
Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3829

A MEASUREMENT MODEL OF THE FUNCTIONAL SIZE OF
SOFTWARE MAINTAINABILITY REQUIREMENTS

1KHALED ALMAKADMEH, 2KHALID T. AL-SARAYREH, 3KENZA MERIDJI
1Assistant Professor, Department of Software Engineering, The Hashemite University, Jordan
2Associate Professor, Department of Software Engineering, The Hashemite University, Jordan

3Associate Professor, Department of Software Engineering, University of Petra, Jordan

E-mail: 1khaled.almakadmeh@hu.edu.jo, 2khalidt@hu.edu.jo, 3kmeridji@uop.edu.jo

ABSTRACT

The European ECSS-E-40 standard for the aerospace industry includes maintainability as one of sixteen
non-functional requirements for the embedded and real time software. The software maintainability
requirements measured internally and externally. According to the ECSS European standards,
maintainability requirements are apportioned to set maintainability requirements for lower level products to
conform to the maintenance concept and maintainability requirements of the system and the maintainability
analysis shall identify the maintainability critical items. This paper propose a new measurement model of
the functional size of maintainability requirements of software. This functional size of the maintainability
requirements measured using the concepts of the ISO19761: COSMIC standard at an early phase of the
software development life cycle. It used as one of the primary inputs for the software effort estimation
process. Further, this paper presents the design of software standard etalon to help in development of
software products more effectively. An experiment is conducted to verify the applicability of the proposed
measurement model to measure the functional size of requirements specifications of an online library
software.

Keywords: Maintainability Requirements, ISO19761, ECSS standards, Measurement method

1. INTRODUCTION

Software measures are used as mechanisms to
quantify several aspects of software product,
process and projects. Software measures are used
for different purposes including the assessment of
software quality [1, 2], estimation of complexity
[3], estimation of cost and effort [4, 5] as well as
controlling the improvement process [6]. In spite of
the existence of large number of software measures,
the majority of them are unsuccessful [7] due to a
number of weaknesses. For instance, software
measures are usually defined informally [8],
incomplete and/or inaccurate [9]. Therefore, such
measures do not produce the required information
estimation purposes.

The ECSS European International Standards [10,
11] and [12] present software maintainability as a
non-functional requirement for embedded software.
The ECSS standard [10] is a cooperative effort of
the European space agency, the national space
agencies and European industry associations for the
purpose of developing and maintaining common
standards. The international standard ECSS-E-40
part-1 B [10] addresses the management,

engineering and product assurance in space projects
and applications. This part of the standard is a level
two standard: it is derived from and ECSS-E-40
[12] and ISO12207 [13] for space projects and is
concerned with producing software (i.e. software
that is part of a space system product-tree and
developed as part of a space project).

According to the ECSS-E-40 part-1 B [10], the
maintenance process contains the activities and
tasks of the maintainer. The objective is to modify
an existing software product while preserving its
integrity. This process includes the migration and
retirement of the software product. The process
ends with the retirement of the software product.
The maintainer manages the maintenance process at
the project level by following the management
process which is instantiated for software. This
process consists of the following activities:

 Process implementation

 Problem and modification analysis

 Modification implementation

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3830

 Conducting maintenance reviews

 Software migration

 Software retirement

The ECSS-Q-ST-30 part C [14] divides software
maintainability requirements to set of requirements
for lower level products to conform to maintenance
concept and maintainability requirements of the
system, and therefore, maintainability analysis shall
identify maintainability critical items. The ISO/IEC
24765 [15] defines maintainability as the ease with
which a software system or component can be
modified to change or add capabilities, correct
faults or defects, improve performance or other
attributes, or adapt to a changed environment. The
IEEE 14764 [16] defines maintainability as the
capability of the software product to be modified.
Further, the IEEE 982.1 standard [17] defines
maintainability as the speed and ease with which a
program is corrected or is changed. In addition, the
ISO25010 [18] standard defines maintainability as
capability of a software product to be modified:
such modifications to a software product include
corrections, improvements or adaptation of software
to changes in its environment, and in requirements
and functional specifications.

The basic concepts and definitions of functional
size measurement are standardized by ISO in [19].
Functional size measurement has come a long way,
detailed descriptions of various functional size
measurement methods are published as standards
such as COSMIC [20], NESMA [21]. Functional
size measurement is used for many purposes: for
example to help estimating the effort of a starting
development project or measuring the actual
productivity of a finished development project.
Other reasons of functional size measurement usage
are presented in [22]. The COSMIC standard [20]
defines the principles, rules and a process for
measuring the functional size of a piece of software.
The functional size is a measure of the amount of
functionality provided by the software.

The paper presents the design of a measurement
model to identify the functional size of software
maintainability based on international standards and
using COSMIC standard as a standardized method
to measure the functional size of software
maintainability requirements independently from
the development languages technology. Therefore,
this standardized measurement will overcome the
weaknesses in the measurement of maintainability
requirements presented in the literature.

The main contribution of this paper is a new
measurement model to identify and measure
maintainability requirements based on ISO19761
and ISO25010 international standard. The proposed
measurement model represent a kind of a reference
model in the sense of an ‘etalon’ standard used for
measurement of maintainability. The measurement
scope in this paper is to identify separately all the
functionality allocated to software maintainability
requirement as a piece of embedded software
application, whether it has yet to be built or it has
already been delivered.

