
Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4126 

 

STATIC MAPPING FOR OPENCL WORKLOADS IN 
HETEROGENEOUS COMPUTER SYSTEMS 

 

1HENDRA RAHMAWAN,  2KUSPRIYANTO, 3YUDI SATRIA GONDOKARYONO 

School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesha No.10, 
Bandung 40132, Indonesia 

E-mail:  1hrahmawan@gmail.com, 2kuspriyanto@yahoo.com, 3ygondokaryono@stei.itb.ac.id    
 
 

ABSTRACT 
 

Today, heterogeneous computer systems (HCS) commonly rely on CPU and GPU, for processing elements, 
and OpenCL, for the programming framework. In an HCS, a workload should execute on its best processor 
to achieve its best speedup. OpenCL currently entirely lefts the selection for the best-fit processor, termed 
as workload mapping, to programmers. However, the NP-completeness of the workload mapping task 
indicates it is not a trivial task to do manually by programmers so that effective computational approaches 
are necessary. This research proposes a static mapping method for OpenCL workloads that automatically 
select the best-fit processor for the workloads. The method accepts static features of a workload and utilizes 
K-Nearest Neighbor algorithm to classify the workload to either CPU or GPU. The static features are 
collected using LLVM/Clang compiler framework. To increase the accuracy of classification while keep 
maintaining the physical meaning of features, the features are reduced using feature selection approaches. 
Two feature selection models, filter model and wrapper model, are used in this research. This approach was 
evaluated using k-fold cross-validation against 18 OpenCL kernels obtained from standard benchmark 
packages. According to the evaluation results, the workload mapping accuracy was in the range of 93% to 
97% indicating the method is well applicable in the HC environment with two processors. Floating-point 
operations and vector-integer operations, or floating-point operations and vector-global memory access are 
the combinations of features that a have significant contribution to the classification of workloads. The 
main contribution of the method in this research, compared to previous related research, lies in its capability 
to state features that are significant in the classification process. 

Keywords: Heterogeneous Computing, Workload Mapping, OpenCL, K-Nearest Neighbor, GPU 
 

1. INTRODUCTION  

Heterogeneous computing systems  (HCS), as a 
subset of high-performance computing systems, has 
been recognized as a new platform in computing 
and also offers a high gain in performance at a 
reasonable cost and power consumption [1-3]. 
Various computing workloads in different fields, 
ranging from trivial matrix-vector multiplication 
program to most complicated bioinformatics 
programs, share three common computing 
characteristics: data intensive, compute intensive, 
and control intensive [3].  Processing devices 
should be able to accommodate those 
heterogeneous workload characteristics, and 
heterogeneity of HCS inherently gives capabilities 
for processing different types of workloads which 
are not well addressed by conventional 
homogeneous computing systems [1].  

HCS is usually built using existing off-the-shelf 
machines or processors. Thus, it will be relatively 

low-cost, comply with industry standards, and use 
proven technology. Basing to Flynn taxonomy for 
classifying parallel architectures [4], HCS can be 
defined as a synergetic use of processors having 
architectures of SISD (single instruction-stream 
single data-stream), SIMD (single instruction-
stream multiple data-stream), MIMD (multiple 
instruction-stream multiple data-stream), or MISD 
(multiple instruction-stream single data-stream). As 
today it is difficult to find real SISD machines and 
no real implementations of MISD architecture, 
existing HCS systems incorporate only SIMD and 
MIMD architecture. SIMD machines are well 
suited for processing data-intensive and compute-
intensive workloads, whereas MIMD machines 
would be able to process control-intensive 
workloads properly [3, 5]. 

MIMD architecture is generally represented by 
general purpose CPUs. On another spectrum of 
architectures, graphics processing units (GPUs), 



Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4127 

 

digital signal processing (DSPs) processors, and 
field programmable gate arrays (FPGAs) are some 
devices represent SIMD architecture. Those devices 
are also known as coprocessors or accelerators. 
With the rise of general-purpose computing on 
GPU (GPGPU), GPU becomes the most widely 
used accelerators in HCS. From another point of 
view, HCS could also be defined as the use of 
coprocessors to increase the performance of 
computing instead of using only a single type of 
CPU. Accelerator is a term used with coprocessor 
interchangeably since a few years back, describing 
its capabilities to accelerate workloads processing. 
A CPU will offload its workloads to accelerators to 
accelerate workloads processing. 

In addition to hardware aspects, software 
frameworks are also required to support HCS in 
order to be optimally used by the programmer. 
OpenCL is an open standard of the HCS framework 
developed by several vendors, such as Intel, AMD, 
and NVidia, cooperating in Khronos consortium. 
Accelerators or coprocessors and general purpose 
CPUs are termed as devices in OpenCL. The 
support of OpenCL for wide range of devices 
makes it frequently used in HCS programming. 
However, the selection of devices to execute 
workloads in OpenCL is left entirely to the 
programmer. Programmers should be able to match 
their workloads with available devices, considering 
characteristics of workloads and devices, with the 
intention of achieving good performance. 
Inaccurate decisions by running workloads on 
unsuitable processing elements will bring 
workloads execution into suboptimal performance. 
This workload-processor matching or mapping 
problem is an NP-complete problem rather than 
trivial one [7]. Thus, not only write their programs, 
in these circumstances, programmers also have to 
handle this non-trivial additional tasks.  

