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ABSTRACT 
 
In the last decade, the significant growth of the volume of analysis data has set the high level of importance 
of data mining field. This field contains a vast amount of different methods and techniques for knowledge 
extraction. One of the highly-demanded areas of this field is sequential pattern mining (SPM), which 
includes many methods for detection of frequent sequential patterns in different types of input ordered data 
sets. The goal of this work is to compare the efficiency of several types of SPM algorithms, and to identify 
the most applicable algorithm to deal with data from physical experiments used in scientific analysis tasks 
(e.g., analysis data from the ATLAS experiment at the Large Hadron Collider, CERN, Switzerland), and to 
extract association rules from experimental data samples. This paper presents the analysis of 3 types of 
SPM algorithms - horizontal and vertical, as well as pattern-growth, with the emphasis on algorithms’ 
performance. There were prepared corresponding test data sets which are specific and typical for analysis 
tasks in the ATLAS experiment. 
Keywords: Sequences, Sequential Pattern Mining, Frequent Pattern Mining, Items Mining, Searching 

Patterns, Association Rules, Vertical Format, Horizontal Format, Pattern-Growth 
 
 
1. INTRODUCTION 
 

In the last 5-7 years, due to the explosive 
growth of the volume of stored information, more 
and more attention has been paid to intellectual 
analysis of stored data (i.e., data mining) in various 
fields of human activities [1]. The data obtained as 
a result of analysis may be presented as Sequential 
Patterns, as properties of data (e.g. decision trees), 
as clustering (e.g. as Chernoff faces), etc. This 
article is devoted to representation of knowledge as 
Sequential Patterns. Searching for Sequential 
Patterns is one of the fundamental goals of Data 
Mining [2]. This area of activities starts with the 
article of Agrawal and Shrikant [3]. Sequential 
Pattern Mining is widely used today in various 
fields, for example, in analyzing web clicks of users 
[4], in bioinformatics [5], in market [6] and text [7] 
analysis, mining [8] and many other areas of human 
activity. 

The Large Hadron Collider is the most 
powerful tool in high-energy physics today, as well 
as a source of large amounts of data, with which 
scientists collaborate around the world. One of the 
general-purpose experiments the ATLAS 
experiment [9] uses the PanDA (Production and 
Distributed Analysis System) workload 

management system [10] to process experimental 
data at distributed computing centers around the 
world (up to 2 million computing jobs daily). The 
placement of new and presented data, as well as  
corresponding copies (i.e., replicas), is regulated by 
an intelligent system for managing distributed data 
and various internal policies of the experiment. 

Thus, if it is impossible to route the processing 
task to the corresponding data center where the 
input data sets are located, this data is moved to the 
selected center (which can lead to an increase in the 
job execution timeout). As part of the research 
work carried out at the University of Texas at 
Arlington [11], a study was conducted to 
investigate user activity in the PanDA system and 
to identify the systematic use of certain groups of 
data sets that showed that there are established 
sequences of data sets used for different classes and 
groups of computing jobs. 

Therefore, this information allows us to 
predict in advance the next set of data in which the 
user might be interested based on the identified 
"pattern" of the data used by other users and, if 
necessary, prepare this data for movement (which 
in this case will shorten the possible waiting time). 
To detect such sequences, SPM algorithms are 
used, depending on the methods of presenting the 
original data and differing in the required 
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computing resources. The purpose of this article is 
to compare Sequential Pattern Mining algorithms, 
and to identify the most effective of them (for the 
possibility of using when analyzing user activity in 
the PanDA system of the ATLAS experiment). 

To ensure reliability, records for data 
processing are stored in logs having different 
semantic structure. Therefore, to check SPM 
algorithms under the same conditions, it is 
necessary to either to correct the code of the ready 
algorithms or to use / create a parser, which would 
lead the data to the format that is understood by this 
or that algorithm. 

Another obstacle is the presence of a 
sufficiently representative set of SPM algorithms, 
the appearance of new, more efficient algorithms, 
and also works comparing individual, often two, 
algorithms of a certain type. For example, there are 
comparisons between SPAM and PrefixSpan [12], 
GSP and PrefixSpan, [13], TreeProjection and FP-
growth [14], and many others [15, 16]. 

