.1116 -2.6334 
17 -0.2541 -5.9009 -14.6669 24.1289 24.5997 5.5813 5.5813 -0.2415 -1.5655 
18 2.9858 -13.6403 -40.7867 14.6450 57.8583 4.2124 4.2124 0.3375 -0.8144 

19 
-12.8425 -12.0422 -16.3992 0.5706 12.1068 

-
10.1784 

-5.7213 
-1.0295 -1.4523 

20 -31.3035 5.6993 -2.1563 0.5289 -3.1148 0.2393 -6.0693 -0.8646 -2.0525 

 
   

 
 
 

 
𝑴𝑶𝑴തതതതതതതത = 
-1.3348 

𝑿ന =  
-1.4628 

  
 

Table 8:  In-control data from the Weibull distribution 
 

 Observations     
Subgroup 
j 

Y1 Y2 Y3 Y4 Y5 𝑴𝑶𝑴𝒋 𝑿ഥ𝒋 𝑬𝒊,𝑴𝑶𝑴 𝑬𝒊,𝑿ഥ  

1 0.4190 0.3073 0.8826 2.8073 0.1077 0.4292 0.9048 1.4003 1.7417 
2 0.5938 2.1892 1.6014 0.0199 0.6228 1.0054 1.0054 1.3490 1.6459 
3 10.6099 2.9488 0.4542 0.1816 3.2654 3.4920 3.4920 1.6276 1.8859 
4 2.8821 1.8805 0.0276 0.9378 2.3973 1.6251 1.6251 1.6272 1.8520 
5 5.8554 5.9436 4.6166 1.2193 1.9948 3.9259 3.9259 1.9261 2.1216 
6 0.6707 0.2647 2.8803 1.8432 1.3432 1.4004 1.4004 1.8577 2.0279 
7 2.1346 1.2246 5.4085 4.0901 3.2919 3.2299 3.2299 2.0361 2.1841 
8 1.2854 0.4074 0.5370 0.1297 5.9369 0.5898 1.6593 1.8481 2.1159 
9 1.6990 0.1663 3.2806 2.0868 0.9917 1.6449 1.6449 1.8217 2.0547 
10 1.8151 1.3613 8.0269 0.7407 1.4722 1.3473 2.6833 1.7600 2.1364 
11 2.9071 7.3944 1.0495 0.9804 2.2728 1.8025 2.9209 1.7655 2.2384 
12 0.6258 0.1094 1.4754 1.1522 0.6565 0.8039 0.8039 1.6405 2.0519 
13 2.1341 0.0070 3.8527 1.0488 1.0780 1.6241 1.6241 1.6384 1.9963 
14 1.9525 2.2845 0.7131 0.3702 0.2197 1.1080 1.1080 1.5694 1.8808 
15 2.2326 3.4315 1.3994 1.6271 2.4298 2.2241 2.2241 1.6545 1.9254 
16 5.6264 0.7445 0.4169 0.1726 2.0597 0.8484 1.8040 1.5497 1.9096 
17 2.3023 2.0838 0.0260 1.2127 2.6283 2.0568 1.6506 1.6157 1.8760 
18 0.1142 0.2294 3.9237 0.9761 0.9599 0.5699 1.2407 1.4797 1.7934 
19 1.0512 1.6577 0.5667 0.3506 0.8184 0.6967 0.8889 1.3779 1.6758 
20 0.5154 3.8420 0.4083 2.1957 0.5298 0.4845 1.4982 1.2618 1.6527 

 
     

𝑴𝑶𝑴തതതതതതതത = 
1.5454 

𝑿ന =  
1.8667   
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Table 9:  Out-of-control data from the normal distribution when 𝜃෠ ൌ 𝑀𝑂𝑀 
 