This paper organized as follows: section 2
present the literature review, then section 3 present
overview of the ISO19761: COSMIC international
standard (i.e. ISO 19761) for functional size
measurement of software. Section 4 present the
design of the measurement model of maintainability
requirements based on ISO international standards,
and section 5 presents a quality evaluation of
software maintainability requirements. Section 6
presents design of a software standard etalon.
Finally, section 7 presents conclusions and future
work directions.

2. LITERATURE REVIEW

Several research studies are conducted in the
literature to measure the degree maintainability.
Port and Taber [23] have reported an industrial
study to emphasize the importance of developing
maintainable software applications and the
importance of planning the effort required to
maintain such applications, especially critical
software applications.

Wu et al. [24] have conducted a review on effort
estimation approaches for maintenance of open
source software applications. Twenty-nine
approaches were identified for maintenance effort
estimation; all presented estimation approaches use
source code measures to calculate the maintenance
effort needed for software applications.

Lin and Yeh [25] have proposed a software tool
to calculate the functional size for source code of a
software application under maintenance using the
measurement rules and concepts proposed by the
international standard for software functional size
measurement. – ISO19761: COSMIC. Although
these size measures are calculated using an ISO
international standard, they are calculated using
source line of code at a late phase of the software
development life cycle.

Torkhan et al. [26] have proposed a conceptual
interoperability framework to evaluate the degree of

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3831

dependency between functional components in a
software application. The proposed framework is
built based on model-driven approach that analyze
components that makeup a software application,
then decompose these software components into
low-coupling components while maintaining their
interoperability.

Al-Saiyd [27] has proposed a bottom-up code
comprehension model in order to analyze
challenges that might face a software engineer in
code comprehension, and to improve the readability
of a software application source-code. The
proposed model partitions a software application
into several functional blocks at different levels of
granularity in order to analyze their inter-
dependencies using data and control flow graphs.

Manev and Dimov [28] have proposed a software
tool to improve the documentation of software
architecture to produce more maintainable software
applications. The proposed tool analyze embedded
software systems developed using C programming
language and produce UML models that better
presents the architectural details of such embedded
systems.

Yan et al. [29] have proposed an aggregation
method that automatically assigns weights to low-
level measures of software quality in order to
calculate more accurate high-level software
maintainability characteristics. They applied a topic
modeling technique to calculate probabilistic
weight from a software benchmark.

Alhilman et al. [30] have combined five
maintenance methods to improve maintenance
policy of printing machines by reducing the need
for manual calculation of low-level maintenance
measures such as overall equipment effectiveness
and reliability centered maintenance.

Gupta [31] has proposed an approach aimed to
improve software maintenance through conducting
a predictive analysis to identify shortcomings exist
in business processes that are executed by software
applications.

Malhotra and Chug [32] have conducted an
empirical study to evaluate the impact of
refactoring on software maintainability. The study
is conducted by applying bad-smell refactoring
methods on two versions of five proprietary
software products (i.e. original and refactored
version). The results of this study recommends that
even though refactoring is a tedious process; the use
of refactoring methods help to improve software
quality and software maintainability in particular.

Mellegard et al. [33] have conducted an empirical
study aimed to assess the impact of using domain-
specific modeling in maintenance of a legacy
system. The results of the study presented a positive
impact of using domain-specific modeling in terms
of early and low defect detection despite of the
lengthy process and in terms of decreased
maintenance effort needed to maintain this legacy
system.

Plösch et al. [34] have proposed an automated
tool for measurement of software maintainability.
The tool calculates eighteen (18) measures of
maintainability and is experimented using five
open-source java projects. The calculated measures
are then compared with measures calculated by
EMISQ (expert centered method for internal
software quality) quality model that calculates one-
hundred and sixty-five (165) measures including
maintainability measures.

Szőke et al. [35] have conducted an industrial
study to investigate the impact of automatic
refactoring on software maintainability. The study
is conducted on four (4) industrial projects from
four different companies to analyze maintainability
changes resulted from different refactoring tasks
using an automated tool that applies ColumbusQM
quality model [36]. The refactoring analysis showed
that almost all refactoring tasks had a consistent and
traceable positive impact three of the four industrial
projects and therefore reached more maintainable
state.

Counsell et al. [37] conducted an empirical study
to investigate relationship between maintainability
index (MI) and object-oriented class features such
as coupling, defects and size using two object-
oriented software projects. A significant correlation
is reported between class coupling and number of
software defects.

In summary, several international standards (such
as ISO and IEEE standards), European standards
(i.e. ECSS standards) and research literature
emphasized a high importance of developing
software with managed complexity in order to
produce maintainable software products. However,
such research literature has measured the degree of
maintainability to use it for effort estimation
purposes at late phase of the software development
lifer cycle, in which most project resources are
already allocated and distributed. Whereas, such
effort estimation such take place at an early phase
of the development life cycle. Therefore, it is a
crucial issue to obtain any early indicator of

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3832

software maintainability requirements in order to
build more accurate effort estimation models.

