
Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4238

 TEST CASE SELECTION FOR PENETRATION TESTING IN
MOBILE CLOUD COMPUTING APPLICATIONS:

A PROPOSED TECHNIQUE

1AHMAD SALAH AL-AHMAD, 2 HASAN KAHTAN
1Universiti Teknologi MARA, Department of Computer Science, Malaysia

2Universiti Malaysia Pahang, Department of Software Engineering, Malaysia

 E-mail: 1ahmad.salah.85@gmail.com, 2hasankahtan@ump.edu.my

ABSTRACT

The extensive use of mobile applications in terms of user’s number and size of diverse data has introduced
additional security threats which make uncovering these vulnerabilities complex for testers. Testers use
certain types of software security testing to detect software vulnerabilities, particularly penetration testing.
Test case selection is an essential phase of penetration testing, especially when testing complex and large
applications. Multiple techniques have been proposed for selecting test cases to be used in penetration testing.
In general, the majority of such techniques select a set of test cases that cover the designated paths and fit
well with the user requirements. This study reviews existing techniques and models that are used for test case
selection. Methods, strengths and weaknesses are the main factors that are presented in this study. This study
shows that offloading, that is, the technology used in mobile cloud computing applications, has been
disregarded by existing techniques and models for test case selection. Therefore, this study proposes an
enhanced test case selection technique for penetration testing. This proposed technique considers offloading
parameters when selecting test cases to improve coverage paths and reflect user preferences in terms of cloud
and mobile priority percentages. Moreover, test cases for both mobile and cloud in the mobile cloud
computing applications are considered to be selected in list of test cases to be executed. Besides, user
preferences feature is provided in the selection process to reflect the importance of each parties, cloud and
mobile sides of the application under test. The proposed technique will improve the security of mobile cloud
computing applications by exposing the possible vulnerabilities from both mobile and cloud sides application.

Keywords: Penetration Testing, Test Case Selection, Offloading, Path Coverage

1. INTRODUCTION

Mobile computing is a technology that

has emerged in the present and will certainly
affect the future by enabling real-time
communication anywhere at any time [1, 2].
Nearly all human life disciplines are influenced
by mobile computing technology, as manifested
in the number of users and the huge business
investment in the mobile technology sector either
by developing additional applications or
enhancing the infrastructure [3]. The increasing
number of users and additional domains, where
mobile computing is implemented, has resulted in
increased security vulnerabilities which make
security testing essential [4]. A key security
testing type is penetration testing which is used to
uncover unknown vulnerabilities.

Penetration testing is a well-known

technique that is used to evaluate the security
posture of any software application in which a
tester aims to compromise a software application

security [5]. This technique is considered widely
and commonly used method among all software
application security best practices [6]. Penetration
testing has been used to ensure the security of web
applications. In this technique, a tester can
discover vulnerabilities and weaknesses by
simulating possible attacks on the target web
application. An efficient penetration testing
requires the tester to rely on techniques that gather
input vector information on the target web
application, analyse the responses of the
application to check if the attack can possibly
exploit any existing vulnerability and determine if
an attack is successful. However, several existing
techniques are lacking and frequently incomplete,
thereby possibly leaving a part of the application
untested and vulnerabilities undiscovered [7].

Penetration testing involves designing

and generating a set of test cases, analysing the
software application using these test cases and
examining the results to determine if the software
application security has been compromised. Test

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4239

case generation processes generate test cases that
cover all application paths, uses all attributes and
adopts variable domains, ranges and types. The
execution and testing of all generated test cases
are generally infeasible given time and cost
limitations [8]. Therefore, finding mechanisms
that select test cases or prioritise the generated test
cases is mandatory to reduce the resources
required whilst maintaining high path coverage
and fault detection ratios [9].

As long executing all generated test

cases is not visible due to limited budget and time
available for testers [10]. Selecting the set of test
cases to be executed becomes more critical task.
This process reduces the size of test case set while
insuring that this reduction will not affect the
quality of test results. Test case selection has a
significant impact on the test coverage on the
intended parts to be tested for the applications
under test [10]. For instance the traditional test
case selection select among the generated test
cases based on user preferences [11] or based on
pre-established techniques and formulas [12, 13].