Unfortunately, existing software frameworks for 
HCS have less features for assisting programmers 
to determine the most suitable processing element 
for their workloads. Due to this mapping problem 
inherits NP-complete problem, an approach that can 
be used to overcome the problem is by predicting 
the best-fit processor for a given workload. 
Classification algorithms could be used to 
accomplish this task.  This paper introduces an 
approach to map workloads to processors by using 
K-Nearest Neighbors (KNN) as the classification 
algorithm. The purpose of the approach is to select 
the best processor, either CPU or GPU, by 
prediction. In this research, KNN algorithm is used 
in conjunction with static profiling to collect the 

characteristic of workloads, and feature-selection 
algorithms to select high-correlated features.  

This paper is organized as follows. Section 2 
provides motivations for this research. Some related 
works in workload mapping are explained in 
Section 3. Section 4 covers some fundamental 
concepts about OpenCL and KNN algorithm. 
Proposed methodology in this research is described 
in section 5. Results of experiments in this research 
are presented and discussed in section 6. Section 7 
summarizes the contributions of this research. 
Conclusions and possible future works of this 
research are elaborated in section 8. 

2. MOTIVATION 

This research is motivated by some findings that 
different mapping of workloads onto processors 
could bring into significantly different performance 
of workloads execution on HCS. In this section, six 
OpenCL kernels are examined by executing them 
on two different types of processor, namely CPU, 
and GPU. Figure 1 depicts the speedups of six 
OpenCL kernels, each of which is executed on 
CPU, and GPU. 

 
Figure 1: The Speedup over Single-Core CPU of Six 

OpenCL Kernels Running on Multi-Core CPU and GPU. 

As depicted in Figure 1, there are two groups of 
workload that demonstrate different behavior 
regarding speedups they achieve both on CPU as 
well as GPU. The first group consists of FFT 1D, 
local-memory matrix multiplication, and box filter 
vertical. The second group consists of histogram, 
uncoalesced matrix-vector multiplication, and 
binary search.  

The first group achieve the best performance 
when they run on CPU, whereas the last one 
achieve the best performance when they run on 
GPU. If the first group is assumed to run on GPU, 
then it will lose, on average, about three-fourth of 
their best speedup. On the other hand, if the second 
group run otherwise on GPU, it will lead to, on 
average, two times slower than its best 
performance.  



Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4128 

 

Therefore, this clearly shows that different 
workload needs different mapping in order to 
achieve their best performance. If only a single 
mapping rule applied, for instance always run 
workloads on GPU or always run workloads on 
CPU, then, as previously described, it is probably 
will end up either in lower speed-up, or turn into 
slow-down. 

3. RELATED WORKS 

Some previous works were conducted to 
alleviate the problem of determining processors to 
execute workloads. Early research in the field of 
heterogeneous computing, like in [8], used 
interconnected single-core processors with different 
speed as their model. Some of them also studied 
mapping problems in simulation environments 
where the performance of all tasks on all processors 
is assumed known in advance. 

Braun et al. [9] was comparing 11 heuristics used 
for static mapping of tasks on mixed-machine 
heterogeneous systems. Those heuristics were 
applied with estimated execution time (ETC) 
matrices to find the best heuristic for independent-
tasks mapping on heterogeneous systems. A row in 
an ETC contains the estimated execution times for 
a given task in some machines, which also 
represents machine heterogeneity. The research 
concluded that genetic algorithm (GA) is the best 
heuristic in the heterogeneous mapping simulation. 
Other research in static task matching for 
heterogeneous systems also addressed dependent-
task model, which is modeled using directed 
acyclic graph (DAG), like in [10] that also 
implements GA as its heuristic. 

Wrensing and Greg [11] proposed an approach 
called elastic computing that introduced multi-
implementation of workloads on various processor 
types, which was combined with linear-regression 
generated from workload profiles, in order to find 
the best processor type to execute workloads in 
question. Sandrieser et al. [12] initiated an external 
specification, called platform description language 
(PDL), as an abstraction for multiple different 
workloads implementations and multiple different 
hardware platforms, as the basis for the proposed 
approach for finding the most suitable processor to 
execute the workloads. Approaches in [11,12] share 
the common property, i.e. providing multiple 
different workload implementations is mandatory, 
which is limiting them to be widely applied.  

