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ABSTRACT 

 
Density-based clustering method has come into existence as a prominent class for clustering data streams. It 
has the ability to discover clusters with arbitrary shape, and it can handle noise in data. Recently, several 
density-based clustering algorithms have been proposed in the literature for clustering data streams. But each 
algorithm has its own limitation that renders them ineffective and makes a new algorithm necessary for 
dealing with big data. Existing density-based clustering algorithms require high computation time and more 
memory for clustering process. In this paper, we present a novel density-based clustering algorithm called 
Real-time Density-based Clustering (RTDBStream) for evolving data streams. This algorithm is a hybrid 
density-based clustering algorithm that integrates the pros of density-grid and density micro-clustering 
algorithms to get better results. The quality of the proposed algorithm is evaluated on various data sets with 
distinct characteristics using different quality metrics. 
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1. INTRODUCTION 

The amount of data being produced by real-time 
applications has significantly increased over the past 
few years. Advancement in technology and 
innovation in various sectors has given rise to 
increase in data. The growing field of applications 
such as healthcare, banking, agriculture, weather 
monitoring, stock trading, education, medicine, 
science and other sectors has led to the creation of 
large amounts of data, often known as big data [1]. 
Every day a huge amount of data is being produced 
continuously as data streams from different real-time 
applications. Data streams are evolving over time, 
and the amount of data is unbounded [2]. Hence it is 
not possible to keep the whole data stream in the 
main memory. The main problem associated with 
these data streams are their management, storage, 
analysis, and retrieval. Users are interested in 
gaining the knowledge out of these data streams 
during their same minute of generation. However, 
management of big data is not an easy process; the 
intricacies that lie within the management of big 
data do not support the use of conventional 
technologies and methods [3].  

Traditional methods of handling data involve the 
use of techniques which hold limited capabilities, 
inelastic and their storage capacities do not support 
handling of a large amount of data. Conventional 
clustering algorithms require data to be scanned a 

number of times before it can detect and process the 
clusters of data. This strategy is inefficient when it 
comes to big data, because the scale of the data 
prohibits it from being scanned over and over again. 
Big data is differentiated from traditional data 
processing systems in the dimensions such as speed 
of decision making, complexity processing, 
structured and unstructured data processing, the 
flexibility of processing data, and concurrency [4]. 
While traditional clustering algorithms are 
applicable only to static data, today’s research issues 
and applications in big data have to deal with 
infinite, continuous streams of data, arriving at high 
speed. 

One of the ways of dealing with such a huge 
amount of data is to classify it into sets of meaningful 
categories. This is where clustering comes into the 
picture. Clustering is a well-established data mining 
technique that aims at grouping data objects into 
clusters C={C1, C2, C3 ... Ck} such that similar data 
objects are assigned to the same cluster while 
dissimilar data objects are assigned to different 
clusters. 

Data stream clustering aims at detecting clusters 
that are formed and continuously updated out of the 
evolving data streams. These clusters mainly 
represent the gained knowledge out of the clustering 
task. Data stream clustering puts new challenges to 
traditional data clustering such as limited time, 
limited memory, handling noisy data, handling 
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evolving data, handling high-dimensional data, and 
single pass clustering [2]. In data stream clustering 
discovering arbitrary shape clusters and detecting 
noise is very important.   
 
2. RELATED WORK 

Clustering can be classified into different 
categories based on different criteria: Hierarchical 
clustering, Grid-based clustering, Partitioning 
clustering, Model-based clustering and Density-
based clustering [5]. Among all the clustering 
algorithms density-based clustering methods are 
more appropriate in data streams clustering. This is 
because density-based clustering is designed with an 
ability to discover clusters that have arbitrary shapes 
and able to make noise/outliers detection. Other 
clustering algorithms require the knowledge of the 
number of clusters once the clustering process 
begins. However, density-based clustering 
algorithms are independent of the cluster numbers 
and hence have no assumption on the number prior 
to the process. 

The density-based clustering is developed and 
designed on the basis of the notion of density. The 
clusters are prepared in a dense area using a density 
function. The primary notions constantly add until 
the density of the neighbourhood cluster crossed to 
some extent or limit. The method can be used to filter 
out the outliers/noise and locates the cluster at 
various arbitrary shapes. DBSCAN [6], NBC [7] 
OPTICS [8], and DENCLUE [9] are examples of 
some of the primary algorithms that are based on 
density.  

