
Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3973

RTDBSTREAM: A REAL-TIME DENSITY-BASED
CLUSTERING FOR EVOLVING DATA STREAMS

1K. SHYAM SUNDER REDDY, 2C. SHOBA BINDU

1Research Scholar, JNTUA, Ananthapuramu, INDIA
2Department of CSE, JNTU College of Engineering, Ananthapuramu, INDIA

E-mail: 1shyamd4@staff.vce.ac.in, 2shobabindhu.cse@jntua.ac.in

ABSTRACT

Density-based clustering method has come into existence as a prominent class for clustering data streams. It
has the ability to discover clusters with arbitrary shape, and it can handle noise in data. Recently, several
density-based clustering algorithms have been proposed in the literature for clustering data streams. But each
algorithm has its own limitation that renders them ineffective and makes a new algorithm necessary for
dealing with big data. Existing density-based clustering algorithms require high computation time and more
memory for clustering process. In this paper, we present a novel density-based clustering algorithm called
Real-time Density-based Clustering (RTDBStream) for evolving data streams. This algorithm is a hybrid
density-based clustering algorithm that integrates the pros of density-grid and density micro-clustering
algorithms to get better results. The quality of the proposed algorithm is evaluated on various data sets with
distinct characteristics using different quality metrics.

Keywords: Big data, Data stream, Density-based clustering, Grid-based clustering, Micro-clustering

1. INTRODUCTION

The amount of data being produced by real-time
applications has significantly increased over the past
few years. Advancement in technology and
innovation in various sectors has given rise to
increase in data. The growing field of applications
such as healthcare, banking, agriculture, weather
monitoring, stock trading, education, medicine,
science and other sectors has led to the creation of
large amounts of data, often known as big data [1].
Every day a huge amount of data is being produced
continuously as data streams from different real-time
applications. Data streams are evolving over time,
and the amount of data is unbounded [2]. Hence it is
not possible to keep the whole data stream in the
main memory. The main problem associated with
these data streams are their management, storage,
analysis, and retrieval. Users are interested in
gaining the knowledge out of these data streams
during their same minute of generation. However,
management of big data is not an easy process; the
intricacies that lie within the management of big
data do not support the use of conventional
technologies and methods [3].

Traditional methods of handling data involve the
use of techniques which hold limited capabilities,
inelastic and their storage capacities do not support
handling of a large amount of data. Conventional
clustering algorithms require data to be scanned a

number of times before it can detect and process the
clusters of data. This strategy is inefficient when it
comes to big data, because the scale of the data
prohibits it from being scanned over and over again.
Big data is differentiated from traditional data
processing systems in the dimensions such as speed
of decision making, complexity processing,
structured and unstructured data processing, the
flexibility of processing data, and concurrency [4].
While traditional clustering algorithms are
applicable only to static data, today’s research issues
and applications in big data have to deal with
infinite, continuous streams of data, arriving at high
speed.

One of the ways of dealing with such a huge
amount of data is to classify it into sets of meaningful
categories. This is where clustering comes into the
picture. Clustering is a well-established data mining
technique that aims at grouping data objects into
clusters C={C1, C2, C3 ... Ck} such that similar data
objects are assigned to the same cluster while
dissimilar data objects are assigned to different
clusters.

Data stream clustering aims at detecting clusters
that are formed and continuously updated out of the
evolving data streams. These clusters mainly
represent the gained knowledge out of the clustering
task. Data stream clustering puts new challenges to
traditional data clustering such as limited time,
limited memory, handling noisy data, handling

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3974

evolving data, handling high-dimensional data, and
single pass clustering [2]. In data stream clustering
discovering arbitrary shape clusters and detecting
noise is very important.

2. RELATED WORK

Clustering can be classified into different
categories based on different criteria: Hierarchical
clustering, Grid-based clustering, Partitioning
clustering, Model-based clustering and Density-
based clustering [5]. Among all the clustering
algorithms density-based clustering methods are
more appropriate in data streams clustering. This is
because density-based clustering is designed with an
ability to discover clusters that have arbitrary shapes
and able to make noise/outliers detection. Other
clustering algorithms require the knowledge of the
number of clusters once the clustering process
begins. However, density-based clustering
algorithms are independent of the cluster numbers
and hence have no assumption on the number prior
to the process.

The density-based clustering is developed and
designed on the basis of the notion of density. The
clusters are prepared in a dense area using a density
function. The primary notions constantly add until
the density of the neighbourhood cluster crossed to
some extent or limit. The method can be used to filter
out the outliers/noise and locates the cluster at
various arbitrary shapes. DBSCAN [6], NBC [7]
OPTICS [8], and DENCLUE [9] are examples of
some of the primary algorithms that are based on
density.

DBSCAN [6] (Density-Based Spatial
Clustering of Applications with Noise) refers to a
high quality scalable density-based clustering
method that depends on the notion of the density of
clusters. The two essential user-specified input
parameters for DBSCAN are Eps and µ, where Eps
is the maximum radius of the neighbourhood and µ
is the minimum number of points in the Eps-
neighbourhood of a point. DBSCAN starts the
clustering process by randomly selecting a point p
and checks the condition whether NEps(p) contains at
least µ number of points. If the condition is satisfied,
then the point p is considered as a core point, and a
new cluster is formed. Otherwise, the point p is
considered as a noise point. Arbitrary shaped
clusters along with noise/outlier can be found using
DBSCAN algorithm. However, the application of
DBSCAN to high dimensional features are failed to
investigate, and it fails to detect the clusters with
multi-density.