Test case selection is still at initial stages
and more research is required to make it
applicable in today’s world [14]. Therefore, for
new technologies such as Mobile Cloud
Computing (MCC) application which is one of the
complex applications that uses new technologies
needed an exceptional factors to be used once
selecting the set of test cases. Thus together, the
high complexity of new technologies and the
simplicity of test case selection techniques, make
is required to conduct this study to come up with
a technique that help testers to select test cases to
be executed.

MCC is a convergent technology which

consists of three main heterogeneous
technologies, namely, mobile computing, cloud
computing and networking [15]. MCC is simply a
set of tools and techniques that utilise cloud
resources to empower mobile applications.
According to literature, MCC has recently
attracted significant attention. The direct revenue
of the mobile cloud market was approximately
$68 billion in 2017. The number of MCC
subscribers worldwide has increased from 42.8
million in 2008 to more than 998 million in 2014.
Mobile cloud is expected to eventually become
the dominant method for mobile application
operation [16].

This paper will review the current
available techniques and models used to conduct
test case selection. The outcome of review will be
analysed based on MCC applications complexity
implementation models that affect the selection
process. The analysis result will be used to
propose and enhanced technique that fill the
research gap and tackle the issues of previous test
case techniques and models when testing MCC
applications.

In this study, a test case selection

technique is proposed to solve the issues of
previous techniques. The objective of this study is
to investigate the limitations of previous test case
selection techniques in the MCC domain and
propose an enhanced technique that overcomes
these limitations. Section 2 describes the
motivation for studying the test case selection for
penetration testing in the domain of MCC. Section
3 examines the test case selection techniques in
accordance with the specific analysis technique
used and evaluates the strengths and limitations of
each approach. Section 4 introduces the test case
selection techniques. Section 5 and section 6
demonstrate the results of the enhanced test case
selection technique and discuss the implications
of these results. Section 7 presents the limitations
of this technique. Finally, paper is concluded in
Section 8.

2. MOTIVATION

The addition of new variables to test case
generation increases the number of generated test
cases exponentially [17-22]. In addition, the test
case selection technique is a complex issue,
especially in penetration testing given the
numerous paths, input types, input methods,
environment factors and vulnerability types.
Scholars, industry experts and practitioners
attempt to construct new mechanisms that
enhance the ratio between the number of selected
test cases versus the path coverage and fault
detection ratios [23].

Test case selection technique is essential

to penetration testing. However, such technique is
challenging and requires test case selection
technique that can generate well-defined and
specific test cases, utilise minimal resources and
reduce time whilst maintaining the test case
coverage acceptable [24, 25]. Such test case
selection technique is important, especially for
MCC applications.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4240

In the MCC application penetration
testing, offloading should be used as a variable
when generating test cases because offloading
affects the application execution paths.
Offloading means remote execution and is the
method used when outsourcing mobile tasks to
the cloud [26-28]. This process adds uniqueness
and complexity to the MCC application
penetration testing in terms of generating,
selecting and executing test cases.

Offloading in the MCC application

affects the execution path for the mobile
applications [29] as this process uses multiple
factors to determine where to execute certain
tasks. In dynamic offloading, the decision to
augment the task to the cloud is made whilst the
application is running. In static offloading, the
decision is predetermined by the developers and
is unaffected by the running applications.
However, the MCC applications can use dynamic
and static offloading collectively; this
combination is called hybrid-offloading [30, 31].
Offloading exponentially increases the
complexity of MCC application which in turn
increases the required resources when conducting
penetration testing. An offloading parameter is a
significant factor to be studied to improve
efficiency and effectiveness of penetration testing
for the MCC application.

