
Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3578

PRIVACY-PRESERVING QUERIES FOR LBS:
INDEPENDENT SECURED HASH FUNCTION

1ABDULLAH ALBELAIHY, 2 JONATHAN CAZALAS, 3VIJEY THAYANANTHAN

1King Abdulaziz University, Department of Computer Science, Saudi Arabia
2 Florida Southern College, Department of Computer Science, Lakeland, Florida, USA
3 King Abdulaziz University, Department of Computer Science, Jeddah, Saudi Arabia

E-mail: 1aalbelaihy{at}stu.kau.edu.sa, 2 jcazalas{at}flsouthern.edu, 3 vthayanathan@kau.edu.sa

ABSTRACT

While location-based services have become ubiquitous, seemingly permeating our personal and
professional lives, their inherent nature poses security risks to users, who are forced to reveal their highly-
sensitive location data in order to make effective use of the service. Towards this end, a litany of techniques
have been proposed to provide efficient answers for privacy-preserving queries in LBS. Spatial bloom
filters were initially proposed as an efficient data structure used to manage special and geographic
information in an space-efficient manner. Unfortunately, bloom filters suffer from two deficiencies: they
leak at most one bit of information per query, and the hash functions require careful design and security
analysis in order to be orthogonal and independent. In fact, developing quality hash function is paramount.
We propose a method to automatically generate good, independent hash functions, with the goal of
reducing information leakage. This means that even if one of the hash function is broken, for any reason,
nothing can be learned about any other hash function. The results show that our proposed Hash functions
are less dependent and leaked than the compared approach, while still seeing a notable improvement in
performance.

Keywords: Privacy, Bloom filter, LBS, Mobile user, Hash function.

1. INTRODUCTION

Location-based services have become ubiquitous,
effectively penetrated all smartphones and GPS-
enabled devices, providing tremendous value to
customers. While LBSs have grown in popularity,
they are not without flaws; specifically, the user of
LBS must reveal his or her location data in order to
take full advantage of the service, thereby
potentially risking their privacy and security [1].

 Mobile users' awareness and opportunities to
communicate with and within their environment
have increased due to increased familiarity with
LBS [2]. Mobile users can send queries to the
servers of LBSs if necessary [3]. Thus, services
related to “point of interest” (POIs) can be obtained
tacitly by mobile users. For example, mobile users
have become capable of easily identifying the
closest banks, restaurants and easily verifying data
related to the prices of some nearby restaurant. In
short, LBSs are regarded as extremely beneficial.
Nonetheless, the services present risks to the
protection of users' privacy, as the service providers

provide information relating to the user's location.
An attacker could deduce sensitive private
information related to the service recipients through
information gathering about the location of users
relating to their LBS queries.

Both location privacy and query privacy are
issues that are brought to light through LBS. For
example, information about users living in a rural
area can be disclosed in term of a large area
response. In fact, this allows the preservation of
user's location privacy. While in some cases,
through an LBS server, a submitted query of a
location-based service gets a user-based response
[1],[4]. Therefore, the interest, as well as the
location, was included in this query. Important
information like user IDs and query radius is also
contained in the information, and these components
can be captured by an adversary.

Even though such type of submitted information
is revealed, it could be hacked, since the LBS
servers can be unreliable [5], [6]. The consequence
of this is that with the help of LBSs, the server may
identify the location of the mobile user. Moreover,

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3579

malicious servers may also identify the queries that
were being submitted to the LBS servers and
eventually determine the activities of the mobile
users [7],[8]. Hence, one can infer that using or
integrating LBSs leads to the ability to follow or
track the mobile users and also to the release of all
personal information of the mobile users to any 3rd
parties such as advertisers [9]. Subsequently,
protecting the users is paramount and should be
ensured.

Under normal conditions, LBS to a user depend
on the query presented by the user, which
inherently contains the user’s location, query
details, and other information, like the radius of the
query and a user’s ID, etc. Notwithstanding, the
information provided can be eavesdropped and
misused by a malicious LBS server, resulting in the
private or secret information of the user being
revealed to a third party, such as advertisers.
Therefore, more attention needs to be paid to
protecting users’ privacy.

Several techniques have been proposed in order
to provide an optimal solution for privacy-
preserving queries in LBS. The aim is to be able to
make queries to a location-based service while
providing guarantees concerning privacy and
efficiency. As expected, the issue raises several
questions about security in general. One of them is
any information leakage in a secure system. If one
bit is leaked per query, and thousands of queries are
made, then it may be possible for the attacker to
learn some information that should remain secret.
Recent research has taken advantage on bloom
filters to address this problem. Unfortunately,
bloom filters suffer from two deficiencies:

1. They leak at most one bit of information
per query.

2. The hash functions Hk require careful
design and security analysis so that they
are orthogonal and independent.

Accordingly, our idea is to provide an “engine”
that can be used to generate an arbitrary set of
orthogonal and independent hash functions, such
that the joint distributions of two events A and B is
the probability, that if event A happens, then event
B happens. If A and B are completely independent,
then the joint distribution will be 0; while if A and
B are completely dependent, then the joint
distribution will be 1. The joint distribution is a way
of measuring whether two events or functions,
depend on each other. For the hash functions we
would like to use in this paper, it is important that
they be as independent as possible, with the joint

distributions effectively reaching to 0, as shown in
Equation 1 below:

 P(Hi|Hj) – P(Hi) – P(Hj) (1)

Equation 1 is shown to be bounded from above
by an arbitrarily small value E, with negligible
probability of finding x, y such that:

 || P(Hi(x)|Hj(y)) – P(Hi(x)) – P(Hj(y))||>E (2)

Where P(Hi(x)) in this equation denotes the
probability [10].

