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ABSTRACT 

 
While location-based services have become ubiquitous, seemingly permeating our personal and 
professional lives, their inherent nature poses security risks to users, who are forced to reveal their highly-
sensitive location data in order to make effective use of the service. Towards this end, a litany of techniques 
have been proposed to provide efficient answers for privacy-preserving queries in LBS. Spatial bloom 
filters were initially proposed as an efficient data structure used to manage special and geographic 
information in an space-efficient manner. Unfortunately, bloom filters suffer from two deficiencies: they 
leak at most one bit of information per query, and the hash functions require careful design and security 
analysis in order to be orthogonal and independent. In fact, developing quality hash function is paramount. 
We propose a method to automatically generate good, independent hash functions, with the goal of 
reducing information leakage. This means that even if one of the hash function is broken, for any reason, 
nothing can be learned about any other hash function. The results show that our proposed Hash functions 
are less dependent and leaked than the compared approach, while still seeing a notable improvement in 
performance. 
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1. INTRODUCTION  
 

Location-based services have become ubiquitous, 
effectively penetrated all smartphones and GPS-
enabled devices, providing tremendous value to 
customers. While LBSs have grown in popularity, 
they are not without flaws; specifically, the user of 
LBS must reveal his or her location data in order to 
take full advantage of the service, thereby 
potentially risking their privacy and security [1]. 

    Mobile users' awareness and opportunities to 
communicate with and within their environment 
have increased due to increased familiarity with 
LBS [2]. Mobile users can send queries to the 
servers of LBSs if necessary [3]. Thus, services 
related to “point of interest” (POIs) can be obtained 
tacitly by mobile users. For example, mobile users 
have become capable of easily identifying the 
closest banks, restaurants and easily verifying data 
related to the prices of some nearby restaurant. In 
short, LBSs are regarded as extremely beneficial. 
Nonetheless, the services present risks to the 
protection of users' privacy, as the service providers 

provide information relating to the user's location. 
An attacker could deduce sensitive private 
information related to the service recipients through 
information gathering about the location of users 
relating to their LBS queries. 

Both location privacy and query privacy are 
issues that are brought to light through LBS. For 
example, information about users living in a rural 
area can be disclosed in term of a large area 
response. In fact, this allows the preservation of 
user's location privacy. While in some cases, 
through an LBS server, a submitted query of a 
location-based service gets a user-based response 
[1],[4]. Therefore, the interest, as well as the 
location, was included in this query. Important 
information like user IDs and query radius is also 
contained in the information, and these components 
can be captured by an adversary. 

Even though such type of submitted information 
is revealed, it could be hacked, since the LBS 
servers can be unreliable [5], [6]. The consequence 
of this is that with the help of LBSs, the server may 
identify the location of the mobile user. Moreover, 
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malicious servers may also identify the queries that 
were being submitted to the LBS servers and 
eventually determine the activities of the mobile 
users [7],[8]. Hence, one can infer that using or 
integrating LBSs leads to the ability to follow or 
track the mobile users and also to the release of all 
personal information of the mobile users to any 3rd 
parties such as advertisers [9]. Subsequently, 
protecting the users is paramount and should be 
ensured.  

Under normal conditions, LBS to a user depend 
on the query presented by the user, which 
inherently contains the user’s location, query 
details, and other information, like the radius of the 
query and a user’s ID, etc. Notwithstanding, the 
information provided can be eavesdropped and 
misused by a malicious LBS server, resulting in the 
private or secret information of the user being 
revealed to a third party, such as advertisers. 
Therefore, more attention needs to be paid to 
protecting users’ privacy.  

Several techniques have been proposed in order 
to provide an optimal solution for privacy-
preserving queries in LBS. The aim is to be able to 
make queries to a location-based service while 
providing guarantees concerning privacy and 
efficiency. As expected, the issue raises several 
questions about security in general. One of them is 
any information leakage in a secure system. If one 
bit is leaked per query, and thousands of queries are 
made, then it may be possible for the attacker to 
learn some information that should remain secret. 
Recent research has taken advantage on bloom 
filters to address this problem. Unfortunately, 
bloom filters suffer from two deficiencies: 

1. They leak at most one bit of information 
per query. 

2. The hash functions Hk require careful 
design and security analysis so that they 
are orthogonal and independent.  

Accordingly, our idea is to provide an “engine” 
that can be used to generate an arbitrary set of 
orthogonal and independent hash functions, such 
that the joint distributions of two events A and B is 
the probability, that if event A happens, then event 
B happens. If A and B are completely independent, 
then the joint distribution will be 0; while if A and 
B are completely dependent, then the joint 
distribution will be 1. The joint distribution is a way 
of measuring whether two events or functions, 
depend on each other. For the hash functions we 
would like to use in this paper, it is important that 
they be as independent as possible, with the joint 

distributions effectively reaching to 0, as shown in 
Equation 1 below: 

         P(Hi|Hj) – P(Hi) – P(Hj)                          (1) 

Equation 1 is shown to be bounded from above 
by an arbitrarily small value E, with negligible 
probability of finding x, y such that:  

 || P(Hi(x)|Hj(y)) – P(Hi(x)) – P(Hj(y))||>E           (2) 

Where P(Hi(x)) in this equation denotes the 
probability [10]. 

