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ABSTRACT 
 
The Fuzzy Subtractive Clustering (Fsc) method is applied in many fields because it is able to produce 
optimal clusters without requiring initial information of many groups as well as on the k-mean method. 
Unfortunately, in the Fsc method, there is a radius parameter that has a vital role in generating optimal 
clusters. The magnitude of this radius parameter is hypothetical to be influenced by the variability of the 
covariance matrix of the dataset. This study investigates the magnitude of radius parameter that resulted in 
optimal clusters on three datasets with high variability (dataset1), moderate variability(dataset2), and 
low variability(dataset3) on covariance matrices. In the clustering process, the squash factor and accept 
ratio parameters are made in constant, while the radius parameter is the determined variable that leads to 
the optimal cluster achievement. Clustering results are said to be optimal based on two criteria: each cluster 
consists of at least 2 members, and the clustering produces the smallest Ctm value. The results of this study 
recommend that prior to clustering with Fsc, it should be calculated first covariance matrix based on the 
standardized dataset. If the covariance matrix has a high variability, the radius value used is close to 1, the 
moderate variability is a radius value of about 0.5, whereas the low variability is used near the 0 radius 
value. 
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1. INTRODUCTION  
 

In a database system, an object is 
expressed as a record that occupies rows of a 
schema or table. The columns of the table state the 
attributes that describe the object. The attribute 
whose value varies is known by the term variable. 
Let A be a group of objects with attributes or 
variables attached to them. Based on all attributes 
or variables that are shared by all objects in A, it is 
desirable to separate or split A into subgroups A1, 
A2, ..., Ak. The goal to be achieved in clustering is 
that all objects in a subgroup are expected to have a 
high similarity. In the conventional clustering 
method, the size of the resemblance used is the 
norm or distance[1],[2]. Therefore, information 
about the object acting as the center of the group is 

absolutely necessary to be used as a reference for 
calculating distance[3]. 

 
K-mean is a clustering method that uses 

the concept of distance as a measure of similarity 
between two objects. An object will be inserted into 
the group Ak if the object has the closest distance at 
the center of the group of Ak compared to the other 
group center[3]. There have been many proposed 
algorithms to improve the performance of the k-
mean method. Modha and Spangler[4] proposed a 
way of weighting features or attributes to produce 
optimal clustering so that k-means could be applied 
to clustering in data mining. Huang et al[5] 
proposed the method of giving weight to the 
attributes automatically done by the iterative 
process so that it can be used to reduce the 
dimension, the impact of the k-means process more 
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quickly produces the optimal cluster. Mustakim[6] 
uses the eigenvector of the covariance matrix as the 
cluster center initialization. Nevertheless, the k-
mean method is still constrained by the parameter k 
which influences the cluster center initialization. 

 
Some recent applications of the k-mean 

method are performed by Jumma, et al[7] which 
protects sensitive information from data mining 
clustering results, while Sugiantoro and 
Kiswanto[8] profiles the contents of emails to 
determine the pattern of email content that 
interferes with the client or server. Rabbouch, et 
al[9] proposed a pattern recognition system that 
uses clustering algorithms in order to detect, 
calculate and recognize a number of dynamic 
objects crossing the highway. From the various 
applications of the k-mean method, the problem of 
determining a large number of groups (k) that will 
result in the optimal clustering is a problem that is 
not easily solved. 

 
Along with the development of fuzzy 

logic, emerging fuzzy set-based clustering methods, 
some of which are Fuzzy c-mean and fuzzy 
subtractive. Chiu[10] identifies the fuzzy model 
based on cluster estimation, Tafazoli, et al[11] 
modeling the dependence of a system, not only on 
its current state but also in its hysteresis using fuzzy 
subtractive, while Ghosh, et al[12] using fuzzy 
clustering for unattended detection changes in 
remote sensing images. The application of 
subtractive fuzzy in various fields is performed by 
Chamzini et al[13] predicting the performance of 
the road headers, optimizing the transient 
performance of the automatic generation control by 
Rouhani et al[14] and Ariadji, et al[15] optimizing 
the direction and length horizontal wells on the X-
oil field. The comparison of the performance of Fsc 
against other methods was done by Bataineh, et 
al[16] compares the performance of both Fcm and 
Fsc methods on some experimental data. In Fcm 
requires a training algorithm and in Fsc it requires 
setting the radius parameters done by trial  and 
error so that both methods produce the optimal 
grouping. The merging of Fsc and SOM methods in 
two-level clustering was done by Lisangan, et 
al[17]. The fuzzy subtractive appeal is very high for 
researchers because this method can generate 
automatic grouping without requiring the 
determination of the number of groups at the 
beginning. 

 
The superiority of Fsc in forming clusters 
automatically without having to provide the cluster 

number input seems to make Fsc an easy-to-
implement method. In fact, the input of the 
magnitude of the radius parameters that have an 
important role in Fsc is still determined by trial and 
error, so to produce an optimal cluster must be done 
several times grouping with different radius 
parameter values and then the optimal cluster is 
determined based on certain indicators. This study 
intends that the Fsc implementation can be applied 
effectively without having to try some radius values 
by proposing the identification of the variability of 
each variable in the dataset to be clustered through 
the covariance matrix. Researchers assume that 
variability in the dataset greatly affects the 
magnitude of the radius that produces the optimal 
cluster, so that if the dataset variability value is 
known then the radius value can be determined 
easily, finally, the Fsc method can be implemented 
effectively. 
 