 Observations   
Subgroup 
j 

Y1 Y2 Y3 Y4 Y5 𝑴𝑶𝑴𝒋 𝑬𝒊,𝑴𝑶𝑴 

21 16.2144 21.2283 37.9647 41.3282 13.3801 26.0231 2.6308 
22 31.1199 12.0312 32.4198 11.7281 28.0565 30.5321 6.2580 
23 -8.6042 -16.4254 -1.5895 33.4571 53.1830 1.7095 5.6667 
24 23.8180 20.0656 26.7865 15.4001 23.7572 21.9655 7.7855 
25 52.0354 11.2260 23.0254 15.8857 -1.6388 12.1246 8.3496 
26 18.0018 -2.9704 13.0877 53.7231 -0.3087 16.3067 9.3840 
27 -1.7105 26.0118 4.4044 14.0197 11.2169 10.7885 9.5666 
28 14.9793 35.7797 -3.4225 25.7350 26.6643 19.9472 10.9161 
29 53.7497 3.0087 21.9658 36.9720 -3.3189 22.4755 12.4188 
30 29.3995 24.2664 24.7054 19.3402 47.3989 24.4279 13.9800 
31 23.0598 40.7420 28.0525 27.4545 33.9283 30.6474 16.1467 
32 27.8764 50.7082 49.8517 2.6368 17.0639 29.6274 17.8992 
33 15.4433 1.8431 19.2496 31.8909 17.9497 17.5475 17.8535 
34 15.4433 1.8431 19.2496 31.8909 17.9497 23.1494 18.5420 
35 15.4433 1.8431 19.2496 31.8909 17.9497 12.0607 17.6994 
36 3.2691 16.4694 27.0401 23.9817 25.1063 27.3325 18.9517 
37 5.3278 31.3975 34.6828 2.1508 -13.2555 7.6324 17.4802 
38 23.0576 46.7636 11.9829 -14.8240 27.5259 16.3762 17.3367 
39 48.6139 0.2416 42.4952 29.6925 17.9365 27.7960 18.6964 
40 23.6293 22.4215 -9.9167 21.9173 13.2920 22.6561 19.2111 

 
 
 

Table 10:  Out-of-control data from the normal distribution when 𝜃෠ ൌ 𝑋ത 
 

 Observations   
Subgroup 
j 

Y1 Y2 Y3 Y4 Y5 𝑿ഥ𝒋 𝑬𝒊,𝑿ഥ  

21 13.3957 18.4096 35.1459 38.5094 10.5614 23.2057 1.2311 
22 28.3012 9.2124 29.6010 8.9094 25.2377 20.2537 3.7040 
23 -11.4230 -19.2442 -4.4082 30.6383 50.3642 9.1867 4.4168 
24 20.9993 17.2469 23.9677 12.5814 20.9384 19.1480 6.3318 
25 49.2166 8.4072 20.2067 13.0670 -4.4576 17.2893 7.7563 
26 15.1831 -5.7892 10.2690 50.9044 -3.1274 13.4893 8.5016 
27 -4.5292 23.1930 1.5856 11.2009 8.3982 7.9710 8.4326 
28 12.1605 32.9610 -6.2412 22.9162 23.8455 17.1297 9.5632 
29 50.9310 0.1899 19.1471 34.1533 -6.1376 19.6580 10.8756 
30 26.5808 21.4476 21.8866 16.5215 44.5801 26.2046 12.8683 
31 20.2410 37.9233 25.2338 24.6357 31.1096 27.8300 14.8134 
32 25.0577 47.8895 47.0330 -0.1820 14.2451 26.8100 16.3729 
33 12.6246 -0.9757 16.4309 29.0721 15.1310 14.4579 16.1240 
34 0.4503 13.6506 24.2213 21.1630 22.2876 16.3559 16.1541 
35 2.5091 28.5788 31.8641 -0.6680 -16.0743 9.2432 15.2557 
36 20.2388 43.9449 9.1642 -17.6428 24.7072 16.0838 15.3633 
37 -1.0616 -22.1999 7.5841 9.4387 3.2935 -0.5877 13.2897 
38 -5.5001 17.1709 7.7739 23.2510 25.0916 13.5588 13.3247 
39 45.7952 -2.5771 39.6765 26.8738 15.1178 24.9785 14.8397 
40 20.8106 19.6028 -12.7354 19.0985 10.4733 11.4513 14.3992 
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Table 11:  Out-of-control data from the Weibull distribution when 𝜃෠ ൌ 𝑀𝑂𝑀 
 

