
Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4180

TESTCASE PRIORITIZATION
WITH SPECIAL EMPHASIS ON AUTOMATION TESTING

USING HYBRID FRAMEWORK

1KONERU SRINIVAS, 2DR. MOHAMMED ISMAIL.B
1Research Scholar. Department of Computer Science Engineering, Koneru Lakshmaiah Education.

Foundation ,Guntur, Andhra Pradesh, India
2Professor. Department of Computer Science Engineering, Koneru Lakshmaiah Education. Foundation,

Guntur, Andhra Pradesh, India

E-mail: 1konerusrinivas254@gmail.com, 2mdismail@kluniversity.in

ABSTRACT

Testing of the software application is done simultaneously during the software development process, so that
defects or errors could be detected at an early stage and any changes made, do not have an adverse effect on
the system. Test suite with a different set of test cases is added as a result it keeps growing to a large size.
Keeping in mind the resource and time constraints, it is important, implementing test case prioritization, so
that core test cases or scripts are executed which are mostly required by the user along with the
functionalities or modules that are prone to more bugs. Prioritization techniques will help scheduling test
cases for execution, so that faults could be detected at an early stage.

Keywords: Prioritization Techniques, Automated Tests for Prioritization, Order of Prioritization,
Calculating Test Priorities, Categorization of Test Cases, Hybrid framework

1. INTRODUCTION

Test case prioritization is a method for
prioritizing and scheduling the test cases so that test
cases with higher priority are scheduled to run first
so that cost, effort and time in the software testing
phase could be saved. In test case prioritization, the
test cases are prioritized and scheduled so that the
core functionalities could be tested. Test cases are
set with the priority levels based on various factors
and the one with highest priority are executed first
so that defects could be located at an early stage.
Since the testing phase is becoming cumbersome
and time consuming, we have proposed various
techniques for prioritization of the test cases for
automation testing. [1] Choosing an automated tool
like Selenium, would be a good choice when test
case prioritization is concerned. Selenium IDE is a
tool that could be used for Smoke Testing; an
overall flow of the system could be recorded and
played as and when required. Selenium WebDriver
could be used to write test scripts for the various
functionalities of the application. TestNG (Test
Next Generation) is a powerful and efficient testing
framework developed by Cedric Beust with the
inspiration from Junit and NUnit that helps in

sequencing the tests that needs to run based on the
priority required. [2]

2. PROBLEM STATEMENT
Prioritizing the test cases manually proved to be
quite complicated, time consuming and became
expensive. Automation process in prioritizing test
cases proved to be very cost efficient. To leverage
the test case prioritization, automation frameworks
such as TestNG could be implemented. Hybrid
framework approach could be the best solution to
maximize the coverage of test cases. Although
several studies have already attempted to implement
test prioritization techniques but this research work
takes to a step ahead in implementing the
Automation tool using Hybrid framework,
considering cost factor and effectiveness.

SOLUTION TO THE PROBLEM STATED

Novel method of test case prioritization is a very
time consuming process and results in very
expensive, especially when used with large and
complex applications like Banking, Inventory
Systems etc. Addressing these challenges, this
paper focuses on improving the efficiency by
implementing automation tools with a Hybrid
Framework. Automation tests prioritizing the test

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4181

cases based on weightage mentioned in section-5 of
CALCULATING TEST PRIORITIES a test suite is
developed. This test suite containing Core
functionalities of the application are executed first
and any changes in the functionalities will allow the
regression test to follow thereby running security
test, integration test, User interface test, database
test etc. utilizing Selenium's TestNG and Hybrid
Framework for an efficient result.

3. CATEGORIZATION OF TEST CASES

 From a large cluster of test cases,
priorities of execution can be decided based upon
some rational, non-arbitrary criteria. Prioritization
activity is done with an intention to reduce the
overall number of test cases in the total testing
process. The main objective of the test case
prioritization is done to build confidence among the
testers and the project leaders that the tests
identified for execution are adequate.

Test cases can be categorized into four
types. Priority-1 and Priority-2 test cases are the
most important as the cost for fixing will be high.

Priority-1: These test cases are responsible for the
flow of the software which tests the lifeline of the
software. If any of the feature stops working then
this will block the further testing and issue has to
get fixed on priority. For instance, if the login
functionality fails to run then the next screens
cannot be reached, so that has to be given top
priority.