DBSCAN [6] (Density-Based Spatial 
Clustering of Applications with Noise) refers to a 
high quality scalable density-based clustering 
method that depends on the notion of the density of 
clusters. The two essential user-specified input 
parameters for DBSCAN are Eps and µ, where Eps 
is the maximum radius of the neighbourhood and µ 
is the minimum number of points in the Eps-
neighbourhood of a point. DBSCAN starts the 
clustering process by randomly selecting a point p 
and checks the condition whether NEps(p) contains at 
least µ number of points. If the condition is satisfied, 
then the point p is considered as a core point, and a 
new cluster is formed. Otherwise, the point p is 
considered as a noise point. Arbitrary shaped 
clusters along with noise/outlier can be found using 
DBSCAN algorithm. However, the application of 
DBSCAN to high dimensional features are failed to 
investigate, and it fails to detect the clusters with 
multi-density.  

The NBC [7] (Neighbourhood-Based 
Clustering) clustering algorithm also belongs to the 
class of density-based clustering algorithms. NBC 
algorithm can discover arbitrary shape clusters, and 
it requires fewer input parameters than the existing 
algorithms. NBC algorithm can cluster high-
dimensional data sets efficiently. OPTICS [8] 
(Ordering Points to Identify the Clustering 
Structure) extends DBSCAN in order to cluster data 
points from a range of parameter settings. OPTICS 
algorithm differentiates considerable objects from 
outliers or noise thereby identifying all cluster levels 
in a data set. DENCLUE [9] is a clustering algorithm 
that applies the kernel density estimation to employ 
a cluster model, and clusters the object found on the 
set of density distribution function. The algorithm 
uses the idea of density attracted regions to form 
clusters. However, the algorithm is not suitable for 
data sets of high dimension. 

There is a wide range of algorithms in the 
literature for clustering the static data sets in which 
few have been extended their application towards the 
data streams. In the clustering process, all these 
algorithms uses density-based methods and 
overcome the challenging issues, which are put out 
by data streams nature. The existing density-based 
algorithms for clustering data streams are 
categorized into two broad groups: 1) Density-based 
micro-clustering algorithms and 2) Density-grid 
based clustering algorithms. 

 
2.1 Density-Based Micro-Clustering Algorithms 

Micro-clustering is one of the most important 
methods in data stream clustering to compress data 
streams efficiently. The concept of micro-cluster 
(µC) was first proposed by Zhang et al. in [10]. It is 
an extension of Cluster Feature Vector (CFV) which 
is a triple summarizing the information maintained 
about the cluster. Density-based micro-clustering 
algorithms uses µCs to keep summary information 
about data streams and clustering is performed on 
these µCs.  

Cao et al. In [11] proposed a density-based 
micro-clustering algorithm called as DenStream, for 
evolving data streams. DenStream is based on the 
online-offline framework, and it has a pruning 
method to identify the real outliers. The algorithm 
uses the fading (damped) window model to cluster 
evolving data streams. It can handle evolving data 
streams and it can detect noise/outliers in the data. 
However, the algorithm cannot handle high-
dimensional data sets, and it requires high 
computation time for clustering process. 
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In [12], Tasoulis et al. proposed an algorithm 
termed as OpticsStream that uses µC concept for 
clustering data streams. OpticsStream is an 
extension of OPTICS [8] algorithm in which data 
stream cluster structures are represented graphically. 
It has the ability to handle noisy and evolving data. 
OpticsStream cannot handle high-dimensional data. 

Menasalvas et al.  In [13] proposed a density-
based micro-clustering algorithm termed as C-
DenStream in which constraints are applied for data 
stream clustering. It adds the constraints to the µCs 
by including the domain information in the form of 
constraints. C-DenStream has the ability to discover 
arbitrary shape clusters with constraints. However, 
this algorithm has high computation time, and it 
cannot handle high-dimensional data. 

In [14], Jink et al. proposed a three-step 
density-based clustering algorithm termed as 
rDenStream for clustering data streams. The 
algorithm is based on DenStream with an additional 
step called retrospect. In the retrospect phase, the 
misinterpreted abandoned data points get a new 
chance to be re-learned and to enhance the strength 
of the clustering. It improves the accuracy of the 
clustering algorithm by creating a classifier from the 
clustering result. However, the time complexity and 
memory usage of rDenStream is high since it 
processes and retains the old buffer.  

Ren et al. In [15] proposed an algorithm termed 
as SDStream for clustering data streams over a 
sliding window. SDStream is an online-offline phase 
clustering algorithm that processes most recent data, 
and summarizes the old data by using sliding 
window model. The algorithm considers the most 
recent data stream distribution, and it discards the 
data points which are not accommodated in a sliding 
window length. SDStream has the ability to handle 
noisy and evolving data, and it cannot handle high-
dimensional data. 