3. PENETRATION TEST CASE

SELECTION TECHNIQUES:
RELATED WORK

Many techniques for test case selection
have been proposed in the literature [32-37]. This
section provides a critical review of several works
and proposed models for test case selection for
penetration testing. The result of the critical
review shows the strength and limitations of each
study based on the main MCC application
characteristics that makes it unique and complex,
which is the offloading. These results are
summarized in Table 1.

The survey was conducted by following

the steps presented in the methodology illustrated
in Figure 1. This survey for publications included
an systematic search using several digital libraries
as they are the most relevant sources in software
and security engineering [38]. These digital
libraries were ACM digital library
(http://portal.acm.org), IEEE Xplore
(http://ieeexplore.ieee.org), ScienceDirect

(http://www.sciencedirect.com) and
SpringerLink (http://linkspringer.com).

Certain search strings used to search

over the selected repositories that reflect the
domain of test case selection on penetration
testing. These search strings were as follows: (i)
‘penetration testing’ and ‘test case selection’, (ii)
‘test case selection’ and ‘penetration testing’, (iii)
‘penetration testing’ and ‘case selection’ and (iv)
‘penetration testing’ or ‘test case selection’.

Id
e
n

ti
fi

c
a
ti

o
n

S

c
re

e
n
in

g
E

li
g
ib

il
it

y
In

c
lu

d
e
d

Record identified
through database

searching (n = 270)

Additional records
identified through

other sources (n = 0)

Record after removing duplicates (n = 170)

Record screened

 (n = 67)

Record excluded

 (n = 103)

Full-text articles
assessed for eligibility

 (n = 52)

Remove articles that
were used in

duplicate.

 (n =51)

Studies included in
the literature review

 (n = 11)

Figure 1: Survey Methodology

The set of publications found with the
strategy of the survey was filtered using inclusion
and exclusion criteria for selecting relevant
primary studies. The survey included peer-
reviewed publications written in English and
cover test case selection for penetration testing.
Papers related to testing approaches other than
penetration testing or do not propose a new test
case selection method have been excluded. The
initial search based on the search strategy resulted
in 51 papers, where 11 proposed new test case

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4241

selection techniques. These techniques are
summarised in Table 1.

Table 1 Test Case Selection Models and Techniques

Ref. Method Strength Limitation
[39] Divide the testing time into time slots.

Iteratively select and prioritise test cases
for each time slot using integer linear
programming.

Shows effectiveness in
exposing faults and
enhancing the branch
coverage.

Disregards offloading
and is valid only for
request quota constraints.

[40] Select factors based on prioritisation
goal. Use factor values for all
requirements from the person involved.
Compute each requirement weight and
its mean of a factor.

Improves the rate of
fault detection.

Disregards offloading.
Incomplete requirements
affect the result.

[23] Select test cases based on similarities
between test paths using triggers and
guards using the generating algorithm.

Reduces the number of
test cases selected
whilst preserving the
fault detection rate.

Disregards offloading and
requires highly complex
programmes to analyse the
source code in each version.

[41] Prioritise test cases based on multiple
variables, and add another variable that
is calculated based on the number of the
variables used in the first versions and
changed to the modified version.

Selects a minimal
number of test cases,
and highly detects
faults.

Disregards offloading and
requires highly complex
programmes to analyse the
source code in each version.

[8] Standardise the requirements.
Determine the neighbourhood F(x) for
every requirement. Select
neighbourhood function order of the
functions to benefit to F(x). Generate
order, and calculate the appropriate test
case number.

Has high reduction Disregards offloading and
changing requirements.

[9] Use the test case selection technique on
the basis of detecting the changes in the
applied case descriptions between
versions.

Detects the changed test
cases efficiently.

Disregards offloading and
cannot be used for an initial
test.

[36] Prioritise the test cases based on four
groups of practical weight factors:
customer allotted priority, developer
observed code execution complexity,
changes in requirements and fault effect,
completeness and traceability.

Improves fault
detection rate and
preserves time and
resources.

Disregards offloading.

[42] Minimise the number of test cases and
maximise path coverage by determining
the similarity between test cases.