Priority-2: The test cases that include
functionalities required by the end users are tested.
These are the functionalities that build confidence
in the customer and if it does not work, might result
in huge business loss to the software development
companies.

Priority-3: In the making of software there would
be some unique features to differentiate from
competitors. If these stop working, customer may
not like but will still use the software when the
important features are working fine. Since every
customer will look for unique features which might
lead to more profits in the business so these stand in
the prioritization next to Priority-1 and Priority-2
test cases.

Priority-4: Test cases that stand in this category are
related to Cosmetic, User Interface changes or
improvements which does not have any impact on
using the software. These test cases can be given

low priority and sometimes may not be required to
execute when there is time shortage in delivering
the software. [3]

4. PRIORITISATION TECHNIQUES

Figure-1 shows list of Prioritization techniques
which are described as follows:

1. Business Requirements: Based on

Business requirements of customers, the
test cases that are built to meet the
requirements needs to be given the highest
priority. There are various factors that
could be considered while ranking the
priorities of test cases. Test cases which
are most important to the customer could
be given (CP means Customer assigned
Priority), Complex Requirement based test
cases are given (CR means Requirement
Complexity) and Change Management
(CM). A value is assigned to the above
mentioned factors and the one having high
factor value indicates a need for
prioritization of those test cases related to
that requirement. The priorities to the test
cases are assigned depending upon the
priority of the requirement to be tested.
The requirement to be tested first is
assigned the higher value and the test
cases covering that requirement are given
higher priority of execution.

2. Coverage-based Heuristics:
a. Total Statement Coverage

Prioritization: This technique is
used to prioritize test cases based
on the total number of statements
covered. And then they are sorted
in the order of coverage achieved.
If more than one test case, cover
the same number of statements
then they are randomly ordered.

Statement Coverage = (Number
of Statements Covered / Total
No. of Statements) * 100

b. Additional statement coverage
prioritization: Here the test cases
are prioritized by incremental
number of statements covered.

c. Total branch coverage
prioritization: This technique is
same as statement coverage

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4182

prioritization instead the test
cases are prioritized based on the
number of branches covered.

Branch Coverage = (Number of
Branches Covered / Total No. of
Branches) * 100

3. Mutation-based Heuristics:

a. Total Fault Exposing Potential
(TFEP) prioritization: This
technique is mostly used to bring
out the faults by a test case based
on the probability that a fault in
that statement might cause a
failure for that test case. This will
maximize rate of fault detection
in a test suite[4].

b. Additional Fault Exposing
Potential (AFEP) prioritization:
Here test cases are prioritized
based on incremental confidence.

4. Functional Coverage prioritization: This
technique is far cheaper than total
statement coverage prioritization since the
numbers of functions in a program are
comparatively less against the number of
statements. Here the test cases are
prioritized in descending order of the
major functions to be executed by the test
cases. [5]

Figure 1: Hierarchical representation of prioritization

5. CALCULATING TEST PRIORITIES

To calculate the test priorities weights must be
assigned and then the sum of all the weights are to
be calculated and then whichever has the highest
weight must be given top priority and so on.

1. Different weights can be allotted in the
range from 1 to 10. Considering the values

as 1 for low impact, 5 for Medium or
Normal impact and 10 for highest impact.

2. Then all the functionalities, crucial
requirements of the application must be
extracted and points ranging from 1 to 5
needs to be assigned.

3. Calculation of weights for assigning the
priorities must be carried out by
multiplying the points assigned to the
functionality by the relevant weight. Also
the impact of the bug must be calculated
and then summed up with the value
outputted from the functional weights.
Table-1 shows the calculation of weights
for assigning the priorities. [6]

