
Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4306

A STUDY OF SEQUENTIAL PATTERN MINING
ALGORITHMS FOR USE IN DETECTION OF USER

ACTIVITY PATTERNS

MAXIM DUNAEV1, KONSTANTIN ZAYTSEV1, MIKHAIL TITOV2

1National Research Nuclear University MEPhI, 115409, Russia, Moscow, Kashirskoe Avenue 31

2National Research Center "Kurchatov Institute", 123182, Russia, Moscow, Academician Kurchatov sq., 1

ABSTRACT

In the last decade, the significant growth of the volume of analysis data has set the high level of importance
of data mining field. This field contains a vast amount of different methods and techniques for knowledge
extraction. One of the highly-demanded areas of this field is sequential pattern mining (SPM), which
includes many methods for detection of frequent sequential patterns in different types of input ordered data
sets. The goal of this work is to compare the efficiency of several types of SPM algorithms, and to identify
the most applicable algorithm to deal with data from physical experiments used in scientific analysis tasks
(e.g., analysis data from the ATLAS experiment at the Large Hadron Collider, CERN, Switzerland), and to
extract association rules from experimental data samples. This paper presents the analysis of 3 types of
SPM algorithms - horizontal and vertical, as well as pattern-growth, with the emphasis on algorithms’
performance. There were prepared corresponding test data sets which are specific and typical for analysis
tasks in the ATLAS experiment.
Keywords: Sequences, Sequential Pattern Mining, Frequent Pattern Mining, Items Mining, Searching

Patterns, Association Rules, Vertical Format, Horizontal Format, Pattern-Growth

1. INTRODUCTION

In the last 5-7 years, due to the explosive
growth of the volume of stored information, more
and more attention has been paid to intellectual
analysis of stored data (i.e., data mining) in various
fields of human activities [1]. The data obtained as
a result of analysis may be presented as Sequential
Patterns, as properties of data (e.g. decision trees),
as clustering (e.g. as Chernoff faces), etc. This
article is devoted to representation of knowledge as
Sequential Patterns. Searching for Sequential
Patterns is one of the fundamental goals of Data
Mining [2]. This area of activities starts with the
article of Agrawal and Shrikant [3]. Sequential
Pattern Mining is widely used today in various
fields, for example, in analyzing web clicks of users
[4], in bioinformatics [5], in market [6] and text [7]
analysis, mining [8] and many other areas of human
activity.

The Large Hadron Collider is the most
powerful tool in high-energy physics today, as well
as a source of large amounts of data, with which
scientists collaborate around the world. One of the
general-purpose experiments the ATLAS
experiment [9] uses the PanDA (Production and
Distributed Analysis System) workload

management system [10] to process experimental
data at distributed computing centers around the
world (up to 2 million computing jobs daily). The
placement of new and presented data, as well as
corresponding copies (i.e., replicas), is regulated by
an intelligent system for managing distributed data
and various internal policies of the experiment.

Thus, if it is impossible to route the processing
task to the corresponding data center where the
input data sets are located, this data is moved to the
selected center (which can lead to an increase in the
job execution timeout). As part of the research
work carried out at the University of Texas at
Arlington [11], a study was conducted to
investigate user activity in the PanDA system and
to identify the systematic use of certain groups of
data sets that showed that there are established
sequences of data sets used for different classes and
groups of computing jobs.

Therefore, this information allows us to
predict in advance the next set of data in which the
user might be interested based on the identified
"pattern" of the data used by other users and, if
necessary, prepare this data for movement (which
in this case will shorten the possible waiting time).
To detect such sequences, SPM algorithms are
used, depending on the methods of presenting the
original data and differing in the required

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4307

computing resources. The purpose of this article is
to compare Sequential Pattern Mining algorithms,
and to identify the most effective of them (for the
possibility of using when analyzing user activity in
the PanDA system of the ATLAS experiment).

To ensure reliability, records for data
processing are stored in logs having different
semantic structure. Therefore, to check SPM
algorithms under the same conditions, it is
necessary to either to correct the code of the ready
algorithms or to use / create a parser, which would
lead the data to the format that is understood by this
or that algorithm.