In [16], Lin et al. proposed an online-offline 
clustering algorithm termed as HDenStream for 
evolving heterogeneous data streams. The pruning 
phase of HDenStream is similar to that of 
DenStream. The algorithm can cover continuous and 
categorical data, which makes it more useful since 
we have any kind of data in the real world 
applications. However, the algorithm cannot handle 
high-dimensional data. 

Dunham et al. In [17] proposed a density-based 
algorithm termed as SOStream (Self Organizing 
density-based clustering over data Stream) that has 
the only online phase in which it dynamically 
creates, merges, and removes clusters. SOStream 
uses competitive learning where a winner influences 
its immediate neighbourhood. SOStream 

automatically adapts the threshold value for density-
based clustering, and it detects clusters within fast 
evolving data streams. SOStream has high 
computation time and it cannot handle high-
dimensional data. 

In [18], Zimek et al. proposed an online-offline 
phase clustering algorithm termed as HDDStream 
for clustering high dimensional data streams. The 
online phase maintains the summary of both points 
and dimensions. The final clusters are discovered in 
offline phase based on a PreDeConStream[19] 
clustering algorithm. HDDStream has the ability to 
handle evolving data streams and noisy data. 
However, it cannot process the data in a limited time. 

Spaus et al. In [19] proposed a clustering 
algorithm termed as PreDeConStream which is 
similar to HDDStream. By working in the offline 
phase, PreDeConStream improves the efficiency of 
the HDDStream. The algorithm can cluster high-
dimensional data. It introduces a subspace prefer 
vector and it maintains two lists including outlier and 
potential µC. However, the algorithm takes more 
time for searching the affected neighboring clusters. 

In [20], Pizzuti et al. proposed an algorithm 
based on a bio-inspired model (flocking model). The 
algorithm is termed as FlockStream which is more 
efficient than DenStream since the number of 
comparisons is limited. This method is based on a 
flocking model in which agents (µCs) work 
independently but form clusters together. 
FlockStream cannot handle high-dimensional data. 

 
2.2 Density Grid-Based Clustering Algorithms 

 Density-grid based clustering algorithms uses 
density-based and grid-based methods for clustering 
data streams. In these algorithms category, the data 
space is partitioned into small segments called grids, 
data points that are in data streams are mapped to 
these grids, and the clusters are formed based on the 
grid density. Density-grid based clustering 
algorithms can discover clusters with arbitrary 
shapes and also detect the noise or outliers. To record 
the dynamic changes (concept drift) of the clusters, 
a density coefficient is considered for each data 
point. Grid density can be defined based on the 
density coefficient aggregation of all the data points 
in the grid. In some algorithms, the grid density is 
determined based on its number of points. Some 
algorithms uses a characteristic vector to maintain 
summary information about the data points.  In grid-
based clustering algorithms, sporadic grids are 
introduced to handle noisy data. These algorithms 
uses different types of window models such as 
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landmark window model, sliding window model and 
fading window model for handling evolving data.  

Li et al. In [21] proposed an incremental one 
pass density grid-based clustering algorithm termed 
as DUCStream (Dense Units Clustering for Data 
Stream) for data streams using the dense unit. When 
a dense unit is added, a new cluster is created only if 
there is no related cluster; otherwise, the new dense 
unit is consumed to the existing clusters. 
DUCStream utilizes bitwise clustering. The 
algorithm has the ability to handle noisy data, and it 
has less time and space complexity. However, the 
algorithm cannot handle evolving data. 

In [22], Chen et al. proposed an online-offline 
algorithm termed as DStream-I for clustering real-
time stream data. The online phase updates the 
characteristic vector of the grid by reading a new 
data point and maps it into the grid. In the offline 
phase, clusters are adjusted in each time interval gap 
and update the grid density and then perform the 
clustering. DStream-I cannot handle high-
dimensional data since it assumes that the maximum 
grids are empty in the high-dimensional locality. 

Tan et al. In [23] proposed an online-offline 
algorithm termed as DDStream that improves the 
quality of the cluster by detecting the border points 
in the grids. In online phase, the characteristic vector 
of the grid is updated. In each time interval gap, the 
offline phase runs and extracts the boundary points, 
and clusters the dense grids. DDStream cannot 
handle high-dimensional data and it has high time 
complexity. 