6. AUTOMATION TECHNIQUE

To Automate the testing process, the right test

management tool must be selected and then the test
project has to be created where-in all the
requirement specification, test scenarios, test cases
must be documented. There are many open source
test management tools available in the market like
Tarantula, Test-link, Jataka Testcube, Mozilla
Testopia, Testitool, qaManager, QABook, Radi-
testdir, Test Case Web (TCW), Testmaster etc.,
which automatically synchronizes requirements, test
scenarios, defects. These tools can be used to
execute automated and manual Test cases. Selenium,
Appium, Selendroid, Robotium, cucumber, Watir
(Web Application Testing in Ruby), iMacros, Canoo
WebTest, SoapUI, KIF (Keep it functional),
capybara, Katalon Studio, Windmill, Xmind are
some of the open source functional tools that can be
used for testing the applications functionality. For
load testing some open source tools like Gatling,
Apache JMeter, OpenSTA (Open Systems Testing
Architecture), Multi-Mechanize etc., can be the best
choice. Once the planning of an automated test suite
is developed, then prioritisation must be set. Initial
tests to be executed would be Smoke test to ensure
smooth execution. It should then be followed by
Core Functional test, Database test, Security test,
Stress test, Interface test and Regression test. Test
Cases related to recently modified functions should
have a priority. Areas of the product that can cause
massive damage should always get more careful
testing. The areas of the application that are most
used by a typical user should be put under stress
testing so that the end users can experience a smooth
operation. Techniques like equivalence class
partitioning must be implemented. Testing should
ensure coverage of all functional areas and if not

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4183

possible to cover all combinations then at least each
should be tried once. Function that consumes most
memory must be executed and if that passes, the
others are more likely to work. In Normal Case,
Executing all the Test cases with Test Coverage is
the best practice to full-fledged testing. For effective
testing process, test case prioritization and
categorization of test cases is very important. Since
there is always a time constraint we need to adopt a
Risk Based methodology to test case management
and execution. Combinatorial Test Design is helpful
for the process of Risk Based Testing to keep the
test case number explosion under control. There are
various tools like Tosca TestSuite, AllPairs,
Hexawise etc. These tools use risk-based test design
for effective test cases and identify the risk
contribution of each test case. They have built-in
methodologies to apply techniques such as
equivalence partitioning, boundary value analysis
and linear expansion for minimizing the number of
test cases while increasing risk coverage. These
tools when used for test execution, aggregates risk
coverage from technical, compliance and business
perspective. [7]

6.1 Automated Tests for Prioritization
Figure-2 shows how the automation tests can be
prioritized and every modification made to the
application a regression test suite could be executed
in parallel to trace the bugs. The test suite
containing Core functionalities of the application
are executed first and any changes in the
functionalities will allow the regression test to
follow and the same way security test, process flow
to check the systems integrity and User interface
test to create confidence among the users fraternity
which then should be followed by compatibility
test. [7-8]

Figure 2: Prioritization of Automation Tests

6.2 Order of Prioritization

1 Core Functionality: Foremost requirement of

any client would be their business
functionalities, so it becomes the top priority to
check whether the core functionalities are
working properly.

2 Securities: Next to core functionalities would
be the security of the system else the end-user
will not be happy to use as there would be
threat from hackers losing their passwords and
money as well.

3 Process Flow: Then the flow of data from one
screen/module to another screen/module must
be placed in order.

4 User Interface Test: This phase of testing must
come next so that the test cases confirm that
Interface objects are in place and receives the
right data from the user.

5 Database Test: This test must follow User
Interface Testing to check the database is
working properly for the various actions such
as Add, Update and Delete.

6 Compatibility Test: This test can be placed at
the end for checking the cross browser or
operating system compatibilities.

7 Data driven Tests: Huge data from a flat file
mostly excel is used to send the data into the
input fields of the Application which tests the
stress. This test is not possible manually as it
consumes huge amount of time and lacks
accuracy.

8 Compatibility Testing: This test ensures that a
wide array of users could operate from
different devices, operating systems and
browsers. Automation with parallel tests is one
of the good options for cross-browser testing.

