
Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4136

OPENFLOW SWITCH SOFTWARE-BASED PERFORMANCE
TEST ON ITS IMPLEMENTATION ON CAMPUS NETWORK

1RIKIE KARTADIE, 2FAHRUR ROZI, 3EMA UTAMI
1,2Information Technology Education Department , STKIP PGRI Tulungagung, Jl. Mayor Sujadi Timur

No.7, Tulungagung, Indonesia
3Universitas Amikom Yogyakarta, Jl. RingRoad Utara, Condong catur, Yogyakarta, Indonesia

E-mail:1rikie.kartadie@stkippgritulungagung.ac.id, 2fahrur.rozi@stkippgritulungagung.ac.id,

3emma@nrar.net

ABSTRACT

OpenFlow experiments are conducted by researchers often used hardware/OpenFlow Switch issued by
vendors. Actually, the performance of OpenFlow switch software-based (starting while switching software-
based) was only tested on a laboratory scale. The problem to be raised in this research can be stated some
problems as follows. How is OpenFlow software-based OpenWRT software performance when
implemented into the Software-Defined Network (SDN) infrastructure on campus and is there a significant
difference between mininet switch and prototype. In this study showed that the performance of which was
owned by the OpenFlow switch-base software and can be implemented on campus. Testing OpenWRT
OpenFlow software-based switching performance on campus implementation provides the resulting
prototype latency value fluctuated quite diverse compared mininet with gap is 2.3361 msec, the average
value of TCP and the absolute data gap and prototypes is 10.2114 KByte/second, and the average UDP
value and the value of the data gap absolute mininet and prototypes is 151.419 KByte / second. Mininet
switches compared to prototype switches do not give significant difference, so it can be said prototype
successfully produced and can be implemented on campus network.

Keywords: Implementation, OpenFlow, OpenFlow Switch, Performance, Software-Defined Network

1. INTRODUCTION

 The current network was the result of
protocol and network design decisions made in the
1970s. Once established, the network topology is
not expected to change much, probably will not
change at all. However, in reality, the need for the
network continues to grow and the network design
continues to experience drastic changes.The
networks are typically constructed from a large
number of network devices such as routers,
switches, and other devices. Each device runs the
packet forwarding manipulation, with a complex
protocol embedded within the device. Network
operators are directly responsible for the
configuration, rules, and not infrequently up to the
applications used in the network. Carriers typically
manual configuration on each device that is
connected, it does give a gap in configuration errors
because of human error (human error), especially
when it has to handle the number of devices a lot.
STKIP PGRI Tulungagung also realized the trend

of rapid network development, thus requiring
continuous adjustments and renewals.

Anticipate these conditions were answered
with the advent of new architectures and protocols,
called SDN/OpenFlow, and Suwadi, et al said that
network coding is one technique to improve[1].
Software-Defined Network (SDN) emerged from
research in 2004 as part of a new network
management paradigm study, which resulted in two
different results: the work of the routing control
platform (RCP 40) completed at Princeton and
Carnegie Mellon University under the auspices of
Caesar et al. in 2005, and the security of the SANE
Ethane project network completed at Stanford
University and the University of California by
Cassado et al. In 2006 [2]–[4].
 To do the experiment of OpenFlow,
researchers often use high-cost hardware/ dedicated
OpenFlow switch released by vendors.
Furthermore, there is also switch, namely
OpenFlow switch software-based, that is the low-
cost OpenFlow based on OpenWRT. In fact, the
performance of OpenFlow switch software-based

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4137

(henceforth as OF switch software-based) was
tested only on a lab scale. The results of previous
research, OF-based software switches can be used
to replace dedicated OpenFlow switches to be
implemented on intermediate and campus networks
based on throughput and jitter test results [5].