In [24], Chen et al. proposed an algorithm 
termed as DStream-II that is based on the density of 
the grid attraction. Grid attraction presents that to 
what extent the data in one neighbor is adjoining to 
that of another neighbor. It has pruning techniques to 
remove the sporadic grids mapped by the outliers 
and to adjust the clusters in each time interval gap. 
DStream-II improves the cluster quality by 
considering the position of the data in the grids for 
clustering. However, how to remove sporadic grids 
is an open issue in DStream-II. It cannot handle high-
dimensional data. 

Wan et al. In [25] proposed an online-offline 
algorithm for clustering data streams at multiple 
resolutions, called as MR-Stream. In the online 
phase, the algorithm enables the new data point to be 
mapped to its related grid cell. The offline phase 
discovers clusters at a user-defined height. In MR-
Stream, a memory sampling method is introduced to 
run the offline component. It improves the 
performance by running the offline component at 
constant times. However, the algorithm cannot 
handle high-dimensional data. 

In [26], Ren et al. proposed an online-offline 
algorithm termed as PKS-Stream that uses PKS-tree 
for recording non-empty grids and their relations. 
The algorithm uses k-cover grid cells for 
maintaining non-empty cells. In online phase, the 
data records are mapped to the related grid cells; 
otherwise, a new grid cell is created if there is no grid 
cell for the data record. In offline phase, the clusters 
are formed based on the dense neighboring grids. 
PKS-Stream has the ability to handle high-
dimensional data streams. However, it cannot handle 
the issues like limited time and limited memory.  

Yang et al. In [27] proposed a clustering 
algorithm termed as DCUStream for uncertain data. 
For each object in the stream, a tuple that maintains 
data point, existence probability of the data point, 
and its time of arrival are considered. It has the 
ability to handle noisy and evolving data. However, 
the clustering process is time-consuming since it 
searches the core dense grids and finds their 
neighbors.   

In [28], Amineh et al. proposed a clustering 
algorithm termed as DENGRIS-Stream over a 
sliding window. It maps each data point into a grid, 
computes each grid density, and clusters the grids 
using density methods. DENGRIS-Stream is the first 
density clustering algorithm for evolving data 
streams over sliding window model.   

Kaur et al. In [29] proposed an online-offline 
algorithm for heterogeneous data streams termed as 
ExCC (Exclusive and Complete Clustering). Online 
phase maintains synopsis in the grids and the final 
clusters are formed on demand in the offline phase. 
ExCC can cover data stream with numeric and 
categorical attributes. It cannot handle high-
dimensional data. It requires more memory to store 
and more time to process. 

From the literature, we observed that the 
existing density-based clustering algorithms require 
high computation time and more memory for 
clustering evolving data streams. In this paper, we 
propose a novel hybrid density-based clustering 
algorithm for evolving data streams. 

 
3. PROPOSED METHOD 

In out proposed method, we use a fading 
(damped) window model to capture the data streams. 
In data stream clustering, aging is an important 
concept. High level of importance will be given to 
more recent data by assigning a weight for every 
point via a fading (aging) function. The fading 
function is defined as f(t)= 2-λt where f is a fading 
function and λ > 0. The decay parameter (factor) λ is 
used to determine the importance of the historical 



Journal of Theoretical and Applied Information Technology 
30th June 2018. Vol.96. No 12 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
3977 

 

data of the streams. According to this fading 
function, the weight of the data stream point’s 
decreases exponentially with time t. The larger the 
value of λ, the lower importance is given to historical 
(old) data.  
 
3.1 Basic Concepts and Definitions 

Definition 1. Data Stream: A data stream (DS) is an 
infinite sequence of ordered data objects p1, p2 ... pi 
arriving at time stamps t1, t2 ... ti, that can be read 
once using limited processing and storage 
capabilities. This sequence of data objects can be 
endless and usually flows at high speed. 
Definition 2. Weight of a Data point (wp): For each 
data point p in the data stream, we assign it a density 
coefficient which decreases over time t (as p ages). 
The initial weight of the data point is 1. Let tp be the 
arrival time of a data point p. The weight of a data 
point p at current timestamp tc where tc>tp is defined 
as follows: 

wp(tc) = wp(tp) . f(tc-tp) =  2ିఒሺ௧೎ି௧೛ሻ		 
Where wp(tp) is the weight of the data point p at 
time tp. 
Definition 3. Grid density (wg): Weight (density) of 
a grid g at current timestamp tc is defined as follows:  

wg(tc)= ∑ 2ିఒሺ௧೎ି௧೛ሻ		௣∈௚  
Grid weight wg is based on the sum of weights of 
data points that are mapped to grid g. The weight of 
any grid is constantly changing. However, it is 
unnecessary to update the weights of all data points 
and grids at every time stamp. Instead, we update the 
weight of a grid only when a new data point is 
mapped to the grid. The grid weight is updated at 
current timestamp tc with the last updated timestamp 
tg as follows [22]: 

wg(tc) = wg(tg) * f(tc-tg)  + 1 
The sum of weights of all the data points has an 

upper bound of
ଵ

൫ଵିଶషഊ	൯
 , and the average density of 

each grid is 
ଵ

ே೒൫ଵିଶషഊ൯
  where Ng is the number of 

grids.  
Definition 4. Core point: A core point is defined as 
an object in whose ε-neighbourhood, the overall 
weight of the data points is at least an integer µ. 