In terms of hash function generation, there is a
real opportunity to increase entropy and decrease
mutual information between the hash functions,
even if they are initially very weak. Thus, we will
study ways in which we can insure that:

 P(A(Hi)|A(Hj)) << P(Hi|Hj) (3)

This type of approach is well known in the
functional programming community, in that we are
attempting to use some version of A to act on the
functions Hi, as opposed to acting on the values of
these functions. Given the output functions A(H(i)),
we calculate correlations over the Bloom Filter
keyspace (the number of bits b making up the
array). These correlations will be used as statistical
measure of success; if a function A increased
entropy and decreases mutual information, then we
can use A as a method for strengthening the
irreversibility of the hash functions.

In general, our contributions are as follows:

 We develop a method to automatically
generate an arbitrary set of orthogonal and
independent hash functions, with the focus
on increasing entropy and decreasing
mutual information between the functions.
In the event that one hash function leaks
information for any reason, the rest of hash
functions will not be affected. These two
conditions make it harder for the adversary
to obtain any meaningful information.

 Finding the better performance through the
developed method as in the previous
contribution. While much research has
been done using bloom filters in a general
cryptographic setting, we analyze its
application to LBS privacy and how to
limit information leakage when providing
answers to privacy-preserving LBS
queries.

The remainder of the paper is organized as
follows. Section 2 reviews other related work.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3580

Additional preliminaries are discussed in Section 3.
Sections 4, 5 and 6 discuss our proposed solutions.
Lastly, concluding remarks and future work is given
in Section 7.

2. RELATED WORK

2.1 Privacy in general
 To protect the privacy of users over LBS, there
have been various solutions created recently [2],
[11]. These studies [3],[12] have revealed that some
of these solutions use k-anonymity, it has been
observed that the k-anonymity has been presented
in order to protect the privacy of the user’s location.
So, this technique hides the real location of the
mobile user, to ensure location privacy to the
mobile users. Integration of k-anonymity helps to
conceal the real information of the mobile user into
k – 1 other mobile users.

 Meanwhile, algorithms are used to cloak the
locations of the users. The algorithms are R-tree
and Grid based. The R-tree algorithm, also called
the “Clique Cloak,” [13] has different requirements
of k-anonymity per user [12]. This cloaking
determines whether or not multiple users can share
a spatial cloak [14].

2.2 Privacy with Bloom Filter
In [15], a Private Set Intersection (PSI) protocol

was proposed based on oblivious Bloom
intersection. It consists of linear complexity and
relies mostly on efficient symmetric key operations.
The authors declared that their method provides
high scalability due to its capability in providing a
basic protocol and an enhanced protocol that was
proved in the semi-honest model and the malicious
model respectively.

In [16], authors focused on Online Social
Networks (mOSNs) whereas the location sharing
service was introduced to mOSNs. They established
their study by examining the current problems of
location sharing through which they proposed
BMobishare to provide a security-enhanced
mechanism that ensures privacy location. The
authors adopted Bloom Filter for the aim of
securing sensitive data compared to other existing
methods; unfortunately, an observation of using the
bloom filter is that there is an increase in false
positives, which we improve by reducing the
information leakage by making the hash functions
independent of each other's. Further, even if
information is leaked, it will be neglected because
each of the orthogonal characteristics of each hash
function; any leaked information cannot be
corelated to other hash functions and can be safely
ignored. Unlike the other methods which neglect

this aspect, this improvement alone would achieve
an increased privacy level without having to
incorporate additional encryption technologies.

While in [17], this paper takes into account the
two-party computation model where clients desire
to form a request to the server, but substantially not
willing to reveal their questions to anybody. The
solutions for the queries are based majorly on
Oblivious Transfer, k - Anonymous Oblivious
Transfer and Deterministic Encryption and Bloom
Filers. From this point of view, the proposals for
the two protocols include the k*l -- Anonymous
Oblivious Transfer protocol with the blending of
Symmetric Key Encryption (Block Cipher). It also
includes k*l -- Anonymous Oblivious Transfer
protocol that implies to the approach of the
anonymous request problem where the server
cannot articulate which record the querying client
wants from the registers and neither also the client
could obtain anything but the record relating to his
request. Through observation, the protocol can
achieve anonymity. It is also practical in scenarios
in which privacy is most preferred to speed.

 In [18], social networks or mobile social
networks are becoming common in the world today
because of the rapid growth of mobile devices and
partly because the mobile users are allowed to
communicate within a certain distance with their
friends. Because of this feature, many mobile phone
companies have come up with many interesting
applications, and this creates a security concern for
the freedom of their customers.