3. THE INTERNATIONAL STANDARD FOR
SOFTWARE FUNCTIONAL SIZE
MEASUREMENT: ISO19761

The ISO 19761 international standard [20]
proposes a general model of software functional
requirements that explains the borderline among
hardware and software. This standardized method
measures functional size of a software product
independently of the technology used to develop
such a product based on the identified functional
user requirements. The COSMIC measurement
method propose generic model of software
functional user requirements in order to clarify the
boundary between hardware and software. Figure 1
presents COSMIC model that demonstrate the
generic flow of data from a functional perspective.
In this model, software is typically bounded by
hardware and it used either by a human user or by
an engineered device. The human user interacts
with software using a variety of input/output
devices. Furthermore, software is bounded by
storage hardware such as RAM memory.

Figure 1 A generic model of ISO 19761 COSMIC

measurement method

The functionality of software is enclosed within
the data groups of functional flows. In order to
specify these functional flows, four data movement
types are identified by COSMIC as follows:

 Two data movement types (i.e. Entry and eXit)
are identified specify the functional flows
between human users and engineered devices
from one side, and software from the other side.

 Two data movement types (i.e. Read and Write)
are identified to specify the functional flows
between storage and software.

Diverse perceptions are normally used for
different measurement purposes. For example, in
embedded and real time software, users are
"engineered devices" interact straightforward with
software. For business and management application

software, the abstraction usually assumes that the
users are one or more humans who interact directly
with the business or management applications
software across the border (the "I/O hardware"
ignored). The ISO 19761 method is aimed to
measure the size of software based on identifiable
of functional user requirements. Then, they are
allocated to hardware and software from the
unifying perspective of a system integrating these
two "components". Since the ISO 19761 standard is
aimed at sizing software, only those requirements
allocated to software are considered in its strategic
measurement procedure.

4. DESIGN OF MEASUREMENT MODEL
OF MAINTAINABILITY
REQUIREMENTS

Four steps are recommended by Abran to carry
out the design of a measurement model [38]:

4.1 Determination of Measurement Objectives

The objective: is to measure the functional size of
the maintainability requirements as defined in
ECSS-E Part 1B/2B and ECSS-Q-80B, ISO 25010
and using the ISO 19761 COSMIC standard as a
measurement method. The measurement point of
view is software perspective and the intended uses
of the measurement results throughout the software
life cycle: the functional size of the maintainability
for a software product, whether it has yet built or it
has already delivered.

4.2 Characterization of the Concept Measured

Definition of the concept to be measured: is the
functional size of maintainability requirement; the
maintainability measurements can be internal or
external. Although the ECSS standard deals with
maintainability specific to software-embedded
system developed as part of a space project, the
proposed measurement model is applicable for
maintainability of non-embedded software product.
The maintainability requirements are defined as the
ease with which a software system or component
can be modified to change or add capabilities,
correct faults or defects, improve performance or
other attributes, or adapt to a changed environment.
The ISO 25010 [18] define the maintainability as
the capability to modify a software product, these
modifications include corrections, improvements or
adaptation of software to changes in environment
and in requirements and functional specifications.
In ISO25010, there are two types of measures for
maintainability requirements:

 External maintainability measures: should be
able to measure such attributes as the behaviour

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3833

of the maintainer, user, or system including the
software, when the software maintained or
modified during testing or maintenance.

o Analyzability should be able to measure
such attributes as the maintainer or user
effort or spent of resources when trying to
diagnose deficiencies or causes of failures,
or for identifying parts modified.

o Changeability should be able to measure
such attributes as the maintainer or user
effort by measuring the behaviour of the
maintainer, user or system including the
software when trying to implement a
specified modification.

o Stability should be able to measure attributes
related to unexpected behaviour of the
system including the software when the
software is tested or operated after
modification.

o Testability should be able to measure such
attributes as the maintainer or user effort by
measuring the behaviour of the maintainer,
user or system including software when
trying to test the modified or non-modified
software.

 Internal maintainability measures: used for
predicting the level of effort required for
modifying the software product.

o Analyzability indicate a set of attributes for
predicting the maintainer or user spent effort
or spent resources in trying to diagnose for
deficiencies or causes of failure, or for
identification of parts to be modified in the
software product.

o Changeability indicate a set of attributes for
predicting the maintainer or user spent effort
when trying to implement a specified
modification in the software product.

o Stability indicates a set of attributes for
predicting how stable the software product
would be after any modification.

o Testability indicates a set of attributes for
predicting the amount of designed and
implemented autonomous test aid functions
present in the software product.

4.3 Identification of Maintainability Entity

Types and Relationships among Entities

This part presents the identification of software
maintainability entity types and the relationships

among such entity types. Twelve entity types are
identified to help software engineers to identify
software maintainability requirements based of ISO
international standards. Furthermore, this part
presents four metamodels in order to capture the
external and internal software maintainability
requirements. A metamodel is an effective
candidate to present visually different entity types,
existing relationships, rules and constraints of a
requirement-modeling problem.

4.3.1 Metamodel of Software Analyzability
Requirements

There are four entity types to capture the
analyzability requirements; audit trial capability,
diagnostic function support, failure analysis
capability, and status-monitoring capability. Figure
2 presents a metamodel that represents the four
identified entity types and their corresponding
relationships. This metamodel represent the
relationship between entity types in terms of input,
process and output.