The NBC [7] (Neighbourhood-Based
Clustering) clustering algorithm also belongs to the
class of density-based clustering algorithms. NBC
algorithm can discover arbitrary shape clusters, and
it requires fewer input parameters than the existing
algorithms. NBC algorithm can cluster high-
dimensional data sets efficiently. OPTICS [8]
(Ordering Points to Identify the Clustering
Structure) extends DBSCAN in order to cluster data
points from a range of parameter settings. OPTICS
algorithm differentiates considerable objects from
outliers or noise thereby identifying all cluster levels
in a data set. DENCLUE [9] is a clustering algorithm
that applies the kernel density estimation to employ
a cluster model, and clusters the object found on the
set of density distribution function. The algorithm
uses the idea of density attracted regions to form
clusters. However, the algorithm is not suitable for
data sets of high dimension.

There is a wide range of algorithms in the
literature for clustering the static data sets in which
few have been extended their application towards the
data streams. In the clustering process, all these
algorithms uses density-based methods and
overcome the challenging issues, which are put out
by data streams nature. The existing density-based
algorithms for clustering data streams are
categorized into two broad groups: 1) Density-based
micro-clustering algorithms and 2) Density-grid
based clustering algorithms.

2.1 Density-Based Micro-Clustering Algorithms

Micro-clustering is one of the most important
methods in data stream clustering to compress data
streams efficiently. The concept of micro-cluster
(µC) was first proposed by Zhang et al. in [10]. It is
an extension of Cluster Feature Vector (CFV) which
is a triple summarizing the information maintained
about the cluster. Density-based micro-clustering
algorithms uses µCs to keep summary information
about data streams and clustering is performed on
these µCs.

Cao et al. In [11] proposed a density-based
micro-clustering algorithm called as DenStream, for
evolving data streams. DenStream is based on the
online-offline framework, and it has a pruning
method to identify the real outliers. The algorithm
uses the fading (damped) window model to cluster
evolving data streams. It can handle evolving data
streams and it can detect noise/outliers in the data.
However, the algorithm cannot handle high-
dimensional data sets, and it requires high
computation time for clustering process.

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3975

In [12], Tasoulis et al. proposed an algorithm
termed as OpticsStream that uses µC concept for
clustering data streams. OpticsStream is an
extension of OPTICS [8] algorithm in which data
stream cluster structures are represented graphically.
It has the ability to handle noisy and evolving data.
OpticsStream cannot handle high-dimensional data.

Menasalvas et al. In [13] proposed a density-
based micro-clustering algorithm termed as C-
DenStream in which constraints are applied for data
stream clustering. It adds the constraints to the µCs
by including the domain information in the form of
constraints. C-DenStream has the ability to discover
arbitrary shape clusters with constraints. However,
this algorithm has high computation time, and it
cannot handle high-dimensional data.

In [14], Jink et al. proposed a three-step
density-based clustering algorithm termed as
rDenStream for clustering data streams. The
algorithm is based on DenStream with an additional
step called retrospect. In the retrospect phase, the
misinterpreted abandoned data points get a new
chance to be re-learned and to enhance the strength
of the clustering. It improves the accuracy of the
clustering algorithm by creating a classifier from the
clustering result. However, the time complexity and
memory usage of rDenStream is high since it
processes and retains the old buffer.

Ren et al. In [15] proposed an algorithm termed
as SDStream for clustering data streams over a
sliding window. SDStream is an online-offline phase
clustering algorithm that processes most recent data,
and summarizes the old data by using sliding
window model. The algorithm considers the most
recent data stream distribution, and it discards the
data points which are not accommodated in a sliding
window length. SDStream has the ability to handle
noisy and evolving data, and it cannot handle high-
dimensional data.

In [16], Lin et al. proposed an online-offline
clustering algorithm termed as HDenStream for
evolving heterogeneous data streams. The pruning
phase of HDenStream is similar to that of
DenStream. The algorithm can cover continuous and
categorical data, which makes it more useful since
we have any kind of data in the real world
applications. However, the algorithm cannot handle
high-dimensional data.

Dunham et al. In [17] proposed a density-based
algorithm termed as SOStream (Self Organizing
density-based clustering over data Stream) that has
the only online phase in which it dynamically
creates, merges, and removes clusters. SOStream
uses competitive learning where a winner influences
its immediate neighbourhood. SOStream

automatically adapts the threshold value for density-
based clustering, and it detects clusters within fast
evolving data streams. SOStream has high
computation time and it cannot handle high-
dimensional data.

In [18], Zimek et al. proposed an online-offline
phase clustering algorithm termed as HDDStream
for clustering high dimensional data streams. The
online phase maintains the summary of both points
and dimensions. The final clusters are discovered in
offline phase based on a PreDeConStream[19]
clustering algorithm. HDDStream has the ability to
handle evolving data streams and noisy data.
However, it cannot process the data in a limited time.