Another obstacle is the presence of a
sufficiently representative set of SPM algorithms,
the appearance of new, more efficient algorithms,
and also works comparing individual, often two,
algorithms of a certain type. For example, there are
comparisons between SPAM and PrefixSpan [12],
GSP and PrefixSpan, [13], TreeProjection and FP-
growth [14], and many others [15, 16].

In this article, the focus is made on
comparison of the best in their types of algorithms
SPADE, PrefixSpan, FP-growth with the basic
underlying algorithm of Apriori in solving the task
of effective Sequential Pattern Mining when
processing the sets of events of different semantic
structure obtained (using test data of the PanDA
system).

2. MATERIALS AND METHODS

Let us describe the formal statement of
Sequential Pattern Mining problem, and then a
pseudo-code of SPM algorithms, which we will
compare to each other when working with sets of
events of various semantic structures.

2.1 Formulation of the problem

There is a training sample represented as
matrix "objects, symptoms". Let X be the object
space;
F = {f1,…. ,fn} – is the space of binary attributes
(items), where fj: X → {0,1};
Xl = {x1,…., xl} ⊂ X is the training set.
Each subset (set of attributes) φ ⊆ F corresponds to
a conjunction:

If φ(x) = 1, then "attributes from φ are also found in
set x".
Let us introduce a concept like frequency of
occurrence or support for φ in sample Xl

If (߮) ≥ ߜ, then "set φ is frequent", where parameter
 .is the minimum support (Minsupp) ߜ
The association rule φ → y is a pair of disjoint sets
⊆ F, such that:

a) Sets φ and y are often found together, i.e. ݒ
(߮ ∪ у) ≥ ߜ;

b) If ߮ is found, y is also often found,

where ݒ(у|߮) is the confidence of the rule;

 .is the minimum confidence (MinConf) אּ
Example: if dataset i - “φ” is processed, dataset j -
“y” will also be processed with probability ν(y|φ) =
60%; both datasets will be processed with
probability ν(φ∪y) = 2%.

From (1), we have the antimonotone property:
for any ψ, φ ⊆ F φ ⊆ ψ it follows that

. Consequences:
a) if ψ is frequent, all its subset φ ⊂ ψ are

frequent,
b) if φ is not frequent, then all sets ψ ⊃ φ are

also not frequent,
c) for all φ, ψ.
The task of finding association rules consists

of two stages. First, searching for frequently met
(further referred to as "frequent") sets, followed by
searching for association rules for these sets. The
search for frequent sets is based on viewing the
entire transaction database, while searching for
association rules, it is sufficient to use a simple
procedure in RAM (in memory).

We need the pseudo-code of analyzed
algorithms to understand in which steps some of
them are superior to others, and why.

2.2 Algorithm Apriori

The idea of the algorithm involves the
following four steps.
Step 1. Allocating one-element (single) frequent
subsequences.
Step 2. From the list of single subsequences, we
generate lists of two-element subsequences by
joining sequences to one-element sequences while
they are listed one by one.
Step 3. From the list of two-element subsequences
we generate a list of three-element subsequences by
the analogy with step 2.
Step 4. The subsequences satisfying the Minsupp
value are chosen.

The pseudo-code of the algorithm can be seen
below.
Input: Xl – is the training sample;

minimum support for δ.
Output: R ={(φ,y)} is a list of association rules;

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4308

1: the set of all frequent source characteristics:
G1: ={f ∈ F ∣ ν(f) δ};

2: for all j= 2,...,n
3: the set of all frequent sets of power j:
Gj: = {φ ∪ {f} ∣ φ ∈ Gj−1, f ∈ G1, ν(φ ∪ {f}) δ};
4: if Gj= ∅ then
5: exiting the loop on j;
6: R:=∅;
7: for all ψ ∈Gj, j= 2,...,n
8: AssocRules(R,ψ, ∅).

2.3 Algorithm SPADE

The idea of the algorithm consists in building
a vertical database (table), where the following will
be specified for each one-element sequence:

- sequence identifier (SequenceID or SID);
- element identifier (ElementID or EID) is the

sequence number of a subsequence in a large
sequence, which can be separated by timestamps
(timei) or some separators, for example, brackets;

- a set of elements (items).
Next two-element tables are obtained from one-
element tables with a “join” operation.