Based on the above explanation that the 
number of clusters (k) in k-mean clustering can be 
solved by the fuzzy-subtractive method in which 
this method can form groups automatically. 
However, in the application the Fsc method 
requires the parameter of the magnitude of the 
radius (r) that plays an important role in the optimal 
Fsc application. In this study focused to investigate 
the magnitude of radius parameters that can result 
in grouping of the optimal Fsc method. The 
proposed method is to explore the covariance 
matrix of the dataset to be clustered and to test 
several parameters of the radius that will lead to the 
optimal clustering that produces a small value Ctm. 
For the purposes of investigating the effect of the 
covariance matrix on the magnitude of the radius 
parameter, there are provided three datasets having 
high[18], moderate[19], and low[20] of covariance 
matrix variability. 
 
2. LITERATURE REVIEW 

 
Clustering is a technique used to group a 

collection of objects or records into several 
relatively homogeneous groups, called clusters. All 
objects in the same group tend to have a high 
similarity or small diversity, while objects in 
different groups tend to have low similarity or high 
diversity[2],[3]. Thus the main principle in 
clustering techniques is to minimize the diversity 
between objects in the same group and maximize 
the diversity among objects in different groups[1]. 
Clustering methods are usually used as a 
preliminary analysis of object classification 
methods. There are basically two types of 
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clustering methods namely hierarchical and non-
hierarchical clustering. Almost all clustering 
methods require initial information on the number 
of clusters to be established. This is not an easy 
setting for getting an optimal clustering. One 
method that does not require that information is 
fuzzy subtractive clustering(Fsc). 
2.1 Sample covariance matrix  

According to Rencher[2], the variance of 
random variables is the size of variability whereas 
the covariance is a value which expresses the 
variation of the value of a random variable in its 
associative ratios with other random variables. 
Covariance is the mean product value of the X1 
variable deviation on its mean and the X2 variable 
deviation at the mean. The random variable is 
positively related, ie if X1 is greater than the mean, 
then the X2 value also tends to be greater than the 
mean, the value of the covariance will be positive. 
Conversely, the two variables are negatively 
related, ie if X1 is greater than the mean, then the 
variable X2 tends to be less than the mean, the value 
of the covariance will be negative. Consider, both  
X1 and X2 are random variables had mean  and 

 successively, the covariance between X1 and 
X2 is 

       (1) 
while the value of the variance is the covariance 
value of the variable itself, ie 

  or          (2) 
Assumes of an object or a record  observed based 
on  p attributes are , the value of the 
record on the i-th object is  , if as 
much as n number of samples of the object 
observed, it will be obtained the size of its 
variability called the matrix of variance-covariance 
sample as follows[3]: 

     (3) 

In S the sample variances of the p variables are on 
the main diagonal, and all possible pairwise sample 
covariance appear off the diagonal. The j-th row 
(column) contains the covariance of   with the 
other p − 1 variables. There are  three approaches to 
obtaining S. The first of these is to simply calculate 
the individual elements sjk . The sample variance of 
the j-th variable, sj j = , is calculated as in (2)  and 

 is calculated using (1). 
2.2 Fuzzy Set 
 At the outset, the concept of the fuzzy set 
was introduced by Professor Lotfi A. Zadeh in 
1965. The concept of fuzzy set comes from a 

classical set (crisp) of a strict or absolute nature that 
has only two membership values, if an object is a 
member of a set then the object has degree 
membership one and vice versa if the object is not a 
member of a set then the object has a degree of 
membership zero. In the fuzzy set, the degree of 
membership of an object in a set is not strictly 
defined. The transition characteristics are described 
in terms of membership functions that make the 
fuzzy set flexible in modeling linguistic 
expressions[10]. 
2.3 Gaussian Membership Function 

A function that gives degrees to an object or 
record of its existence in a set is called a 
membership function. The membership function 
will map each record with a membership degree 
value that has a value between 0 and 1 (Jang et al, 
2000). Some form functions that can be used to 
represent a fuzzy membership function are the 
triangle, shoulder, Gaussian, and sigmoid curve 
shapes[11]. 

 
Gaussian membership function is a bell-shaped 

curve, in which the shape of the membership 
function is determined by two parameters, namely 
the center-size or mean (c) and standard deviation 
(σ). The formula of the Gausian membership 
function is stated as follows[12]: 

                  (4) 
Parameter c determines the location of the center of 
the curve, and the parameter σ determines the width 
of the curve of the Gaussian membership function, 
as in Figure 1 below. 

 
Figure 1. Curve of Gaussian Membership Function 

2.4 Fuzzy Subtractive Clustering(Fsc) 
  In Fuzzy Subtractive Clustering (Fsc), an 
object or record can be a member of several 
existing groups that is indicated by the degree of 
membership in the group centers[11]. An object 
becomes a group member if the object has the 
highest degree of membership on the center of the 
group. Differences Fsc with other cluster methods 
is that many groups to be formed are obtained 
through a number of iterations. In classical cluster 
analysis, the group number is determined by the 
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greatest distance change on the dendrogram, all 
possible group members are already formed, while 
in Fsc,  group number will be calculated one by one 
starting at the beginning of the iteration. 
 