Spaus et al. In [19] proposed a clustering
algorithm termed as PreDeConStream which is
similar to HDDStream. By working in the offline
phase, PreDeConStream improves the efficiency of
the HDDStream. The algorithm can cluster high-
dimensional data. It introduces a subspace prefer
vector and it maintains two lists including outlier and
potential µC. However, the algorithm takes more
time for searching the affected neighboring clusters.

In [20], Pizzuti et al. proposed an algorithm
based on a bio-inspired model (flocking model). The
algorithm is termed as FlockStream which is more
efficient than DenStream since the number of
comparisons is limited. This method is based on a
flocking model in which agents (µCs) work
independently but form clusters together.
FlockStream cannot handle high-dimensional data.

2.2 Density Grid-Based Clustering Algorithms

 Density-grid based clustering algorithms uses
density-based and grid-based methods for clustering
data streams. In these algorithms category, the data
space is partitioned into small segments called grids,
data points that are in data streams are mapped to
these grids, and the clusters are formed based on the
grid density. Density-grid based clustering
algorithms can discover clusters with arbitrary
shapes and also detect the noise or outliers. To record
the dynamic changes (concept drift) of the clusters,
a density coefficient is considered for each data
point. Grid density can be defined based on the
density coefficient aggregation of all the data points
in the grid. In some algorithms, the grid density is
determined based on its number of points. Some
algorithms uses a characteristic vector to maintain
summary information about the data points. In grid-
based clustering algorithms, sporadic grids are
introduced to handle noisy data. These algorithms
uses different types of window models such as

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3976

landmark window model, sliding window model and
fading window model for handling evolving data.

Li et al. In [21] proposed an incremental one
pass density grid-based clustering algorithm termed
as DUCStream (Dense Units Clustering for Data
Stream) for data streams using the dense unit. When
a dense unit is added, a new cluster is created only if
there is no related cluster; otherwise, the new dense
unit is consumed to the existing clusters.
DUCStream utilizes bitwise clustering. The
algorithm has the ability to handle noisy data, and it
has less time and space complexity. However, the
algorithm cannot handle evolving data.

In [22], Chen et al. proposed an online-offline
algorithm termed as DStream-I for clustering real-
time stream data. The online phase updates the
characteristic vector of the grid by reading a new
data point and maps it into the grid. In the offline
phase, clusters are adjusted in each time interval gap
and update the grid density and then perform the
clustering. DStream-I cannot handle high-
dimensional data since it assumes that the maximum
grids are empty in the high-dimensional locality.

Tan et al. In [23] proposed an online-offline
algorithm termed as DDStream that improves the
quality of the cluster by detecting the border points
in the grids. In online phase, the characteristic vector
of the grid is updated. In each time interval gap, the
offline phase runs and extracts the boundary points,
and clusters the dense grids. DDStream cannot
handle high-dimensional data and it has high time
complexity.

In [24], Chen et al. proposed an algorithm
termed as DStream-II that is based on the density of
the grid attraction. Grid attraction presents that to
what extent the data in one neighbor is adjoining to
that of another neighbor. It has pruning techniques to
remove the sporadic grids mapped by the outliers
and to adjust the clusters in each time interval gap.
DStream-II improves the cluster quality by
considering the position of the data in the grids for
clustering. However, how to remove sporadic grids
is an open issue in DStream-II. It cannot handle high-
dimensional data.

Wan et al. In [25] proposed an online-offline
algorithm for clustering data streams at multiple
resolutions, called as MR-Stream. In the online
phase, the algorithm enables the new data point to be
mapped to its related grid cell. The offline phase
discovers clusters at a user-defined height. In MR-
Stream, a memory sampling method is introduced to
run the offline component. It improves the
performance by running the offline component at
constant times. However, the algorithm cannot
handle high-dimensional data.

In [26], Ren et al. proposed an online-offline
algorithm termed as PKS-Stream that uses PKS-tree
for recording non-empty grids and their relations.
The algorithm uses k-cover grid cells for
maintaining non-empty cells. In online phase, the
data records are mapped to the related grid cells;
otherwise, a new grid cell is created if there is no grid
cell for the data record. In offline phase, the clusters
are formed based on the dense neighboring grids.
PKS-Stream has the ability to handle high-
dimensional data streams. However, it cannot handle
the issues like limited time and limited memory.

Yang et al. In [27] proposed a clustering
algorithm termed as DCUStream for uncertain data.
For each object in the stream, a tuple that maintains
data point, existence probability of the data point,
and its time of arrival are considered. It has the
ability to handle noisy and evolving data. However,
the clustering process is time-consuming since it
searches the core dense grids and finds their
neighbors.

In [28], Amineh et al. proposed a clustering
algorithm termed as DENGRIS-Stream over a
sliding window. It maps each data point into a grid,
computes each grid density, and clusters the grids
using density methods. DENGRIS-Stream is the first
density clustering algorithm for evolving data
streams over sliding window model.

Kaur et al. In [29] proposed an online-offline
algorithm for heterogeneous data streams termed as
ExCC (Exclusive and Complete Clustering). Online
phase maintains synopsis in the grids and the final
clusters are formed on demand in the offline phase.
ExCC can cover data stream with numeric and
categorical attributes. It cannot handle high-
dimensional data. It requires more memory to store
and more time to process.