The pseudo-code of the algorithm can be seen
below.
Input: C – is the Atomset;

minimum support for δ;
Output: F – is a list with frequent sets;
SPADE (A, δ, F)
1: for all Ai∈C
2: Ti {}
3: for all Aj∈C, j≥I and all combinations of B from
Ai,Aj
4: L(B) = Temporary TID-list of join of L(Ai) from
L(Aj)
5: if Supp(B) ≥ δ then
6: Ti Ti {B}
7: F=F∪B
8: Spade(Ti , δ , F)

2.4. Algorithm PrefixSpan

The idea of PrefixSpan algorithm is to first
find all frequent items in the original database and
add them to the current template, thereby obtaining
new frequent sequences, and then to search for
frequent sequences of greater length based on
projected databases.

In order to find all patterns of sequential
events in database D, PrefixSpan(<>, D) is to be
invoked. Creating projected databases may greatly
affect performance when working with large
amounts of data, therefore, instead of physical
creation of projections, the so-called pseudo-
projection is used. In case of recursive invocation
of the PrefixSpan method, instead of the created

projection, it is passed pointers to the minimum
position possible occurrences of the elements into
client sequences after the current template. A set
consisting of the client ID, the transaction ID in the
client sequence and the position in the transaction is
considered to be a pointer. Due to the pseudo-
projection, the speed of the algorithm operation is
significantly increased. In addition, running the
algorithm requires much less memory.

The pseudo-code of the algorithm can be seen
below.
PrefixSpan(s, D|s):
Input: s – is the pattern of consecutive events;

 D|s – is s-projection of the original database D
if s is not an empty sequence <>, otherwise D|s = D.
Output: s – is the pattern of sequential events.
1. Find all frequent items b from D|s, such that:
 A) b may be attached to the last substantive
set of s, forming a frequent sequence;
 B) subject set (b) may be added to s, forming a
frequent sequence.
2. For each frequent item b:
 А) Add b to s, forming new pattern s’;
 B) Add s’ to the result;
3. For each new template s’:
 А) Build s’-projection D|s’;
 B) Invoke PrefixSpan(s’, D|s’);

2.5 Algorithm FP-growth

The basis of this algorithm is a new data
structure in the form of a prefix tree. First, a prefix
tree (phase 1) is built, then frequent sets are
searched for in it (phase 2).

The pseudo-code of the algorithm is shown
below.
Input: Xl – is the training sample;
Output: FP-tree T, <fv, cv, Sv>v∈T;
1: normalize symptoms f∈F : ν(f) δ in descending
order ν(f);
Stage 1: building an FP-tree T on sample Xl
2: for all xi∈Xl
3: v:=v0;
4: for all f ∈F such that f(xi) ≠ 0
5: if there is no child vertex u∈Sv:fu=f then

6: 6: create new vertex u; Sv:=Sv ∪{u}; fu:=f; cu:= 0;
Su:= ∅;
7: cu: =cu+ 1/ℓ; v: =u;
8: Stage 2: recursive search for frequent sets by the
FP-tree FP T-find(T, ∅,∅);
Input: FP-tree T, set φ ⊂ F, list of rules R;
Output: add all frequent sets that contain φ to R;
1: PROCEDURE FP-find(T,φ,R);
2: for all f ∈F : V(T,f)≠∅ by levels from bottom to
top
3: if C(T,f) δ then

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4309

4: add frequent set φ∪{f} to list R: R:=R ∪ {φ ∧ f};
5: build a conditional FP-tree T':=T|f, namely
T':= FP-tree by sub-sample {xi∈Xl: f(xi) = 1};
6: from T', find all frequent sets, including φ and f:
FP-find (T′, φ∪{f}, R);
Conditional FP-tree T':=T|f may be built quickly,
by using only the FP-tree T and without looking
into the
sample.
Input: FP-tree T, attribute f∈F;
Output: conditional FP-tree T'=T|f;
1: leave in the tree only the vertices on the paths
from vertices v of attribute f from bottom up to root
v0:

2: raise the value of counters cv from vertices v ∈
V(T′,f) bottom-up according to rule

3: remove from T' all vertices of attribute f; their
subtrees are not required and are even not created,
since at the moment
 FP-find invocation, all sets that contain elements
below f have already been viewed.