Another methodology in workload mapping, 

proposed by Albyarak et al. [13], using three 
different main algorithms, i.e. greedy algorithm 
(GA), improved version of greedy-algorithm (IA), 
and mixed-integer programming (MIP), which all 
of them required input in the form of characteristics 
of kernels (workload). In this approach, the 
characterization of a kernel is accomplished by 
executing each kernel on each processors. This 
characterization technique is known as dynamic 
profiling, which has relatively higher cost than its 
static counterpart. Grewe and O’Boyle [6] and 
Tarakji et al. [7] introduced the use of machine 
learning to decide the most proper processor to 
execute a workload. Both of them used support 
vector machine (SVM), applied static-profiling to 
collect features from workloads, and used principal 
component analysis (PCA) to reduce the feature 
size. If it is necessary to know what features 
affecting mapping decisions, then the use of PCA 
cannot answer the question as it will transform 
features into new feature space. 

4. FUNDAMENTAL CONCEPTS 

Some basic theories about the OpenCL 
programming framework, and the KNN 
classification algorithm, employed in this research, 
will be elaborated briefly in this section. 

4.1. The OpenCL Programming Framework 

OpenCL standard specifies four models in the 
programming framework, namely platform model, 
execution model, memory model, and programming 
model. The platform model presents hierarchical 
organization abstracting the hardware in OpenCL. 
A platform consists of a host connected to one or 
more OpenCL devices. An OpenCL device is 
constituted by one or more compute units (CUs), 
which are further divided into one or more 
processing elements (PEs) [14]. The platform 
model also specifies that there is one processor 
coordinating execution (the host) and one or more 
processors capable of executing OpenCL C code 
(the devices) [3].  

The execution model defines two terms for two 
different units of execution, namely kernels that run 
on one or more OpenCL devices, and a host 
program that runs on the host processor. The kernel 
term in OpenCL refers to where the main task, 
which is usually associated with computation, is 
placed. At run-time, kernels would be in the form 
of work-items that executes in groups, termed as 
workgroups. Relating to the platform model, these 
work-items would be run on OpenCL devices that 
are determined by the host program. A context is 



Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4129 

 

used to manage environment within which kernels 
run. A command-queue associated with a certain 
device is also set up in the context. To run a kernel 
on a certain device, a command is submitted to 
command-queue, in the form of N-dimensional 
index space, termed as NDRange. In a device, 
work-items in a workgroup would be further 
grouped into wavefronts that are executed in 
lockstep in a compute-unit [15].  

The memory model defines organizational 
aspects of memory that control the interaction of 
values in memory as they are accessed from units 
of execution. It would help programmers to verify 
the correctness of their program. The model 
classifies memory into host memory and device 
memory, based on its direct-availability in a device 
or in a host.  This model also specifies four regions 
of memory in an OpenCL device, namely global 
memory and constant memory that have scope in 
the device, local memory that is only accessible by 
work-items in the same workgroup, and private 
memory that is valid only for a work-item. Besides 
the specification of memory regions, the memory 
model of OpenCL also specifies about memory 
objects, shared virtual memory, and consistency 
model. 

The last model in OpenCL is the programming 
model. It defines how the concurrency model is 
mapped to physical hardware. It abstracts a host 
processor and one or more OpenCL devices as a 
single heterogeneous parallel computer system. 
This model determines that an implementation of 
the OpenCL framework should consist of OpenCL 
platform layer, OpenCL runtime, and OpenCL 
compiler. 

4.2. K-Nearest Neighbor (KNN) Classification 

In the field of data classification, KNN algorithm 
falls into statistical learning class which its 
classification process is based on instances of data 
[16]. This algorithm is a lazy-learning algorithm 
because it delays the induction or generalization 
process until classification occurs. KNN is using 
the principle that instances in a dataset with similar 
properties are in general closer each other than with 
the others with different properties. In a supervised-
classification case, which is data has a label 
associated with each of its instances, to find a label 
for an unclassified instance, KNN algorithm will 
discover k nearest neighbors and assign the single 
majority label to the instance. The general steps in 
KNN is described in Figure 2. 

Set k: the number of nearest neighbors to find

Define distance function D(x,y)

Evaluate D(x,Y): distance from x to each item of Y

Get first k items from D(x,Y), assign them to Yk

Determine the majority label from Yk, and use as label for x

Let x be an instance to be classified

Read training data Y

Sort D(x,Y) in ascending order

 
Figure 2: Steps to Classify an Instance of Data Using 

KNN. 

In the context of supervised classification, 
instances can be considered as points in an n-
dimensional space. Proximity or distance between 
instances hence can be measured using some 
distance-functions [16] as presented in Table 1. 

Table 1: Some Functions to Measure Distance. 

Distance Function 

Euclidian: 
2

1

1

2
),( 








 



m

i
ii yxyxD  

Minkowski: 
rm

i

r

ii yxyxD

1

1

),( 







 



 

Manhattan: 



m

i
ii yxyxD

1

),(  

Chebychev: 
ii

m

i
yxyxD 


max),(

1

 

Camberra: 
 




m

i ii

ii

yx

yx
yxD

1

),(  

5. METHODOLOGY 

In this research, there are two main processes 
carried out to map a workload to two type of 
processors, namely a GPU and a CPU. Those 
processes are workload characterization and 
workload mapping, with the sequence of them is 
depicted in Figure 3. 