From the literature, we observed that the
existing density-based clustering algorithms require
high computation time and more memory for
clustering evolving data streams. In this paper, we
propose a novel hybrid density-based clustering
algorithm for evolving data streams.

3. PROPOSED METHOD

In out proposed method, we use a fading
(damped) window model to capture the data streams.
In data stream clustering, aging is an important
concept. High level of importance will be given to
more recent data by assigning a weight for every
point via a fading (aging) function. The fading
function is defined as f(t)= 2-λt where f is a fading
function and λ > 0. The decay parameter (factor) λ is
used to determine the importance of the historical

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3977

data of the streams. According to this fading
function, the weight of the data stream point’s
decreases exponentially with time t. The larger the
value of λ, the lower importance is given to historical
(old) data.

3.1 Basic Concepts and Definitions

Definition 1. Data Stream: A data stream (DS) is an
infinite sequence of ordered data objects p1, p2 ... pi
arriving at time stamps t1, t2 ... ti, that can be read
once using limited processing and storage
capabilities. This sequence of data objects can be
endless and usually flows at high speed.
Definition 2. Weight of a Data point (wp): For each
data point p in the data stream, we assign it a density
coefficient which decreases over time t (as p ages).
The initial weight of the data point is 1. Let tp be the
arrival time of a data point p. The weight of a data
point p at current timestamp tc where tc>tp is defined
as follows:

wp(tc) = wp(tp) . f(tc-tp) = 2ିఒሺ௧೎ି௧೛ሻ		
Where wp(tp) is the weight of the data point p at
time tp.
Definition 3. Grid density (wg): Weight (density) of
a grid g at current timestamp tc is defined as follows:

wg(tc)= ∑ 2ିఒሺ௧೎ି௧೛ሻ		௣∈௚
Grid weight wg is based on the sum of weights of
data points that are mapped to grid g. The weight of
any grid is constantly changing. However, it is
unnecessary to update the weights of all data points
and grids at every time stamp. Instead, we update the
weight of a grid only when a new data point is
mapped to the grid. The grid weight is updated at
current timestamp tc with the last updated timestamp
tg as follows [22]:

wg(tc) = wg(tg) * f(tc-tg) + 1
The sum of weights of all the data points has an

upper bound of
ଵ

൫ଵିଶషഊ	൯
 , and the average density of

each grid is
ଵ

ே೒൫ଵିଶషഊ൯
 where Ng is the number of

grids.
Definition 4. Core point: A core point is defined as
an object in whose ε-neighbourhood, the overall
weight of the data points is at least an integer µ.

Definition 5. Density area: Union of ε-
neighbourhoods of core points is defined as density
area.
Definition 6. Dense grid: For a grid g, at timestamp

t, if wg(t)≥
ఉ

ே೒൫ଵିଶషഊ൯
 , where β > 0 is a controlling

threshold, then we call it as a dense grid.
Definition 7. Sparse grid: For a grid g, at timestamp

t, we call it a sparse grid if wg(t) <
ఉ

ே೒൫ଵିଶషഊ൯
.

Definition 8. Core-micro-cluster (cµC): A core µC
at time t is defined as cµC(w, c, r) for a group of
close data points ݌௜భ, ௜೙with time stamps ௜ܶభ݌ … ௜మ݌
, ௜ܶమ … ௜ܶ೙ as follows:

1. Weight, w=∑ ݂ሺݐ െ௡
௝ୀଵ ௜ܶೕሻ, w ≥	µ

2. Center, c=
∑ ௙ሺ௧ି೙
ೕసభ ்೔ೕሻ௣೔ೕ

௪

3. Radius, r=
∑ ௙ሺ௧ି೙
ೕసభ ்೔ೕሻௗ௜௦௧ሺ௣೔ೕ,ୡሻ

௪
 with r≤ε, where

,௜ೕ݌ሺݐݏ݅݀ cሻ denotes the Euclidean distance

between the center c and data point ݌௜ೕ.
Where µ represents the minimum number of
weighted points needed to be within the NEps(c) in
order to make the current micro-cluster a core µC.
Definition 9. Maximum weight of cµC: If all the
data points of the data stream are inserted into the
same µC, then wcµC=∑ ݂ሺݐ௖ െ

௧೎
௧ୀ଴ tሻ =

∑ 2ିఒሺ௧೎ି௧ሻ		௧೎
௧ୀ଴ can be transformed with the sum

formula for geometric series as follows:

∑ 2ିఒሺ௧೎ି௧ሻ		௧೎
௧ୀ଴ ൌ

ଵିଶషഊሺ	೟೎శభሻ

൫ଵିଶషഊ൯
.

Thus the maximum weight of any µC is:

wcµC = lim
	௧೎→ஶ

ଵିଶషഊሺ	೟೎శభሻ

൫ଵିଶషഊ൯
 =

ଵ

൫ଵିଶషഊ	൯
.

Notice that the weight of cµC must be above or equal
to µ, and the radius must be below or equal to ε.
Definition 10. Potential micro-cluster (pµC): A
potential µC at time t is defined as pµC(w,
 ଶതതതതത, c, r) for a group of close data pointsܨܥ	,ଵതതതതതܨܥ
,௜భ݌ , ௜೙with time stamps ௜ܶభ݌ … ௜మ݌ ௜ܶమ … ௜ܶ೙ as
follows:
1. Weight, w=∑ ݂ሺݐ െ௡

௝ୀଵ ௜ܶೕሻ, w ≥	βµ, where β,

0<β<1, is the parameter to determine the
threshold of an outlier relative to cµCs.