 Observations   
Subgroup 
j 

Y1 Y2 Y3 Y4 Y5 𝑴𝑶𝑴𝒋 𝑬𝒊,𝑴𝑶𝑴 

21 2.4461 4.0877 2.1688 3.6458 3.3105 3.1318 1.5049 
22 2.3784 2.4081 6.4728 3.2901 4.2427 3.0798 1.7096 
23 2.8869 2.5237 2.2239 6.4685 4.3474 2.9955 1.8768 
24 4.5164 2.2132 3.6435 3.7597 3.9802 3.7945 2.1261 
25 2.1533 2.4440 2.6830 2.6197 2.3430 2.4486 2.1680 
26 3.3100 2.2805 6.3733 2.8995 3.1506 3.1201 2.2918 
27 2.5039 2.3922 2.6576 3.9593 13.5661 2.5179 2.3212 
28 3.0399 6.3140 2.6764 3.9681 3.1277 3.2030 2.4358 
29 4.7690 4.0389 4.4745 2.4322 3.4105 3.8250 2.6164 
30 2.9511 3.3606 8.5286 5.9948 2.7776 3.0298 2.6701 
31 2.2206 2.4236 8.5199 4.3872 3.1930 3.0561 2.7203 
32 2.4654 2.1851 11.3036 6.4257 3.4316 3.6269 2.8382 
33 2.1245 3.6642 2.2679 3.6682 10.7174 2.9312 2.8503 
34 2.8386 8.3983 5.9610 5.0913 7.3283 5.9235 3.2498 
35 2.4707 2.5665 2.8572 3.4479 8.6840 2.8356 3.1959 
36 3.5672 3.0087 8.7163 16.0299 8.6508 7.9946 3.8198 
37 3.9140 4.2103 2.6949 3.4503 4.1734 3.9370 3.8350 
38 3.0698 2.9526 4.9486 4.9262 2.5090 3.3644 3.7738 
39 5.9705 3.4702 4.0483 5.2601 6.3110 5.0120 3.9348 
40 2.7269 4.0604 2.6886 2.3821 4.4508 2.5992 3.7612 

 
 
 
 
 
 

Table 12:  Out-of-control data from the Weibull distribution when 𝜃෠ ൌ 𝑋ത 
 

 Observations   
Subgroup 
j 

Y1 Y2 Y3 Y4 Y5 𝑿ഥ𝒋 𝑬𝒊,𝑿ഥ  

21 2.3231 3.9647 2.0459 3.5228 3.1875 3.0088 1.8290 
22 2.2554 2.2851 6.3498 3.1671 4.1197 3.6354 2.0638 
23 2.7639 2.4008 2.1009 6.3456 4.2244 3.5671 2.2593 
24 4.3934 2.0903 3.5205 3.6367 3.8572 3.4996 2.4205 
25 2.0303 2.3210 2.5600 2.4967 2.2200 2.3256 2.4082 
26 3.1870 2.1575 6.2503 2.7765 3.0277 3.4798 2.5475 
27 2.3810 2.2692 2.5347 3.8363 13.4431 4.8929 2.8524 
28 2.9169 6.1910 2.5534 3.8452 3.0047 3.7022 2.9629 
29 4.6460 3.9159 4.3515 2.3092 3.2875 3.7020 3.0590 
30 2.8281 3.2376 8.4056 5.8718 2.6546 4.5995 3.2592 
31 2.0976 2.3006 8.3969 4.2642 3.0700 4.0259 3.3589 
32 2.3424 2.0621 11.1806 6.3027 3.3086 5.0393 3.5773 
33 2.0015 3.5412 2.1449 3.5452 10.5944 4.3654 3.6798 
34 2.7156 8.2753 5.8380 4.9683 7.2053 5.8005 3.9555 
35 2.3477 2.4435 2.7343 3.3249 8.5610 3.8823 3.9460 
36 3.4442 2.8857 8.5934 15.9069 8.5278 7.8716 4.4563 
37 3.7910 4.0873 2.5719 3.3274 4.0504 3.5656 4.3405 
38 2.9468 2.8296 4.8256 4.8032 2.3860 3.5583 4.2388 
39 5.8476 3.3472 3.9253 5.1372 6.1880 4.8890 4.3233 
40 2.6039 3.9375 2.5657 2.2592 4.3279 3.1388 4.1694 

 
 
 