Definition 5. Density area: Union of ε-
neighbourhoods of core points is defined as density 
area. 
Definition 6. Dense grid: For a grid g, at timestamp 

t, if wg(t)≥ 
ఉ

ே೒൫ଵିଶషഊ൯
 , where β > 0 is a controlling 

threshold, then we call it as a dense grid.  
Definition 7. Sparse grid: For a grid g, at timestamp 

t, we call it a sparse grid if wg(t) < 
ఉ

ே೒൫ଵିଶషഊ൯
.  

Definition 8. Core-micro-cluster (cµC): A core µC 
at time t is defined as cµC(w, c, r) for a group of 
close data points ݌௜భ,  ௜೙with time stamps ௜ܶభ݌ …  ௜మ݌
, ௜ܶమ … ௜ܶ೙ as follows: 

1. Weight, w=∑ ݂ሺݐ െ௡
௝ୀଵ ௜ܶೕሻ, w ≥	µ 

2. Center, c=
∑ ௙ሺ௧ି೙
ೕసభ ்೔ೕሻ௣೔ೕ

௪
  

3. Radius, r=
∑ ௙ሺ௧ି೙
ೕసభ ்೔ೕሻௗ௜௦௧ሺ௣೔ೕ,ୡሻ

௪
 with r≤ε, where 

,௜ೕ݌ሺݐݏ݅݀ cሻ denotes the Euclidean distance 

between the center c and data point ݌௜ೕ. 
Where µ represents the minimum number of 
weighted points needed to be within the NEps(c) in 
order to make the current micro-cluster a core µC.  
Definition 9. Maximum weight of cµC: If all the 
data points of the data stream are inserted into the 
same µC, then wcµC=∑ ݂ሺݐ௖ െ

௧೎
௧ୀ଴ tሻ = 

∑ 2ିఒሺ௧೎ି௧ሻ		௧೎
௧ୀ଴ can be transformed with the sum 

formula for geometric series as follows: 

∑ 2ିఒሺ௧೎ି௧ሻ		௧೎
௧ୀ଴ ൌ 

ଵିଶషഊሺ	೟೎శభሻ

൫ଵିଶషഊ൯
.  

Thus the maximum weight of any µC is: 

wcµC = lim
	௧೎→ஶ

ଵିଶషഊሺ	೟೎శభሻ

൫ଵିଶషഊ൯
 = 

ଵ

൫ଵିଶషഊ	൯
.  

Notice that the weight of cµC must be above or equal 
to µ, and the radius must be below or equal to ε. 
Definition 10. Potential micro-cluster (pµC): A 
potential µC at time t is defined as pµC(w, 
 ଶതതതതത, c, r) for a group of close data pointsܨܥ	,ଵതതതതതܨܥ
,௜భ݌ , ௜೙with time stamps ௜ܶభ݌ …  ௜మ݌ ௜ܶమ … ௜ܶ೙ as 
follows: 
1. Weight, w=∑ ݂ሺݐ െ௡

௝ୀଵ ௜ܶೕሻ, w ≥	βµ, where β, 

0<β<1, is the parameter to determine the 
threshold of an outlier relative to cµCs. 

2. Weighted linear sum of the points,  ܨܥଵതതതതത= 
∑ ݂ሺݐ െ௡
௝ୀଵ ௜ܶೕሻ݌௜ೕ 

3. Weighted squared sum of the points, ܨܥଶതതതതത= 
∑ ݂ሺݐ െ௡
௝ୀଵ ௜ܶೕሻ݌

ଶ
௜ೕ

 

4. Center of pµC, c=
	஼ிభതതതതതത

௪
  

5. Radius of pµC, r=ට
	|஼ிమ|തതതതതതത

௪
െ ሺ

|	஼ிభ|തതതതതതത

௪
ሻଶ with r≤ε.  