2. Weighted linear sum of the points, ܨܥଵതതതതത=
∑ ݂ሺݐ െ௡
௝ୀଵ ௜ܶೕሻ݌௜ೕ

3. Weighted squared sum of the points, ܨܥଶതതതതത=
∑ ݂ሺݐ െ௡
௝ୀଵ ௜ܶೕሻ݌

ଶ
௜ೕ

4. Center of pµC, c=
	஼ிభതതതതതത

௪

5. Radius of pµC, r=ට
	|஼ிమ|തതതതതതത

௪
െ ሺ

|	஼ிభ|തതതതതതത

௪
ሻଶ with r≤ε.

Definition 11. Directly density-reachable: A pµC cp
is directly density-reachable from a pµC cq with
respect to µ and ε, if the weight of cq is greater than
µ and dist(cp, cq)<rp+rq.
Definition 12. Density-reachable: A pµC cp is
density-reachable from a pµC cq with respect to µ
and ε, if there is a chain of micro-clusters ܿ ௣భ, …		ܿ௣೙,
such that ܿ௣భ ൌ 	 ܿ୯, and ܿ௣೙ ൌ ܿ୮, such that ܿ௣೔శభ is
directly density-reachable from ܿ௣೔, with respect to
µ and ε.

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3978

Definition 13. Density-connected: A pµC cp is
density-connected from a pµC cq with respect to ε
and µ, if there is a p-micro cluster ck such that both
cp and cq are density-reachable from ck with respect
to µ and ε.
Definition 14. Grid Characteristic Vector (CV):
Characteristic vector is a tuple CV(ng, tg, wg) where
ng is the number of data points, tg is the last updated
timestamp and wg is the grid weight.
Definition 15. Density threshold function (Δ):
Density threshold function [22] is considered for the
sporadic grids which do not receive any data points
for long time. In fact, sporadic grids do not have any
chance to be converted to dense grids and
consequently to pµC. If wg<Δ, then we can safely
delete the grid from the grid list (in the outlier
buffer). If the last update time of a grid g is tg, then,
at current time tc, (tc>tg), the density threshold
function is defined as follows [32]:

Δ(tc,tg)=	
ఉ

ே೒
∑ 2ିఒ௜
௧೎ି௧೒
௜ୀ଴ =

ఉቀଵିଶషഊሺ೟೎ష೟೒శభሻ		ቁ

ே೒൫ଵିଶషഊ൯

Definition 16. Pruning time: For each existing pµC
cp, if no new data point is added to it, the weight of
cp will decay gradually. If the weight is less than βµ,
then cp becomes an outlier, and it should be deleted
from the memory. We check the weights of all µCs
as well as the weights of all grid cells in a time we
call tr. Time tr is the minimum time for a pµC in
timestamp t1 to be converted to an outlier in t2 (t2>t1)
which is described as follows:

tr =
ଵ

ఒ
logଶሺ

ఉஜ

ఉஜିଵ
ሻ

Proof:
w(t2) = w(t1) * f(t2-t1) +1

w(t2)= w(t1) * 2ିఒሺ௧మି௧భሻ		+1,
βµ= βµ * 2ିఒሺ௧మି௧భሻ		+ 1, tr= t2-t1,

βµ= βµ * 2ିఒ.௧ೝ + 1

tr =
ଵ

ఒ
logଶሺ

ఉஜ

ఉஜିଵ
ሻ

3.2 RTDBStream Algorithm

RTDBStream is an online-offline clustering
algorithm for evolving data streams. It is a hybrid
density-based clustering algorithm that integrates the
pros of density-grid and density micro-clustering
algorithms. The online component of RTDBStream
has two phases: Initialization phase and the Pruning
phase. In the online phase, RTDBStream
continuously reads a data point from the data stream
and adds it to an existing µC or maps it to the grid.
The online phase keeps the summary statistics of the
data streams in the form of pµC’s. In the offline
phase (Reclustering phase), RTDBStream generates
the final clusters on demand by the user by applying

a variant of DBSCAN algorithm on a set of potential
micro-clusters.

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3979

Working of the RTDBStream algorithm is
divided into three phases as follows:
Initialization phase: In the initialization phase, the
minimum timestamp tr is computed based on user’s
parameter settings. Furthermore, the new data point
p is merged to an existing µC or mapped to the grid.
The procedure is as follows:
1. When a new data point p arrives, RTDBStream

finds the nearest pµC cp to the point p and then
we try to merge p into cp.