Therefore, authors proposed a customized
privacy mechanism that will not only protect the
privacy of user's profile but also it will establish a
secure connection between matched users. Besides,
the inventor is free to customize the request profile,
as well as choosing the needed features and
assigning each feature a specific value.
Furthermore, the initiator can customize his or her
privacy protection level depending on what they
desire.

Collusion attacks among unmatched users are a
sensitive threat that we guarantee to address
because it has precisely not been worked on.
Proposed protocol will, therefore, ensure that only
matched users can communicate securely with the
initiator while there will be little or no information
that will be obtainable by the other participants.

 To achieve this, they adopted a bloom filter that
protects the privacy profile and hence decreasing
computational overheads. Finally, conducted a
security analysis and performance evaluation to
justify the superiority of the protocol.

Moreover, in [19], location-aware applications

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3581

are one of the biggest and crowned innovations
brought by the smartphone era and are well of
changing our daily lives throughout the generations.
To say just but the truth, the human race is only
starting to understand what privacy risks are
associated with constant tracking of our localities.
For the great acknowledgment location-based
services in the future that provide for privacy and
security, there is the need for new, privacy-friendly
applications and protocols. A new compact data
structure is carefully proposed based on Bloom
filters that are designed to store location
information.

 The spatial Bloom filter (SBF), as it is known,
is designed with privacy in mind, where it is proved
through presenting two private positioning
protocols basing the assessment of the old to the
new primitive. These rules save the user's exact
position privately and also allow the provider of the
service to pick up the users' closeness and
specificity points of interest, or exclusively
predefined areas. In concurrence of time, the user
remains much oblivious to the points and areas of
interest.

 These two proposed protocols are focused on
different scenarios that are regarding a two-party
setting where communication happens directly
between the user and the service provider while, in
a three-party setting, the service provider,
outsources and the third-party contact with the user.
A much more emphasized and detailed evaluation
of the effectiveness and safety of the solution
shows that privacy can and will be achieved with
least computational and communication directly
above the ranges of scrutiny. The possibility of
spatial Bloom filters regarding overview, safety,
and firmness mark them set for distribution, and
this creates mode for confidentiality hence
protecting location-aware applications.

In this paper [20], the availability of cheap
positioning systems made it possible to embed them
in smartphones and other small devices. This idea
led to the development of a location-aware
application that makes it possible for users to
demand personalized services depending on their
geographical location. There is a need to disclose
only a small amount of a user's whereabouts at any
given time because of the position of a user that is
highly sensitive.

 Some applications such as navigation system
are based on the movement of the user and will,
therefore, require constant tracking while others
only require the knowledge of a user's position with
an individual area of interest. In this paper, authors
hence focus on the application that will only require

the knowledge of a user's position with a particular
area of interest to determine membership in one or
more geographical sets. So they addressed the
problem by using Bloom filters which are a
compacted data structure for representing sets. In
particular, in the paper used the spatial bloom filter
(SBF) which are designed to manage spatial and
geographical information. Moreover, spatial filters
are well suited in enabling privacy in location-
aware applications.

The author presented this by providing two
multi-party protocols for privacy-preserving
computation of location information which is based
on well-known homomorphic properties of the
public key encryption schemes. The rules keep
private the exact position of a user while allowing
the provider of the service to learn when the user is
near specific points of interest.

 With [21], From the study undertaken, a Bloom
filter is a simple space-efficient randomized data
structure for representing a group so that it backs up
the connection requests. In recent years, Bloom
filters have improved in acceptance in their
database and networking applications. A Bloom
filter entails two major phases that termed
programming and membership request. From this,
there is the introduction of a new method that
integrates a hash table (HT) with Bloom filter to
reduce the HT access time. This effectively means
that when a Bloom filter for an external entry of a
program, the next item thus is simultaneously
stored in an HT.

 Furthermore, to the connection request stage, if
the application is proper, concurrently the address
of the entry in the HT is created. Thus, the analysis
is done for the average bucket size, maximum
search length and a number of collisions for the
projected method. Moreover, there is the
comparison with the fast hash table (FHT) method.
The executed approach in a software packet
classifies it based on tuple space search within the
H3 class of universal hashing functions.
Conclusively, as compared to FHT, the method is
capable of minimizing the average bucket size,
maximum search length and a number of impacts
when related to FHT.

On the other hand with [22], there is an
academic study entailing interactive hashing. The
paper begins by introducing the notion of
interactive hashing as a cryptographic primitive
while differentiating it from the specifics of the
implementations it may present.

In this regard, this paper showed application-
independent information ideal conditions that must
be ideally satisfied by the interactive hashing.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3582

Moreover, the paper provides in detail an analysis
of a standard implementation of interactive hashing
that meets all the conditions of our definition. From
the analysis, get that it represents improvements in
restricted contents than in previous attempts. In
spite of its generality, the interactive hashing offers
a simpler proof of security, which establishes
security from a dishonest sender hence reducing his
or her probability of cheating.