 Research on switch OF software-based has
been done on several types of researchers. Yik
(2012) has been researching by making Switch OF
software-based prototype with NetFPGA [6], while
the researchers themselves have made prototypes
using commercial switches with OpenWRT-based
[5], [7], [8], Applement and Boer analyze the
performance of hardware OpenFlow are like
NetFPGA card, Pica8 OpenFlow on a Pronto
switch and OpenvSwitch. The test is done with
variables such as QoS, Port Mirroring, fail over
speed and performance overhead [9], [10].
However, this study uses OpenWRT OpenFlow
switch software-based which is lower cost and the
testing done in this research is throughput and
latency. Siebertz[11], in his thesis test OpenWRT
as OpenFlow switch but in wireless mode, while
the researcher made in wire mode. In the previous
research OpenWRT switch software-based is tested
in small scale that is lab, meanwhile we need to
know how good is OpenWRT switch software-
based if implemented in large scale such as campus
network. If OpenWRT switch software-based can
be implemented in campus network it will be
reduce the cost but before that there are need to
compared between mininet and prototype switches.

 Based on the explanation above, the
problem that will be raised in this study can be
stated several problems as follow. How is the
performance of OpenWRT switch software-based
when implemented into a Software-Defined
Network infrastructure on campus network. The
major research focuses on throughput that can be
generated and the resulting latency. The study
compared the results obtained mininet with the
results obtained the prototype.

2. RESEARCH METHOD

The research method used in this study is
as follows: (1) Design topology that will be used
both in the test mininet and test using prototype, (2)

Modify Switch TP-Link which will be prototype
with firmware OpenWRT and given OpenFlow
agent [5], (3) testing mininet with a pre-designed
topology and testing the throughput and latency of
reference data, (4) performing the test throughput
and latency of the prototype, (5) Analyzing the data
generated by the comparison method. The expected
result is that there is no significant difference
between the mininet that will be the reference data
of the prototype so that the prototype is successful
and is declared acceptable. Research method can be
seen in Figure 1.

Figure 1. Research Method

A. Topology Design
 In this study, researchers used topology
which is used on campuses, although it does not
describe the topology completely. STKIP has
several node switches that serve the host/user
dispersed throughout campus locations. 70% of the
use of the network using a wireless connection; So,
in this study, researchers focused only on the cable
network in the campus environment. Cable network
topology which is used on campus network as
shown in Figure 2(a) and topology that is used for
this study as shown in Figure 2(b). There are 10
switches used in a star topology and centered on
switch no.1 as the center of the data stream.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4138

2(a). The campus network topology 2(b). topology that used for this study

Figure 2. Topology Used In Research
The topology used in mininet runs a

proposed (custom) topology (10 pieces of switches
with 4 hosts per switch). Coding run with python

language that can be executed by mininet, while
coding for the topology that has been designed is as
follow on figure 3.

 """
Sepuluh switch terkoneksi langsung,
dengan masing-masing
switch terkoneksi dengan 4 host:
"""

from mininet.topo import Topo

class MyTopo(Topo):

"Topologi prototipe."
def __init__(self):

"Membuat topologi."
Initialize topology
Topo.__init__(self)

Add hosts and switches
"""
Switch 1 dan 2
"""
Host-s1 = self.addHost('hs1-1')
Host-s2 = self.addHost('hs1-2')
Host-s3 = self.addHost('hs1-3')
Host-s4 = self.addHost('hs1-4')

Host-s5 = self.addHost('hs2-1')
Host-s6 = self.addHost('hs2-2')
Host-s7 = self.addHost('hs2-3')
Host-s8 = self.addHost('hs2-4')
 Coding cut
 Switch1 = self.addSwitch('s1')
 Switch2 = self.addSwitch('s2')
 Switch3 = self.addSwitch('s3')
 Switch4 = self.addSwitch('s4')
 Switch5 = self.addSwitch('s5')
 Switch6 = self.addSwitch('s6')
 Switch7 = self.addSwitch('s7')
 Switch8 = self.addSwitch('s8')
 Switch9 = self.addSwitch('s9')

 Switch10 = self.addSwitch('s10')
Add links
self.addLink(Switch1, Host-s1)
self.addLink(Switch1, Host-s2)
self.addLink(Switch1, Host-s3)
self.addLink(Switch1, Host-s4)
self.addLink(Switch2, Host-s5)
self.addLink(Switch2, Host-s6)
self.addLink(Switch2, Host-s7)

self.addLink(Switch2, Host-s8)
self.addLink(Switch3, Host-s9)
self.addLink(Switch3, Host-s10)