Reduces the number of
test cases selected with
high coverage path.

Disregards offloading and is
highly resource-intensive.

[43] Calculate test case weight based on a
differential control flow graph.

Represents a new factor
for improving
coverage.

Disregards offloading and
is time-consuming.

[44] Prioritise selection of flow graph-based
composite services through modelling
behaviour of service interactions and
control flow.

Composite services and
modelling behaviour of
service improve the
path coverage.

Disregards offloading and
is time-consuming.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4242

[45] Test selection technique based on
functional modelling by selecting a
subset of the set of test cases that
provides a coverage level above a
predetermined coverage.

Selected subset fits with
user requirements and
pretests the coverage-
based test case subset.

Disregards offloading.
The functional model is
time-consuming.

The majority of the reviewed techniques
for selecting test cases are based on the
requirements of the user, tester, modelling and
developer as presented in Table 2. In addition,
none of these test case selection techniques and
models use offloading or device state as a
parameter in the selection technique. The number
of test cases to be executed increases when
offloading is ignored or the testers sacrifice the
coverage path percentage to reduce time and
efforts required.

Table 2: Test Case Selection Models and Technique
Analysis

Reference

R
eq

u
ir

em
en

t-
B

as
ed

M
od

el
-B

as
ed

D
ev

el
op

er
-B

as
ed

O
ff

lo
ad

in
g

[39] × × ×
[40] × × ×
[23] × × ×
[41] × ×
[8] × ×
[9] × × ×
[36] × × ×
[42] × × ×
[43] × × ×
[44] × × ×
[45] × × × ×

4. PROPOSED TECHNIQUE

The proposed technique in this study has

adopted and enhanced the existing work in [40,
46]. The proposed technique has embedded
offloading parameters and vulnerability domain
in the selection technique to tackle the uniqueness
and complexity of MCC applications that
previous techniques have disregarded.

This study adopts the [40, 46] techniques
by injecting the offloading parameters and
vulnerability domain in the selection technique.
This study proposes that the initial test is different

from the repeated test. The repeated test focuses
on the changes in the application, whereas the new
test focuses on all tasks. Therefore, the factors
used in test case selection are classified into two
groups, namely, new and repeated test factors.
These factors are listed in Table 3 [40, 46].

Table 3: Test Case Factors

New Test Factors

Regression Test Factors

Complexity Fault effect of
requirements

Changes in
requirements

Completeness

Priority of
requirement

Traceability

The proposed test case selection for

MCC penetration testing technique is
demonstrated in Figure 2 and Figure 3. Figure 2
represents the first part of the technique that used
to calculate the weight of each test case based on
set of test case factors shown on Table 2. Figure 3
represents the second part of the technique where
the mobile and cloud test cases sets are built to be
merged as single order set of selected test cases.

This technique starts in Figure 2 by

calculating the mean of the factors that have been
selected previously for each of the requirements
and then stores these results in the requirement
record at the requirement repository. This
calculation is followed by looping through all the
requirements for each test case that has been
generated to calculate the test case weight and add
it to its parameters in the test case record at the
test case repository.

The proposed technique will build two

lists of test cases as shown in Figure 3. These lists
are defined to differentiate between the test cases
that would run on the mobile device or the cloud.
Each test case will be added to the corresponding
list in accordance with the offloading parameter
that has been calculated during the test case
generation or specified by the user. The two lists
will be sorted by weight for the highest weight to
be highly prioritised for selection.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4243

The test case selection technique will
select cloud and mobile test cases with the highest
weight on the basis of the calculated preferred
number of cloud and mobile test cases by using
the number of preferred test cases to be selected

multiplied by the percentage of cloud and mobile
test cases priority. This enhance the technique test
case result set coverage as it ensure the selected
test case set covers vulnerabilities for mobile and
cloud.

List of test cases

Select next test case

YesNo

Select next requirement

List of processed requirements

Select regression test factors New test?