 According to Chiu[10], the initial step of 
clustering with Fsc is to determine the object or 
record that has the highest potential value to the 
object around it. Suppose there are n objects or 
records  potential value of an object  
can be calculated by the formula: 

        (5) 
  
 Pk is the potential value of k-record,  is the 
k-record, and  is the j-record, notation ||.|| is the 
Euclidean distance, n is the amount of data, is a 
positive constant known as the radius. An object 
has a high potential if the object has the largest 
number of neighbors. After calculating the potential 
of each object, the object with the highest potential 
is selected as the center of the group. Suppose  
is the object selected as the center of the first group, 
while Pc1 is a measure of the potential of the cluster 
center in the first group. Furthermore, the potential 
of the object around it is determined by the 
formula[10]: 

           (6) 
 
   is the new potential value of object k-
th,  is a positive constant. This means that objects 
near the center of the group will experience great 
potential reductions. The constant causes the 
object around the center of the group to diminish its 
potential value. Usually  is greater when 
compared to , ie:  = q *  where q is squash 
factor. Once the potential of all objects in a group is 
reduced, the object with the highest potential is 
selected as the center of the second group. 
Furthermore, after obtaining the center of the 
second group, the potential value of each object is 
reduced again, and so on. 
 
 The center of the group is determined by 
using two comparative factors namely the accept 
ratio and reject ratio[11]. Accept ratio is the lower 
bound of an object that becomes a candidate group 
center accepted as the center of the group, while the 
reject ratio is the upper limit of an object that 
becomes the candidate center group is not accepted 
as the center of the group. At an iteration, if it is 
found an object with the highest potential, then 

proceed by calculating the potential ratio of the 
object to the highest potential of an object in the 
first iteration. There are 3 conditions that may occur 
in an iteration that is: 
a. If the ratio> accept ratio, then the object is 

accepted as a new group center. 
b. If the reject ratio <ratio≤ accept ratio, then the 

object is accepted as a new group center if and 
only if the sum between the ratio and the 
object's nearest distance to the other existing 
group center ≥1. 

c. If the ratio≤ reject ratio, then no more objects 
can be considered as a candidate for group 
center, iteration is stopped[11]. 

According  to  Chiu[10],  the  specification  of  accept 
ratio  =  0.5  and  reject  ratio  =  0.15,  whereas  the 
radius  is  a  vector  that  determines  how  much 
influence the cluster center on each variable. 
2.5 Cluster Tighness Measure (Ctm) 

Optimization of clustering results can be 
assessed using Ctm, which is formulated with[16]:
     

     (7) 
M is the number of groups, K is the number of 
variables, is the standard deviation of the k-th 
variable in the m-th group, and is the standard 
deviation of the k-th variable. The value of Ctm is 
closer to zero, the better of the  clusters result 
obtained. 
 
3. DATA AND METHOD 
 

The data used in this study are three 
datasets that have varying covariance matrix 
variability that is high, moderate, and low 
respectively[18-20] for dataset1, dataset2, and 
dataset3. Dataset1 consists of 5 attributes and 19 
records, dataset2 consists of 5 attributes and 38 
records, while dataset3 consists of 3 attributes and 
19 records. The three datasets come from the 
research data that has been done. Detailed data 
description can be seen in Table 1. 

Table 1. Data Sourcs and Attributes for Three 
Dataset 

Dataset Data 
sources

Predictor variables 
(Attributes)

Health 
facilities 

Nalurita[18], 
19 records 

X1= area 
X2= population 
X3= hospital 
X4= maternity hospital 
X5= birth 

Educational 
indicators 

Agustina[19], 
38 records 

X1= % school  age 7 to 12 
X2=% school age 13 to 15 
X3=% school age  16 to18 
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X4=average in school age 15 
X5=literacy minimum age 10 

Educational 
rate 

Yuliantin[20], 
19 records 

X1= Gross participation rate 
X2= Net participation rate 
X3= School participation rate 

The method in this research is divided into four 
stages as follows: 
1. Description of data aims to explore the 

variability contained in the three datasets. 
The steps in this stage are 

 a. Normalize the data to equalize the unit 
of each attribute 

 b. Calculates the variance of each 
attribute 

 c. Calculates covariance between two 
attributes 

 d. Draw a boxplot of each attribute 
 e. Assess the variability of each dataset 
2. Determining the input parameter values of 

the Fsc method other than the radius 
parameter with a constant [15] ie Accept 
ratio = 0.5, Reject ratio = 0.15, and Squash 
factor = 1.25. The amount of radius value 
used as input is determined by the researcher 
by considering 2 criteria that each cluster 
has at least 2 members and small CTM 
value. In this study is determined using 5 
radius values leading to optimal grouping. 
The first radius value used is 0.5. If 
clustering is obtained there is still one 
cluster with only 1 record member then the 
radius value will be increased, and if the 
value of CTM obtained is still large enough 
then the radius value will be decreased. 
Optimal cluster occurs if the CTM value is 
small and at least every cluster has 2 
members. 