 To prove that a sender who tries to manipulate
the protocol in a way that makes it possible for
output strings to have a uniquely desirable property
would represent a fraction of all the strings from
which the probability of both outputs will be from
the set. Also, showed the power of interactive
hashing as a cryptogrammic tool by looking into
the protocols achieving oblivious transfer and
which characteristically depends heavily on
interactive hashing.

3. PRELIMINARIES
 This section will emphasize the concepts,
adversary model, and motivations that are
incorporated into this paper. This section will also
explain the methods used.

3.1 Basic Concept
 A Bloom Filter (BF) is a probabilistic data

structure that allows for a test for set membership
without revealing more than a single bit of
information about the set. If A is a putative element
of a set S, then a Bloom Filter provides a
probabilistic algorithm for determining if A is an
element of S without any explicit recursion over the
elements of S [23]. Furthermore, a Bloom filter has
the property of never having false negatives, so that
an assertion “A is not a member of S” is always an
accurate assertion, assuming that the algorithm
performing the test is benign. False positives are
possible, however, so that an assertion “A is a
member of S” is only probabilistically correct.
Based on the number of bits used to implement the
BF, an example will show in figure 1, B denotes
Bloom filter; H denotes a hash function.

Figure 1: Test set for Bloom Filter

A (BF) is an array of m bits together with a set of
k hash Hk functions. Initially, all bits are zero. It is
required that the Hk be trapdoor functions, that is,
given Hk(x) = y, it is not possible to recover the
value of x from y except with negligible
probability. It is also required that either:

 The range of all the functions Hk is the
range of natural numbers [0, m-1].

 The hash computation is performed mod m,
that is that the range of each Hk is a natural
number, and the value y is computed as
(Hk(x) mod m).

In order to add an element x to the BF, the set of
values Hk(x) is computed for each k. For each
value y = Hk(x) we then set m[y] = 1. Has
collisions are irrelevant; if Ha(x) = Hb(x) = y,
where 0 <= a < k and also 0 <= b < k, then we still
set m[y] = 1. Thus, it is possible for an input x to be
hashed into any number of different values of y,
which may have any multiplicity in the range (1k).

 In order to test if any element x is a member,
each of the Hk(x) is computed. If any of the
m[Hk(x)] = 0 then it is known with certainty that
the element x is not a member. However, if all
m[Hk(x)] = 1 then with probability p we can assert
that x is a member of the set. A straightforward yet
tedious computation shows that p is approximately
equal to (1 – 10-(k/10)) [24].

In a LBS scenario, the LBS has a BF that has
been populated with location information encoded
as bit vectors. The user generates q (query,
assertion) pairs. These queries are then transmitted
to the LBS, which generates a bit vector of q
values. If the i-th position of this vector is 0, then
the pair (Qi, Ai) is absolutely inconsistent, while if
the i-th position in this vector is 1, the pair (Qi, Ai)
is probabilistically consistent [25]. If the LBS
server is benign, then each evaluation will be
accurate, within the limits of the BF algorithm. If
the LBS server is malicious, then only some
evaluations will be accurate. Since the user can
generate (Q, A) pairs with a known state, the
responses from the server can be tested against
these known values.

Even a single false negative is an absolute
indication that the server is malicious. A false
positive is an indication that the server might be
malicious; as with the other algorithms this false
positive rate can be tuned to be as small as possible
by using N iterations of q queries. Thus, except

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3583

with negligible probability, a malicious LBS server
can be detected with a probability of (1 – pN),
where p was the legitimate false positive rate stated
earlier. Note also that an eavesdropper cannot learn
anything from the exchanges, except with
negligible probability, due to the fact that it is
computationally intractable to invert the Hk.

3.2 Adversary Model

Create a data transfer between an LBS client an
LBS server and a secondary server (such as a social
media portal) that obeys the following properties:

 The LBS server cannot determine more than
1 bit of information from any list of queries;
the secondary server cannot determine any
information for the list of queries

 A malicious LBS server can be detected by
probability q and the hash functions Hk
require careful design and security analysis
so that they are orthogonal and independent.
This means that even if Hi is broken, for
some i, nothing can be learned about any
other Hj (secured), j= i.

3.3 Motivation and Basic Idea

The hash functions should be independent to
the greatest extent possible. (We will precisely
define this word below.) A Bloom filter has the
following operations: Add, Test, Change, and
Unset. There is no delete operation, for reasons that
will be described shortly.
 Before specifying these operations and the
associated standard Bloom filter protocol, it is
necessary first to define two additional concepts:
backing store and set comprehension. In many
cases, the set member is the key in a key-value pair.
As a result, one must store not only the members of
the set but also their associated values. In this case,
the value cannot be stored in the Bloom filter; it
must be stored somewhere else, in a data structure
known as the backing store. For small sets, this data
structure may be kept in memory, while for larger
sets, such as LBS datasets, the backing store is
almost always some form of database. Set
comprehension refers to the operation of choosing
particular members of the set that belong to a
specific subset. If S is a set and x is a potential
member, we denote the membership test by the
notation { x in S }. In the case of set
comprehension, we not only test for set
membership, but we also test for the truth value of
an addition function f(). Since f() must be a
boolean function, we often refer to this function as