9 Regression tests: After every modification
made by the development team, a re-execution
of test suite takes place to ensure possible new
bugs are not crept into the system. A test suite
can be built with all the above tests to run and
whenever changes made in the application,
must be ascertained that a new bug is not
creeping into the system. [9]

6.3 Prioritizing of test cases based on Time
Factor
Considering the tight deadlines, it can further
be reduced as follows:
1 Executing the test cases that contain major

functionalities.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4184

2 Parts of the application that are frequently
used by the user.

3 Running all the Positive test cases.
4 Performing Stress Test. [8]

6.4 Sample script showing the utilization of
testNG
importorg.openqa.selenium.By;
importorg.openqa.selenium.WebDriver;
importorg.openqa.selenium.firefox.FirefoxDriv
er;
importorg.testng.Assert;
importorg.testng.annotations.Test;

public class Priority_In_testNG
{
 WebDriver driver;

 // Method 1: Open Firefox Browser
 @Test (priority=1)
 public void openBrowser()
 {
 driver = new FirefoxDriver();
 }

 // Method 2: Launch
https://localhost/OnlineBank

 @Test (priority=2)
 public void launchBankApp()
 {

 driver.get("https://localhost/OnlineBank");
 }

 // Method 3: Verify that the page title is
Login.

 @Test (priority=3)
 public void InitialPageTitleVerification ()
 {
Assert.assertEquals(driver.getTitle().contains("
Login"), true);

}

 // Method 4: Enter Username and Password

 @Test (priority=4)
 public void processLogin() throws
Exception
 {

WebElement username =
driver.findElement(By.id("Unm"));
username.clear();
username.sendKeys("Srinivas");

WebElement password =
driver.findElement(By.id("Passwd"));
password.clear();
password.sendKeys("bank123");
WebElementSignInButton =
driver.findElement(By.id("signIn"));
SignInButton.click();
Thread.sleep(3000);

 }

 // Method 5: Logout

 @Test (priority=4)
 public void processLogout() throws
Exception
 {
 driver.findElement(By.xpath(".//*[@id='lo
gout']/img")).click();

 driver.close();
 }

}

6.5 Selenium Script developed using Hybrid

Framework demonstrating Banking
Application

Figure 3: Structure of Hybrid Framework

Hybrid Framework

Banking Application testing using Hybrid
framework is shown in figure-3. [9]

Step-1: Creation of repository file with the
name bank.properties as follows:

URL=https://localhost/OnlineBank
LoginPage.UName=login_id
LoginPage.Pwd=passwrd
LoginPage.signIn=btnsubmit
Logout=.//*[@id='logout']/img

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4185

menuMaster=.//*[@id='smoothmenu1']/ul/li[5]
/a
menuTrans=.//*[@id='smoothmenu1']/ul/li[5]/
ul/li[1]/a
menuDep=Deposits
linkDep=Make Deposit
txtAcno=account_no
txtAmt=tamt
btnConf=btnConfirm

Step-2: Creation of Excel file for the DATA
DRIVEN TEST with the filename
“TestData.xlsx” as follows:

Step-3: Creation of Excel file with the
KEYWORDS in the filename “Keywords.xlsx”
as follows:

Step-4: Creation of classfile with the name
Constant.java under the package Utility as follows:

package Utility;
public class Constant
{
 public static final String q=null;
 public static final String p=null;

 public static final String
dburl="jdbc:mysql://localhost/dbbank";
 public static final String dbuser="root";
 public static final String dbpwd="bank";

 //Excel Test DataSheet with Columns
 public static final int Col_TestSerialNo = 0;

 public static final int Col_Acno = 1 ;
 public static final int Col_Amt = 2;
}

Step-5: Creation of class file with the name
ExcelUtils.java under the package Utility as
follows:
package Utility;

importorg.apache.poi.xssf.usermodel.XSSFWorkbo
ok;
importorg.apache.poi.xssf.usermodel.XSSFSheet;
importorg.apache.poi.xssf.usermodel.XSSFCell;
importjava.io.FileInputStream;

public class ExcelUtils
{
private static XSSFWorkbookExcelWBook;
private static XSSFSheetExcelWSheet;
private static XSSFWorkbookDExcelWBook;
private static XSSFSheetDExcelWSheet;

private static int rows;
private static XSSFCell Cell;

public void setExcelFile(String purpose, String
Path, String SheetName) throws Exception
{
FileInputStreamExcelFile=new
FileInputStream(Path);

if (purpose.equals("datadriven"))
 {

DExcelWBook = new
XSSFWorkbook(ExcelFile);
DExcelWSheet=
DExcelWBook.getSheet(SheetName);

 }
 else
 {

ExcelWBook = new
XSSFWorkbook(ExcelFile);
ExcelWSheet=
ExcelWBook.getSheet(SheetName);