3. Clustering with Fuzzy subtractive for each 
dataset with various radius values using 
Gaussian membership function, then 
observation of the clustering results that 
include: 

 a. Center each group 
 b. The degree of membership of each 

record 
 c. Members of each group 
4. Calculate the Ctm value of each clustering 

result on each radius parameter 
5. Determine optimal clustering results based 

on criteria: 
 a. smallest Ctm value, and 
 b. all the groups that are formed have at 

least 2 members 

 
4. RESULTS AND DISCUSSION  
 

The data used in this research are 3 
datasets which have successively number of  
variables of  for each dataset are  5, 5, and 3 
variables. The use of dataset  with a different type 
of variables is intended to determine the effect of 
the  variables  type to the number of groups formed 
by Fuzzy Subtractive. It will also be investigated 
the effect of variability of each dataset based on the 
covariance matrix calculated on each dataset after 
the normalization process (equating the data units).  

 
In the dataset1, the differences in the 

variability value between one variable to each 
others variables are quite large. The covariance 
matrix of dataset1 as follows: 

 
The main diagonal of C1 is the variance  of each 
variable, ie: the value=0.80 is the variance of 
variable X1, 0.087 for variable X2, and so on. 
Whereas all values that lie outside the main 
diagonal express the value of covariance ie the 
value that states the relationship between two 
variables, for example,  ie  cov (X1, X3) = cov (X3, 
X1) = -0.030.  On other hand, the Figure 2 present 5 
boxplot diagram from each variable of the dataset1. 

 
Figure 2. Boxplot diagram of the dataset1 

The bold lines on each box shows the value of 
mean of each variable. There are not only quite 
differences in mean value, but also the boxes are 
devided by mean with not propotional that indicate 
the distribution of the variables asymmetric. 
 
 The covariance matrix of the dataset2 is 
expressed in C2. The prominent characteristic 
differences between the dataset2 and the previous 
data are that the dataset2 has a much smaller 
covariance value, ie cov (X1, X3) =0.001 and cov 
(X1, X4) = -0.007, and the mean value of each 
variable divides the box into two nearly equal parts 
as shown in Figure 3. 
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Figure 3. Boxplot diagram of the dataset2 

Generally, the dataset2 has a more symmetrical 
distribution than dataset1 but has a low 
intermediate relationship, which is approximately 
10% covariance when compared to the covariance 
of dataset1. 
 
 The dataset3 has the homogeneous 
character of both variance and covariance. This is 
shown in matrix C3 and Figure 4. The value of 
variance and covariance is almost the same that is 
0.06, while the median divides the box into two 
parts which are relatively proportional. 
 

 
 

 
Figure 4. Boxplot diagram of the dataset3 

Thus, the dataset3 is an example of the 
symmetrically distributed dataset case and has a 
homogeneous variance for each variable. 
4.2 Clusters  Resulted in Fuzzy Subtractive 

Clustering Method  
Clustering with Fuzzy Subtractive is done 

with the help of R software. After inputting data on 
worksheet R, followed by setting input argument 
parameters ie radius, accept ratio, reject ratio, and 
squash factor. In this study, the input argument of 
the radius is set for several different values, while 
the value of the accept ratio, the reject ratio, and the 
squash factor is set using only one value. After 
setting the input parameters, then run the program 
source code on each dataset to generate the center 
of the group. This group center will be used as a 
reference to calculate the degree of membership of 
each record or object using the Gaussian 
membership function. A large difference in the 
value of the radius affects many groups that are 
formed on each dataset. Table 2 presents the 
clustering result on dataset1. 

 

Table 2. Clustering Results for the Various Radius Values on Dataset1 

Radius=0.4 Radius=0.5 Radius=0.6 Radius=0.7 Radius=0.8 
 rec    cl  dg 
 [1,]   15  1 
 [2,]   14  1 
 [3,]   10  1 
 [4,]     6  1 
 [5,]   12  1 
 [6,]     4  1 
 [7,]   18  1 
 [8,]   16  1 
 [9,]     2  1 
[10,]    5  1 
[11,]  19  1 
[12,]    7  1 
[13,]  11  1 
[14,]  17  1 
[15,]  13  1 
[16,]    1  1 
[17,]    9  1 
[18,]    3  1 
[19,]    8  1 

 rec    cl     dg 
 [1,]   14  1.00 
 [2,]     3  0.10 
 [3,]   10  1.00 
 [4,]     6  1.00 
 [5,]   11  1.00 
 [6,]     4  1.00 
 [7,]     2  0.34 
 [8,]     1  0.15 
 [9,]     1  0.39 
[10,]  13  1.00 
[11,]    1  1.00 
[12,]    8  1.00 
[13,]    5  1.00 
[14,]    3  0.44 
[15,]  12  1.00 
[16,]    3  1.00 
[17,]    7  1.00 
[18,]    2  1.00 
[19,]    9  1.00 

 rec     cl    dg 
 [1,]     2  0.23 
 [2,]     3  0.21 
 [3,]     9  1.00 
 [4,]     6  1.00 
 [5,]     2  0.11 
 [6,]     4  1.00 
 [7,]     2  0.47 
 [8,]     1  0.27 
 [9,]     1  0.52 
[10,]    1  0.18 
[11,]    1  1.00 
[12,]    8  1.00 
[13,]    5  1.00 
[14,]    3  0.56 
[15,]    6  0.06 
[16,]    3  1.00 
[17,]    7  1.00 
[18,]    2  1.00 
[19,]  10  1.00 