2. If rp, the new radius of cp , is less than or equal
to ε, then point p will be inserted into cp.

3. Else, the data point p is mapped into the grid g
in the outlier buffer.

4. If the total number of data points in the grid g
reaches µ, then we check the grid density.

5. If the grid weight wg is greater than the dense
grid threshold, then we form a new pµC, out of
the data points in the grid g

6. The related grid g of the new pµC is deleted
from the grid list.

Algorithm 2: Pruning ()
1) for all grid g in grid_list do

2) Δ(tc,tg)=
ఉቀଵିଶషഊሺ೟೎ష೟೒శభሻ		ቁ

ே೒൫ଵିଶషഊ൯
;

3) //detecting and removing sporadic grids
4) if wg<Δ then
5) delete grid g from the grid_list;
6) end if
7) end for
8) for each pµC in pµC_list do
9) //detecting and removing outlier µCs
10) if w < β.µ then
11) delete pµC from pµC_list;
12) end if
13) end for

Pruning phase: The procedure of pruning phase is
shown in Algorithm 2. In this phase, sporadic grids
and the outlier µCs are removed. The weights of
grids and pµCs are checked periodically at pruning
time tr. For each existing pµC cp, if no new data point
is added to it, the weight of cp will decay gradually.
Furthermore, there are few grids which do not
receive any data points for a long time and become
sporadic. The grids and the µCs with the weights less
than a threshold are removed from the grid list and
pµC list, respectively, and the memory space is
released.
Clustering phase: The online phase maintains pµCs
that capture the density area of data streams.
However, in order to generate meaningful clusters, it
is necessary to apply some clustering algorithm to
get the final result. In this phase, the final clusters are

formed from pµCs by using a variant of DBSCAN.
Each micro-cluster pµC is considered as a virtual
point located at the center of pµC with the weight w.
In order to determine the final clusters, we adopt the
density-connectivity concept of DBSCAN algorithm
[6]. The variant of DBSCAN algorithm consists of
two parameters: ε and µ.

4. EXPERIMENTAL RESULTS

We now present the experimental evaluation of
RTDBStream with respect to two existing clustering
algorithms namely, DenStream and D-Stream.
RTDBStream as well as the comparative methods
were implemented in Java in the MOA framework
[30]. All the experiments were conducted on an
Intel(R) core(TM) i5-2.5GHz processor with 8GB
RAM, running Microsoft Windows XP. To evaluate
the RTDBStream, both synthetic and real data sets
were used. The parameters for RTDBStream
algorithm were set as follows: initial number of
points initPoints= 1000, decay factor λ=0.5, outlier
threshold β=0.5, µ=10, and ε=15.

4.1 Data sets and Evaluation

We have used three synthetic data sets, DS1, DS2,
and DS3, which are the similar data sets used by [6].
The three data sets are depicted in Figures 1(a), 1(b),
and 1(c), respectively. Each data set contains 10,000
data points with 5% noise. We generate an evolving
data stream (EDS) by randomly selecting one of the
data sets (DS1, DS2, and DS3) 10 times. For each
iteration, the selected data set forms a 10000 points
segment of the data stream, so the total length of the
EDS is 1,00,000.

Figure 1: Synthetic Data sets

To evaluate the algorithm’s capabilities with

real-world data, the Network Intrusion Detection
(KDD Cup’99) real-world data set is used. We
considered all 34 continuous attributes out of the
total 42 available attributes. The data set comes from
the 1999 DARPA Intrusion Detection Evaluation
program which was prepared and managed by MIT
Lincoln Laboratory [31]. The objective was to
evaluate research in intrusion detection. The data set

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3980

is transformed into the data stream by considering
the data input order as the order of streaming.

In order to evaluate the clustering quality of
RTDBStream, we use a simple evaluation metric,
called purity [11][22]. It assumes that all the points
of a cluster are predicted to be elements of the actual
dominant class for that cluster. The quality of the
cluster is evaluated by the average purity of clusters
which is defined as follows:

 purity =
∑

|ಿ೔
೏|

|ಿ೔|
಼
೔సభ

௄
 * 100%

Where ܭ denotes the number of discovered clusters,
| ௜ܰ| is the number of objects (data points) in cluster
݅, and | ௜ܰ

ௗ| denotes the number of objects with the
dominant class label in cluster ݅. The purity is
computed only for the data points arriving in a
predefined window (known as the horizon), since the
weight of the data points decay over time.

4.2 Clustering Quality Evaluation

At first, we test the clustering quality of
RTDBStream on Synthetic Data sets.

Figure 2 (a): Cluster purity of RTDBStream for EDS with

H=2 and v=2000

Figure 2 (b): Cluster purity of RTDBStream for EDS with

H=10 and v=2000

Figure 2 shows the purity results of RTDBStream
compared to DenStream and D-Stream on EDS data

stream. In Figure 2(a), the horizon is set to 2 and
stream speed v is set to 2000 points per time unit. In
Figure 2(b), the horizon is set to 10 and stream speed
v is set to 2000 points per time unit. We can note that
the RTDBStream shows a very good clustering
quality and its clustering purity is always higher than
96%. The results show that the cluster purity of
RTDBStream is higher than DenStream and D-
Stream over all horizons, and in fact, purity results
are insensitive to the horizon length.
We also compared RTDBStream with DenStream
and D-Stream on the Network Intrusion Detection
data set. The evaluation is determined based on the
selected time intervals when some attacks happen. In
order to have a fair comparison, we have used the
same time intervals and performed clustering as in
[11]. The comparison results are shown in Figure 3.
The results show that the cluster purity of
RTDBStream is always above 94% and it is higher
than DenStream and D-Stream over all horizons.