Entity Type 1 (external measurement for
analyzability)

 Entity name: audit trial capability
 Input of entity type 1: planned data recorded

during operation
 Output of entity type 1: actual data recorded

during operation
 Entity type 1 measures the functional size of

audit trial capability
 Entity relationship: many-many recorded data

on the system

Entity Type 2 (internal measurement for
analyzability)

 Entity name: diagnostic function support
 Input of entity type 2: failure causes
 Output of entity type 2: actual registered failure
 Entity type 2 measures the functional size of

diagnostic function support
 Entity relationship: many-many failures types in

the system

Entity Type 3 (external measurement for
analysability)

 Entity name: failure analysis capability
 Input of entity type 3: failure diagnoses
 Output of entity type 3: actual registered failure
 Entity type 3 measures the functional size of

failure analysis capability
 Entity relationship: many-many failures types

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3834

and capability in the system
Entity type 4 (external measurement for

analyzability)

 Entity name: status-monitoring capability
 Input of entity type 4: data monitor recording
 Output of entity type 4: actual failed data

monitor

 Entity type 4 measures the functional size of
status monitoring capability

 Entity relationship: many-many failures data
monitoring in the system

Figure 2 A metamodel of software product analyzability

4.3.2 Metamodel of Software Changeability

Requirements

There are three entity types to capture the
changeability requirements; change efficiency,
modifiability, and software change control
capability. Figure 3 presents a metamodel that
represents the three identified entity types and their
corresponding relationships. This metamodel
represent the relationship between entity types in
terms of input, process and output.

Entity Type 5 (external measurement for
changeability)

 Entity name: change efficiency
 Input of entity type 5: planned time to change
 Output of entity type 5: actual work time to

change
 Entity type 5 measures the functional size of

change efficiency
 Entity relationship: many-many failures time to

change in the system

Entity Type 6 (internal measurement for
changeability)

 Entity name: modifiability
 Input of entity type 6: number cases of change

software
 Output of the entity type 6: actual number cases

of failing change
 Entity type 6 measures the functional size of

modifiability
 Entity relationship: many-many number cases

of change in the system

Entity Type 7 (external measurement for
changeability)

 Entity name: software change control capability.
 Input of entity type 7: planned of change

recorded of log data
 Output of entity type 7: change of log data

actually recorded
 Entity type 7 measures the functional size of

software change control capability
 Entity relationship: many-many of control

change of log in the system

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3835

Figure 3 A metamodel of software product changeability

4.3.3 Metamodel of Software Stability

Requirements

There are two entity types to capture the stability
requirements; change success ratio, and
modification impact. Figure 4 presents a metamodel
that represents the three identified entity types and
their corresponding relationships. This metamodel
represent the relationship between entity types in
terms of input, process and output.

Entity Type 8 (external measurement for

stability)

 Entity name: change success ratio
 Input of entity type 8: software failure before

change
 Output of entity type 8: software failure after

change
 Entity type 8 measures the functional size of

change success ratio
 Entity relationship: many-many of software

change after/before in the system

Entity Type 9 (internal measurement for

stability)

 Entity name: modification impact
 Input of entity type 9: planned of change after

the first change of software
 Output of entity type 9: resolved failures
 Entity type 9 measures the functional size of

modification impact
 Entity relationship: many-many of software

change in the system

4.3.4 Metamodel of Software Testability
Requirements

There are three entity types to capture the
testability requirements; availability of built in test
function, re-test efficiency, and test restartability.
Figure 5 presents a metamodel that represents the
three identified entity types and their corresponding
relationships. This metamodel represent the
relationship between entity types in terms of input,
process and output.

Figure 4 A metamodel of software product stability

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3836

Figure 5 A metamodel of software product testability

Entity Type 10 (external measurement for

testability)

 Entity name: availability of built in test function
 Input of entity type 10: suitability of built in test

function
 Output of entity type 10: test opportunities
 Entity type 10 measures the functional size of

availability of built in test function
 Entity relationship: many-many of functions test

in the system

Entity Type 11 (external measurement for
testability)

 Entity name: re-test efficiency
 Input of entity type 11: test reported failures
 Output of entity type 11: resolved failures
 Entity type 11 measures the functional size of

the re-test efficiency
 Entity relationship: many-many of failure test in

the system

Entity Type 12 (internal measurement for
testability)

 Entity name: test restartability
 Input of entity type 12: executing test
 Output of entity type 12: pause of the executing

test
 Entity type 12 measures the functional size of

the test restartability
 Entity relationship: many-many of test

executing in the system

4.4 Numerical Assignment Rules
The foundations of the numerical assignment

rules for software maintainability requirements are
presented in the previous metamodels of software
product analyzability, changeability, stability and
testability (See figures 2 to 5).

The numerical assignment rules can be described
using descriptive text (i.e. practitioner description)
or through mathematical expressions (i.e. formal
theoretical viewpoint). For measurement purposes
of software functional size, the international
standard for software functional size measurement
ISO19761 identifies the concept of a “functional
process” as an elementary component of a set of
functional user requirements; it includes a unique
cohesive and independently executable set of data
movement types.

As specified in ISO19761, the data movement
types are Entry, eXit, Read, and Write. Each data
movement type moves one data group type.
Maintainability data groups form sources and/or to
data destinations for software maintainability
requirements. One (1) CFP (i.e., COSMIC Function
Point) represent a functional size measurement of
each counted data movement type.