In this article, the focus is made on 
comparison of the best in their types of algorithms 
SPADE, PrefixSpan, FP-growth with the basic 
underlying algorithm of Apriori in solving the task 
of effective Sequential Pattern Mining when 
processing the sets of events of different semantic 
structure obtained (using test data of the PanDA 
system). 
 
2. MATERIALS AND METHODS 

Let us describe the formal statement of 
Sequential Pattern Mining problem, and then a 
pseudo-code of SPM algorithms, which we will 
compare to each other when working with sets of 
events of various semantic structures. 

 
2.1 Formulation of the problem 

There is a training sample represented as 
matrix "objects, symptoms". Let X be the object 
space;  
F = {f1,…. ,fn} – is the space of binary attributes 
(items), where fj: X → {0,1};  
Xl = {x1,…., xl} ⊂ X is the training set.  
Each subset (set of attributes) φ ⊆ F corresponds to 
a conjunction:  

 
If φ(x) = 1, then "attributes from φ are also found in 
set x". 
Let us introduce a concept like frequency of 
occurrence or support for φ in sample Xl 

 

If (߮) ≥ ߜ, then "set φ is frequent", where parameter 
 .is the minimum support (Minsupp) ߜ
The association rule φ → y is a pair of disjoint sets 
⊆ F, such that:  

a) Sets φ and y are often found together, i.e. ݒ 
(߮ ∪ у) ≥ ߜ;  

b) If ߮ is found, y is also often found,  

 
where ݒ(у|߮) is the confidence of the rule; 

 .is the minimum confidence (MinConf) אּ
Example: if dataset i - “φ” is processed, dataset j - 
“y” will also be processed with probability ν(y|φ) = 
60%; both datasets will be processed with 
probability ν(φ∪y) = 2%. 

From (1), we have the antimonotone property: 
for any ψ, φ ⊆ F φ ⊆ ψ it follows that 

. Consequences: 
a) if ψ is frequent, all its subset φ ⊂ ψ are 

frequent, 
b) if φ is not frequent, then all sets ψ ⊃ φ are 

also not frequent, 
c)  for all φ, ψ. 
The task of finding association rules consists 

of two stages. First, searching for frequently met 
(further referred to as "frequent") sets, followed by 
searching for association rules for these sets. The 
search for frequent sets is based on viewing the 
entire transaction database, while searching for 
association rules, it is sufficient to use a simple 
procedure in RAM (in memory).  

We need the pseudo-code of analyzed 
algorithms to understand in which steps some of 
them are superior to others, and why. 

 
2.2 Algorithm Apriori 

The idea of the algorithm involves the 
following four steps. 
Step 1. Allocating one-element (single) frequent 
subsequences. 
Step 2. From the list of single subsequences, we 
generate lists of two-element subsequences by 
joining sequences to one-element sequences while 
they are listed one by one. 
Step 3. From the list of two-element subsequences 
we generate a list of three-element subsequences by 
the analogy with step 2. 
Step 4. The subsequences satisfying the Minsupp 
value are chosen. 

The pseudo-code of the algorithm can be seen 
below. 
Input: Xl – is the training sample; 

minimum support for δ. 
Output: R ={(φ,y)} is a list of association rules; 
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1: the set of all frequent source characteristics:  
G1: ={f ∈ F ∣ ν(f) δ}; 

2: for all j= 2,...,n 
3: the set of all frequent sets of power j: 
Gj: = {φ ∪ {f} ∣ φ ∈ Gj−1, f ∈ G1, ν(φ ∪ {f}) δ}; 
4:  if Gj= ∅ then 
5: exiting the loop on j; 
6: R:=∅; 
7: for all ψ ∈Gj, j= 2,...,n 
8: AssocRules(R,ψ, ∅). 
 