Obtain value for
completeness

Obtain value for
traceability

Obtain fault impact
of requirements

Select new test factors

Developer perceived
code implementation

Changes in
requirements

Customer assigned
priority of requirement

Start test case selection

Enumerate Requirements list

Enumerate Requirements list

Compute the mean value for all selected factors (MVSF)

Add factors values and mean value to list of processed requirements

Enumerate list of test cases

Obtain test case requirement

Calculate the fraction of test case to the requirement

Calculate the weight of test case based on the fraction value

Add weight to test case weight

Process Decision Start/EndDocumentProposedOrginal

Legend

Figure 2 Mcc Application Penetration Test Case Selection (Part 1)

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4244

No Yes

Obtain number of preferred mobile test cases (MP)

Obtain preferred number of mobile test
cases(PMN) = number of preferred test cases

* cloud priority value from user

Obtain preferred number of cloud test cases
(PCN) = number of preferred test cases *

mobile priority value from user

Generate a list of the selected test cases by integrating both lists to sort the result list by offloading parameter value

List of selected test cases

End

Test case offloading parameter class is
mobile?

Add test case and weight
to list of mobile

processed test case

Add test case and weight
to list of cloud processed

test case

Mobile processed test cases Cloud processed test cases

Sort cloud processed test cases
based on weight

Sort mobile processed test
cases based on weight

Sorted cloud processed test cases (C)Sorted mobile processed test cases (M)

Obtain number of preferred cloud test cases (MC)

Process Decision Start/EndDocumentProposedOrginal

Legend

Enumerate list of test cases

Figure 3 Mcc Application Penetration Test Case Selection (Part 1)

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4245

Both of these lists will be sorted in order
to select these with highest weight in their
category, mobile or cloud, and then a formula that
use the tester preference number of the cloud
priority or mobile priority will be used to be
multiplied with the number of preferred test cases
to be selected in order to find the number of test
cases to be selected of each category.

A combination of cloud and mobile

priority values in the selection technique using the
preferred number of test cases to be selected will
provide two lists of test cases. The two lists are
integrated and then sorted by weight to provide
the tester with the list of selected test cases in
accordance with the requirements.

The result set of test cases will have

same as the number of preferred test cases the
testers selected. This list also includes set of test
cases that will be executed on the cloud or on the
mobile with same percentage as also selected by
the tester. These list of test cases also sorted as per
the calculated weight based on other preferences
that test selected after injecting the weight or
cloud or mobile in the formula.

5. RESULTS

The proposed technique enables the

tester to implement the user requirements in terms
of number of test cases to be selected and covering
client and cloud applications that are implemented
in the MCC application under test by
differentiating between each test case in terms of
execution location, either to be executed on the
mobile or on the cloud. In addition, the proposed
technique provides the result as an ordered set of
test cases after implementing the offloading user
requirements that are sorted by mobile and cloud
priority values.

In detail, this technique starts by

calculating the mean value for each requirement
by using all factors proposed by [40, 46] as
summarised in Table 1. Then, the proposed
technique determines the fraction that each test
case represents the user requirements to calculate
the test case weight. The test case weight is
calculated based on the mean value of the
requirement it represents, as described in [40, 46].

A new procedure has been added to

define the class of each test case using offloading
details after calculating the weight of each test

case. This technique continues to sort based on
test case weight after determining if the test case
is cloud or mobile. Then it selects the top test case
of each class (mobile and cloud) on the basis of
mobile and cloud priority values. Finally, the
result set of test cases are sorted based on the test
case weight.

6. DISCUSSION

The goal of this work is to build a test

case selection technique that embed offloading
parameters in the selection process. The
offloading parameters embedded by selecting test
cases of both mobile and cloud computing.
Moreover, user preferences feature is provided in
the selection process to reflect the importance of
each parties, cloud and mobile sides of the
application under test.

The proposed test case selection for

MCC penetration testing uses offloading as a
parameter in selecting test cases by building two
sets. First set includes test cases that will be
executed on the cloud and second test case set
include test cases executed on the mobile. This
segmentation process use the data provided by the
tester along with the test cases or using the MCC
application description from the developers.