Table 1 and 2 presents data sources/destinations
of software maintainability requirements. In both
tables, data sources/destinations of maintainability
requirements are categorized in four categories,
analyzability, changeability, stability, and testability
(see column #1). Whereas, data sources/destinations
are next presented in column #2 and finally the
objects of interest are presented in column #3.

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3837

Table 1: Data sources of software maintainability requirements

Categories Data Sources
Objects of

Interest
Analyzability  Planned data recorded during operation

 Actual data recorded during operation

 Failure causes

 Actual registered failure

 Failure diagnoses

 Data monitor recording

 Actual failed data monitor

Data
Data
Access
Failure
Failure
Data
Data

Changeability  Planned time to change

 Actual work time to change

 Number cases of change the software

 Number cases of failing change

 Planned of change the recorded of log data

 Change of log data actually recorded

Time
Time
Cases of change
Cases of change
Data
Data

Stability  Software failure after change

 Change success ratio

 Software failure before change

 Software failure after change

Failure
Time ratio
Failure
Failure

Testability  Suitability of built in test function

 Test opportunities

 Pause of the executing test

 Test restartability

 Test reported failures

 Resolved failures

Function
Test
Time
Time
Failure
Failure

Table 2: Data destinations of software maintainability requirements

Categories Data Destinations

Analyzability  Audit trial capability

 Diagnostic function support

 Failure analysis capability

 Status monitoring capability
Changeability  Change efficiency

 Modifiability

 Software change control capability
Stability  Change success ratio

 Modification impact
Testability  Availability of built in test function

 Re-test efficiency

 Test restartability

5. QUALITY EVALUATION OF
SOFTWARE MAINTAINABILITY

This section presents an extension of the
proposed measurement model of maintainability
requirements. Numerical assignments rules are built
based on mathematical expressions using
descriptive text rules in ISO25010 [18]. The
numerical assignment rules are appended to the

metamodels of analyzability, changeability,
stability, and testability requirements. The resulting
metamodels presented in this section represent
instantiation metamodels of the proposed model.
They can be used to identify and measure software
resources requirements based on the concepts in
ISO25010 (2011), which can be considered as
quality evaluation of software maintainability
requirements in addition to the measurement

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3838

benefit. Figures 6 to 9 presents instantiation
metamodels to measure analyzability changeability,

stability, and testability (externally/internally) of
software product for one functional process.

Figure 6 Quality evaluation metamodel of software product analyzability

Figure 7 Quality evaluation metamodel of software product changeability

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3839

Figure 8 Quality evaluation metamodel of software product stability

Figure 9 Quality evaluation metamodel of software product testability

6. DESIGN OF SOFTWARE STANDARD

ETALON

Using a standard etalon can improve
competitiveness by reducing the cost of both
manufacturing and market transactions: a producer
does not need to reinvent the specifications or
performance criteria incorporated in the standard,
and can therefore concentrate resources elsewhere.
Furthermore, a standard etalon can contribute to the
propagation of innovations, and consequently
enhance the economic benefit to be derived from
them [38]. With respect to the International
Vocabulary of Basic and General Terms in
Metrology a standard etalon is: "A material
measure, measuring instrument, reference material
or measuring system intended to define, realizes,
conserve or reproduce a unit or one or more values
of a quantity to serve as a reference” [38].

A system of references is made up of software

measurement standards. Measurement standards are
essential elements for an adequate metrological
structure, in that they provide measurement users
with a common reference and give them greater
confidence in the measurement process. Indeed,
standards facilitate the realization of measurement
results on common basis.

In software engineering, concepts of units and
etalons have seldom been used, and this is a
symptom of the immaturity of the software
measures themselves [38]. The measurement model
presented in this paper can be considered as a
reference model for measuring the functional size
of the maintainability requirements for the
following reasons:
 The definitions and the interpretation of the

maintainability requirements are taken from the

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3840

definitions of security requirements in the
European international standard series (ECSS-
E-40), IEEE-830 standard and ISO25010; this
could be considered as a primary material
measures to the proposed generic model of
maintainability.

 The measurement model presented in this paper
including four steps adopted from [38] these
steps help to ensure that measurements are
performed in a consistent manner; a base line is
established as a primary reference.

 Using the ISO19761 standard as international
method to measure functional size of
maintainability requirements as well as provide
measurement units.

 The calibration between steps (1), (2), and the
COSMIC standard procedure to identify the
proposed measurement model of maintainability
requirements. This equivalent to a measurement
instrument or reference material with respect of
software etalon.

The proposed measurement model of
maintainability requirements with respect to etalon
standards offers:

1. The maintainability is measured internally and
externally based on number of functional
processes.

2. The proposed model provide measurement for
each type or all types of maintainability
requirements. For example, measurement for
maintainability of analyzability, changeability,
stability and testing.

3. The interrelations between internal and external
measurements are defined.

4. The functional size measurements for software
maintainability requirements are defined for all
functional processes (externally and internally).

5. Using the proposed measurement model of
maintainability requirements, the functional size
measurement could be easily traced.

6. The proposed measurement model provide
control and stability of the measurement results.

7. The proposed measurement model yield a
measurement result with a standardized
measurement unit (i.e. COSMIC function point).