Workload
Workload 

Characterization
Workload 
Mapping

Map of 
Workload‐
Prosesor

Character 
of 

Workload

 

Figure 3: The sequence of stages in the proposed 
workload mapping approach. 

The workload characterization process takes a 
workload in the form of OpenCL kernel as its input, 
determines the workload characters, and issues the 
character of the workload as the output. The 



Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4130 

 

character of a workload then passed to the 
workload-mapping process that will predict the 
most suitable processor for the workload. The 
output of the latest process is a pair of workload-
processor that represents the processor in which the 
workload to run. 

In this research, the number of involved 
workloads and processors in a single mapping step 
are assumed to be one workload and two processors 
with distinct types. This assumption is taken to 
observe the performance of this methodology in a 
simple mapping case. Further development and 
generalization for more complex mapping scenarios 
could be done based on the result of this research. 

5.1. Workload Characterization 

In this research, a characteristic of a workload is 
a collection of features related to a workload. To 
obtain values of these features, this research uses 
both static and dynamic profiling techniques. The 
static profiling approach is responsible for 
computing the frequency of occurrence of 
operations in a workload, whereas the dynamic 
profiling is responsible for collecting some 
dynamic aspects of workloads like input size and 
memory-transfer size. 

Candidates of static features come from three 
types of operation: computation, memory, and 
control. As no support for I/O operation in GPU, 
the I/O operation type is not involved in this 
research. The rationale to involve those types of 
operations are all computations are commonly 
composed of them. This research uses input size 
and memory size (in bytes) for dynamic features for 
the reason they will determine the total size of 
instructions. 

The workload features to use in this research are 
listed in Table 2. The static profiling approach uses 
an analysis-pass based on Clang/LLVM compiler 
framework. This analysis pass reads an OpenCL 
kernel that has been compiled into LLVM 
intermediate-representation (IR) and computes the 
frequency of certain operations in the IR. 

In this research, the operations are classified into 
ordinary operation and complex operation. The 
frequency of occurrence for ordinary operations, 
like scalar integer operations, floating-point 
operations, etc., can be computed using a simple 
algorithm. The algorithm uses a counter variable 
for each operation under observation. The 
algorithm will increase the counter variables when 
it encounters the associated operations. 

Table 2: Features of A Workload Acquired Using Static 
and Dynamic Profiling Techniques. 

Operation 
Type 

No. Feature Name Feature 
Type 

Arithmetic 1 Scalar Integer Operations Static 
2 Floating-point Operations  
3 Vector Integer Operations  
4 Vector Floating-point 

Operations 
Memory 5 Scalar Local Memory Access 

6 Vector Local Memory Access 
7 Scalar Global Memory Access 
8 Vector Global Memory 

Access 
9 Coalesced Memory Access 

Control 10 Barriers 
11 Conditional Branch 
12 Divergent Branch 
13 Conditional Branch Cost 
14 Unconditional Branch 

N/A 15 Input Size Dynamic 
 16 Memory Size  

A complex operation is an operation with special 
meaning. The complex operations are coalesced-
memory-access operations and divergent-branch 
operations. A coalesced-memory-access operation 
allows adjacent threads to concurrently access 
values residing in adjacent memory locations. A 
coalesced-memory-access operation is actually an 
ordinary memory-access operation, but some 
special treatments take place when a processor 
executes it. One of the indications whether or not a 
memory access is a coalesced one is whether or not 
the memory access uses thread-index or 
workgroup-index. A divergent-branch instruction is 
a conditional-branch instruction which makes 
threads follow a different path of executions. A 
conditional branch is possibly divergent when it 
includes thread-index or workgroup-index in its 
conditional part.  

In this situation, to determine whether or not a 
memory operation is a coalesced-memory 
instruction and whether or not a conditional-branch 
instruction is a divergent-branch instruction, some 
additional computations should be carried out. The 
computations consider the indication that both 
operations use thread-index or workgroup-index. 

The flow of workload characterization is started 
with compiling an OpenCL source file into an IR 
and storing it in a text file. The next step is running 
the analysis pass against the text file containing the 
IR. The analysis-pass could be run using the opt 
tool in the LLVM framework. The analysis-pass 
runs the workload characterization process using 
the algorithm described before. The output of the 
analysis-pass is a file containing the values of the 
features of the workload. 



Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4131 

 

5.2. Workload Mapping 

The objective of this step is to decide which 
processor to run a workload. This task is 
accomplished using the KNN classification 
algorithm. The input for this step is a file 
containing features of workloads. This step consists 
of three sub-steps, namely normalization, feature 
selection, and classification. 