a predicate. Set comprehension is written as { x in
S | f(x,S) }. The vertical bar | is read as “such that”
so the set comprehension test may be read as “x is a
member of the set S such that the predicate f(x,S),
which denotes f applied to x and S, is true.” As an
example, consider P, the set of all primes. A
membership test for an prime x would be { x in P },
while the membership test for a prime of the form
4n + 1 would be { x in P | (x-1)%4 == 0 }.
 Let h1 to hk denote the k hash functions. In what
follows, we will use x to denote the potential set
member, with the hash functions only acting on x.
If there is an associated value, we will refer to it as
v. We assume the general case where v is always
present, with the understanding that if we are only
using a Bloom filter with no backing store, the
parameter v is omitted. To add a member <x,v> to a
Bloom filter we first compute the k values of the
hash functions operating on x, that is h1(x) to hk(x).
Since each of these k values is a positive number
less than 2m, it can be written as a binary number
with at most m bits. For each of the hi(x) values, we
note the bit position of each 1 bit in the
corresponding binary expansion and set that same
bit in the Bloom filter. If v is present, we also add
the <x,v> pair in the backing store. For future
convenience, we write M = 2m and K = k2. In
order to test if x is a member of the set, and
potentially recover its backing store value, we again
calculate the k hash-function values hi(x) and then
perform the following algorithm:

FOREACH hash function value H = hi(x)
 FOREACH 1 bit in H
 IF that bit is not set in the Bloom filter
 THEN
RETURN
not_a_member
 ENDIF
 ENDFOR
ENDFOR
RETURN maybe_a_member

 Note that the algorithm never has a false

negative, but it may have false positives. That is if
the algorithm determines that x is not a member,
this is always correct. However, if the algorithm
determines that x might be a member, then this is a
probabilistic statement. False positives come about
because the binary representations of the hash
values of x and x’ might overlap in some of the bits
set in the Bloom filter. After many elements have
been added it is possible that the all the bits
conforming to the hash-values for x may be set in
the Bloom filter, even if x is not a member. If there

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3584

is a backing store, the ambiguity may be resolved
by querying the value that corresponds to x. This
type of exchange [21] is shown in figure 2 below.

Figure 2: Standard Bloom filter query protocol

The Change operation, which changes a key-value
pair <x,v> to a new pair <x,v’>, is simply a Test
operation followed by a store operation to the
backing store. The Change operation will fail if x is
not already a member of the set, so it may be
necessary to perform an Add operation, as shown
by the following algorithm:

 b = Change(x,v’)
 IF b is false THEN
 Add(x,v’)
 ENDIF

 Finally, the Unset operation is the same as
Change(x, null). There is no way to delete a value
x from the Bloom filter, because each 1 bit may
have been the result of hash values that have that
bit set for some other member x’. In the case of
LBS providers, it should be relatively rare to need
to delete a set element, and it may be sufficient to
nullify the corresponding value in the backing
store simply. Note, however, that for each
additional null value in the backing store the cost
of a look-up becomes very slightly slower. Thus, if
many unset operations have been performed, the
LBS provider may need to delete all null values,
and then regenerate the Bloom filter based on the
keys that are still in the backing store after the
removal of the null values.

4. DATA ANONYMIZATION:
INDEPENDENT SECURED HASH
FUNCTION

 Choosing good hash functions for a Bloom
filter is a critical aspect of creating a secure
implementation. Since the hash functions map the
bits of a member x into the bits that are set in the
Bloom filter, it is important to keep these hash
functions independent so that information leakage
by a side channel cannot successfully occur (except
with negligible probability).
 We will now formally define this notation of
independence of hash function using the notion of
conditional probability. If E is an event, then we
refer to <E> as the probability that E has occurred.
This has the standard definition of probability as
the ratio of the number of times that E has occurred,
divided by the number of samples that have been
taken.
 Given two events E and F we refer to <E|F> as
the conditional probability that E has occurred,
given that F has already occurred. We can define
this as the ratio of the number of occurrences of E
following an occurrence of F, divided by the total
number of samples. If E and F are not events but
functions, then we can extend this definition to the
conditional probability of a function f(x) given that
the value of a function g(x) is already known. We
write this as above, <f|g>, which we define as the
number of bits of f(x) that can be detected given
that all bits of g(x) is known. If S is a discrete
sample space (set), then we define the conditional
probability <f|g> over S as the summation of
#nbits(<f(x)|g(x)>/|S|, where the summation is
taken over all elements x that are in S.