2.6 Associative Rules

On the example of continuing the Apriori
algorithm, we will show how association rules are
built on found sets. This procedure is versatile and
may be applied for all considered algorithms.
Input: R – is the list of association rules;

 (φ,y) – is the associative rule.
Output: R – is the list of association rules;
 (φ,y) –is the associative rule.
1: PROCEDURE AssocRules (R, φ, y);
2: for all f∈φ
3: φ′: =φ\ {f}; y′:=y∪ {f};
4: if ν(y'|φ') then
5: add associative rule (φ',y') to list R;
6: if |φ'|>1 then
7: AssocRules (φ′,y′);

The provided pseudo-code of the algorithms
allows revealing the following ideas, which are
easily visible in texts:
1) the Apriori algorithm uses almost full

enumeration of variants, which will presumably
lead to bad performance during the test.
2) the use of a vertical data format by algorithm
SPADE will supposedly lead to good performance
in processing frequent sequences with many
datasets;

3) the PrefixSpan algorithm uses pseudo-projection,
which implies good performance when working
with non-homogeneous data.
4) the FP-growth algorithm builds prefix trees,
which will supposedly result in good enough
performance when working with homogeneous
data.

3. RESULTS
3.1 Test Data And Information About The Test

Computer
Testing was performed with the use of a MSI

GT70 notebook PC with Intel Core i7 processor
(clock speed 2.4 GHz) and 16Gb RAM. To avoid
introducing errors into the operation of the
algorithms from the features of a certain
development environment, it was decided to use
Windows prompt.

The algorithms were tested on sequences of
user activities (i.e., user Id with a list of ordered
used items Ids) that were collected from user
computing tasks/jobs (figure 1) controlled by the
PanDA workload management system ("Production
and Distributed Analysis") [23].

PanDA database contains records about
computing jobs that are run to perform user and
group analysis (to process ATLAS data). These
records brings the connection between a particular
user (job’s owner) and dataset (job’s input data)
that will be processed, thus jobs describe the
relation between the user and required items with a
certain set of attributes. The most significant job
attributes in context of our research are the
following: prodUserId (the owner of the job),
prodDBlock (input data or data pattern that contain
job input files),creationTime (job creation time),
jobStatus (job processing state, e.g., successfully
finished), prodSourceLabel (type of the job, e.g.,
user analysis, production, local system, test, etc.),
transferType (method and type of file transfer),
processingType (type of the client that processes
the job), computingSite (computing center where
job is processed), destinationDBlock (name of the
destination dataset, that is used for the outputs of an
associated set of jobs).

Dataset sequences have different indicators:
- the average number of transactions (T) for
heterogeneous databases or the exact number of
transactions for homogeneous databases (C) in
client sequences,
- the average number of items in transactions (I)
and
- number of client transactions (D).

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4310

 Figure 1. An example of test data

Figure 1 shows that the first PanDA user has used a
sequence of datasets (i.e., items) with numbers:
20,156,158,189,204 ..., etc. Minimizing waiting
time for loading the next dataset, it is required to
build such a template/pattern so that when the user
uses datasets with the numbers 20,156,158,189, we
preload the dataset with the number 204, if we
guessed, and the user used it for the analysis, then
we load the dataset with the number 209 etc.

To test the algorithms of searching for
effective sequences, six types of journals (see Table
1).

Table 1. Types of source data for testing SPM algorithms
The type of
source data

T C I D

Dataset1 - 10 10 1,000
Dataset2 - 20 20 10,000
Dataset3 - 73 73 10,000
Dataset4 25 - 10 10,000
Dataset5 10 - 4 100,000
Dataset6 40 - 10 100,000

3.2 Results of the comparative analysis

As a result of the testing the algorithms on
provided datasets, the following results have been
obtained. For Dataset1, the best time for all support
indicators was shown by the FP-growth algorithm
(Figure 2).