5.2.1. Normalization 

Due to the limited number of available 
workloads, and the need of a large enough sample 
size for data classification, to increase the sample 
size of the workload, all of the workloads are run 
with varied input size. This strategy gives identical 
feature values for groups of workloads, except for 
the input size feature and the memory access size 
feature.  

To distinguish between two sets of feature values 
from the same workload with different input sizes, 
the total number of operations in the workload can 
be used. By multiplying size of operations in 
workload code with the number of work-items, the 
total number of operations in the workload 
execution could be estimated. To inform the 
classification algorithm about the relationship of 
sets of feature values that come from the same 
program but with different input size, the total 
number of operations is then divided by the 
memory access size. This sequence of computations 
is called normalization, introduced by Grewe & 
O’Boyle [6], and formulated in Eq. (1). 

size transfer data

 workitemsofnumber 
 size operations  valuenormalized  (1)

5.2.2. Feature Selection 

To increase the performance of KNN 
classification, a sequence of steps, called feature 
selection, is carried out to select only important 
features of OpenCL kernels. The important features 
have high relevance to the class label assignment in 
the workload data. In this case, the important 
features are very decisive whether a workload is 
better to run on CPU or GPU. The feature selection 
only run once as the initialization process of the 
classifier, and it does not run in the classification 
step.  

This research uses two feature selection models. 
The first model is filter model, which is 
independent of the classification algorithm. The 
second one is wrapper model, which uses a 

classification algorithm to produce selected 
features. The sequence of filter model and wrapper 
model is depicted in Figure 4. 

Filter 
Model

Feature 
Set

Feature 
Subset

Wrapper 
Model

Feature 
Subset

 

Figure 4: The Sequence of Filter Model and Wrapper 
Model in Feature Selection Process. 

Filter model will compute ranks for each feature 
of OpenCL workloads. A dataset containing records 
of OpenCL kernels with their feature values is the 
input for this process. In this research, filter model 
uses two metrics, Pearson Correlation Rank [17] 
and Fisher Score [18], as the rankings for features. 
The rationale for the use of both metrics is to give 
better confidence about the order of the features 
produced by the filter model. In this research, the 
filter model is also set to feed the wrapper model, 
the next step of feature selection, with reduced 
feature size that will decrease computing cost of it. 
Features that have been ranked by filter model are 
then pruned by selecting m best features. The m 
best features can be selected by setting a threshold 
either objectively or subjectively.  Eq. (2) and Eq. 
(3) formulate Pearson Correlation Rank and Fisher 
Score respectively. 

 

 








m

k

m

k kiik

m

k kiik

yyxx

yyxx
iR

1 1

22
,

1 ,

)()(

))((
)(  

(2)










c

k

j
kk

c

k

jj
kkj

n

n
xF

1

2

1

2

)(

)(
)(



  (3)

Wrapper model will further select the features 
produced by filter model, by evaluating them 
against a classification algorithm. The rationale for 
using wrapper model is to select features that fit 
with the classifier in the classification phase. In this 
research, wrapper model employs KNN as its 
classification algorithm. Wrapper model works 
iteratively, which in each iteration the wrapper 
model will select a feature subset, evaluate it, and 
decide whether to continue to the next iteration or 
to terminate the iteration based on a stopping 
condition. The stopping condition used in this 
research is if the entire feature-subsets have been 
evaluated. The feature-subset with the best 
accuracy in KNN classification then will be 
selected for the output of wrapper model. Figure 5 
depicts the flow of wrapper model for feature 
selection. 



Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4132 

 

Feature 
set

Subset 
selection

Performance 
evaluation against 
a classification 

algorithm

Meet the 
stopping 
condition?

No

Final 
feature 
subset

Select the 
best 
subset

Yes

 

Figure 5: The Flow of Feature Selection with Wrapper 
Model. 

5.3. Classifier Evaluation 

The standard cross-validation technique is used 
to evaluate the performance of KNN classification 
for workload mapping. Among variants of cross-
validation technique, this research uses n-fold 
cross-validation technique. In the n-fold cross-
validation, the data is randomized and partitioned 
into n equally sized subsets. In an iterative way, in 
the ith iteration, the ith subset is selected as the test 
set and the rest n-1 subsets are merged to form the 
training set. In each iteration, the performance of 
KNN classifier is measured, usually using loss or 
accuracy as the metric, and all of the performance 
values are averaged at the end of entire iterations. It 
is important to note that none of the data in the test 
set is used for training the model. 

5.4. Experimental Setup 

In this research, experiments were conducted 
with the objective to evaluate the performance of 
workload mapping using KNN classification. All 
experiments were carried out on a heterogeneous 
computer with hardware configuration described in 
Table 3. 

Table 3: Hardware Configuration for All Experiments. 