 Coding Cut
""" Link antar switch"""
 self.addLink(Switch1, Switch2)
 self.addLink(Switch1, Switch3)
 self.addLink(Switch1, Switch4)
 self.addLink(Switch1, Switch5)
 self.addLink(Switch1, Switch6)
 self.addLink(Switch1, Switch7)
 self.addLink(Switch1, Switch8)
 self.addLink(Switch1, Switch9)
 self.addLink(Switch1, Switch10)

 topos = { 'mytopo': (lambda: MyTopo()) }

Figure 3: Topology Coding Used on Mininet

B. Controller Used

 The controller plays an important role in
the SDN/OpenFlow network. There are many
existing controllers, whether they are open-source
or that are closed source or paid. According to
Muntaner, controllers are a major factor in the
SDN/OpenFlow network [10]. Because of the
importance of the controller in this study, before
performing the selection of the controller, the
researcher conducts a predecessor study (literature
study) with respect to the controller. In this study,
the researcher chooses to use Floodlight controller
with the consideration of this controller has the
following features [12] : (1) Module loading
system, which makes this controller has a simple
system and easy to develop, (2) Easy to set with
minimal dependencies, support switch virtual or
physical, (3) Be able to recognize the mixed
network of OpenFlow and non-OpenFlow, (4) Have
high performance, because that floodlight becomes

the core of commercial product design of big
switch network, (5) OpenStack support (link)
orchestration cloud platform. As mentioned earlier,
Floodlight is a controller with modular architecture
that includes modular device management,
topology modules, load balancing, Web graphical
user interface (Web GUI). The core module of
floodlight is a module that can handle I/O from
network devices and change OpenFlow messages
[13].

 In addition to the above features,
researchers have conducted research on the
performance of this controller that has been
published with the result that this controller has a
good latency on the number of switches under 60
pieces. The highest latency response at the switch
condition is 20 pieces. The throughput performance
of this controller is good too because it can handle
450 hosts with the performance of 1500.38
flow/second [8], in another study Floodlight

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4139

obtained an average performance of 81.863
flow/detik[14], however floodlight gives a good
performance compared with other controllers. This
is in line with Bholebawa's statement [15] that
floodlight controllers are more efficient than other
controllers.

C. Comparative test with Mininet

 Mininet was used as an emulator to obtain
comparison data in this study. Besides being
mininet as the only emulator that can give an exact
picture of the network SDN / OpenFlow [8],
mininet also used in testing the controller that has
been done on the sub-section 2.2 above. Installation
mininet performed on Laptop with Intel i3-4005U
CPU specification 170GHzx4, 4Gb Ram with
Operation System ubuntu kernel 4.4.0-92-generic
16.04LTS. Installation mininet did with 2
treatments; (1) installing the Ubuntu OS kernel
directly on the host laptop, (2) using Virtual Boxes
in running mininet as OpenFlow switch. In this
study, the researchers used the second way for the
reason that if an error occurs in the installation does
not damage the operating system kernel used.
Corrections made in the running mininet will be
easier to do. Topologies that have already been
designed will run on mininet. The designed
topology will run in mininet, run with the command
sudo mn --topo = mytopo --controller =
remote, ip = 192.168.56.102, port = 6653 --
custom = toporikie.py

 Mininet run custom topology (10 pieces
switch with 4 hosts per switch). Mininet topology
which was executed later in the capture of data
throughput and latency, and are used as
comparative data. Throughput and Latency data are
taken periodically for 10 weeks with an average
value per week. Results from mininet and controller
connections as shown in Figure 3.

After mininet simulated variables, the next step

is to create a prototype network using OpenWrt
switch. Switches used are TP-Link WR1043nd with
hardware version 1.11 as many as

Figure 4: Test Topology (non-host) Described By Floodlight

10 pieces and compiled based on research topology
shown in Figure 2. The prototype built is a
software-based OpenFlow Switch prototype.

D. Modify Firmware

 To modify the firmware, there are two
ways you can do, (1) Modify the firmware from the
firmware update menu on the switch. On the first
modification, this is the experienced failure,
because the firmware entered does not remove the
original firmware available. The new firmware is
entered only occupy space on the flash/ROM. (2)
Modify the firmware by flashing/reinstalling on the
ROM switch.
 The switch has several pins that will be
connected to the computer via TTL to USB cable.
The pin (on the circuit notated P1) is pin serial
consisting of 4 pins.Pin1 is Tx, pin 2 is Rx, pin 3 is
ground and pin 4 is Vcc (voltage), pin 1 in Figure 5
are marked with a red circle.