 Figure 2. Schedule of algorithms for Dataset1

For Dataset2 and Dataset3, the best time for

all support indicators was also shown by the FP-
growth algorithm (Figures 3 and 4). This algorithm
was able to calculate on the test computer patterns
even for 60% support. It can also be assumed that if

a supercomputer is used, this algorithm would be
able to find the sequence for 1% of support, too.
For Dataset4, the best for minimum support was the
PrefixSpan algorithm, and for large values - the FP-
Growth algorithm (Figure 5).

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4311

For Dataset 5, the best time for one percent
support was shown by the PrefixSpan algorithm,

and for 10% – by the FP-Growth algorithm (Figure
6).

Figure 3. Schedule of algorithms for Dataset2

 Figure 4. Schedule of algorithms for Dataset3

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4312

 Figure 5. Schedule Of Algorithms For Dataset4

For Dataset 6, the best for support in 1%, 5%

and 10% was shown by the PrefixSpan algorithm,
and for support in 20% - by the FP-Growth
algorithm (Figure 7).

By the results of comparative analysis of SPM
algorithms all ordered transactions about activities
of PanDA users may be divided into two types:

a) highly homogeneous data. To process data
of this type, the FP-growth algorithm proved very
efficient, since for many equal (or very similar)
sequences, a tree is built, where the number of
vertices is the same; this greatly reduces the
dimensionality of the problem and the search time;

 Figure 6. Schedule Of Algorithms For Dataset5

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4313

 Figure 7. Schedule Of Algorithms For Dataset6

b) rare (heterogeneous) data. The PrefixSpan
algorithm proved efficient to process data of this
type. The FP-growth algorithm for small supports
will have too large forests of trees, which will have
a negative impact on the speed of search.

In addition, when building association rules

for the minimum significance MinСonf=70% for all
samples it turned out that the time of the procedure
of finding association rules was short, and even for
large samples was less than a minute. An example
of rules found for Dataset2 with MinSupp = 20% is
shown in Figure 8.

Figure 8. An Example Of Built Association Rules

Figure 8 shows the activity patterns of the users of
data sets represented in the form of standard rules:
"If (a loaded sequence of datasets), then (download
the specified dataset) with probability (...)". Here
the order of the elements of the sequence is
important.
For example, "If (282, 20, 156, 300, 310, 315, 320,
383, 239, 189, 285), then (209) with the probability
of (1.0)".

4. DISCUSSION

The number of publications about SPM
algorithms of various types is growing, as there is
the growing number of attempts to use them in
various fields [4-8]. There are also articles that
describe algorithms of various types, for example,
those described in [13, 17-19] and their use.

There is an opportunity to compare
performance of the SPM algorithms in identical
computation conditions on specially prepared test
examples of various semantic structures. It would
seem that this opportunity should arouse interest in
determining the areas of efficient use of various
algorithms, however, this far, in publications we
see only attempts of comparative analysis of two
algorithms on coherent repeatable examples, or
comparisons of the algorithms, where the presented
experimental results are difficult to repeat, or even
explain. For example, in paper [13], the algorithms
seem to be compared correctly, but it is not
explained how and why the GSP algorithm should
be compared to other algorithms if they initially do
not match the types of the tasks being resolved. On
the other hand, in the same article [13] the
PrefixSpan algorithm, compared to SPADE,
showed the best time results, which is also seen in

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4314

our studies; however, in our experiments, the
compared times are much more different.

In paper [14] the FP-growth algorithm was
also better than the Apriori algorithm, but it is not
clear why there are so small values of algorithms’
running time with such a large sample. Even from
the theoretical point of view, such values are
impossible. In paper [20], the SPADE algorithm
proved to be much better than the PrefixSpan
algorithm on many samples. It is very strange, as
the SPADE algorithm is much more complex than
PrefixSpan, which is evident during analysis of the
pseudo-code of these algorithms. And such gain
may only be in inhomogeneous samples with such
support values, under which the PrefixSpan
algorithm requires building many pseudo-
projections.