Definition 11. Directly density-reachable: A pµC cp 
is directly density-reachable from a pµC cq with 
respect to µ and ε, if the weight of cq is greater than 
µ and dist(cp, cq)<rp+rq.  
Definition 12. Density-reachable: A pµC cp is 
density-reachable from a pµC cq with respect to µ 
and ε, if there is a chain of micro-clusters ܿ ௣భ, …		ܿ௣೙, 
such that ܿ௣భ ൌ 	 ܿ୯,  and ܿ௣೙ ൌ ܿ୮, such that ܿ௣೔శభ is 
directly density-reachable from ܿ௣೔,  with respect to 
µ and ε. 
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Definition 13. Density-connected: A pµC cp is 
density-connected from a pµC cq with respect to ε 
and µ, if there is a p-micro cluster ck such that both 
cp and cq are density-reachable from ck with respect 
to µ and ε. 
Definition 14. Grid Characteristic Vector (CV): 
Characteristic vector is a tuple CV(ng, tg, wg) where 
ng is the number of data points, tg is the last updated 
timestamp and wg is the grid weight. 
Definition 15. Density threshold function (Δ): 
Density threshold function [22] is considered for the 
sporadic grids which do not receive any data points 
for long time. In fact, sporadic grids do not have any 
chance to be converted to dense grids and 
consequently to pµC. If wg<Δ, then we can safely 
delete the grid from the grid list (in the outlier 
buffer). If the last update time of a grid g is tg, then, 
at current time tc, (tc>tg), the density threshold 
function is defined as follows [32]: 

Δ(tc,tg)=	
ఉ

ே೒
∑ 2ିఒ௜
௧೎ି௧೒
௜ୀ଴  =

ఉቀଵିଶషഊሺ೟೎ష೟೒శభሻ		ቁ

ே೒൫ଵିଶషഊ൯
 

Definition 16. Pruning time: For each existing pµC 
cp, if no new data point is added to it, the weight of 
cp will decay gradually. If the weight is less than βµ, 
then cp becomes an outlier, and it should be deleted 
from the memory. We check the weights of all µCs 
as well as the weights of all grid cells in a time we 
call tr. Time tr is the minimum time for a pµC in 
timestamp t1 to be converted to an outlier in t2 (t2>t1) 
which is described as follows: 

tr = 
ଵ

ఒ
logଶሺ

ఉஜ

ఉஜିଵ
ሻ 

Proof:  
w(t2) = w(t1) * f(t2-t1) +1 

w(t2)= w(t1) * 2ିఒሺ௧మି௧భሻ		+1, 
βµ= βµ * 2ିఒሺ௧మି௧భሻ		+ 1, tr= t2-t1, 

βµ= βµ * 2ିఒ.௧ೝ + 1 

tr = 
ଵ

ఒ
logଶሺ

ఉஜ

ఉஜିଵ
ሻ 

 
3.2 RTDBStream Algorithm 

RTDBStream is an online-offline clustering 
algorithm for evolving data streams. It is a hybrid 
density-based clustering algorithm that integrates the 
pros of density-grid and density micro-clustering 
algorithms. The online component of RTDBStream 
has two phases: Initialization phase and the Pruning 
phase. In the online phase, RTDBStream 
continuously reads a data point from the data stream 
and adds it to an existing µC or maps it to the grid. 
The online phase keeps the summary statistics of the 
data streams in the form of pµC’s.  In the offline 
phase (Reclustering phase), RTDBStream generates 
the final clusters on demand by the user by applying 

a variant of DBSCAN algorithm on a set of potential 
micro-clusters. 
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Working of the RTDBStream algorithm is 
divided into three phases as follows: 
Initialization phase: In the initialization phase, the 
minimum timestamp tr is computed based on user’s 
parameter settings. Furthermore, the new data point 
p is merged to an existing µC or mapped to the grid. 
The procedure is as follows: 
1. When a new data point p arrives, RTDBStream 

finds the nearest pµC cp to the point p and then 
we try to merge p into cp. 

2. If rp, the new radius of cp , is less than or equal 
to ε, then point p will be inserted into cp. 

3. Else, the data point p is mapped into the grid g 
in the outlier buffer. 

4. If the total number of data points in the grid g 
reaches µ, then we check the grid density. 

5. If the grid weight wg is greater than the dense 
grid threshold, then we form a new pµC, out of 
the data points in the grid g 

6. The related grid g of the new pµC is deleted 
from the grid list. 
 

Algorithm 2: Pruning ( ) 
1) for all grid g in grid_list do 

2)  Δ(tc,tg)=
ఉቀଵିଶషഊሺ೟೎ష೟೒శభሻ		ቁ

ே೒൫ଵିଶషഊ൯
; 