 CPU GPU 
Type Intel Core i7-2600k NVIDIA Tesla 

C2075 
Core clock 3.4 GHz 1.15 GHz 
Number of 
cores 

4 (8 with 
HyperThreading) 

448 

Memory sizes 8 GB 6 GB 
Memory 
transfer speed 

21 GB/s 144 GB/s 

OpenCL 
platform 

Intel® OpenCL NVIDIA CUDA 

The workload samples were selected from 
existing software packages: AMD APP SDK and 
CUDA SDK. There were 18 OpenCL kernels that 
each of them executed with four different inputs, 
producing 72 kernel-executions. Each of 72 kernel 
configurations was executed 20 times on CPU and 
GPU, resulting averaged workload execution times 
on CPU and GPU. Either CPU or GPU, which gave 
the best performance in executing a workload, was 

set as the label for the workload in the data set. The 
static feature values of the kernel are also collected 
to form the dataset along with the predefined label. 

The K in the KNN classifier was set to 1 and 3. 
These values were based on initial experiments that 
evaluated the K values of 1, 3, 5, 7, and 9 and 
showed that the best KNN performance, in the 
workload mapping case, is given by K-values of 1 
and 3. To evaluate the KNN classifier performance 
during feature selection process using wrapper 
model, n-fold cross-validation was used with n was 
set to 10. The final assessment of the KNN 
classifier for workload mapping also utilized n-fold 
cross-validation with the n was set to 4 and 6, 
considering the amount of test data and training 
data. In addition to the original order of the data set, 
permutations were also applied to the data set. This 
was done to observe the effect of permutations as 
the consequence of the reuse of workloads to 
construct the data set. 

6. RESULTS AND DISCUSSION 

This section shows and discusses the results of 
feature selection process and final assessment of the 
workload mapping process. 

6.1. Feature Selection 

It has been found from experiments, if the entire 14 
features were used for classification using KNN, 
the average accuracy was 88.96%. The accuracy 
could be increased by applying feature selection 
process.  

As mentioned in previous chapter, two models of 
feature selection were involved, filter model and 
wrapper model. The results of filter model that 
computed Pearson coefficient and Fisher score for 
the 14 features are depicted in Figure 6. From the 
results, by specifying the threshold for Pearson 
coefficient and Fisher score by 0.2 and 0.1 

Figure 6: Pearson Coefficient and Fisher Score for 14 
Initial Features. 



Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4133 

 

respectively, it was obtained six selected features as 
listed in Table 4. These thresholds were set 
subjectively by observing the values and estimating 
the number of features should be selected. 

Table 4 also indicates the numbering of the 
features for the purpose of referencing. The selected 
features were further selected by the wrapper model 
that used KNN classifier with K=1 and K=3. Figure 
7 and Figure 8 describe the performance of KNN 
classification in wrapper model against varying 
features and feature sizes. Figure 7 and Figure 8 
were obtained from KNN classifier with K=1 and 
K=2 respectively. For each subset of each possible 
subset size from the entire available feature subsets, 
only two best combinations of features are 
presented in both figures. From the figures, it is 
clear that the use of two features, either floating-
point operations and vector integer operations 
(feature 4 and 5), or floating-point operations and 
vector global memory access (feature 4 and 6), in 
KNN classifier give best performances with the 
accuracy is more than 96%. These facts could also 
be a recommendation for programmers to notice 
these three deterministic features in their program: 
floating-point operations, vector integer operations, 
and vector global memory access. 

Table 4: Features selected using filter method. 

Feature 
Number 

Feature Name 

1 Branch Conditional 
2 Branch Max Divergence Cost 
3 Branch Unconditional 
4 Floating-point Operations 
5 Vector Integer Operations 
6 Vector Global Memory Access 

6.2. Workload Mapping 

The results of experiments that evaluate the KNN 
classifier that performed workload mapping task 
are summarized in Table 5. The results show that 
the accuracy is ranging from 93.1% to 100%. The 
lowest accuracy was obtained when permutation 
was not applied to the dataset. It was occurred due 
to data items obtained from the same workload 
were in contiguous location. This circumstance 
made selected testing dataset possibly had no 
representative dataset in the training dataset, 
therefore misclassifications were likely occurred. 

The highest accuracy was achieved with the 
permuted dataset. The permutation distributed data 
items to the testing dataset and the training dataset. 
The distribution would make data items come from 
each workload more probable to reside in the 
testing dataset and the training dataset. Hence, 

evaluation with these datasets ended up with 
accurate classification.  

 
Figure 7: Performance of KNN Classifier in Wrapper 

Model with K=3. 

 
Figure 8: Performance of KNN Classifier in Wrapper 

Model with K=3. 