The approach to the comparative analysis of
SPM algorithms proposed in this article is based on
comparing them by repeated test cases of various
semantic structures, and is a comprehensive study
of the most efficient algorithms in their classes. The
results of work may be used for solving the
problems of effective processing of datasets at LHC
experiments..

It should be noted that there is no universal
SPM algorithm that would be equally well suited
for processing data with various semantic structure.
Therefore, the search will continue.

5. CONCLUSION

This work is devoted to identifying areas of
efficient use of SPM algorithms of three, the most
progressive types - horizontal and vertical format
and "pattern-growth". For this purpose, at the stage
of preliminary filtering, the best in their class
algorithms were selected, like SPADE, PrefixSpan,
FP-growth.

For comparing the algorithms, their pseudo-
code was given, and special test samples of the
original data sets characteristic for the PanDa
system of the ATLAS experiment at the Large
Hadron Collider, were prepared and differed in
their semantic structure.

Comparison of the algorithms for
homogeneous initial data sets with few (10-20)
transactions (courses) for all values of support
identified the FP-growth algorithm as the leading
one. When the number of transactions increases,
this algorithm remains the best. The difficulty of
using this algorithm arises when value MinSupp is
<60%, which is explained by an increased size of
built prefix trees to such a magnitude, where RAM
is filled quickly (in our experiments, it was 190

seconds). Therefore, obtaining more accurate
results requires using a more powerful computer.

Comparison of algorithms for heterogeneous
source data sets for almost all additional testing
conditions identified the PrefixSpan algorithm as
the best one.

In conclusion, based on the constructed
sequence patterns, associative rules for a priori
loading of data sets into temporary memory of
supercomputers or computational clusters.

Using the results of this work by the PanDA
workload management system in the ATLAS
experiment will allow to control the loading of the
studied data files into the computing environment,
without waiting for an explicit request from the
user task.

Another important problem of sequential
template modeling today is the verification of
algorithms for completeness and correctness. This
problem is important because incomplete or
incorrect algorithms, for all their efficiency, will
not work with a full set of correct templates, and
accordingly will not be able to guarantee the quality
of the solutions obtained.

For the problem of sequential modeling of
regularities, a complete algorithm is one that can
find all the necessary sequential patterns, and the
correct algorithm is an algorithm that correctly
calculates the number of occurrences.

For example, the article [21] covers the
problem of the completeness of one of the most
popular algorithms - the CloSpan algorithm, and in
[22] it is proved that it is not complete.

This algorithm for reducing the search space
applies some theoretical calculations based on
heuristics, which, naturally, are not universal and
suitable for all types of analyzed sequences.
CloSpan works well for databases that contain
sequences of sets of items that contain one item in
each. But in cases where the database contains
sequences of sets containing more than one element
in a set of elements, the algorithm may skip some
consecutive patterns, which indicates that it is
incomplete.

ACKNOWLEDGMENTS

This work was supported by the
Competitiveness Program of National Research
Nuclear University MEPhI (Moscow Engineering
Physics Institute), contract with the Ministry of
Education and Science of the Russian Federation
No. 02.А03.21.0005, 27.08.2013.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4315

REFERENCES
[1] Frasconi, P., Landwehr, N., Manco, G. and

Vreeken, J (2016) Machine Learning and
Knowledge Discovery in Databases European
Conference, Riva del Garda, Italy, September
19-23, 2016, Proceedings, Part III.

[2] Aggarwal C. C. (2016), Recommender Systems:
the textbook, Heidelberg: Springer.

[3] Agrawal R. and Srikant R. (1994) Fast
algorithms for mining association rules, The
International Conference on Very Large
Databases, pp. 487–499.

[4] Singh, H., Kaur, M. and Kaur P. (2017) Web
page recommendation system based on partially
ordered sequential rules. Journal of Intelligent &
Fuzzy Systems, 32, No. 4, pp. 3009-3015.

[5] Krishnan R, Nair A.S. ans Dhar P.K. (2017).
Computational study of ‘HUB’ microRNA in
human cardiac diseases. Bioinformation, vol.
13(1), pp. 17-20.