 The circuit path on the Rx pin on the
circuit with the resistor R362 does not exist and
resulted in not being able to enter into the uboot of
the switch. To get into the uboot switch and make
firmware modifications, it is necessary to add the
path between R362 and Rx pin as done in figure 6.

 Before the new firmware image is
uploaded, the old firmware image is removed first,
so there is enough space in the ROM switch to
place the new firmware image. Once entered into
the prompt ROM of the switch, which is marked
with "ar7100>". The command given is "erase
0xf020000 + 7c0000", with this command ROM
will delete the memory contents located at
0xf020000 to 0x7c0000, this memory location
containing the old firmware image, then installed
with OpenFlow firmware image.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4140

Figure 5: The Pins Are Connected To A PCc With A USB To

TTL

Figure 6: The Addition Of Circuit Lines On Rx Pin Serial With
R362 To Get Into Uboot

 The IP assignment of each switch is
configured directly in the /etc/config/OpenFlow file
as below, for switches 1 to 10 with different PIDs.

config 'ofswitch'

option 'dp''dp0'
option 'dpid''000000000001'
option 'ofports''eth0.1 eth0.2

eth0.3 eth0.4'
 option'ofctl''tcp:192.168.56

.102:6653'
option 'mode''outofband'

 As for IP configuration is done in
/etc/config/network with the following
configuration:

... config 'interface'

option 'ifname''eth0.5'
option 'proto''static'
option 'ipaddr''192.168.56.11'

option 'netmask''255.255.255.0'

E. Testing latency and throughput

 The latency tests performed on minerals
and prototypes are performed on a large ICMP
packet from 64 bytes to 8192 bytes. Tests carried
out by repeating 10 times on each data packet
transmitted ICMP. Throughput and latency testing
were performed on mininet and prototypes did on
the TCP protocol with the TCP window size from
128 Kbps to 1024kbps and UDP buffer size and
bandwidth of 128 kbps up to 1024kbps. On the
server side, iperf is setup with a configuration
where large windows sizes are assigned variables
ranging from 1024kBps.

iperf -s -P 0 -i 1 -p 5001 -w 1024K -f k

For UDP used settings starting from the same
packet size as well.
iperf -s -u -P 0 -i 1 -p 5001 -w 1024K -f k

On the client side, iperf is configured

iperf -c 10.0.0.1 -P 1 -i 1 -p 5001 -w

1024K -f K -t 10

For UDP on the client side the following settings
are used

iperf -c 10.0.0.1 -u -P 1 -i 1 -p 5001 -w
1024K -f k -b 1024M -t 10 -T 1

3. RESULT AND ANALYSIS

 Once the prototype switch ready switches
arranged in accordance with the topology that was
designed before. The data is retrieved with the same
technique both mininet and prototype, the data were
taken for 10 weeks, testing was conducted on the
data of 64Byte to 8192byte.

A. Latency Test

 Testing latency on mininet and prototype
switch can be seen in table I and table II , in table I
and II the results of trials on each switch are
average results obtained in the experiment for 10
weeks and is the result of per-switch latency.

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4141

Table 1: Latency on Mininet (msec)

Switch 64
byte

128
byte

256
byte

512
Byte

1024
byte

2048
byte

4096
byte

8192
byte

1 2,228 3,999 4,855 5,191 4,341 4,736 4,477 9,149

2 2,341 3,193 4,416 5,787 4,436 4,773 4,515 9,44

3 2,221 3,211 4,117 5,433 4,499 4,554 4,655 9,765

4 2,611 3,566 4,567 5,011 4,321 5,145 4,66 9,432

5 2,288 3,458 4,532 4,65 5,031 4,555 4,789 9,435

6 2,581 3,413 4,765 4,667 4,432 4,872 4,123 9,444

7 2,344 3,871 5,376 4,432 4,333 4,321 5,011 9,123

8 2,731 3,876 4,566 4,32 4,547 4,387 5,811 9,812

9 2,444 3,431 5,111 4,567 4,556 4,21 4,667 9,456

10 2,553 3,67 4,353 5,001 4,678 5,091 4,558 9,112

avg 2,434 3,569 4,666 4,906 4,517 4,664 4,727 9,417

stdev 0,177 0,280 0,372 0,467 0,213 0,316 0,444 0,243

var 0,031 0,078 0,139 0,218 0,046 0,100 0,197 0,059

Table 2: Latency on Prototype Switch (msec)