The returned set of test cases has

managed to provide the penetration testers with a
set of test cases that consider offloading
parameters and represent the user preferences.
This will improve the results coverage path
percentage due to considering the offloading
parameters when selecting test cases as it ensures
that mobile and cloud implementations are tested.
Furthermore, the user requirement in terms of
resources which are represented by the number of
preferred test cases is also considered when
generating the result of test cases, thereby
improving the resource allocation based on the
user preferences.

This paper contributes to the domain of

MCC by reviewing penetration test case selection
techniques which will serve as base line
references for future research. Moreover, the
outcome of the review highlighted that there is a
room for MCC improvement in terms of
offloading features. Furthermore, this paper
address a new direction for researchers in the area
of penetration testing to enhance current
technique and models in order to cope with the

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4246

new technologies, such as offloading, by using
this paper as a reference.

7. LIMITATIONS

The test case selection technique

proposed in this paper is one of the main phases
of penetration testing that used to conduct
penetration testing on MCC applications
effectively and efficiently. Consequently, to
evaluate the proposed technique based on the
common evaluation criteria for penetration testing
it should be integrated into a penetration testing
model or framework.

This integration requires a test case

generation and test case execution techniques that
also built specifically to be used on MCC
application due to the complexity and uniqueness
of these applications. Therefore, evaluating this
proposed technique requires a new test case
generation technique that provides the data
required and to propose a new test case execution
technique that read and execute the result of our
proposed technique.

8. CONCLUSION

This paper reviews the test case selection

techniques used in the test case selection phase for
penetration testing. These techniques are aimed at
selecting the minimum number of test cases with
the highest percentage of path coverage to
conduct the penetration testing with minimal
effort and achieve the optimal results in finding
unknown vulnerabilities. The paper shows that
offloading parameter, which is one of the
development model for advanced technology, has
been disregarded when selecting test case set
using previous techniques and models. Therefore,
applications that use offloading may require extra
effort when carried out testing for vulnerabilities
through penetration testing. This study proposes
an enhanced test case selection technique that
considers offloading. Several potential directions
for future research should be identified to
implement and evaluate the proposed technique
over certain application domains such as: social
and banking applications.

ACKNOWLEDGMENTS

This research is supported by the
Department of Research and Innovation of
University Malaysia Pahang under Fundamental
Research Grant Scheme (FRGS) RDU170102.

REFERENCES

[1] Baccarelli, E., et al., Energy-efficient dynamic
traffic offloading and reconfiguration of
networked data centers for big data stream
mobile computing: review, challenges, and a
case study. IEEE Network, 2016. 30(2): p. 54-
61.

[2] Schneider, S., M. Hirzel, and B. Gedik.
Tutorial: stream processing optimizations. in
Proceedings of the 7th ACM international
conference on Distributed event-based
systems. 2013. ACM.

[3] Chua, W.Y., et al. Improving mobile
applications usage experience of novice users
through user-acclimatized interaction: a case
study. in Twentieth Americas Conference on
Information Systems, AMCIS. 2014.
Savannah, Georgia, USA.

[4] Khurana, P., A. Sharma, and P.K. Singh, A
systematic analysis on mobile application
software vulnerabilities: Issues and
challenges. Indian Journal of Science and
Technology, 2016. 9(32).

[5] Scandariato, R., J. Walden, and W. Joosen.
Static analysis versus penetration testing: A
controlled experiment. in Software Reliability
Engineering (ISSRE), 2013 IEEE 24th
International Symposium on. 2013. IEEE.

[6] Arkin, B., S. Stender, and G. McGraw,
Software penetration testing. IEEE Security &
Privacy, 2005. 3(1): p. 84-87.

[7] Halfond, W.G., S.R. Choudhary, and A. Orso,
Improving penetration testing through static
and dynamic analysis. Software Testing,
Verification and Reliability, 2011. 21(3): p.
195-214.