2.3 Algorithm SPADE 

The idea of the algorithm consists in building 
a vertical database (table), where the following will 
be specified for each one-element sequence: 

- sequence identifier (SequenceID or SID); 
- element identifier (ElementID or EID) is the 

sequence number of a subsequence in a large 
sequence, which can be separated by timestamps 
(timei) or some separators, for example, brackets; 

- a set of elements (items).  
Next two-element tables are obtained from one-
element tables with a “join” operation. 

The pseudo-code of the algorithm can be seen 
below. 
Input: C – is the Atomset; 

minimum support for δ;  
Output: F – is a list with frequent sets; 
SPADE (A, δ, F) 
1: for all Ai∈C 
2: Ti  {} 
3: for all Aj∈C, j≥I and all combinations of B from 
Ai,Aj 
4: L(B) = Temporary TID-list of join of L(Ai) from 
L(Aj) 
5: if Supp(B) ≥ δ then 
6: Ti  Ti {B} 
7:  F=F∪B 
8:  Spade(Ti , δ , F ) 
 
2.4. Algorithm PrefixSpan 

The idea of PrefixSpan algorithm is to first 
find all frequent items in the original database and 
add them to the current template, thereby obtaining 
new frequent sequences, and then to search for 
frequent sequences of greater length based on 
projected databases.  

In order to find all patterns of sequential 
events in database D, PrefixSpan(<>, D) is to be 
invoked. Creating projected databases may greatly 
affect performance when working with large 
amounts of data, therefore, instead of physical 
creation of projections, the so-called pseudo-
projection is used. In case of recursive invocation 
of the PrefixSpan method, instead of the created 

projection, it is passed pointers to the minimum 
position possible occurrences of the elements into 
client sequences after the current template. A set 
consisting of the client ID, the transaction ID in the 
client sequence and the position in the transaction is 
considered to be a pointer. Due to the pseudo-
projection, the speed of the algorithm operation is 
significantly increased. In addition, running the 
algorithm requires much less memory.  

The pseudo-code of the algorithm can be seen 
below. 
PrefixSpan(s, D|s): 
Input: s – is the pattern of consecutive events; 

 D|s – is s-projection of the original database D 
if s is not an empty sequence <>, otherwise D|s = D. 
Output: s – is the pattern of sequential events. 
1. Find all frequent items b from D|s, such that: 
 A) b may be attached to the last substantive 
set of s, forming a frequent sequence;  
 B) subject set (b) may be added to s, forming a 
frequent sequence. 
2. For each frequent item b: 
 А) Add b to s, forming new pattern s’;  
 B) Add s’ to the result; 
3. For each new template s’: 
 А) Build s’-projection D|s’; 
 B) Invoke PrefixSpan(s’, D|s’); 

 
2.5 Algorithm FP-growth 

The basis of this algorithm is a new data 
structure in the form of a prefix tree. First, a prefix 
tree (phase 1) is built, then frequent sets are 
searched for in it (phase 2). 

The pseudo-code of the algorithm is shown 
below. 
Input: Xl – is the training sample; 
Output: FP-tree T, <fv, cv, Sv>v∈T; 
1: normalize symptoms f∈F : ν(f) δ in descending 
order ν(f); 
Stage 1: building an FP-tree T on sample Xl 
2: for all xi∈Xl 
3: v:=v0; 
4:  for all f ∈F such that f(xi) ≠ 0 
5: if there is no child vertex u∈Sv:fu=f then 

6: 6: create new vertex u; Sv:=Sv ∪{u}; fu:=f; cu:= 0; 
Su:= ∅; 
7: cu: =cu+ 1/ℓ; v: =u; 
8: Stage 2: recursive search for frequent sets by the 
FP-tree FP T-find(T, ∅,∅); 
Input: FP-tree T, set φ ⊂ F, list of rules R; 
Output: add all frequent sets that contain φ to R; 
1: PROCEDURE FP-find(T,φ,R); 
2: for all f ∈F : V(T,f)≠∅ by levels from bottom to 
top 
3: if C(T,f) δ then 
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4: add frequent set φ∪{f} to list R: R:=R ∪ {φ ∧ f}; 
5: build a conditional FP-tree T':=T|f, namely  
T':= FP-tree by sub-sample {xi∈Xl: f(xi) = 1}; 
6: from T', find all frequent sets, including φ and f: 
FP-find (T′, φ∪{f}, R); 
Conditional FP-tree T':=T|f may be built quickly, 
by using only the FP-tree T and without looking 
into the  
sample. 
Input: FP-tree T, attribute f∈F; 
Output: conditional FP-tree T'=T|f; 
1: leave in the tree only the vertices on the paths 
from vertices v of attribute f from bottom up to root 
v0:  