If h1 to hk is the hash functions used in a Bloom
filter then we desire that
 <hi|hj> = 0 for all i and j such that i != j
 <hi|hi> = 1 for all i

 If these conditions are satisfied, then the set of
hash functions is said to be orthogonal or
completely independent. We introduce the
orthogonality measure e(H,k), where H denotes the
entire set of k hash functions, as the sum of all the
<hi|hj>, for all indices i and j, divided by the scale
factor k. For an orthogonal set of hash functions H
we have immediately that e(H,k) = 1, while for
non-orthogonal hash functions we will have e(H,k)
> 1. The goal of the orthogonalization procedure is
to introduce a functional P (a function that operates
on functions, rather than numerical values), with
the following two properties:

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3585

 e(P(H),k) < e(H, k) (4)

for any value w in the range (0,1], there exists an
integer y such that e(Py(H),k) < 1 + w.
 Note that the latter condition is equivalent to the
statement that e(Py(H),k) converges to 1 as y tends
toward infinity, for any sample set, so long as
e(H,k) < 2.
 The functional P is also referred to as a
projection operator. Before we plunge into the
mathematical details of the projection, it is
important to consider an example that is much
easier to visualize, namely the stereographic
projection. The stereographic projection is a
mapping between the surface of the sphere in 3-
space, centered on (0,0,0) to the (x,y) plane (the
plane defined by the equation z=0). This projection
is shown in figure 3. Below [26]:

Figure 3: Stereographic Projection

 Given a point Z on the surface of this sphere, a
ray is shown in the North pole (the point (0,0,1))
through Z. When this ray is extended, it will
eventually intersect the xy plane, at a point z as
shown above. This mapping Z → z is the
stereographic project from a 3-space object (the
sphere) to a 2-space object (the xy plane). Note that
the North pole is mapped to the point at infinity, so
this projection’s output is often referred to as the
xy+ plane rather than the xy plane.
 Recall the abbreviations K = k2 and M = 2m and
introduce the new abbreviation J = K – k. The
projection operator is a projection [27], [28] from
K-space to k-space that can be defined by a
geometric formulation. First, we define the
polynomial B(x) of a single variable x. The
polynomial B(x) is formed by using a pseudo-
random number generator (PRNG) to generate K
coefficients, each in the range [1,M-1], which we
will denote as ci. The polynomial is then cixi
where the index i ranges from 0 to K. To define the
projection in geometric terms; we use the PRNG to
generate J angles in the range (0, 4). We use these
angles to create a planar projection of B(x) from K-

space to k-space. We refer to the resulting
polynomial as P1. Note that this polynomial has
dimension k. We repeat the above procedure, using
newly generated random angles to generate
additional polynomials P2, P3 until we reach
Pk.(similar to the procedure in [29]). We then define
the projection operator P on the hash functions H =
{ hi }:
 P(H) = P({ hi }) = { Pi(hi) } (5)
 So that P(H)(x) = { Pi(hi(x)) } (6)

Since P is a projection function, it follows
immediately after e(P(H)) < e(H). As a result, we
can create increasingly secure hash functions by
simply applying P multiple times using different
angles for each iteration. Note carefully that
generation of the Py(H) is an offline operation. It
needs to be computed only once when the Bloom
filter is created. There is no impact on runtime
performance.

5. INDEPENDENT SECURED HASH

FUNCTION IMPROVEMENT

 Suppose a browser needs to check if an input url
is malicious or genuine. To check this, the browser
will create a bloom filter with a known malicious
url list (Add operation), which will result in a bit
vector. The browser will then use this bit vector to
test if a user input url is in the list of known
malicious url and then act accordingly.

 Algorithm for Add: Add operation
involves hashing the input data (e.g., url)
to a bit vector and setting specific bit
positions to 1 based on the outcome of the
hash function.

 Algorithm for Test: Test involves hashing
the input data and checking if all 1
position of hashed data is also set to 1 in
bloom filter bit vector. The Hash function
is most important part of the bloom filter.

Here is a brief method of a hash function:

1. Create some random constant value say c.
The same constant has to be used for both
Add operation and Test Operation.

2. Divide the input data into equal size
blocks.

3. Multiply each block with the constant
value and do some other operations. It’s
like creating a polynomial operation on the
input data. Like say for input data

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3586

xyz123.com, we are creating a runtime
polynomial like(x*c8+y*c7+z*c6).

4. Apply hashing function operation based on
the last/tail part.

5. Calculate two-part hash say h1 and h2.

 Bloom filter involves multiple hash functions. We
use the same hash function with some
multiplication (to get nth hash function multiply by
n) to derive the difference in the hash functions.

//Test Bloom Filter
 std::ifstream infile("test.txt");
 std::string value;
 while (infile.good())
 {
 getline(infile, value, '\n');
if (value.size() < 3) {
 continue;
 }
vector <string> record;
 splitString(value, record);
if (record.size() == 2) {
 const char* pdata = record[1].c_str();
int len = record[1].size();
bool b = bf.Test((const uint8_t*)pdata, len);
if (b == false) {
std::cout << "Not in the set :" <<record[1] <<
 std::endl;
 }
if (b == true) {
std::cout << "May be in the set :" << record[1] <<
 std::endl;
 }
 }
 }
 }
 {
//Save Bloom Filter
ofstream outf("BF.dat", td::ofstream::binary);
char acBuff[2048] = "";
int nSize = bf.m_bits.size();
 for (int i = 0; i < bf.m_bits.size(); ++i)
 {
 acBuff[i] = bf.m_bits[i];
 }
 outf.write(acBuff, nSize);
 outf.close();
 }
std::cout << "Final bloom vector" << std::endl;
for (int i = 0; i < bf.m_bits.size(); ++i)
 {
 std::cout << bf.m_bits[i];
 }
std::cout << std::endl;

return 0;
}
Result: With 128-bit bloom filter bit vector and
three hash function we experimented. For 1000
randomly selected url, our algorithm detects 17
possibly in set and 983 definitely not in the set
which means good secure and more efficiency.