  rec   cl    dg 
 [1,]    2   0.33 
 [2,]    3   0.32 
 [3,]    3   0.03 
 [4,]    6   1.00 
 [5,]    2   0.20 
 [6,]    4   1.00 
 [7,]    2   0.58 
 [8,]    1   0.38 
 [9,]    1   0.62 
[10,]   1   0.28 
[11,]   1   1.00 
[12,]   8   1.00 
[13,]   5   1.00 
[14,]   3   0.65 
[15,]   6   0.13 
[16,]   3   1.00 
[17,]   7   1.00 
[18,]   2   1.00 
[19,]   2   0.02 

 rec   cl    dg 
 [1,]   2   0.43 
 [2,]   3   0.41 
 [3,]   3   0.07 
 [4,]   3   0.08 
 [5,]   2   0.29 
 [6,]   1   0.08 
 [7,]   2   0.66 
 [8,]   1   0.48 
 [9,]   1   0.69 
[10,]  1   0.38 
[11,]  1   1.00 
[12,]  4   1.00 
[13,]  4   0.08 
[14,]  3   0.72 
[15,]  5   0.19 
[16,]  3   1.00 
[17,]  5   1.00 
[18,]  2   1.00 
[19,]  2   0.06 
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where,  
rec= record number 
cl=cluster number 
dg=degree of membership a record on the cluster 
 

Table 2 presents the output of clustering 
results from dataset1 with Fsc for radius parameter 
values between 0.4 and 0.8. The selection of the 
first radius used as input is r = 0.5 which is then 
followed by selecting radius value r = 0.4 and r = 
0.6. Because the clustering result with radius r = 0.4 
obtained as many as 19 clusters which each cluster 
consisting of only one element, whereas the result 
of clustering with radius r = 0.6 obtained fewer 
cluster number that is 14 clusters. Thus to obtain 
optimal clustering results, then selected radius r = 
0.7 and r = 0.8. 

 
In summary, the result of clustering Fsc on 

dataset1 that is at radius r = 0.4 formed 19 clusters, 
at r = 0.5 formed 14 clusters which only in clusters 
1,2 and 3 respectively have the number of members 
3, 2, and 3, while the other cluster consists of only 
1 member. In the radius r = 0.6 formed 10 clusters, 
which there are still 6 clusters consisting of only 
one member, the cluster 10,9,8,7,5, and 4. Similarly 

at radius r = 0.7 formed 8 clusters, and also still 
found clusters consisting of only 1 member, for 
example, cluster 7 and cluster 8. While the 
clustering results on radius r = 0.8 formed 5 clusters 
which in each cluster at least consists of 2 records. 

 
The process of selecting the radius 

parameter values used in clustering dataset2 and 
dataset3 is almost identical to the selection process 
of the radius parameter in clustering dataset1. The 
principal principle is that the first radius parameter 
value is r = 0.5, followed by r> 0.5 or r <0.5. The 
clustering results in datasets 2 with radius r = 0.5 
formed 5 clusters, whereas in radius r = 0.4 and r = 
0.6, 10 clusters and 4 clusters formed respectively. 
At radius r = 0.4 from 10 clusters formed there are 
two clusters with one member that is cluster 8 and 
cluster 9, so no need to continue to try radius value 
r <0.4. Furthermore, clustering is continued for r = 
0.7 which results in 2 clusters which indicate that in 
the dataset2 the value of the radius parameter is 
increased close to 1, the clustering of the dataset2 
will produce 1 cluster only. Therefore, the next 
parameter of the radius being tested is r = 0.45. The 
clustering results of the complete dataset2 and its 
degree and record number are presented in Table 3 
on Appendix A. 

Table 4. Clustering Results for the Various Radius Values on Dataset3 

Radius=0.07 Radius=0.1 Radius 0.3 Radius=0.5 Radius=0.6 
  rec   cl     dg 
 [1,]    3   1.00 
 [2,]    2   0.92 
 [3,]    2   1.00 
 [4,]    3   0.93 
 [5,]    1   0.00 
 [6,]    4   0.84 
 [7,]    1   0.12 
 [8,]    1   1.00 
 [9,]    4   1.00 
[10,]   2   0.99 
[11,]   3   0.41 
[12,]   3   0.06 
[13,]   4   0.00 
[14,]   1   0.76 
[15,]   1   0.09 
[16,]   4   0.01 
[17,]   2   0.33 
[18,]   1   0.85 
[19,]   1   0.78 

  rec   cl    dg 
 [1,]    3   1.00 
 [2,]    2   0.96 
 [3,]    2   1.00 
 [4,]    3   0.96 
 [5,]    1   0.00 
 [6,]    1   0.02 
 [7,]    1   0.47 
 [8,]    1   0.92 
 [9,]    1   0.01 
[10,]   2   1.00 
[11,]   3   0.64 
[12,]   3   0.25 
[13,]   1   0.00 
[14,]   1   0.81 
[15,]   1   0.46 
[16,]   1   0.00 
[17,]   2   0.58 
[18,]   1   1.00 
[19,]   1   0.76 

  rec   cl    dg 
 [1,]    2   1.00 
 [2,]    1   0.65 
 [3,]    1   0.67 
 [4,]    2   1.00 
 [5,]    1   0.00 
 [6,]    1   0.43 
 [7,]    1   1.00 
 [8,]    1   0.89 
 [9,]    1   0.36 
[10,]   1   0.67 
[11,]   2   0.95 
[12,]   2   0.86 
[13,]   1   0.00 
[14,]   1   0.83 
[15,]   1   0.81 
[16,]   1   0.11 
[17,]   1   0.86 
[18,]   1   0.92 
[19,]   1   0.87 