Figure 3. Cluster purity of RTDBStream for Network

Intrusion Detection data set with (a) H=2 and v=1000
and (b) H=5 and v=1000.

4.3 Scalability Results

Execution Time: The efficiency of the
RTDBStream algorithm is measured by the
execution time. The runtime performance of
RTDBStream is determined by the stream speed
(i.e., number of data points processed per time unit).
We use the Network Intrusion Detection data set to
test the efficiency of RTDBStream against
DenStream and D-Stream. Figure 4 shows the

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3981

execution time in seconds for Network Intrusion data
set.

Figure 4. Execution time vs. length of stream

We can note that the execution time of RTDBStream
and other methods grow linearly as the stream
proceeds. We can also see that the RTDBStream has
lower execution time compared to DenStream and
D-Stream. The online phase of DenStream has
merging task which is time-consuming. When a new
data point p arrives, it takes much time to find the
suitable micro cluster. So, DenStream has higher
execution time. However, RTDBStream searches
only in the potential µC list and if it cannot find the
suitable µC, the data point is mapped to the grid in
the outlier buffer. The time complexity of
RTDBStream is minimized by using the grid-based
clustering. It allows us to minimize the merging time
complexity from o(µC) to o(1).
Memory Usage: We use both EDS data stream and
Network Intrusion Detection to evaluate the memory
usage of RTDBStream. The memory usage of
RTDBStream is o(µC+g) which is measured by the
number of micro-clusters and grids.

4.4 Sensitivity Analysis

An important parameter of RTDBStream is the
decay factor ߣ. The decay parameter controls the
importance of historical/old data. We test the
clustering quality on different values of ߣ varying
from 0.0065 to 2. Figure 5 shows the results.

Figure 5. Cluster quality vs. decay factor

When ߣ is set to relatively too small or too high, the
clustering quality becomes very poor. For example,
when 0.0065 = ߣ, the clustering purity is about 80%,
and when 2 = ߣ, the points decay rapidly after their

arrival, and only a few number of recent data points
contribute to the final results. So the result is also
very poor. However, the quality of RTDBStream is
still greater than the existing methods. It can be noted
that if the value of ߣ varies from 0.25 to 1, the quality
of clusters is quite good, stable, and always greater
than 96%.

5. DISCUSSION

Regarding the impact of our proposed algorithm, we
can observe that our proposed algorithm has
addressed the problems of existing algorithms. The
existing algorithms for clustering data streams have
high computation time and require more memory for
clustering process. The experimental results of our
proposed algorithm show that the RTDBStream
takes less memory and computation time for
clustering process. This is because, a potential
micro-cluster is used to maintain summary statistics
of the data stream, and a grid structure is used to map
the outlier data points. It should be noted that the
quality obtained by RTDBStream is higher than
DenStream and D-Stream. Our algorithm is
applicable for clustering real-time streaming data in
a dynamic environment.

6. CONCLUSION

In this paper, we have presented RTDBStream, an
efficient hybrid density-based clustering algorithm
for evolving data streams. The algorithm consists of
an online component for processing the incoming
data and an offline component in which arbitrary
shape clusters are formed using micro-clusters by a
modified DBSCAN. Our algorithm uses density
micro-clustering and density grid-based clustering to
find high-quality clusters with considerably less
computation time and memory. Experiments were
conducted on synthetic and real data sets, to evaluate
the performance of RTDBStream in various aspects.
The evaluation results show that the proposed
method has high quality and low computation time
compared to existing methods. Future work will
focus on extending the RTDBStream for a
distributed framework and to handle high-
dimensional data in an effective manner.

REFERENCES:

[1] Hahsler M, and Matthew B. Clustering Data
Streams Based on Shared Density Between
Micro Clusters. IEEE Transactions on
Knowledge and Data Engineering, 2016.

[2] Amineh Amini, Teh Ying Wah, and Hadi
Saboohi. On Density-Based Data Streams

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3982

Clustering Algorithms: A Survey. Journal of
Computer Science and Technology, Jan. 2014,
pp. 116-141.

[3] R Mathur, Integrating Big Data in Cloud
Environment: A Review. (IJIET- 2016)
International Journal of Innovation in
Engineering and Technology. 2016, pp. 513–
517.

[4] Forsyth C, For Big Data Analytics there’s no
Such Thing as Too Big. 2012 White Paper.

[5] Han, J. & Kamber, M. Data Mining Concepts
and Techniques. 2006, 2nd Ed. Burlington:
Morgan Kauffman.

[6] Ester, M., Kriegel, H., Sander, J. & Xu, X. A
Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with
Noise. In: Proc. of 2nd International
Conference on Knowledge Discovery, 1996,
pp. 226–231.

[7] Zhou S, Zhao Y, Guan J, & Huang J. A
Neighborhood-Based Clustering Algorithm. In
Pacific-Asia Conference on Knowledge
Discovery and Data Mining 2005, pp 361-371.

[8] Ankerst, M., Breunig, M.M., Kriegel, H.-P. &
Sander, J. OPTICS: Ordering Points to Identify
the Clustering Structure. ACM SIGMOD
Record, 1999, 28 (2). p.pp. 49–60.