6. Hash Functions Simulation Parameters

 Following are the parameters used for simulation:

Table 1: SIMULATION PARAMETERS
S.
No

Parameter Value

1 Number of elements in
bloom filter

1000

2 Bloom filter size 128 bits

3 Number of hash
functions

3

 A simulation was conducted using the above
mentioned in table 1, parameters and the results
were compared with the BMobishare hash
functions.

Figure 4: Proposed Hash dependency

 The figure 4, shows the dependence of one hash
function over other hash function using conditional
probability.
First of all, it can be seen from the graph (refer to
figure 5) that the chances of repetition of H2 value
if H1 is known is 0.022 in our proposed hash
function, while 0.033 is BMobishare solution.
Similarly, Probability of occurring H3 again with
the same H1 has the probability 0.019 in our case,
and 0.025 in BMobishare case.
 Also, the third hash function has a probability of
occurring the same H3 along with the same H1 is
0.026 in our case and 0.41 in BMobishare. It can be
an observer that H1, H2, and H3 when used
together, are completely independent of each other.
Therefore P(H2,H3/H1) =0.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3587

Figure 5: Hash Functions Comparison results

 It is obvious from results that our proposed
Hash functions are less dependent than BMobishare
and therefore has better performance.
 At the same time, one has to keep this fact is a
mind that these hash function cannot be completely
independent in the given scenario, because of the
fact that, we have 1000 elements in our bloom filter
and only 128 possible values of the hash functions.
Therefore it is very obvious the hash values will
surely be repeated 1000/128 time each. Also, hash
functions are random functions within a range.
Therefore we cannot make them fully independent.
If we try to make them fully independent, their
randomness will be destroyed, and they will be
more predictable then.
 Finally, the fundamental difference between our
proposed approach and BMobishare is reducing the
information leakage. Our evaluation is based on the
two goals previously set forth: increase entropy and
decrease mutual information, so that the hash
functions are almost completely independent of one
another. Figure 5 highlights the reduction rate of
leaked information has reached P<H2 to
H1>=0.033-0.022= 0.011, which means 33% of
information leaked is reduced. P<H3 to
H1>=0.023-0.019= 0.004, which means 17% of
information leaked is reduced, and P<H3 to
H2>=0.041-0.026= 0.015, which means is 37% of
information leaked is reduced.
 Therefore, our independent hash function slows
down the information leakage from the BF from 1
bit on average per query (pure BF system), to 0.7/N
bits per N queries., where N is arbitrarily large.
While the compared approach used the standard
bloom filter with two cryptography schemes, both
public key encryption and symmetric key
encryption, all of them could reduce the
information leakage of 1 bit per query (pure BF
system), to only 1 bit per N queries.

7. CONCLUSION AND FUTURE WORK

 In this paper, we develop a method to
automatically generate an arbitrary set of
orthogonal and independent hash functions, with
the focus on increasing entropy and decreasing
mutual information between the functions. In the
event that one hash function leaks information for
any reason, the rest of hash functions will not be
affected. These two conditions make it harder for
the adversary to obtain any meaningful information.
It was observed that choosing good hash functions
is a critical part of creating a secured
implementation. The importance of fully orthogonal
hash functions cannot be overstated, so as to
prevent information leakage from occurring. Close
examination of the description of the hash functions
shows that the construction of the functional P is, in
fact, independent. Accordingly, we used the same
projective construction of the hash functions for our
proposed bloom filter. Our results demonstrate that
the proposed hash functions are less dependent and
leak when compared to previous approaches,
ultimately resulting in better performance.

 We have also attempted to address the security
deficiencies that are commonly found in current
LBS application environments. In particular, hash
function address the security of backing store
information, and security of the information that is
visible to an eavesdropper, or to a malicious
presence on the LBS provider machine. We believe
this approach can be used to automatically
transform the Bloom hash functions with an
expected increase in security. This will be a
significant advancement for privacy preservation in
LBS systems and also more generally.

 For future work, we plan to create a higher-
order procedure in privacy-preserving framework
for LBS, involving a combination of a Bloom filter
with a resources. The resources here include
memory (amount of data stored in the Bloom Filter
bit arrays), computation time (time to generate k
queries from 1 together time to execute all hash
functions), and bandwidth (amount of data passing
between sender and receiver per unit time).

REFERENCES:

[1] B. Niu, Z. Zhang, X. Li, and H. Li, “Privacy-
area aware dummy generation algorithms for
location-based services,” in Proc. Of IEEE ICC
2014.

[2] J. Krumm, “A survey of computational location
privacy,” Personal Ubiquitous Comput., vol. 13,
no. 6, pp. 391–399, Aug. 2009.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3588

[3] Through spatial and temporal cloaking,” in
Proc. Of ACM MobiSys 2003.

[4] J. Meyerowitz and R. Roy Choudhury, “Hiding
stars with fireworks: location privacy through
camouflage,” in Proc. Of ACM MobiCom 2009.