[8] Lawanna, A., A Model for Test Case Selection
in the Software-Development Life Cycle.
International Journal of Computer,
Information Science and Engineering, 2013.
7(4, 2013): p. 5.

[9] Raengkla, M. and T. Suwannasart. A Test
Case Selection from Using Use Case
Description Changes. in Proceedings of the
International MultiConference of Engineers
and Computer Scientists. 2013. Hong Kong,
China.

[10] Khan, S.U.R., et al., A Systematic Review on
Test Suite Reduction: Approaches,
Experiment’s Quality Evaluation, and
Guidelines. IEEE Access, 2018.

[11] Enoiu, E. and M. Frasheri, Test Agents:
Adaptive, Autonomous and Intelligent Test
Cases. arXiv preprint arXiv:1802.03921,
2018.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4247

[12] Coutinho, A.E.V.B., E.G. Cartaxo, and P.D.
de Lima Machado, Analysis of distance
functions for similarity-based test suite
reduction in the context of model-based
testing. Software Quality Journal, 2016. 24(2):
p. 407-445.

[13] Bokil, P., P. Krishnan, and R. Venkatesh,
Achieving Effective Test Suites for Reactive
Systems using Specification Mining and Test
Suite Reduction Techniques. ACM SIGSOFT
Software Engineering Notes, 2015. 40(1): p.
1-8.

[14] Sagar, G.P. and P. Prasad, Survey on Test
Case Prioritization Techniques for Regression
Testing. Indian Journal of Science and
Technology, 2017. 10(10).

[15] Sanaei, Z., et al., Heterogeneity in mobile
cloud computing: taxonomy and open
challenges. IEEE Communications Surveys &
Tutorials, 2014. 16(1): p. 369-392.

[16] Rahimi, M.R., et al., Mobile cloud computing:
A survey, state of art and future directions.
Mobile Networks and Applications, 2014.
19(2): p. 133-143.

[17] Chang, B.R., et al. Access security on cloud
computing implemented in hadoop system. in
Fifth International Conference on Genetic and
Evolutionary Computing (ICGEC). 2011.
Kitakyushu, Japan: IEEE.

[18] de los Reyes, G., et al. Securing the Mobile
Enterprise with Network-Based Security and
Cloud Computing. in IEEE Sarnoff
Symposium. 2012. Newark, New Jersey,
USA: IEEE.

[19] Kim, T., et al. Monitoring and detecting
abnormal behavior in mobile cloud
infrastructure. in IEEE Network Operations
and Management Symposium (NOMS). 2012.
Maui, Hawaii, USA: IEEE.

[20] Ahern, M.M. and M.S. Hendryx, Social
capital and trust in providers. Social science &
medicine, 2003. 57(7): p. 1195-1203.

[21] Sumter, L.Q. Cloud computing: Security risk.
in Proceedings of the 48th Annual Southeast
Regional Conference. 2010. Oxford, MS,
USA: ACM.

[22] Zhou, Z. and D. Huang. Efficient and secure
data storage operations for mobile cloud
computing. in Proceedings of the 8th
International Conference on Network and
Service Management. 2012. Las Vigas, USA:
International Federation for Information
Processing.

[23] Hemmati, H., et al. An enhanced test case
selection approach for model-based testing: an

industrial case study. in Proceedings of the
eighteenth ACM SIGSOFT international
symposium on Foundations of software
engineering. 2010. Santa Fe, NM, USA:
ACM.

[24] Bahl, S. and M. Chaturvedi, Literature Review
of Mobile Applications Testing on Cloud from
Information Security Perspective.
International Journal of Computer
Applications, 2013. 79(14): p. 15-23.

[25] Pundhir, Y.S., Cloud Computing Applications
And Their Testing Methodology. Bookman
International Journal of Software Engineering,
2013. 2(1).

[26] Umair, S., et al., Mobile Cloud Computing
Future Trends and Opportunities. Managing
and Processing Big Data in Cloud Computing,
2016: p. 105.