[6] Maji, G., Sen, S. and Sarkar A. (2017) Share
Market Sectoral Indices Movement Forecast
with Lagged Correlation and Association Rule
Mining. In IFIP International Conference on
Computer Information Systems and Industrial
Management, pp. 327-340. Springer: Cham

[7] Maylawati, D. S., and C PutriSaptawati V (2017)
Set of Frequent Word Item sets as Feature
Representation for Text with Indonesian Slang.
In Journal of Physics: Conference Series, vol.
801, no. 1, p. 012066.

[8] Bai, P. and Ravi G.K. (2016) Efficient
Incremental Itemset Tree for approximate
Frequent Itemset mining on Data Stream.
In Applied and Theoretical Computing and
Communication Technology (iCATccT), 2016
2nd International Conference on, pp. 239-242.
IEEE

[9] ATLAS. Access to Collaboration Site and
Physics Results [Electronic resource] (2017)
https://atlas.cern (Retrieved: 06.02.2018).

[10] D.D. Drizhuk, A.A., Poyda, D.A., Oleynik
(2016) Systems of pilot assignments for the
integration of the Kurchatov supercomputer into
a heterogeneous computing environment.
http://conf58.mipt.ru/static/reports_pdf/1118.pdf
(Retrieved: 06.02.2018).

[11] Titov M. (2016) Personalization and Data
Relation Exploration using Predictive Analytics
for the Production and Distributed Analysis
System (PanDA) Monday, August 15.
https://uta-ir.tdl.org/uta-
ir/handle/10106/26138?show=full (Retrieved:
06.02.2018).

[12] Rashmi V. Mane (2013) A Comparative Study
of Spam and PrefixSpan Sequential Pattern
Mining Algorithm for Protein Sequences.

Сommunications in Computer and Information
Science, ICAC3 2013, CCIS 361, pp. 147–155.

[13] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J.,
Pinto, H., Chen, Q., Dayal, U. and Hsu M. C.
(2004) Mining sequential patterns by pattern-
growth: The prefixspan approach, IEEE
Transactions on knowledge and data
engineering, vol. 16(11), pp. 1424–1440

[14] Han, J., Pei, J., Yin, Y. and Mao R. (2004)
Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach,
Data Mining and Knowledge Discovery, no. 8,
pp. 53–87

[15] Laoviboon, S., and Komate A. (2017) Mining
high-utility itemsets with irregular occurrence.
In Knowledge and Smart Technology (KST),
2017 9th International Conference on, pp. 89-
94. IEEE

[16] Subramanian, K. and Surya, S., (2017). Mining
Huge Data with Closed Sequential Pattern
Model. International Journal, vol. 5(2).

[17] Yuan X. (2017). An improved Apriori algorithm
for mining association rules. AIP Conference
Proceedings 1820, 080005

[18] Zaki M. J. (2001). SPADE: An Efficient
Algorithm for Mining. Frequent Sequences.
Machine Learning, no. 42, pp. 31–60.

[19] Belwate N. (2017). Comparison of Data Mining
Algorithms for Effective Performance,
InternationalJournal of Innovative Research in
Computer and Communication Engineering,
Vol. 5, Issue 5.

[20] Philippe Fournier-Viger, Antonio Gomariz,
Manuel Campos, and Rincy Thomas (2014) Fast
Vertical Mining of Sequential Patterns Using
Co-occurrence Information. V.S. Tseng et al.
(Eds.): PAKDD 2014, Part I, LNAI 8443, pp.
40–52

[21] Philippe Fournier-Viger, On the Completeness of
the CloSpan and IncSpan algorithms [Electronic
resource] (2018) http://data-mining.philippe-
fournier-viger.com/completeness-clospan-
incspan-algorithms/ (Retrieved: 06.02.2018).

[22] Le, B., Duong, H., Truong, T., & Fournier-Viger,
P. (2017). FCloSM, FGenSM: two efficient
algorithms for mining frequent closed and
generator sequences using the local pruning
strategy. Knowledge and Information Systems,
53(1), p.71-107.

[23] The PanDA Production and Distributed Analysis
System [Electronic resource]

https://twiki.cern.ch/twiki/bin/view/PanDA/PanDA
(Retrieved: 06.02.2018).