Table 5: Summary of Evaluation of the KNN Classifier 

Testing 
Scenarios 

Data 
Permutation

  

Testing Parameters 

Accuracy (%)Training 
Dataset 

Size 

Testing 
Dataset 

Size 

K in 
KNN 

Manually 
Splitting of 
Training-Testing 
Dataset 

Yes 
60 12 

3 

100
54 18 100

No 
60 12 98.23
54 18 98.90

K-Fold Cross 
Validation 

 
K(K-Fold Cross 

Validation)   

Yes 
4 97.22
6 97.22

No 
4 93.06
6 94.44

 The results of experiments using the testing 
dataset with the size of 12 and 18, without 
permutation, are presented in Table 6 and Table 7. 
Normalized speedup is used to compare speedups 
of each kernel when it was executed on CPU, GPU, 
and the processor that was selected by the KNN 
classifier against its best speedup. KNN 
classification that used both of testing datasets 
failed to classify HorizontalSAT0 kernel with the 
input size of 1024. However, although the KNN 
classifier failed to classify the kernel, the 
performance of the misclassified kernel is so close 
to the optimal one. When the kernel was executed 
on the processor that was selected by the KNN 
classifier, it gained the speedup of 0.999 relative to 



Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4134 

 

its best speedup. This result of experiments 
indicates that the KNN classifier can be used to 
determine the most suitable processor to execute a 
kernel with high classification accuracy. 

Table 6: Performance Achieved by 12 Kernels When 
They Were Mapped Using Always-CPU, Always-GPU, 

and KNN-Classifier. 

No. Kernel 
Normalized Speedup 

CPU GPU Mapping 
1 DCT_2048_2048 1.000 0.997 1.000 
2 MatrixMultiplication_4096 0.074 1.000 1.000 
3 MatrixMultiplicationLocal_2048 0.164 1.000 1.000 
4 OclMatVecMulCoalesced1_2048 0.077 1.000 1.000 
5 OclMatVecMulCoalesced2_1024 0.091 1.000 1.000 
6 HorizontalSAT0_2048 0.900 1.000 1.000 
7 VerticalSAT_2048 0.694 1.000 1.000 
8 HorizontalSAT0_1024 1.000 0.999 0.999 
9 box_filter_vertical_1024 0.396 1.000 1.000 

10 box_filter_horizontal_1024 0.398 1.000 1.000 
11 histogram_256_1024 1.000 0.959 1.000 
12 histogram_256_2048 1.000 0.267 1.000 

 

Table 7: Performance Achieved by 18 Kernels When 
They Were Mapped Using Always-CPU, Always-GPU, 

and KNN-Classifier. 

No. Kernel 
Normalized Speedup  

CPU GPU Mapping 
1 DCT_2048_2048 1.000 0.997 1.000 
2 BinarySearch_67108864 1.000 0.010 1.000 
3 MatrixMultiplication_4096 0.074 1.000 1.000 
4 MatrixMultiplicationLocal_2048 0.164 1.000 1.000 
5 OclMatVecMulUncoalesced0_8192 1.000 0.392 1.000 
6 OclMatVecMulCoalesced0_8192 0.174 1.000 1.000 
7 OclMatVecMulCoalesced1_1024 0.076 1.000 1.000 
8 OclMatVecMulCoalesced1_2048 0.077 1.000 1.000 
9 OclMatVecMulCoalesced2_1024 0.091 1.000 1.000 

10 HorizontalSAT0_2048 0.900 1.000 1.000 
11 VerticalSAT_2048 0.694 1.000 1.000 
12 HorizontalSAT0_1024 1.000 0.999 0.999 
13 box_filter_vertical_1024 0.396 1.000 1.000 
14 box_filter_horizontal_1024 0.398 1.000 1.000 
15 histogram_256_1024 1.000 0.959 1.000 
16 histogram_256_2048 1.000 0.267 1.000 
17 histogram_256_8192 1.000 0.146 1.000 
18 AESEncrypt_4096 0.025 1.000 1.000 

7. SUMMARY OF CONTRIBUTIONS 

In contrast to the related works [6] and [7] 
explained in Chapter 3, this research proposes a 
mapping approach that can describe the 
contribution of features of workloads in the 
mapping process, which is accomplished through 
the use of feature selection. The use of KNN 
classifier makes the mapping approach potentially 
more scalable as the KNN algorithm is inherently a 
multiclass classifier. 

8. CONCLUSION AND FUTURE WORKS 

The heterogeneity of OpenCL workloads and 
processors in heterogeneous computer systems 
makes workload mapping task to select the most 
suitable processor for a certain workload very 
crucial for the performance of the workload 

execution. The contribution of this research is a 
new solution for the workload mapping problem by 
utilizing KNN algorithm that was improved using 
feature selection. This approach is able to help 
programmers to determine processors to execute 
their workloads optimally, which is not a trivial 
task to perform manually. 

This mapping approach used static features of 
workloads for the classification process. There were 
initially 14 static features which were reduced to a 
lower size using feature selection process. The 
feature selection in this approach employed two 
models, namely filter model and wrapper model. 
These models were invoked in sequence and have 
refined the accuracy of the KNN classification up 
to 12%. The combined features of floating-point 
operations and vector integer operations, or 
floating-point operations and vector global memory 
access are empirically gain the highest accuracy in 
the workload-processor mapping. 