Abran [38] designed a standard methodology to

compare the design a software measurement
standard Etalon with functional size measurement

using ISO19761: COSMIC. This methodology
adopt the proposed measurement model for the
functional size measurement of the maintainability
requirements as follows:

 Analysis and selection of candidate inputs for
the maintainability requirements to begin the
process of designing a standard etalon for
maintainability requirements. In particular, it
consists of the output of the definitions and
interpretation of the ECSS European, ISO25010
and IEEE-830 standards as well as the
identification of a set of candidate inputs for
measurement.

 Identification of quality criteria of inputs (i.e. or
the requirements). The quality criteria selected
as prerequisites selected from the ECSS,
ISO25010 and IEEE-830 standards of the
maintainability requirements.

 Quality improvement of inputs. The input of the
maintainability requirements therefore analyzed
and improved using the quality criteria
identified in the previous steps and consistency
of the proposed for measuring the functional
size of maintainability is based on the candidate
inputs from the above standards.

 Selection or design of an etalon template to
present measurement process and measurement
results.

7. CASE STUDY: AN ONLINE LIBRARY
SOFTWARE

7.1 Scope and Objective

This section presents a verification of the
proposed measurement model using requirements
specifications of an online library software. This
software is developed to improve the services
provided by a traditional library by providing an
easy access to the information of books, journals
and periodic publications. The requirements
specifications used in this experiment are selected
without a detailed inspection and analysis of their
quality in terms of ambiguity and completeness.
The reason for not conducting a quality inspection
is to emulate the quality of software requirements
specifications at an early phase of the software
development life cycle. The objective of this
experiment is to measure the functional size of
maintainability requirements of an online library
software using the proposed measurement model
presented in this paper.

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3841

7.2 Requirements Specifications of an Online
Library Software

The online library software is developed to
provide information about library resources
including textbooks, journal, and periodic
publications for its users (e.g. students, professors,
librarians, and administrators). The users shall have
an acceptable level of knowledge on computers and
internet browsing. The library administrators shall
have a good knowledge of the online software and
be able to resolve typical issues that might arise and
might be reported by the library users. Library
resources are available on an online database in
order to improve their accessibility for such users.
The online library software shall use the host
university information to provide the authentication
service for its users. The library administrator
grants the users in order to determine type of
services they are entitled to use/book such as

graduate studies study rooms. The credentials (i.e.
username, password, and security verification
questions) of the users can be changed via the user's
portal. The users can access both internal and
external databases to obtain access into a certain
article or textbook. The users of the online library
software can suggest to the library administrator
buy an access for newly published resources. They
shall have a usable interface that provide an easy
access to library resources, user manual and online
help to resolve issues during the library business
hours. Further, the online library software shall be
connected to the host university system to obtain
necessary information to authenticate users trying to
access resources from outside university campus.
Therefore, the online library software shall be
available 24 hours/day or schedule maintenance
periods during users' inactive time using a specified
time schedule. Figure 10 presents an overview of
the context model of the online library software.

Figure 10 A context model of an online library software

7.3 Experimentation of the Proposed
Measurement Model

This experiment measure the functional size of
stability requirement of the online library software
using the proposed measurement model. Using the
requirements specifications presented in previous
section, two functional processes can be identified
using the proposed measurement model, namely
"automatic change or update" and "modification
impact" functional processes. For the "automatic
change or update" functional process, three
measures can be observed, as follows:

 Measure software failures after change

 Measure software failures before change by
maintainer to software after maintenance

 Measure software failures after change by
maintainer to software after maintenance

On the other hand, for the "modification impact"
functional process, three measures can be observed,
as follows:

 Measure planned of change after first software
change

 Measure planned of change after first software
change by maintainer to software failures
occurred after change

 Measure software resolved failure by maintainer
to software failures occurred after change

Table 3 presents the measurement of the
functional size of stability requirement of the online
library software using the proposed measurement
model. In this table, column #1 presents the name

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3842

of the identified functional processes. Column #2
presents the identification of the data movements
exist in each identified functional process. Further,
Column #3 presents the type of each identified data
movement presented in column #2. For example,
five data movements are identified in "automatic
change or update" functional process, including one
(1) Entry data movement data type, two (2) Read
data movement types, and two (2) Write data
movement types; and this yields a total of five (5)
data movement types. These five (5) data
movement types represent a functional size of five

(5) COSMIC Function Points. The total functional
size measurement of the two identified functional
process is nine (9) COSMIC Function Points.

This measurement of the functional size of
stability requirement forms one building block in
the equation that measures the total functional size
of maintainability requirement for the online library
software. It is worth mentioning that such measure
of maintainability requirement is beneficial as it is
used in the estimation the effort required to
maintain such software and more importantly at an
early phase of the software development life cycle.