Switch 64
byte

128
byte

256
byte

512
byte

1024
byte

2048
byte

4096
byte

8192
byte

1 2.622 5.545 5.613 5.585 5.678 6.48 7.233 10.421

2 3.211 4.552 4.568 4.445 5.734 5.89 6.77 10.441

3 2.345 4.322 5.67 5.566 5.422 6.41 6.89 10.822

4 3.445 4.311 5.123 5.758 5.121 6.11 7.04 10.112

5 3.467 4.666 5.431 6.697 6.123 6.432 7.554 10.115

6 3.567 4.544 4.987 6.667 5.889 6.544 6.899 10.001

7 3.765 4.446 5.437 6.976 5.431 6.345 6.785 10.448

8 3.541 5.765 4.877 6.674 5.666 6.599 6.78 10.766

9 3.333 5.778 5.12 6.69 5.789 6.679 7.12 11.011

10 3.489 5.012 5.234 6.476 5.66 6 7.556 10.886

avg 3.279 4.894 5.206 6.153 5.651 6.349 7.063 10.502

stdev 0.448 0.590 0.344 0.792 0.277 0.264 0.301 0.357

var 0.201 0.349 0.118 0.627 0.076 0.070 0.091 0.127

The highest average mininet latency as
shown in table I, occurs on a large 512byte data
packet with the value of 5.001 msec and will
have a very significant increase in data packets
of 8192byte. In the table above, it is also seen
that the existing standard deviation has the
highest value on the 512byte packet size. Data
variance on the package size has a value of
0.218.

The latency value obtained by the
prototype has decreased in the 512byte packet
the average value obtained is 6.153 msec
although it then rises again in accordance with
the size of the data packet. Data variance on the
package size has a value of 0.076.The prototype
has provided results close to the results of
mininet, the average throughput value and the
value of the data gap absolute mininet and
prototypes can be seen in table 3 and figure 8 .

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4142

Table 3: Latency Average and Gap (in msec)

64

byte
128
byte

256
byte

512
byte

1024
byte

2048
byte

4096
byte

8192
byte

Avg. Prototipe 3.2785 4.8941 5.206 6.1534 5.6513 6.3489 7.0627 10.5023
Avg.Mininet 2.4342 3.5688 4.6658 4.9059 4.5174 4.6644 4.7266 9.4168

Gap 0.8443 1.3253 0.5402 1.2475 1.1339 1.6845 2.3361 1.0855

64
by
te

12
8b
yte

25
6b
yte

51
2b
yte

10
24
by
te

20
48
by
te

40
96
by
te

81
92
by
te

0

40

80

Throughput TCP Average and Gap
Mininet vs Prototype

Avg. Protot ipe Avg.Mininet

Gap

Figure 7: Latency Average And Gap Between Mininet And
Prototype

 In table 3 and figure 7 , it can be seen
that the highest gap value is in the 4096 byte data
packet, where the prototype produces the highest
average latency value compared to mininet. The
resulting prototype latency value fluctuated quite
diverse compared mininet. The latency value in
the 8192byte packet (2.3361 msec) has a high
increase but has a low gap.

B. Throughput TCP Test

 For throughput testing, both mininet
and prototype switches are tested on TCP and
UDP throughput.The result of TCP throughput
testing can be seen in table 4 and table 5.