 }
}

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4186

public int getLastRow(String purpose) throws
Exception
{
if (purpose.equals("datadriven"))
rows=DExcelWSheet.getLastRowNum();
else
rows=ExcelWSheet.getLastRowNum();
return rows;
}

public String getCellData(String
purpose,intRowNum, intColNum) throws
Exception
{
if (purpose.equals("datadriven"))
Cell=DExcelWSheet.getRow(RowNum).getCell(C
olNum);
else
Cell=ExcelWSheet.getRow(RowNum).getCell(Col
Num);
String CellData=Cell.getStringCellValue();
returnCellData;
}
}

Step-6: Creation of class file with the name
BaseClass.java under the package config as
follows:

packageconfig;
importorg.openqa.selenium.WebDriver;

public class BaseClass
{
public static WebDriver driver;
public BaseClass(WebDriver driver)
{

BaseClass.driver = driver;
}
}

Step-7: Creation of class file with the name
BaseClass.java under the package config as
follows:

packageconfig;

importjava.io.File;
importjava.io.FileInputStream;
importjava.sql.Connection;
importjava.sql.DriverManager;
importjava.sql.ResultSet;
importjava.sql.SQLException;
importjava.sql.Statement;
importjava.util.Properties;

importjava.util.concurrent.TimeUnit;
importorg.openqa.selenium.By;
importorg.openqa.selenium.WebDriver;
importorg.openqa.selenium.WebElement;
importorg.openqa.selenium.firefox.FirefoxDriver;
importorg.openqa.selenium.interactions.Actions;

importUtility.Constant;
importUtility.ExcelUtils;

public class Action_Keywords extends BaseClass
{
public static Properties prop;

publicAction_Keywords(WebDriver driver)
{
 super(driver);
}

public static void setObjRepository(String Path)
throws Exception
{
 File fn = new File(Path);
 prop = new Properties();

FileInputStreamobjInput = new
FileInputStream(fn);

 prop.load(objInput);
 objInput.close();
}

public static void openBrowser()
{
 driver=new FirefoxDriver();

driver.manage().timeouts().implicitlyWait(
20, TimeUnit.SECONDS);

 driver.manage().window().maximize();
}

public static void openURL() throws
InterruptedException
{

 driver.get(prop.getProperty("URL"));

driver.manage().timeouts().implicitlyWait(
20, TimeUnit.SECONDS);

}

public static void input_Username()
{

driver.findElement(By.id(prop.getProperty
("LoginPage.UName"))).sendKeys("admin
");

}

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4187

public static void input_password()
{

driver.findElement(By.id(prop.getProperty
("LoginPage.Pwd"))).sendKeys("123456")
;

}

public static void click_Submit()
{

driver.findElement(By.id(prop.getProperty
("LoginPage.signIn"))).click();

}

public static void waitFor() throws Exception
{
 Thread.sleep(5000);
}

public static void goforMenu()
{

Actions action=new Actions(driver);
 WebElement mas=

driver.findElement(By.xpath(prop.getProp
erty("menuMaster")));

 action.moveToElement(mas).build().perfo
rm();

driver.manage().timeouts().implicitlyWait(
10, TimeUnit.SECONDS);

 WebElementtrans=
driver.findElement(By.xpath(prop.getProp
erty("menuTrans")));

 trans.click();
driver.manage().timeouts().implicitlyWait(
10, TimeUnit.SECONDS);
driver.findElement(By.linkText(prop.getPr
operty("menuDep"))).click();

}

public static void dataDriven() throws Exception
{

String sPath =
"D:\\Selenium_Workspace\\SelProj\\TestD
ata.xlsx";
ExcelUtils E2=new ExcelUtils();
E2.setExcelFile("datadriven",sPath,
"Sheet1");
int dataRows =
E2.getLastRow("datadriven");

 String iAcno;
 String iAmt;

for(int k=1;k<=dataRows;k++)
{

driver.findElement(By.linkText(prop.getPr
operty("linkDep"))).click();
driver.manage().timeouts().implicitlyWait(
10, TimeUnit.SECONDS);

WebElementAcno=driver.findElement(By
.id(prop.getProperty("txtAcno")));