 
2: raise the value of counters cv from vertices v ∈ 
V(T′,f) bottom-up according to rule 

 
3: remove from T' all vertices of attribute f; their 
subtrees are not required and are even not created, 
since at the moment  
 FP-find invocation, all sets that contain elements 
below f have already been viewed. 
 
2.6 Associative Rules 

On the example of continuing the Apriori 
algorithm, we will show how association rules are 
built on found sets. This procedure is versatile and 
may be applied for all considered algorithms. 
Input: R – is the list of association rules; 

 (φ,y) – is the associative rule. 
Output: R – is the list of association rules; 
 (φ,y) –is the associative rule. 
1: PROCEDURE AssocRules (R, φ, y); 
2: for all f∈φ 
3: φ′: =φ\ {f}; y′:=y∪ {f}; 
4: if ν(y'|φ') then 
5: add associative rule (φ',y') to list R; 
6: if |φ'|>1 then 
7: AssocRules (φ′,y′); 

The provided pseudo-code of the algorithms 
allows revealing the following ideas, which are 
easily visible in texts: 
1) the Apriori algorithm uses almost full  
 
enumeration of variants, which will presumably 
lead to bad performance during the test. 
2) the use of a vertical data format by algorithm 
SPADE will supposedly lead to good performance 
in processing frequent sequences with many 
datasets;  

3) the PrefixSpan algorithm uses pseudo-projection, 
which implies good performance when working 
with non-homogeneous data. 
4) the FP-growth algorithm builds prefix trees, 
which will supposedly result in good enough 
performance when working with homogeneous 
data. 
 
3. RESULTS 
3.1 Test Data And Information About The Test 

Computer 
Testing was performed with the use of a MSI 

GT70 notebook PC with Intel Core i7 processor 
(clock speed 2.4 GHz) and 16Gb RAM. To avoid 
introducing errors into the operation of the 
algorithms from the features of a certain 
development environment, it was decided to use 
Windows prompt.  

The algorithms were tested on sequences of 
user activities (i.e., user Id with a list of ordered 
used items Ids) that were collected from user 
computing tasks/jobs (figure 1) controlled by the 
PanDA workload management system ("Production 
and Distributed Analysis") [23]. 

PanDA database contains records about 
computing jobs that are run to perform user and 
group analysis (to process ATLAS data). These 
records brings the connection between a particular 
user (job’s owner) and dataset (job’s input data) 
that will be processed, thus jobs describe the 
relation between the user and required items with a 
certain set of attributes. The most significant job 
attributes in context of our research are the 
following: prodUserId (the owner of the job), 
prodDBlock (input data or data pattern that contain 
job input files),creationTime (job creation time), 
jobStatus (job processing state, e.g., successfully 
finished), prodSourceLabel (type of the job, e.g., 
user analysis, production, local system, test, etc.), 
transferType (method and type of file transfer), 
processingType (type of the client that processes 
the job), computingSite (computing center where 
job is processed), destinationDBlock (name of the 
destination dataset, that is used for the outputs of an 
associated set of jobs).  

Dataset sequences have different indicators: 
- the average number of transactions (T) for 
heterogeneous databases or the exact number of 
transactions for homogeneous databases (C) in 
client sequences, 
- the average number of items in transactions (I) 
and 
- number of client transactions (D). 
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 Figure 1. An example of test data 

 
Figure 1 shows that the first PanDA user has used a 
sequence of datasets (i.e., items) with numbers: 
20,156,158,189,204 ..., etc. Minimizing waiting 
time for loading the next dataset, it is required to 
build such a template/pattern so that when the user 
uses datasets with the numbers 20,156,158,189, we 
preload the dataset with the number 204, if we 
guessed, and the user used it for the analysis, then 
we load the dataset with the number 209 etc. 