Table 4: Throughput TCP on Mininet (KByte/sec)

Switch 64
byte

128
byte

256
byte

512
byte

1024
byte

2048
byte

4096
byte

8192
byte

1 91,984 91,983 92,085 91,533 92,075 90,639 90,966 91,962

2 92,042 90,586 91,421 91,872 91,294 90,763 91,022 92,062

3 91,963 93,042 92,961 92,982 91,874 91,659 92,288 91,656

4 91,475 92,142 92,236 91,012 91,644 92,273 91,942 92,966

5 92,963 92,845 92,983 92,481 91,686 91,783 93,074 93,048

6 92,983 93,094 92,942 93,021 90,573 92,073 92,966 93,077

7 91,633 92,957 92,973 93,073 91,943 92,155 91,633 91,631

8 92,984 92,963 91,576 92,665 90,852 91,422 91,474 93,181

9 90,962 90,944 90,942 91,482 90,564 90,969 90,961 91,132

10 91,983 92,074 91,672 91,312 91,982 92,055 91,652 91,762

avg 92,097 92,263 92,179 92,143 91,449 91,579 91,798 92,248

stdev 0,688 0,900 0,761 0,787 0,589 0,604 0,775 0,749

var 0,473 0,810 0,579 0,620 0,347 0,364 0,600 0,560

The mininet TCP throughput value in table 4,
the average value of the measurement indicates a
relatively stable value, the largest data variance
value in the 128byte data packet size is 0.810. In
the data 1024byte average value of TCP
throughput decreased, though not large, the
resulting value is 91.449 KByte/second.

The throughput TCP shown by the prototype

experiences the same properties as those shown
by mininet. Average throughput TCP has
generated a stable value despite a decline in large
data packets 8192byte with the value 81.938
KByte/second, but then give stable results on

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4143

large data packets further. The standard deviation
of the prototype in table 5 shows the value
approximately equal to the value generated
mininet. The data packet of 128byte prototype
has the same data variant with mininet of 0.810.

 The prototype has given identical
results as the mininet result, the average value of

TCP and the absolute data gap and prototypes
can be seen in table 6 and figure 8. With the
resulting gap values, the prototype has no
significant difference in this throughput test,
although there is a difference in the 512byte data
packet with 10.2114 KByte/second gap.

Table 5: Throughput TCP on Prototype (KByte/sec)

Switch 64
byte

128
byte

256
byte

512
byte

1024
byte

2048
byte

4096
byte

8192
byte

1 81,674 81,673 81,775 81,21 81,765 80,329 80,656 81,652

2 81,732 80,276 81,111 81,223 80,984 80,453 80,712 81,752

3 81,653 82,732 82,651 82,657 81,564 81,349 81,978 81,346

4 81,165 81,832 81,926 81,562 81,334 81,963 81,632 82,656

5 82,653 82,535 82,673 82,171 81,376 81,473 82,764 82,738

6 82,673 82,784 82,632 82,711 80,263 81,763 82,656 82,767

7 81,323 82,647 82,663 82,763 81,633 81,845 81,323 81,321

8 82,674 82,653 81,266 82,553 80,542 81,112 81,164 82,871

9 80,652 80,634 80,632 81,172 80,254 80,659 80,651 80,822

10 81,673 81,764 81,362 81,297 81,672 81,745 81,342 81,452

avg 81,787 81,953 81,869 81,932 81,139 81,269 81,488 81,938

stdev 0,688 0,900 0,761 0,700 0,589 0,604 0,775 0,749

var 0,473 0,810 0,579 0,490 0,347 0,364 0,600 0,560

Table 6: Throughput TCP on Prototype (KByte/sec)

 64
byte

128
byte

256
byte

512
byte

1024
byte

2048
byte

4096
byte

8192
byte

Avg. Prototipe 81.7872 81.953 81.8691 81.9319 81.1387 81.2691 81.4878 81.9377

Avg.Mininet 92.0972 92.263 92.1791 92.1433 91.4487 91.5791 91.7978 92.2477

Gap 10.31 10.31 10.31 10.2114 10.31 10.31 10.31 10.31

64byte 128byte 256byte 512byte 1024byte 2048byte 4096byte 8192byte
0

2

4

6

8

10

12

Latency Average and Gap
Mininet vs Prototype

Avg. Protot ipe Avg.Mininet Gap
Figure 8: Throughput TCP Average And Gap Between

Mininet And Prototype

C. Throughput UDP Test

 For throughput testing, both mininet
and prototype switches are tested on UDP and
TCP throughput. The result of TCP throughput
testing can be seen in table 7 and table 8 .

The mininet TCP throughput value in table 8,
the average value of the measurement indicates a
relatively stable value. The highest value is
shown on the packet size of 8192byte with an
average value of 177.606 Kbyte/second.