  rec   cl    dg 
 [1,]    2   1.00 
 [2,]    1   0.65 
 [3,]    1   0.67 
 [4,]    2   1.00 
 [5,]    1   0.00 
 [6,]    1   0.43 
 [7,]    1   1.00 
 [8,]    1   0.89 
 [9,]    1   0.36 
[10,]   1   0.67 
[11,]   2   0.95 
[12,]   2   0.86 
[13,]   1   0.00 
[14,]   1   0.83 
[15,]   1   0.81 
[16,]   1   0.11 
[17,]   1   0.86 
[18,]   1   0.92 
[19,]   1   0.87 

 rec   cl   dg 
 [1,]   1  0.61 
 [2,]   1  0.90 
 [3,]   1  0.91 
 [4,]   1  0.58 
 [5,]   1  0.00 
 [6,]   1  0.81 
 [7,]   1  1.00 
 [8,]   1  0.97 
 [9,]   1  0.77 
[10,]  1  0.90 
[11,]  1  0.69 
[12,]  1  0.76 
[13,]  1  0.00 
[14,]  1  0.95 
[15,]  1  0.95 
[16,]  1  0.57 
[17,]  1  0.96 
[18,]  1  0.98 
[19,]  1  0.97 

The clustering on dataset3 with radius r = 
0.5 and r = 0.3 both yield two clusters, then tested 
for radius r = 0.6 which turns out to produce only 1 
cluster. The next radius parameter selection is 

tested for radius r = 0.1 which clustering results in 
this radius formed 3 clusters. Next, we try the 
radius value of r <0.1, one of which is radius r = 
0.07, where the clustering result is 4 clusters. The 
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complete clustering results of dataset3 along with 
the record numbers and degrees are given in Table 
4 above. 
4.3  Performance Fsc with Various Values of 

Radius and Optimal Cluster Formed  
After the clustering results are obtained 

which consists of the number of groups, degrees of 
membership, and members of each group, then the 
value of Ctm can be calculated from each dataset 
on each radius value. The Ctm value is used to 
measure the performance of the Fsc clustering 
method with a given radius value. The smaller the 
Ctm value indicates the better the performance of 
the clustering method. In this paper, the optimal 
cluster is determined based on the smallest Ctm 
value that meets the criteria that each cluster 
formed must have at least two members. The Ctm 
value of the clustering of the three datasets is given 
in Table 5 as follows: 

Table 5. The Radius and Ctm Values of the Three 
Datasets 

Dataset1 Dataset2 Dataset3 
r Ctm r r Ctm r 

0.4 0 0.40 0.34 0.07 0.39 
0.5 0.12 0.45 0.33 0.10 0.42 
0.6 0.32 0.50 0.54 0.30 0.56 
0,7 0.47 0.60 0.52 0.50 0.56 
0.8 0.49 0.70 0.72 0.60 1 

 
The clustering results of dataset1 (see 

Table 2) on a radius in which each cluster has at 
least 2 members occurs only at the radius value r = 
0.8. If the 2nd column of table 6 is examined more 
closely, the Ctm value increases, which is expected 
to decrease Ctm value. Thus in dataset1, it can be 
said that the value of the radius that produces the 
optimal cluster is r = 0.8 with Ctm value of 0.49. 
Thus, the clustering result at radius r = 0.8 produces 
the optimal cluster, although the Ctm value is not 
the smallest. The following Table 6 presents the 
optimal cluster center and its members. 

Table 6. The Optimal Cluster Center of Dataset1 and its 
Cluster Members 

Cluster 
Label 

Center Cluster 
Members X1 X2 X3 X4 X5 

1 38.44 75873 6 13 413 6,8,9,10,11 
2 88.22 30888 5 6 290 1,5,7,18,19 
3 30.84 52350 5 13 491 2,3,4,14,16 
4 13.67 69612 8 5 454 12,13 
5 44.02 56584 4 17 331 15,17 

 
Based on Table 6,  it can be seen that the dataset1 is 
grouped into 5 clusters where the 6-th record is the 
center of cluster 1 with 5 members, the 1-st record 

is the center of cluster 2 with 5 members, and so on, 
the center of cluster 5 is the 15-th record that has 2 
members. The plot of two dimensions of dataset1 in 
radius r = 0.8 using two attributes X4 (Population 
number) and X5 (Many Births) are given in Figure 
5 below. 

 
Figure 5. Plot Cluster Center Versus Cluster Members of 

X4 to X5 on Dataset1 

The Ctm of clustering results in the 
dataset2 (columns 3 and 4 of Table 5), the optimal 
cluster occurs at radius r = 0.45. Because on this 
radius, each cluster has at least 2 members and also 
has the smallest Ctm value is 0.33. The optimal 
center and cluster members of the dataset2 are 
presented in Table 7. 