To test the algorithms of searching for 
effective sequences, six types of journals (see Table 
1). 

 
 
 
 

Table 1. Types of source data for testing SPM algorithms 
The type of 
source data 

T C I D 

Dataset1 - 10  10  1,000  
Dataset2 - 20 20 10,000  
Dataset3 - 73 73 10,000 
Dataset4 25 - 10  10,000 
Dataset5 10  - 4  100,000 
Dataset6 40 - 10  100,000 
 
3.2 Results of the comparative analysis 

As a result of the testing the algorithms on 
provided datasets, the following results have been 
obtained. For Dataset1, the best time for all support 
indicators was shown by the FP-growth algorithm 
(Figure 2). 

 

 
 Figure 2. Schedule of algorithms for Dataset1 

 
For Dataset2 and Dataset3, the best time for 

all support indicators was also shown by the FP-
growth algorithm (Figures 3 and 4). This algorithm 
was able to calculate on the test computer patterns 
even for 60% support. It can also be assumed that if 

a supercomputer is used, this algorithm would be 
able to find the sequence for 1% of support, too. 
For Dataset4, the best for minimum support was the 
PrefixSpan algorithm, and for large values - the FP-
Growth algorithm (Figure 5). 
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For Dataset 5, the best time for one percent 
support was shown by the PrefixSpan algorithm, 

and for 10% – by the FP-Growth algorithm (Figure 
6). 
 

Figure 3. Schedule of algorithms for Dataset2 
 

 
 Figure 4. Schedule of algorithms for Dataset3 
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 Figure 5. Schedule Of Algorithms For Dataset4 

 
For Dataset 6, the best for support in 1%, 5% 

and 10% was shown by the PrefixSpan algorithm, 
and for support in 20% - by the FP-Growth 
algorithm (Figure 7). 

By the results of comparative analysis of SPM 
algorithms all ordered transactions about activities 
of PanDA users may be divided into two types:  

a) highly homogeneous data. To process data 
of this type, the FP-growth algorithm proved very 
efficient, since for many equal (or very similar) 
sequences, a tree is built, where the number of 
vertices is the same; this greatly reduces the 
dimensionality of the problem and the search time; 
 

 

 
 Figure 6. Schedule Of Algorithms For Dataset5 
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 Figure 7. Schedule Of Algorithms For Dataset6 

 
b) rare (heterogeneous) data. The PrefixSpan 
algorithm proved efficient to process data of this 
type. The FP-growth algorithm for small supports 
will have too large forests of trees, which will have 
a negative impact on the speed of search.  

In addition, when building association rules  

for the minimum significance MinСonf=70% for all 
samples it turned out that the time of the procedure 
of finding association rules was short, and even for 
large samples was less than a minute. An example 
of rules found for Dataset2 with MinSupp = 20% is 
shown in  Figure 8. 
 

 
Figure 8. An Example Of Built Association Rules 

 
Figure 8 shows the activity patterns of the users of 
data sets represented in the form of standard rules: 
"If (a loaded sequence of datasets), then (download 
the specified dataset) with probability (...)". Here 
the order of the elements of the sequence is 
important. 
For example, "If (282, 20, 156, 300, 310, 315, 320, 
383, 239, 189, 285), then (209) with the probability 
of (1.0)". 

 
4. DISCUSSION 
 

The number of publications about SPM 
algorithms of various types is growing, as there is 
the growing number of attempts to use them in 
various fields [4-8]. There are also articles that 
describe algorithms of various types, for example, 
those described in [13, 17-19] and their use. 

There is an opportunity to compare 
performance of the SPM algorithms in identical 
computation conditions on specially prepared test 
examples of various semantic structures. It would 
seem that this opportunity should arouse interest in 
determining the areas of efficient use of various 
algorithms, however, this far, in publications we 
see only attempts of comparative analysis of two 
algorithms on coherent repeatable examples, or 
comparisons of the algorithms, where the presented 
experimental results are difficult to repeat, or even 
explain. For example, in paper [13], the algorithms 
seem to be compared correctly, but it is not 
explained how and why the GSP algorithm should 
be compared to other algorithms if they initially do 
not match the types of the tasks being resolved. On 
the other hand, in the same article [13] the 
PrefixSpan algorithm, compared to SPADE, 
showed the best time results, which is also seen in 
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our studies; however, in our experiments, the 
compared times are much more different. 