 The throughput UDP shown by the

prototype experiences the same properties as
those shown by mininet. The increase in

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4144

throughput due to a large increase in data
packets. The highest throughput value on packet
size 8192byte with value 151.419 KByte /
second.

 Prototype has provided results close to
the results of mininet, the average UDP value
and the value of the data gap absolute mininet
and prototypes can be seen in table 9 and figure
9 .

Table 7: Throughput UDP on Mininet (KByte/sec)

Switch 64

byte
128
Byte

256
byte

512
byte

1024
byte

2048
byte

4096
byte

8192
byte

1 14.390 15.600 33.854 69.771 144.542 156.921 177.000 187.788

2 14.090 15.300 33.133 69.331 140.200 173.101 173.053 184.376

3 14.230 15.440 33.094 70.167 143.110 158.091 176.000 185.968

4 14.010 15.220 32.632 69.197 140.654 151.000 172.187 183.466

5 13.800 15.010 32.191 68.271 140.976 149.279 164.876 175.790

6 12.977 15.000 32.170 68.227 141.654 150.550 162.116 172.892

7 12.880 15.345 32.800 69.550 141.857 156.712 173.053 183.376

8 12.981 14.191 30.471 64.659 140.665 135.037 149.211 159.341

9 12.120 13.330 28.663 60.862 144.542 137.313 151.714 161.969

10 12.089 15.011 32.193 68.276 140.357 150.78 169.923 181.089

avg 13.357 14.945 32.120 67.831 141.856 151.878 166.913 177.606

stdev 0.859 0.685 1.505 2.896 1.656 10.771 9.821 10.016

var 0.738 0.469 2.265 8.385 2.741 116.010 96.461 100.315

Table 8: Throughput UDP on Prototype (KByte/sec)

Switch 64

byte
128
byte

256
byte

512
byte

1024
byte

2048
byte

4096
byte

8192
byte

1 14.621 15.441 30.394 67.796 139.992 146.752 150.427 154.176

2 14.780 15.841 31.720 68.470 141.378 148.197 151.901 155.679

3 14.535 15.355 30.218 67.431 139.243 145.970 149.630 153.362

4 13.511 14.331 29.119 63.085 130.317 136.661 140.134 143.677

5 13.740 14.310 29.588 64.057 132.313 138.743 142.258 145.843

6 15.094 16.345 30.708 68.445 141.326 148.143 151.846 155.623

7 14.676 15.496 30.507 68.029 140.472 147.252 150.937 154.696

8 15.337 15.981 31.611 68.245 140.916 147.716 151.410 155.178

9 14.444 14.560 29.588 64.057 132.313 138.743 142.258 145.843

10 14.192 15.012 30.515 65.975 136.253 142.852 146.449 150.118

avg 14.493 15.267 30.397 66.559 137.452 144.103 147.725 151.419

stdev 0.561 0.703 0.838 2.093 4.299 4.484 4.574 4.665

var 0.315 0.494 0.703 4.381 18.484 20.107 20.920 21.765

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4145

Table 9: Throughput UDP Average and Gap.

64

byte
128
byte

256
byte

512
byte

1024
Byte

2048
byte

4096
byte

8192
byte

Avg. Prototipe 13.357 14.945 32.120 67.831 141.856 151.878 166.913 177.606
Avg.Mininet 14.493 15.267 30.397 66.559 137.452 144.103 147.725 151.419

Gap 1.136 0.322 1.723 1.272 4.404 7.775 19.188 26.187

4b
yt
e

12
8b
yte

25
6b
yte

51
2b
yte

10
24
by
te

20
48
by
te

40
96
by
te

81
92
by
te

0

4

8

12

Latency Average and Gap
Mininet vs Prototype

Avg. Protot ipe Avg.Mininet

Gap

Figure 9: Throughput UDP Average And Gap Between
Mininet And Prototype

Based on three test, that is latency: throughput
TCP, and throughput UDP on prototype switch
and mininet switch produce minimal gap
between them. This happened because there are
no significance differences in using prototype
switch or mininet switch. Therefore OpenWRT
switch software-based can be implemented in
campus network.