[5] J. Manweiler, R. Scudellari, and L. P. Cox,
“Smile: Encounter-based trust for mobile social
services,” in Proc. Of ACM CCS 2009.

[6] W3C. (2011, Apr.) Platform for privacy
preferences (p3p) project. [Online]. Available:
http://www.w3.org/P3P/.

[7] H. Lu, C. S. Jensen, and M. L. Yiu, “Pad:
privacy-area aware, dummy based location
privacy in mobile services,” in Proc. Of ACM
MobiDE 2008.

[8] C.-Y. Chow, M. F. Mokbel, and X. Liu, “A
peer-to-peer spatial cloaking algorithm for
anonymous location-based service,” in Proc. Of
ACM GIS 2006.

[9] I. Bilogrevic, M. Jadliwala, K. Kalkan, J.-P.
Hubaux, and I. Aad, “Privacy in mobile
computing for location-sharing-based services,”
in Proc. Of ACM PETS 2011.

[10] B. Yao, F. Li, and X. Xiao, Secure nearest
neighbor revisited. s.l. : In Proc. ICDE 2013.

[11] K. Shin, X. Ju, Z. Chen, and X. Hu, “Privacy
protection for users of location-based services,”
Wireless Communications, IEEE, vol. 19, no. 1,
pp. 30–39, 2012.

[12] B. Niu, Q. Li, X. Zhu, G. Cao, and H. Li,
“Achieving k-anonymity in privacy-aware
location-based services,” in Proc. Of IEEE
INFOCOM 2014.

[13] H. Kido, Y. Yanagisawa, and T. Satoh, “An
anonymous communication technique using
dummies for location-based services,” in Proc.
Of IEEE ICPS 2005, 2005, pp. 88 – 97.

[14] A. Serjantov and G. Danezis, “Towards an
information theoretic metric for anonymity,” in
Proc. Of ACM PETS 2003.

[15] C. Dong, L. Chen, and Z. Wen, "When private
set intersection meets big data: an efficient and
scalable protocol," in Proceedings of the 2013
ACM SIGSAC conference on Computer &
communications security, 2013, pp. 789-800.

[16] N. Shen, J. Yang, K. Yuan, C. Fu and C. Jia,
"An efficient and privacy-preserving location
sharing mechanism", Computer Standards &
Interfaces, vol. 44, pp. 102-109, 2015.

[17] V. Gupta, T. S. Vineeth, and V. Aggarwal,
"Make Your Query Anonymous With Oblivious
Transfer," in Proceedings of the Sixth
International Conference on Computer and

Communication Technology 2015, 2015, pp.
345-349.

[18] H. Li, X. Cheng, K. Li, and Z. Tian, "Efficient
Customized Privacy Preserving Friend
Discovery in Mobile Social Networks," in
Distributed Computing Systems (ICDCS), 2015
IEEE 35th International Conference on, 2015,
pp. 225-234.

[19] L. Calderoni, P. Palmieri, and D. Maio,
"Location privacy without mutual trust: The
spatial Bloom filter," Computer
Communications, vol. 68, pp. 4-16, 2015.

[20] Palmieri, L. Calderoni, D. Maio, Spatial bloom
filters: enabling privacy in location-aware
applications, in: Lecture Notes in Computer
Science, vol. 8957, Springer, 2015, pp. 16-36.

[21] M. Ahmadi and R. Pourian, "A Bloom Filter
with the Integrated Hash Table Using an
Additional Hashing Function," Network
Protocols and Algorithms, vol. 7, p. 24, 2015.

[22] A. Broder and M. Mitzenmacher, "Network
applications of bloom filters: A survey,"
Internet mathematics, vol. 1, pp. 485-509, 2004.

[23]C. Cachin, C. Crepeau, J. Marcil and G.
Savvides, "Information-Theoretic Interactive
Hashing and Oblivious Transfer to a Storage-
Bounded Receiver", IEEE Trans. Inform.
Theory, vol. 61, no. 10, pp. 5623-5635, 2015.

[24] R. L. Moy, L.-S. Chen, and L. J. Kao, "Discrete
Random Variables and Probability
Distributions," in Study Guide for Statistics for
Business and Financial Economics, ed:
Springer, 2015, pp. 67-81.

[25] L. Bunimovich, I. Cornfeld, R. Dobrushin, N.
Maslova, Y. B. Pesin, A. Vershik, et al.,
Dynamical Systems II: Ergodic Theory with
Applications to Dynamical Systems and
Statistical Mechanics vol. 2: Springer Science &
Business Media, 2013.

[26] B. Casselman, Feature column February
2014:Stereographic Projection, AMS,
retrieved 2014-12-12.

[27] J. S. Kraft and L. C. Washington, An
introduction to number theory with
cryptography: CRC Press, 2016.

[28] N. D. J. S. L. Operators, "Part 1: General
Theory," Interscience Publ., New York-Londou,
1958.

[29] K. Shanmugasundaram, H. Brönnimann, and N.
Memon, "Payload attribution via hierarchical
bloom filters," in Proceedings of the 11th ACM
conference on Computer and communications
security, 2004, pp. 31-41.