Acno.clear();
iAcno = E2.getCellData("datadriven", k,
Constant.Col_Acno);
Acno.sendKeys(iAcno);
WebElementAmt=
driver.findElement(By.id(prop.getProperty
("txtAmt")));
Amt.clear();
iAmt = E2.getCellData("datadriven", k,
Constant.Col_Amt);
Amt.sendKeys(iAmt);
WebElement sub=
driver.findElement(By.id(prop.getProperty
("btnConf")));
sub.click();
check_Database(iAcno,iAmt);
}

}

public static void check_Database(String iAcno,
String iAmt) throws ClassNotFoundException,
SQLException
{

 Class.forName("com.mysql.jdbc.Driver");

Connection con =
DriverManager.getConnection(Constant.d
burl,
Constant.dbuser, Constant.dbpwd);

 String query;
 Statement stmt;
 ResultSetrs;

query="select account_no, amount from
tbl_CustAccount where
account_no='"+iAcno+"' and
amount='"+iAmt+"';";

 stmt=con.createStatement();
rs=stmt.executeQuery(query);

while(rs.next())
{

if (rs.getString(1) !=null
&&rs.getString(2)!=null)
System.out.println("Correct
record added...");

}
rs.close();

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4188

con.close();
}

public static void click_Logout()
{

driver.findElement(By.xpath(prop.getProp
erty("Logout"))).click();

}

public static void closeBrowser()
{

driver.quit();
}

}

Step-8: Creation of class file with the name
DriverScript.java under the package
ExecutionEngine as follows:

packageExecutionEngine;

import org.testng.annotations.Test;
import config.Action_Keywords;
import Utility.ExcelUtils;

public class DriverScript
{
 @Test
 public void Init() throws Exception
 {

String sPath =
"D:\\Selenium_Workspace\\SelProj\\Keyw
ords.xlsx";

 ExcelUtils E1=new ExcelUtils();
E1.setExcelFile("keyword",sPath,
"Sheet1");

 int totRows=E1.getLastRow("keyword");
String
objPath="D:\\Selenium_Workspace\\SelPr
oj\\src\\JCC.properties";

 Action_Keywords.setObjRepository(objPa
th);
 for (int iRow=1;iRow<=totRows;iRow++)
 {
 String sActionKeyword =
E1.getCellData("keyword",iRow, 3);
if(sActionKeyword.equals("openBrowser"))
 Action_Keywords.openBrowser();
else if(sActionKeyword.equals("openURL"))
 Action_Keywords.openURL();
else if(sActionKeyword.equals("input_Username"))
 Action_Keywords.input_Username();
else if(sActionKeyword.equals("input_password"))
 Action_Keywords.input_password();

else if(sActionKeyword.equals("click_Submit"))
 Action_Keywords.click_Submit();
else if(sActionKeyword.equals("waitFor"))
 Action_Keywords.waitFor();
else if(sActionKeyword.equals("goforMenu"))
 Action_Keywords.goforMenu();
else if(sActionKeyword.equals("dataDriven"))
 Action_Keywords.dataDriven();
else if(sActionKeyword.equals("click_Logout"))
 Action_Keywords.click_Logout();
else if(sActionKeyword.equals("closeBrowser"))
 Action_Keywords.closeBrowser();
 }
 }
}

Above script when executed, reads the keywords
from Keywords.xlsx file and then branches the
control into the package config and into the class
Action_Keywords and runs every test case. It also
gets the objects defined in the object repository file
to locate the objects in the application and also
reads the data from testdata.xlsx file to send the
data as inputs into the application. This script is the
best example for Hybrid framework as it contains a
combination of various frameworks Keyword
Driven, Data Driven, Functionalities broken into
multiple parts and also uses an object repository
file.

7. DIFFERENCE FROM PRIOR WORK
In my earlier paper suggested the TEST
AUTOMATION PLAN FOR FINANCIAL
APPLICATIONS and focused mainly on utilization
of Hybrid Framework. This paper gives the solution
for Hybrid Framework with respect to Test
Prioritization.

8. LIMITATIONS
The limitation with this approach is that there
would be a long time between development and
software releases and because the two teams work
separately, the development team will not be aware
of operational roadblocks that might prevent the
program from working as anticipated. My research
in future work is to focus on best practices to meld
application development and deployment into a
more streamlined process that aligns development,
quality assurance (QA) and operations team efforts.