Table 7. The Optimal Cluster Center of Dataset2 and its 
Cluster Members 

Cluster 
Label 

Center Cluster 
Members X1 X2 X3 X4 X5 

1 98.
88 

91.
37 

53.
15 7.07 

90.
47 

1, 3, 5,  7,  
8, 10, 18, 24 

2 
98.
66 

96.
4 

75.
05 9.89 

97.
96 

15, 30, 31, 32, 
 35, 36, 37 

3 
98.
58 

94.
8 

63.
57 8.04 

94.
22 

4, 6, 16, 17, 
 25, 34, 38 

4 
97.
91 

80.
44 

42.
35 6.79 

83.
1 9, 12, 13, 26 

5 
98.
26 

88.
33 

60.
88 6.24 

84.
1 

11, 14, 22, 23,  
28, 33 

6 
97.
32 

85.
34 

42.
21  4.05 

74.
4  27, 29 

7 
99.
57 

98.
85 

66.
91  7.46 

87.
72  2, 19, 20, 21 

 
The plot of two-dimensional data with the center of 
the cluster at radius r = 0.45 for the variable used is 
X2 (percentage of school participation age 13 to15 
years) and X5 (percentage of literacy minimum age 
10 years) is given in Figure 6 as follows. 
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Figure  6. Plot Cluster Center Versus Cluster Members 

of X2 to X5 on Dataset2 

The Ctm of clustering results in dataset3 (columns 
5 and 6 of Table 5), optimal clusters occur at radius 
r = 0.07. Because on this radius, each cluster has at 
least 2 members and also has the smallest Ctm 
value is 0.39. The optimal center and cluster 
members of dataset3 are presented in Table 8. 

Table 8. The Optimal Cluster Center of Dataset3 and its 
Cluster Members 

Cluster 
Label 

Center Cluster 
Members X1 X2 X3 

1 55.39 38.07 42.7 5,7,8,14,15,18,19 
2 31.12 21.52 22.79 2,3,10,17 
3 11.16 5.62 8.1 1,4,11,12 
4 70.13 51.92 57.12 6,9,13,16 

 
The plot of two-dimensional data with the center of 
the cluster at radius r = 0.07 for the variable used is 
X1 (Participation rate) and X3 (School 
Participation Rate) is presented in Figure 7 as 
follows: 

 
Figure  7. Plot Cluster Center Versus Cluster Members 

of X1 to X3 on Dataset3 

 
Based on the above description it has been 

shown that in the dataset1 having a large difference 
in covariance value or the variability between 
attributes is high obtained the radius parameters 
which yield optimal clustering is r=0.8. In the 
dataset2 with the difference of covariance matrix 

between the variables that are not too large or 
variability between attributes of moderate values 
obtained radius parameters that yield optimal 
clustering of 0.45. In datasets3 which have almost 
homogeneous variance and covariance or 
variability between attributes are very small, the 
radius parameter that result in the optimal 
clustering are r= 0.07 which is almost close to zero. 

 
Determination of the radius that produces 

optimal clustering cannot be done directly that must 
be done by trying some values. Based on the results 
obtained from this study to improve certainty in 
choosing the radius parameters in the Fsc method, it 
should be evaluated first against the covariance 
matrix between each attribute in the dataset. 
Information on the variability of the covariance 
matrix greatly affects the magnitude of the radius 
parameters. If a dataset has a very high variability 
then we should choose the size of the radius of a 
width that is between 0.7 to 0.9. This means that the 
more heterogeneous the objects to be clustered, the 
width of the radius is required as a filter for groups 
with a wide value. If the covariance matrix of a 
dataset has moderate variability, it is preferable to 
select the magnitude of the radius of about 0.5. 
Furthermore, on the other hand, if the covariance 
matrix of a dataset is relatively homogeneous, it is 
preferable that the radius parameter is selected 
small ie the magnitude of the radius parameter is 
closer to zero. 

 
Unfortunately in determining the 

magnitude of variability that is categorized as large, 
moderate or small of a dataset is not an easy task 
and is subjective. In this study, we have provided 3 
datasets that have the variability of large, moderate 
and small, but in its implementation in determining 
the variability of the dataset to be grouped requires 
an experience of its own. At least that information 
about the importance of calculating the covariance 
matrix value and making the boxplot diagram of the 
dataset are the steps that should be taken before 
applying Fsc has never been encountered in the 
existing literature included in [13-17]. However, 
the results obtained in this study are still limited to 
the dataset with the number of variables and 
records that are small. 
 
5. CONCLUSION 
 

Here are some conclusions from this study, 
1. Variability of covariance matrix can be known 

by calculating covariance sample matrix  based 
on the standardized dataset, and variability that 
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occurs between attributes in a dataset will be 
clearly described if boxplot diagram is drawn 
from each attribute. 

2. The variability of the covariance matrix on a 
dataset greatly affects the magnitude of the 
radius parameter that results in the optimal 
cluster in the Fsc method. 

3. In the dataset 1, the parameter of the radius of a 
large value (0.8), dataset2 are generated by the 
radius of medium value (0.45), whereas in 
dataset3 the parameter of small radius (0.07) is 
generated. 
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Appendix A. 
 