3) //detecting and removing sporadic grids 
4) if wg<Δ then  
5) delete grid g from the grid_list; 
6)        end if 
7)    end for 
8) for each pµC in pµC_list  do 
9) //detecting and removing outlier µCs  
10) if w < β.µ then 
11) delete pµC from pµC_list; 
12)            end if 
13)     end for 

 
Pruning phase: The procedure of pruning phase is 
shown in Algorithm 2. In this phase, sporadic grids 
and the outlier µCs are removed. The weights of 
grids and pµCs are checked periodically at pruning 
time tr. For each existing pµC cp, if no new data point 
is added to it, the weight of cp will decay gradually. 
Furthermore, there are few grids which do not 
receive any data points for a long time and become 
sporadic. The grids and the µCs with the weights less 
than a threshold are removed from the grid list and 
pµC list, respectively, and the memory space is 
released. 
Clustering phase: The online phase maintains pµCs 
that capture the density area of data streams. 
However, in order to generate meaningful clusters, it 
is necessary to apply some clustering algorithm to 
get the final result. In this phase, the final clusters are 

formed from pµCs by using a variant of DBSCAN.  
Each micro-cluster pµC is considered as a virtual 
point located at the center of pµC with the weight w. 
In order to determine the final clusters, we adopt the 
density-connectivity concept of DBSCAN algorithm 
[6]. The variant of DBSCAN algorithm consists of 
two parameters: ε and µ. 
 
4. EXPERIMENTAL RESULTS 

We now present the experimental evaluation of 
RTDBStream with respect to two existing clustering 
algorithms namely, DenStream and D-Stream. 
RTDBStream as well as the comparative methods 
were implemented in Java in the MOA framework 
[30]. All the experiments were conducted on an 
Intel(R) core(TM) i5-2.5GHz processor with 8GB 
RAM, running Microsoft Windows XP. To evaluate 
the RTDBStream, both synthetic and real data sets 
were used. The parameters for RTDBStream 
algorithm were set as follows: initial number of 
points initPoints= 1000, decay factor λ=0.5, outlier 
threshold β=0.5, µ=10, and ε=15. 
 
4.1 Data sets and Evaluation  

We have used three synthetic data sets, DS1, DS2, 
and DS3, which are the similar data sets used by [6]. 
The three data sets are depicted in Figures 1(a), 1(b), 
and 1(c), respectively. Each data set contains 10,000 
data points with 5% noise. We generate an evolving 
data stream (EDS) by randomly selecting one of the 
data sets (DS1, DS2, and DS3) 10 times. For each 
iteration, the selected data set forms a 10000 points 
segment of the data stream, so the total length of the 
EDS is 1,00,000. 

 
Figure 1: Synthetic Data sets 

 
To evaluate the algorithm’s capabilities with 

real-world data, the Network Intrusion Detection 
(KDD Cup’99) real-world data set is used. We 
considered all 34 continuous attributes out of the 
total 42 available attributes. The data set comes from 
the 1999 DARPA Intrusion Detection Evaluation 
program which was prepared and managed by MIT 
Lincoln Laboratory [31]. The objective was to 
evaluate research in intrusion detection. The data set 
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is transformed into the data stream by considering 
the data input order as the order of streaming. 

In order to evaluate the clustering quality of 
RTDBStream, we use a simple evaluation metric, 
called purity [11][22]. It assumes that all the points 
of a cluster are predicted to be elements of the actual 
dominant class for that cluster. The quality of the 
cluster is evaluated by the average purity of clusters 
which is defined as follows: 

   purity = 
∑

|ಿ೔
೏|

|ಿ೔|
಼
೔సభ

௄
 * 100% 

Where ܭ denotes the number of discovered clusters, 
| ௜ܰ| is the number of objects (data points) in cluster 
݅, and  | ௜ܰ

ௗ| denotes the number of objects with the 
dominant class label in cluster ݅. The purity is 
computed only for the data points arriving in a 
predefined window (known as the horizon), since the 
weight of the data points decay over time. 
 
4.2 Clustering Quality Evaluation  

At first, we test the clustering quality of 
RTDBStream on Synthetic Data sets.  