4. CONCLUSIONS

 In this study, it can be seen that
OpenWRT OpenFlow software-based switching
performance on campus implementation
provides satisfactory results, in some cases may
still need further development and research.
Whereas when compared with mininet, prototype
switches do not give significant difference, so it
can be said prototype successfully produced and
can be implemented further. Testing OpenWRT
OpenFlow software-based switching
performance on campus implementation
provides the resulting prototype latency value
fluctuated quite diverse compared mininet with
gap is 2.3361 msec, the average value of TCP
and the absolute data gap and prototypes is
10.2114 KByte/second, and the average UDP
value and the value of the data gap absolute
mininet and prototypes is 151.419 KByte /
second. Based on the result we can conclude that
OpenWRT switch software-based can be
implemented in campus network. The prototype

provides the same habits with mininet on latency
but needs further evaluation on throughput
because prototype habit and mininet habit is
quite different.

ACKNOWLEDGMENT
 This project was financially supported

by a Research Grant from the Indonesian
government through the ministry of research -
technology and higher education with PKPT
research scheme. We thank our colleagues from
STKIP PGRI Tulungagung and Universitas
Amikom Yogyakarta especially for Prof. Ema
Utami who provided insight and expertise that
greatly assisted the research.

REFERENCES:

[1] S. Suwadi, E. Endroyono, T. Suryani,
and U. Khair, ‘Performance Of
Cooperative Communication System
With Network Coding Using Software
Defined Radio’, J. Theor. Appl. Inf.
Technol., vol. 96, no. 1, 2018.

[2] P. Morreala and J. Anderson, Software
Defined Networking, 1st ed. Boca Raton,
FL: CRC Press, 2015.

[3] J. Chen, X. Zheng, and C. Rong, ‘Survey
on software-defined networking’, Lect.
Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 9106, no. 1, pp.
115–124, 2015.

[4] A. Gelberger, N. Yemini, and R. Giladi,
‘Performance analysis of Software-
Defined Networking (SDN)’, in
Proceedings - IEEE Computer Society’s
Annual International Symposium on
Modeling, Analysis, and Simulation of
Computer and Telecommunications
Systems, MASCOTS, 2013, pp. 389–393.

[5] R. Kartadie and B. Satya, ‘Uji Performa
Implementasi Software-Based OpenFlow
Switch Berbasis OpenWRT Pada
Infrastruktur Software-Defined

Journal of Theoretical and Applied Information Technology
15th July 2018. Vol.96. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4146

Network’, DASI, vol. 16, no. 3, p. 87,
2015.

[6] E. C. Yik, ‘Implementation of an Open
Flow Switch on Netfpga’, Universiti
Teknologi Malaysia, 2012.

[7] G. Pujolle, Software Network-
Virtualization, SDN, 5G, and Security,
1st ed. Hpboken, NJ: ISTE Ltd And Jhon
Wiley & Sons, Inc., 2015.

[8] R. Kartadie, T. Suryanto, ‘Uji performa
software-based openflow switch berbasis
openwrt’, J. Ilm. SISFONETIKA, vol. 5,
no. 2, pp. 130–142, 2015.

[9] M. Appelman and M. De Boer,
‘Performance Analysis of OpenFlow
Hardware’, University of Amsterdam,
2012.

[10] G. R. D. T. Muntaner, ‘Evaluation of
OpenFlow Controllers’, 2012.

[11] F. Siebertz and P. K. Jonas,
‘Masterprojekt Software Defined
Networking’, University of Applied
Sciences, 2014.

[12] ‘Floodlightt’, Project Floodlight, 2018.
[Online]. Available:
http://www.projectfloodlight.org/floodlig
ht/. [Accessed: 17-Jan-2018].

[13] H. Akcay and D. Yiltas-Kaplan, ‘Web-
Based User Interface for the Floodlight
SDN Controller’, Int. J. Adv. Netw.
Appl. Vol., vol. 8, no. 5, pp. 3175–3180,
2017.

[14] S. M. Anggara, ‘Pengujian Performa
Kontroler Software-defined Network
(SDN): POX dan Floodlight’, Institut
Teknologi Bandung, 2015.

[15] I. Z. Bholebawa and U. D. Dalal,
‘Performance Analysis of SDN /
OpenFlow Controllers : POX Versus
Floodlight’, Wirel. Pers. Commun., no.
September, 2017.