[9] Hinneburg, A. & Keim, D.A. An Efficient
Approach to Clustering in Large Multimedia
Databases with Noise. In: KDD’98, 1998, New
York, NY, pp. 58–65.

[10] Zhang T, Ramakrishnan R, Livny M. BIRCH:
An efficient data clustering method for very
large databases. In Proc. ACM SIGMOD
International Conference on Management of
Data, June 1996, pp.103-114.

[11] Cao F, Ester M, Qian W, Zhou A. Density-
Based Clustering Over an Evolving Data
Stream with Noise. In Proc. the SIAM
Conference on Data Mining, April 2006,
pp.328-339.

[12] Tasoulis D K, Ross G, Adams N M. Visualising
the Cluster Structure of Data Streams. In Proc.
the 7th International Conference on Intelligent
Data Analysis, Sept. 2007, pp.81- 92.

[13] Menasalvas E, Ruiz C, Spiliopoulou M. C-
DenStream: Using Domain Knowledge on a
Data Stream. In Proc. the 12th International
Conference on Discovery Science, Oct. 2009,
pp.287-301.

[14] Jing K, Liu L, Guo Y et al. A Three-Step
Clustering Algorithm over an Evolving Data
Stream. In Proc. the IEEE Int. Conf. Intelligent
Computing and Intelligent Systems, Nov.
2009, pp.160-164.

[15] Ren J, Ma R. Density-Based Data Streams
Clustering over Sliding Windows. In Proc. the
6th Int. Conf. Fuzzy systems and Knowledge
Discovery, Aug. 2009, pp.248-252.

[16] Lin J, Lin H. A Density-Based Clustering over
Evolving Heterogeneous Data Stream. In Proc.
The 2nd Int. Colloquium on Computing,
Communication, Control, and Management,
Aug. 2009, pp.275-277.

[17] Dunham M, Isaksson C, Hahsler M. SOStream:
Self Organizing Density-Based Clustering
over Data Stream. In Lecture Notes in
Computer Science 7376, Perner P (ed.),
Springer Berlin Heidelberg, 2012, pp.264-278.

[18] Zimek A, Ntoutsi I, Palpanas T et al. Density-
Based Projected Clustering over High
Dimensional Data Streams. In Proc. The 12th
SIAM Int. Conf. Data Mining, April 2012,
pp.987-998.

[19] Spaus P, Hassani M, Gaber M M, Seidl T.
Density-Based Projected Clustering of Data
Streams. In Proc. the 6th Int. Conf. Scalable
Uncertainty Management, Sept. 2012, pp.311-
324.

[20] Pizzuti C, Forestiero A, Spezzano G. A Single
Pass Algorithm for Clustering Evolving Data
Streams based on Swarm Intelligence. Data
Mining and Knowledge Discovery, 2013,
26(1): 1-26.

[21] Li J, Gao J, Zhang Z, Tan P N. An incremental
Data Stream Clustering Algorithm Based on
Dense Units Detection. In Proc. the 9th
Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, May
2005, pp.420-425.

[22] Chen Y, Tu L. Density-Based Clustering for
Real-Time Stream Data. In Proc. the 13th
ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, Aug. 2007,
pp.133-142.

[23] Tan C, Jia C, Yong A. A Grid and Density-
Based Clustering Algorithm for Processing
Data Stream. In Proc. the 2nd Int. Conf.
Genetic and Evolutionary Computing, Sept.
2008, pp.517-521.

[24] Chen Y, Tu L, Stream Data Clustering Based on
Grid Density and Attraction. ACM
Transactions on Knowledge discovery Data,
2009, 3(3): Article No. 12.

[25] Ng W K, Wan L, Dang X H et al. Density-Based
Clustering of Data Streams at Multiple
Resolutions. ACM Trans. Knowledge
Discovery from Data, 2009, 3(3).

[26] Ren J, Cai B, Hu C. Clustering over Data
Streams Based on Grid Density and Index

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3983

Tree. Journal of Convergence IT, 2011, 6(1):
83-93.

[27] Yang Y, Liu Z, Zhang J et al. Dynamic Density-
Based Clustering Algorithm over Uncertain
Data Streams. In Proc. the 9th Int. Conf. Fuzzy
Systems and Knowledge Discovery, May
2012, pp.2664-2670.

[28] Teh Ying W, Amini A, DENGRIS-Stream: A
Density-Grid Based Clustering Algorithm for
Evolving Data Streams over Sliding Window.
In Proc. International Conference on Data
Mining and Computer Engineering, Dec. 2012,
pp.206-210.

[29] Kaur S, Bhatnagar V, Chakravarthy S.
Clustering Data Streams using Grid-Based
Synopsis. Knowledge and Information
Systems, June 2013.

[30] Bifet, Holmes, R. Kirkby, and Pfahringer.
MOA: Massive Online Analysis. J. Mach.
Learn. Res., 11:1601-1604, 2010

[31] C. C. Aggarwal, Han J, Wang J, and P. S. Yu.
A framework for clustering evolving data
streams. In Proc. VLDB, pages 81-92, 2003.

[32] Amineh Amini, Hadi Saboohi, Teh YingWah,
and Tutut Herawan. A Fast Density-Based
Clustering Algorithm for Real-Time Internet of
Things Stream, Hindawi Publishing
Corporation, Volume 2014.