[27] Yadav, D.S. and K. Doke, Mobile Cloud
Computing Issues and Solution Framework.
International Research Journal of Engineering
and Technology, (IRJET), 2016. 03(11).

[28] Abolfazli, S., et al., Mobile Cloud Computing.
Encyclopedia of Cloud Computing, 2016: p.
29.

[29] Al-Ahmad, A.S., S.A. Aljunid, and A.S.A.
Sani. Mobile Cloud Computing Testing
Review. in International Conference on
Advanced Computer Science Applications
and Technologies (ACSAT). 2013. Kuala
Lumpur, Malaysia: IEEE.

[30] Sarrab, M. and H. Bourdoucen, Mobile Cloud
Computing: Security Issues and
Considerations. Journal of Advances in
Information Technology Vol, 2015. 6(4).

[31] Khan, A.R., et al., A survey of mobile cloud
computing application models.
Communications Surveys & Tutorials, IEEE,
2014. 16(1): p. 393-413.

[32] Singh, Y., et al., Systematic Literature Review
on Regression Test Prioritization Techniques.
Informatica (Slovenia), 2012. 36(4): p. 379-
408.

[33] Yoo, S. and M. Harman, Regression testing
minimization, selection and prioritization: a
survey. Software Testing, Verification and
Reliability, 2012. 22(2): p. 67-120.

[34] Yoo, S., Extending the Boundaries in
Regression Testing: Complexity, Latency, and
Expertise, in Computer Science. 2009, King’s
College London: David Barber : Brml - Home
Page.

[35] Hettiarachchi, C., H. Do, and B. Choi.
Effective Regression Testing Using
Requirements and Risks. in IEEE

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4248

International Conference on Software Security
and Reliability (SERE). 2014. Redwood City,
CA, USA: IEEE.

[36] Muthusamy, T., A New Effective Test Case
Prioritization for Regression Testing based on
Prioritization Algorithm. International Journal
of Applied, 2014. 6(7): p. 21-26.

[37] Miller, T., Prioritisation of test suites
containing precedence constraints. 2012,
University of Melbourne: Department of
Computing and Information Systems,. p. 15.

[38] Brereton, P., et al., Lessons from applying the
systematic literature review process within the
software engineering domain. Journal of
systems and software, 2007. 80(4): p. 571-
583.

[39] Hou, S.-S., et al. Quota-constrained test-case
prioritization for regression testing of service-
centric systems. in IEEE International
Conference on Software Maintenance. 2008.
Beijing, China: IEEE.

[40] Krishnamoorthi, R. and S. Sahaaya Arul
Mary, Factor oriented requirement coverage
based system test case prioritization of new
and regression test cases. Information and
Software Technology, 2009. 51(4): p. 799-
808.

[41] Singh, Y., A. Kaur, and B. Suri, A Hybrid
Approach for Regression Testing in
Interprocedural Program. Journal of
Information Processing Systems, JIPS, 2010.
6(1): p. 21-32.

[42] de Souza, L.S., R.B. Prudêncio, and F.d.A.
Barros, Multi-Objective Test Case Selection:
A study of the influence of the Catfish effect
on PSO based strategies. Anais do XV de
Testes e Tolerância a Falhas, 2014. 8.

[43] Akimoto, S., R. Yaegashi, and T. Takagi. Test
case selection technique for regression testing
using differential control flow graphs. in
Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed
Computing (SNPD), 2015 16th IEEE/ACIS
International Conference on. 2015. IEEE.

[44] Buck, P., Q. Shi, and Á. MacDermott. A
Selective Regression Testing Approach for
Composite Web Services. in Developments of
E-Systems Engineering (DeSE), 2015
International Conference on. 2015. IEEE.

[45] Raz, O., et al., Method and system for creating
functional model of test cases. 2017, Google
Patents.

[46] Ramasamy, K. and S. Mary. Incorporating
varying requirement priorities and costs in test
case prioritization for new and regression
testing. in International Conference on
Computing, Communication and Networking
(ICCCN). 2008. St. Thomas, USA: IEEE.