Table 3: Functional size measurement of stability requirement using the proposed measurement model

Functional Process Data Movement Description
Data Movement

Type
Automatic Change

or update

o Entry software failures after change
o Read software failures before change by a

maintainer to software after maintenance
o Write software failures before change by a

maintainer to software after maintenance
o Read software failures after change by a

maintainer to the software after maintenance
o Write software failures after change by a

maintainer to software after maintenance

 (1) Entry
(1) Read

(1) Write

(1) Read

(1) Write

Modification impact o Read planned of change after first software
change by a maintainer to the software
failures occurred after change

o Write planned of change after the first
software change by a maintainer to the
software failures occurred after change

o Read software resolved failure by a
maintainer to software failures occurred
after change

o Write software resolved failure by a
maintainer to the software failures occurred
after change

(1) Read

(1) Write

(1) Read

(1) Write

Total functional size of stability requirement 9 CFP

7.4 Threats to Validity

An Internal threat to validity might exist in the
case of lack in the description of the concepts to be
evaluated in this experiment. To mitigate the risk of
having such threat to validity, the principal
researcher who designed the measurement model
has not experimented the proposed measurement
model using the online library software. Another
researcher (i.e. co-author) in addition to a pilot test
has conducted this task to verify the validity of the
experimental steps.

An external threat to validity might exist since
the principal researcher and software engineering

research community need to verify the experimental
results can be generalized beyond the experimental
settings. Therefore, to mitigate the risk of having
such threat to validity, the proposed measurement
model shall be experimented using requirements
specifications that enables the measurement of
maintainability requirement and not only stability
requirement. Further, the proposed measurement
model shall be experimented using requirements
specifications that represents various software
applications that works in different application
domain.

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3843

8. CONCLUSION

This paper presented the design of new
measurement model of software maintainability
requirements based on ISO international standards.
The design of the measurement model specify a
strategy of measurement rules to perform mapping
with concepts of ISO19761 international standard.
The motivation of this paper is to develop a
measurement model that calculates the functional
size of maintainability requirements at an early
phase of the software development life cycle.

Quality evaluation metamodels are also proposed
in this paper; these metamodels identify and
measure maintainability requirements of a software
product using the concepts exist in ISO25010 [17]
systems and software quality requirements and
evaluation (SQuaRE) international standard.
Furthermore, this paper presented the design of a
software standard etalon.

An experiment is conducted to verify the
applicability of the proposed measurement model
using requirements specifications of an online
library software. This experiment measured the
functional size of stability requirement as part of
measurement for maintainability requirement of
such software. Future work shall be devoted to
conduct more experimentation of the proposed
measurement model for applicability, and to
mitigate the impact of external threat to validity
using software requirements specifications that
represent different software applications.

REFERENCES
[1] S. H. Kan, Metrics and Models in Software

Quality Engineering, second edition,
Addison-Wesley Longman Publishing Co,
Boston, USA, 2002.

[2] K. Almakadmeh, K. Meridji, K. T. Al-Sarayreh,
"Towards a reference model of software
resources quality", Journal of Computer
Science, Vol. 14, No. 2, pp. 182-198.

[3] V. Podgorelec, and M. Heričko, "Estimating
software complexity from UML models",
ACM SIGSOFT Software Engineering Notes,
Vol. 32, No. 2, 2007, pp. 1-5.

[4] A. Idri, A. Abran, and T.M. Khoshgoftaar,
"Evaluating software project effort by analogy
based on linguistic values", Eighth
international software metrics symposium,
Ottawa, Canada, 2002, pp. 21-30.

[5] P. Bourque, "Estimating effort and cost in
software projects - ISBSG a multi-
organizational project data repository for

project estimation and benchmarking",
University of Ulster, Northern Ireland, 2003.

[6] R. Dawson and B. O'Neill, "Simple metrics for
improving software process performance and
capability: a case study", Software Quality
Journal, Vol. 11, No. 3, 2003, pp. 243-258.

[7] P. Kokol, J. Brest, "Software complexity metric
with the critical value", International
Conference on Computational Cybernetics
and Simulation Systems, Man, and
Cybernetics, Orlando, USA, 1997, pp. 494-
499.

[8] E.H. Alikacem, and H. Sahraoui, "A metric
extraction framework based on a high-level
description language", Proceedings of the
ninth international working conference on
source code analysis and manipulation,
Edmonton, Canada, 2009, pp. 159-167.

[9] R. Dawson, A.J. Nolan, "Towards a successful
software metrics programme", Eleventh
annual international workshop on software
technology and engineering practice,
Amsterdam, Netherlands, 2003, pp. 48-51.

[10] European Cooperation for Space
Standardization, "Space Engineering:
Software - Part 1 Principles and Requirements
(ECSS-E-40-Part-1B)", European
Cooperation for Space Standardization,
Noordwijk, Netherlands, 2003.

[11] European Cooperation for Space
Standardization, "Space Engineering:
Software - part 2 Document Requirements
Definitions (ECSS-E-40-Part-2B)", European
Cooperation for Space Standardization,
Noordwijk, Netherlands, 2005.

[12] European Cooperation for Space
Standardization, "Space product assurance:
software product assurance (ECSS-Q-80B)",
European Cooperation for Space
Standardization, Noordwijk, Netherlands,
2003.

[13] International Organization for Standardization,
"Systems and software engineering - software
life cycle processes", International
Organization for Standardization, Geneva,
Switzerland, 2008.

[14] European Cooperation for Space
Standardization, "Space product assurance:
dependability (ECSS-Q-ST-30C)", European
Cooperation for Space Standardization,
Noordwijk, Netherlands, 2009.

[15] International Organization for Standardization,
"Systems and software engineering –
vocabulary", International Organization for
Standardization, Geneva, Switzerland, 2010.