The experiments that were conducted using 18 
workloads, picked from standard benchmark 
packages, have shown the accuracy of classification 
ranging from 93.1% to 100%. This range of value 
indicates lower and upper bound for the accuracy of 
the workload mapping approach. This range of 
value also suggests that the KNN classifier 
accurately map workloads to two heterogeneous 
processors. Although this result was obtained from 
mapping with two processors target, it is possible to 
increase the number of the processor to more than 
two processors. 

This work has not yet addressed the problem of 
scheduling a set of workloads into a set of 
processors. Thus this scheduling case is left for the 
future works. There are also some open problems 
related to this field of research. One to consider is 
about involving other performance parameters in 
the mapping approach such as power consumptions, 
and load balancing. Another mapping scheme, like 
dynamic mapping, also has possible advantage over 
current approach, so it is worth to explore. The 
proposed mapping approach is also possible to 
extend to handle multi-kernel scheduling problem. 

REFERENCES:  
[1]  Khokhar A.A., Prasanna V.K., Shaaban, M.E., 

& Wang, C.L.,  “Heterogeneous computing: 
Challenges and opportunities”, Computer 
26(6), June 1993, pp. 18-27. 

[2]  Kumar R., Tullsen D.M., Jouppi N.P., & 
Ranganathan P., “Heterogeneous chip 



Journal of Theoretical and Applied Information Technology 
15th July 2018. Vol.96. No 13 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
4135 

 

multiprocessors”, Computer 38(11), Nov. 
2005, pp. 32-38. 

[3] Gaster B., Howes L., Kaeli D.R., Mistry P.,, & 
Schaa D., “Heterogeneous Computing with 
OpenCL: Revised OpenCL 1.2”, Newnes, 
2012. 

[4] Flynn M.J., “Some computer organizations and 
their effectiveness”, IEEE transactions on 
computers 100(9), Sept. 1972, pp. 948-960. 

[5] Hennessy, J.L., & Patterson D.A., “Computer 
architecture: a quantitative approach”, Elsevier, 
2011. 

[6] Grewe D., & O’Boyle M.A., “Static task 
partitioning approach for heterogeneous 
systems using OpenCL”, Compiler 
Construction, Springer Berlin/Heidelberg, 
2011, pp. 286-305. 

[7] Tarakji A., Salscheider N.O., Alt S., & 
Heiducoff J., “Feature-based device selection 
in heterogeneous computing systems”,  
Proceedings of the 11th ACM Conference on 
Computing Frontiers, ACM, May 2014, pp. 9. 

[8] Ibarra O.H., & Kim C.E., “Heuristic algorithms 
for scheduling independent tasks on 
nonidentical processors”, Journal of the ACM 
(JACM) 24(2), April 1997, pp. 280-289. 

[9] Braun T.D., Siegel H.J., Beck N., Bölöni L.L., 
Maheswaran M., Reuther A.I., Robertson J.P., 
Theys M.D., Bin Y., Hensgen D., & Freund 
R.F., “A comparison of eleven static heuristics 
for mapping a class of independent tasks onto 
heterogeneous distributed computing systems”, 
Journal of Parallel and Distributed computing 
61(6), Elsevier, June 2001, pp. 810-837. 

[10] Wang L., Siegel H.J., Roychowdhury V.P., & 
Maciejewski A.A., “Task matching and 
scheduling in heterogeneous computing 
environments using a genetic-algorithm-based 
approach”, Journal of parallel and distributed 
computing 47(1), Nov. 1997, pp. 8-22. 

[11] Wernsing J.R., & Stitt G., “Elastic computing: 
a framework for transparent, portable, and 
adaptive multi-core heterogeneous computing”, 
Proceedings of the ACM SIGPLAN/SIGBED 
2010 conference on Languages, compilers, and 
tools for embedded systems, April 2010, pp. 
115-124. 

[12] Sandrieser M., Benkner S., & Pllana S., “Using 
explicit platform descriptions to support 
programming of heterogeneous many-core 
systems”, Parallel Computing 38(1), Jan. 2012, 
pp. 52-65, Elsevier. 

[13] Albayrak O.E., Akturk I., & Ozturk O., 
“Improving application behavior on 
heterogeneous manycore systems through 
kernel mapping”, Parallel Computing 39(12), 
Elsevier, Sep. 2013, pp. 867-878.  

[14] Khronos OpenCL Working Group, “The 
OpenCL Specification version 2.0”, July 2015. 

[15] AMD, “AMD Accelerated Parallel Processing 
OpenCL Programming Guide”, Nov. 2013. 

[16] Kotsiantis S.B., “Supervised machine learning: 
A review of classification techniques”,  
Informatica 31(3), Nov. 2007, pp. 249-268. 

[17] Guyon I., & Elisseeff A., “An introduction to 
variable and feature selection”, Journal of 
machine learning research 3(3), Mar. 2003., 
pp. 1157-1182. 

[18] Tang, J., Alelyani S., & Liu H., “Feature 
selection for classification: A review”, Data 
Classification: Algorithms and Applications, 
CRC, 2014, pp. 44.  

 
 