In paper [14] the FP-growth algorithm was 
also better than the Apriori algorithm, but it is not 
clear why there are so small values of algorithms’ 
running time with such a large sample. Even from 
the theoretical point of view, such values are 
impossible. In paper [20], the SPADE algorithm 
proved to be much better than the PrefixSpan 
algorithm on many samples. It is very strange, as 
the SPADE algorithm is much more complex than 
PrefixSpan, which is evident during analysis of the 
pseudo-code of these algorithms. And such gain 
may only be in inhomogeneous samples with such 
support values, under which the PrefixSpan 
algorithm requires building many pseudo-
projections. 

The approach to the comparative analysis of 
SPM algorithms proposed in this article is based on 
comparing them by repeated test cases of various 
semantic structures, and is a comprehensive study 
of the most efficient algorithms in their classes. The 
results of work may be used for solving the 
problems of effective processing of datasets at LHC 
experiments.. 

It should be noted that there is no universal 
SPM algorithm that would be equally well suited 
for processing data with various semantic structure. 
Therefore, the search will continue. 

 
5. CONCLUSION 
 

This work is devoted to identifying areas of 
efficient use of SPM algorithms of three, the most 
progressive types - horizontal and vertical format 
and "pattern-growth". For this purpose, at the stage 
of preliminary filtering, the best in their class 
algorithms were selected, like SPADE, PrefixSpan, 
FP-growth. 

For comparing the algorithms, their pseudo-
code was given, and special test samples of the 
original data sets characteristic for the PanDa 
system of the ATLAS experiment at the Large 
Hadron Collider, were prepared and differed in 
their semantic structure. 

Comparison of the algorithms for 
homogeneous initial data sets with few (10-20) 
transactions (courses) for all values of support 
identified the FP-growth algorithm as the leading 
one. When the number of transactions increases, 
this algorithm remains the best. The difficulty of 
using this algorithm arises when value MinSupp is 
<60%, which is explained by an increased size of 
built prefix trees to such a magnitude, where RAM 
is filled quickly (in our experiments, it was 190 

seconds). Therefore, obtaining more accurate 
results requires using a more powerful computer.  

Comparison of algorithms for heterogeneous 
source data sets for almost all additional testing 
conditions identified the PrefixSpan algorithm as 
the best one. 

In conclusion, based on the constructed 
sequence patterns, associative rules for a priori 
loading of data sets into temporary memory of 
supercomputers or computational clusters. 

Using the results of this work by the PanDA 
workload management system in the ATLAS 
experiment will allow to control the loading of the 
studied data files into the computing environment, 
without waiting for an explicit request from the 
user task. 

Another important problem of sequential 
template modeling today is the verification of 
algorithms for completeness and correctness. This 
problem is important because incomplete or 
incorrect algorithms, for all their efficiency, will 
not work with a full set of correct templates, and 
accordingly will not be able to guarantee the quality 
of the solutions obtained. 

For the problem of sequential modeling of 
regularities, a complete algorithm is one that can 
find all the necessary sequential patterns, and the 
correct algorithm is an algorithm that correctly 
calculates the number of occurrences. 

For example, the article [21] covers the 
problem of the completeness of one of the most 
popular algorithms - the CloSpan algorithm, and in 
[22] it is proved that it is not complete. 

This algorithm for reducing the search space 
applies some theoretical calculations based on 
heuristics, which, naturally, are not universal and 
suitable for all types of analyzed sequences. 
CloSpan works well for databases that contain 
sequences of sets of items that contain one item in 
each. But in cases where the database contains 
sequences of sets containing more than one element 
in a set of elements, the algorithm may skip some 
consecutive patterns, which indicates that it is 
incomplete. 
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