9. CONCLUSION

If the core practices of Risk Management and Risk
Based Testing are implemented then it can help in
bringing out a better system. When automated

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4189

testing is applied, expansion of test suite is no more
a risk and test coverage gets maximized which then
permits prioritization of low severity test cases.

In summary, this research demonstrates the test
case prioritization techniques and its effective
implementation with Automation Tools using
TestNG Framework for speeding up the testing
process a step further.

ACKNOWLEDGEMENT

I thank Dr. Mohammed Ismail, Professor,
Computer Science Engineering Department,
K.L.E.F University, Vaddeswaram, Vijayawada,
Andhra Pradesh, for his valuable guidance and
extensive support in completing this paper.

REFRENCES:
 [1] Elbaum, S., A. Malishevsky and G. Rothermel,

2002. Test case prioritization: A family of
empirical studies. IEEE Trans. Software Eng.,
28: 159182.

[2] Matthias Ratert, Secusmart GmbH.
“Automated, tool independent test case
prioritization”, EuroStar Software Testing
Conference, Germany. Year 2012.

[3] Joachim Karlsson & Kevin Ryan, "A Cost-
Value Approach for Prioritizing
Requirements", IEEE Software, Sept. 1997.

[4] Mohammed Ismail. B, B. Eswara Reddy, T.
Bhaskara Reddy “Cuckoo Inspired Fast
Search Algorithm for Fractal Image
Encoding” Elsevier Journal of King Saud
University Computer and Information
Sciences November 2016

[5] G. Rothermel ; R.H. Untch ; Chengyun
Chu ; M.J. Harrold. Test case prioritization:
an empirical study, IEEE 6 August 2002.

[6] Andreas Hoffmann, Axel Rennoch, Ina
Schieferdecker and Nicole Radziwill, "A
Generic Approach for Modeling Test Case
Priorities with Applications for Test
Development and Execution", 2009 -
Research Gate, Germany.

[7] Graves, T.L., M.J. Harrold, J.M. Kim, Ad.
Porter and G. Rothermel, 2001. An empirical
study of regression test selection techniques.
ACM Trans. Software Eng. Methodol., 10:
184208.

[8] Dr.Mohammed Ismail, C.H.S.L. Sowmya, T.
Sai Sudheera ,P Ravi Teja “A Comparative
Study on Dealing with Sparsity in E-
Commerce" International Journal of Pure and

Applied Mathematics Volume 118 No. 5 Jan
2018, 185-194

[9] "https://crossbrowsertesting.com/blog/test-
automation/prioritizing-test-automation",
"Prioritizing Tests When You Can’t Automate
Everything", May 25, 2017

[10] Malishevsky, A.G., J.R. Ruthruff, G.
Rothermel and S. Elbaum, 2006. Cost-
cognizant test case prioritization. Technical
Report TR-UNL-CSE-2006-0004,
Department of Computer Science and
Engineering, University of Nebraska-Lincoln.
http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.112.9150.

[11] Bhagyashree Bhondokar, Pooja Ranawade,
Snehal Jadhav and Mayuri Vibhute, “Hybrid
Test Automation Framework for Web
Application”, International Journal of
Engineering Research & Technology, Vol. 4 -
Issue 04 (April - 2015)

[12] “http://toolsqa.com/selenium-
webdriver/selenium-automation-hybrid-
framework”, 5 October 2017

.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4190

Table 1: Calculation of Test Priorities

Functionalities Critical
Features

Application
Interface

Complexity Change
Frequency

Risk
Calculation

Weights 3 10 3 3

Customer Account
Creation

5 2 3 2 35*15 = 525

Administrator
Services

4 2 4 2 32*18 = 576

Banking Services 2 3 3 3 36*18 = 648

Transactions 4 5 2 4 62*18 = 1116

Reports 5 4 1 1 55*6 = 330

Risk Calculation = [(Weights * Critical Features) + (Weights * Application Interface)] *

[(Weights * Complexity) + (Weights * Change Frequency)]

Customer Account Creation = [(3 * 5) + (10 * 2)] * [(3 * 3) + (3 * 2)]
 = [15 + 20] * [9 + 6]
 = [35] * [15]
 = 525