 

 Table 3. Clustering Results for the Various Radius Values on Dataset2 

Radius=0.4 Radius=0.45 Radius=0.5 Radius=0.6 Radius =0.7 
rec    cl    dg 
[1,]     1  1.00 
[2,]     6  0.45 
[3,]     1  0.53 
[4,]     3  1.00 
[5,]     1  0.63 
[6,]     3  0.59 
[7,]   10  1.00 
[8,]   10  0.34 
[9,]     4  1.00 
[10,]    1  0.56 
[11,]    5  0.21 
[12,]    4  0.24 
[13,]    4  0.38 
[14,]  10  0.32 
[15,]    2  1.00 
[16,]    3  0.34 
[17,]    3  0.61 
[18,]    1  0.32 
[19,]    6  1.00 
[20,]    6  0.26 
[21,]    6  0.22 
[22,]    5  0.47 
[23,]    5  0.25 
[24,]    1  0.63 
[25,]    3  0.35 
[26,]    4  0.06 
[27,]    7  1.00 
[28,]    5  1.00 
[29,]    7  0.08 
[30,]    2  0.44 
[31,]    2  0.41 
[32,]    8  1.00 
[33,]    9  1.00 
[34,]    3  0.28 
[35,]    2  0.45 
[36,]    2  0.57 
[37,]    2  0.53 
[38,]    3  0.47 

rec   cl     dg 
[1,]    1   1.00 
[2,]    7   0.54 
[3,]    1   0.60 
[4,]    3   1.00 
[5,]    1   0.70 
[6,]    3   0.66 
[7,]    1   0.19 
[8,]    1   0.26 
[9,]    4   1.00 
[10,]   1   0.63 
[11,]   5   0.29 
[12,]   4   0.32 
[13,]   4   0.47 
[14,]   5   0.03 
[15,]   2   1.00 
[16,]   3   0.43 
[17,]   3   0.68 
[18,]   1   0.40 
[19,]   7   1.00 
[20,]   7   0.34 
[21,]   7   0.30 
[22,]   5   0.55 
[23,]   5   0.33 
[24,]   1   0.69 
[25,]   3   0.44 
[26,]   4   0.10 
[27,]   6   1.00 
[28,]   5   1.00 
[29,]   6   0.14 
[30,]   2   0.52 
[31,]   2   0.50 
[32,]   2   1.00 
[33,]   5   0.01 
[34,]   3   0.37 
[35,]   2   0.53 
[36,]   2   0.64 
[37,]   2   0.60 
[38,]   3   0.55 

rec   cl    dg 
[1,]    1   1.00 
[2,]    3   0.29 
[3,]    1   0.67 
[4,]    3   1.00 
[5,]    1   0.75 
[6,]    3   0.71 
[7,]    1   0.26 
[8,]    1   0.34 
[9,]    4   1.00 
[10,]   1   0.69 
[11,]   5   0.37 
[12,]   4   0.40 
[13,]   4   0.54 
[14,]   5   0.06 
[15,]   2   1.00 
[16,]   3   0.50 
[17,]   3   0.73 
[18,]   1   0.48 
[19,]   3   0.11 
[20,]   3   0.19 
[21,]   5   0.08 
[22,]   5   0.62 
[23,]   5   0.41 
[24,]   1   0.74 
[25,]   3   0.52 
[26,]   4   0.16 
[27,]   4   0.00 
[28,]   5   1.00 
[29,]   4   0.09 
[30,]   2   0.59 
[31,]   2   0.57 
[32,]   2   0.00 
[33,]   5   0.02 
[34,]   3   0.44 
[35,]   2   0.60 
[36,]   2   0.69 
[37,]   2   0.66 
[38,]   3   0.62 

Rec   cl     dg 
[1,]    1   1.00 
[2,]    4   1.00 
[3,]    1   0.75 
[4,]    4   0.42 
[5,]    1   0.82 
[6,]    1   0.53 
[7,]    1   0.39 
[8,]    1   0.47 
[9,]    3   0.65 
[10,]   1   0.77 
[11,]   3   0.25 
[12,]   3   0.31 
[13,]   3   1.00 
[14,]   1   0.14 
[15,]   2   1.00 
[16,]   1   0.60 
[17,]   4   0.45 
[18,]   1   0.60 
[19,]   4   0.70 
[20,]   4   0.50 
[21,]   4   0.66 
[22,]   1   0.41 
[23,]   1   0.45 
[24,]   1   0.81 
[25,]   2   0.56 
[26,]   3   0.31 
[27,]   3   0.04 
[28,]   1   0.22 
[29,]   3   0.21 
[30,]   2   0.69 
[31,]   2   0.67 
[32,]   2   0.00 
[33,]   1   0.05 
[34,]   2   0.47 
[35,]   2   0.70 
[36,]   2   0.78 
[37,]   2   0.75 
[38,]   2   0.30 

rec     cl    dg 
[1,]    1   1.00 
[2,]    4   1.00 
[3,]    1   0.75 
[4,]    4   0.42 
[5,]    1   0.82 
[6,]    1   0.53 
[7,]    1   0.39 
[8,]    1   0.47 
[9,]    3   0.65 
[10,]   1   0.77 
[11,]   3   0.25 
[12,]   3   0.31 
[13,]   3   1.00 
[14,]   1   0.14 
[15,]   2   1.00 
[16,]   1   0.60 
[17,]   4   0.45 
[18,]   1   0.60 
[19,]   4   0.70 
[20,]   4   0.50 
[21,]   4   0.66 
[22,]   1   0.41 
[23,]   1   0.45 
[24,]   1   0.81 
[25,]   2   0.56 
[26,]   3   0.31 
[27,]   3   0.04 
[28,]   1   0.22 
[29,]   3   0.21 
[30,]   2   0.69 
[31,]   2   0.67 
[32,]   2   0.00 
[33,]   1   0.05 
[34,]   2   0.47 
[35,]   2   0.70 
[36,]   2   0.78 
[37,]   2   0.75 
[38,]   2   0.30 

 