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3844

[16] Institute of Electrical and Electronics
Engineers, "International standard for
software engineering - software life cycle
processes – Maintenance (IEEE 14764)",
IEEE Computer Society Press. USA, 2006

[17] Institute of Electrical and Electronics
Engineers, "IEEE standard dictionary of
measures of the software aspects of
dependability (IEEE982.1)", IEEE Computer
Society Press. USA, 2005.

[18] International standardization organization,
ISO25010, "Systems and software
engineering - systems and software quality
requirements and evaluation (SQuaRE) -
System and software quality models",
International organization for standardization,
Geneva, Switzerland, 2011

[19] International Organization for Standardization,
"Information Technology - software
measurement - functional size measurement
Part 1: definition of concepts", International
Organization for Standardization, Geneva,
Switzerland, 2007.

[20] International Organization for Standardization
"ISO19761: A functional size measurement
method: COSMIC", International organization
for standardization, Geneva, Switzerland,
2013.

[21] International Organization for Standardization,
"Software Engineering - NESMA functional
size measurement method (ISO/IEC 24570) -
definitions and counting guidelines for the
application of function point analysis",
International organization for standardization,
Geneva, Switzerland, 2005.

[22] P. Forselius, "Faster and more accurate
functional size measurement by KISS -
keeping it simple", IFPUG metric views,
Cambridge, USA, 2006, pp. 1-10.

[23] D. Port, and B. Taber, "Actionable analytics
for strategic maintenance of critical software:
an industry experience report", IEEE
Software, Vol. 35, No. 1, 2017, pp. 58-63.

[24] H. Wu, L. Shi, C. Chen, Q. Wang, and B.
Boehm, "Maintenance effort estimation for
open source software: a systematic literature
review", IEEE International Conference on
Software Maintenance and Evolution,
Raleigh, NC, USA, 2016, pp. 32-43.

[25] C.-J. Lin, and D.-M. Yeh, "A software
maintenance project size estimation tool
based on COSMIC full function point",
International Computer Symposium, Chiayi,
Taiwan, 2016, pp. 555-560.

[26] R. Torkhan, J. Laval, M. Derras, and N.
Moalla, "Conceptual interoperability
framework for software development and
maintenance", International Conference on
Engineering, Technology and Innovation,
Funchal, Portugal, 2017, pp. 1327-1332.

[27] N. Al-Saiyd, "Source code comprehension
analysis in software maintenance", 2nd
International Conference on Computer and
Communication Systems, Krakow, Poland,
2017, pp. 1-5.

[28] D. Manev, and A. Dimov, "Facilitation of IoT
software maintenance via code analysis and
generation", 2nd International
Multidisciplinary Conference on Computer
and Energy Science, Split, Croatia, 2017, pp.
1-6.

[29] M. Yan, X Xia, X. Zhang, D. Yang, and L. Xu,
"Automating aggregation for software quality
modeling", IEEE International Conference on
Software Maintenance and Evolution,
Shanghai, China, 2017, pp. 529-533.

[30] J. Alhilman, F. Atmaji, and N. Athari,
"Software application for maintenance
system: a combination of maintenance
methods in printing industry", 5th
International Conference on Information and
Communication Technology, Malacca City,
Malaysia, 2017, pp. 1-6.

[31] M. Gupta, "Improving software maintenance
using process mining and predictive
analytics", IEEE International Conference on
Software Maintenance and Evolution,
Shanghai, China, 2017, pp. 681-686.

[32] R. Malhotra, and A. Chug, "An empirical
study to assess the effects of refactoring on
software maintainability", International
Conference on Advances in Computing,
Communications and Informatics, Jaipur,
India, 2016, pp. 110-117.

[33] N. Mellegard, A. Ferwerda, K. Lind, R.
Heldal, and M. Chaudron, "Impact of
introducing domain-specific modelling in
software maintenance: an industrial case
study", IEEE Transactions on Software
Engineering, Vol. 42, No. 3, 2016, pp. 248-
263.

[34] R. Plösch, S. Schürz, and C. Körner, "On the
validity of the IT-CISQ quality model for
automatic measurement of maintainability",
IEEE 39th annual international computers,
software & applications conference,
Taichung, Taiwan, 2015, pp. 326-334.

Journal of Theoretical and Applied Information Technology
30th June 2018. Vol.96. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3845

[35] G. Szőke, C. Nagy, P. Hegedűs, R. Ferenc, and
T. Gyimóthy, "Do automatic refactorings
improve maintainability? An industrial case
study", IEEE International Conference on
Software Maintenance and Evolution,
Bremen, Germany, 2015, pp. 429-438.

[36] T. Bakota, P. Hegedűs, P. Körtvélyesi, R.
Ferenc, and T. Gyimóthy, "A probabilistic
software quality model", Proceedings of 27th
IEEE international conference on software
maintenance, Williamsburg, USA, 2011, pp.
243–252.

[37] S. Counsell, X. Liu, S. Eldh, R. Tonelli, M.
Marchesi, G. Concas, and A. Murgia, "Re-
visiting the maintainability index metric from
an object-oriented perspective", 41st
Euromicro Conference on software
engineering and advanced applications,
Funchal, Portugal, 2015, pp. 84-87.

[38] Alain Abran, 2010. Software Metrics and
Software Metrology, IEEE Computer Society
Press.