 
Figure 2 (a): Cluster purity of RTDBStream for EDS with 

H=2 and v=2000 
 

 
Figure 2 (b): Cluster purity of RTDBStream for EDS with 

H=10 and v=2000 
 
Figure 2 shows the purity results of RTDBStream 
compared to DenStream and D-Stream on EDS data 

stream. In Figure 2(a), the horizon is set to 2 and 
stream speed v is set to 2000 points per time unit. In 
Figure 2(b), the horizon is set to 10 and stream speed 
v is set to 2000 points per time unit. We can note that 
the RTDBStream shows a very good clustering 
quality and its clustering purity is always higher than 
96%. The results show that the cluster purity of 
RTDBStream is higher than DenStream and D-
Stream over all horizons, and in fact, purity results 
are insensitive to the horizon length. 
We also compared RTDBStream with DenStream 
and D-Stream on the Network Intrusion Detection 
data set. The evaluation is determined based on the 
selected time intervals when some attacks happen. In 
order to have a fair comparison, we have used the 
same time intervals and performed clustering as in 
[11]. The comparison results are shown in Figure 3. 
The results show that the cluster purity of 
RTDBStream is always above 94% and it is higher 
than DenStream and D-Stream over all horizons. 
 

 

 
Figure 3. Cluster purity of RTDBStream for Network 

Intrusion Detection data set with (a) H=2 and v=1000 
and (b) H=5 and v=1000. 

 
4.3 Scalability Results 

Execution Time: The efficiency of the 
RTDBStream algorithm is measured by the 
execution time. The runtime performance of 
RTDBStream is determined by the stream speed 
(i.e., number of data points processed per time unit). 
We use the Network Intrusion Detection data set to 
test the efficiency of RTDBStream against 
DenStream and D-Stream. Figure 4 shows the 
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execution time in seconds for Network Intrusion data 
set.  

 
Figure 4. Execution time vs. length of stream 

We can note that the execution time of RTDBStream 
and other methods grow linearly as the stream 
proceeds. We can also see that the RTDBStream has 
lower execution time compared to DenStream and 
D-Stream. The online phase of DenStream has 
merging task which is time-consuming. When a new 
data point p arrives, it takes much time to find the 
suitable micro cluster. So, DenStream has higher 
execution time. However, RTDBStream searches 
only in the potential µC list and if it cannot find the 
suitable µC, the data point is mapped to the grid in 
the outlier buffer. The time complexity of 
RTDBStream is minimized by using the grid-based 
clustering. It allows us to minimize the merging time 
complexity from o(µC) to o(1). 
Memory Usage: We use both EDS data stream and 
Network Intrusion Detection to evaluate the memory 
usage of RTDBStream. The memory usage of 
RTDBStream is o(µC+g) which is measured by the 
number of micro-clusters and grids. 
 
4.4 Sensitivity Analysis  

An important parameter of RTDBStream is the 
decay factor ߣ. The decay parameter controls the 
importance of historical/old data. We test the 
clustering quality on different values of ߣ varying 
from 0.0065 to 2.  Figure 5 shows the results.  

 

 
Figure 5. Cluster quality vs. decay factor 

When ߣ is set to relatively too small or too high, the 
clustering quality becomes very poor. For example, 
when 0.0065 = ߣ, the clustering purity is about 80%, 
and when 2 = ߣ, the points decay rapidly after their 

arrival, and only a few number of recent data points 
contribute to the final results. So the result is also 
very poor. However, the quality of RTDBStream is 
still greater than the existing methods. It can be noted 
that if the value of ߣ varies from 0.25 to 1, the quality 
of clusters is quite good, stable, and always greater 
than 96%. 
 
5. DISCUSSION 

Regarding the impact of our proposed algorithm, we 
can observe that our proposed algorithm has 
addressed the problems of existing algorithms. The 
existing algorithms for clustering data streams have 
high computation time and require more memory for 
clustering process. The experimental results of our 
proposed algorithm show that the RTDBStream 
takes less memory and computation time for 
clustering process. This is because, a potential 
micro-cluster is used to maintain summary statistics 
of the data stream, and a grid structure is used to map 
the outlier data points. It should be noted that the 
quality obtained by RTDBStream is higher than 
DenStream and D-Stream. Our algorithm is 
applicable for clustering real-time streaming data in 
a dynamic environment.   

6. CONCLUSION 

In this paper, we have presented RTDBStream, an 
efficient hybrid density-based clustering algorithm 
for evolving data streams. The algorithm consists of 
an online component for processing the incoming 
data and an offline component in which arbitrary 
shape clusters are formed using micro-clusters by a 
modified DBSCAN. Our algorithm uses density 
micro-clustering and density grid-based clustering to 
find high-quality clusters with considerably less 
computation time and memory. Experiments were 
conducted on synthetic and real data sets, to evaluate 
the performance of RTDBStream in various aspects. 
The evaluation results show that the proposed 
method has high quality and low computation time 
compared to existing methods. Future work will 
focus on extending the RTDBStream for a 
distributed framework and to handle high-
dimensional data in an effective manner. 
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