In terms of hash function generation, there is a 
real opportunity to increase entropy and decrease 
mutual information between the hash functions, 
even if they are initially very weak. Thus, we will 
study ways in which we can insure that: 

   P(A(Hi)|A(Hj)) << P(Hi|Hj)                       (3) 

This type of approach is well known in the 
functional programming community, in that we are 
attempting to use some version of A to act on the 
functions Hi, as opposed to acting on the values of 
these functions. Given the output functions A(H(i)), 
we calculate correlations over the Bloom Filter 
keyspace (the number of bits b making up the 
array). These correlations will be used as statistical 
measure of success; if a function A increased 
entropy and decreases mutual information, then we 
can use A as a method for strengthening the 
irreversibility of the hash functions. 

In general, our contributions are as follows: 

 We develop a method to automatically 
generate an arbitrary set of orthogonal and 
independent hash functions, with the focus 
on increasing entropy and decreasing 
mutual information between the functions. 
In the event that one hash function leaks 
information for any reason, the rest of hash 
functions will not be affected. These two 
conditions make it harder for the adversary 
to obtain any meaningful information. 

 Finding the better performance through the 
developed method as in the previous 
contribution. While much research has 
been done using bloom filters in a general 
cryptographic setting, we analyze its 
application to LBS privacy and how to 
limit information leakage when providing 
answers to privacy-preserving LBS 
queries. 

The remainder of the paper is organized as 
follows. Section 2 reviews other related work. 
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Additional preliminaries are discussed in Section 3. 
Sections 4, 5 and 6 discuss our proposed solutions. 
Lastly, concluding remarks and future work is given 
in Section 7.  

2. RELATED WORK 

2.1 Privacy in general 
      To protect the privacy of users over LBS, there 
have been various solutions created recently [2], 
[11]. These studies [3],[12] have revealed that some 
of these solutions use k-anonymity, it has been 
observed that the k-anonymity has been presented 
in order to protect the privacy of the user’s location. 
So, this technique hides the real location of the 
mobile user, to ensure location privacy to the 
mobile users. Integration of k-anonymity helps to 
conceal the real information of the mobile user into 
k – 1 other mobile users. 

        Meanwhile, algorithms are used to cloak the 
locations of the users. The algorithms are R-tree 
and Grid based. The R-tree algorithm, also called 
the “Clique Cloak,” [13] has different requirements 
of k-anonymity per user [12]. This cloaking 
determines whether or not multiple users can share 
a spatial cloak [14]. 

2.2 Privacy with Bloom Filter 
In [15], a Private Set Intersection (PSI) protocol 

was proposed based on oblivious Bloom 
intersection. It consists of linear complexity and 
relies mostly on efficient symmetric key operations. 
The authors declared that their method provides 
high scalability due to its capability in providing a 
basic protocol and an enhanced protocol that was 
proved in the semi-honest model and the malicious 
model respectively. 

In [16], authors focused on Online Social 
Networks (mOSNs) whereas the location sharing 
service was introduced to mOSNs. They established 
their study by examining the current problems of 
location sharing through which they proposed 
BMobishare to provide a security-enhanced 
mechanism that ensures privacy location. The 
authors adopted Bloom Filter for the aim of 
securing sensitive data compared to other existing 
methods; unfortunately, an observation of using the 
bloom filter is that there is an increase in false 
positives, which we improve by reducing the 
information leakage by making the hash functions 
independent of each other's. Further, even if 
information is leaked, it will be neglected because 
each of the orthogonal characteristics of each hash 
function; any leaked information cannot be 
corelated to other hash functions and can be safely 
ignored. Unlike the other methods which neglect 

this aspect, this improvement alone would achieve 
an increased privacy level without having to 
incorporate additional encryption technologies. 

While in [17], this paper takes into account the 
two-party computation model where clients desire 
to form a request to the server, but substantially not 
willing to reveal their questions to anybody. The 
solutions for the queries are based majorly on 
Oblivious Transfer, k - Anonymous Oblivious 
Transfer and Deterministic Encryption and Bloom 
Filers. From this point of view, the proposals for 
the two protocols include the k*l -- Anonymous 
Oblivious Transfer protocol with the blending of 
Symmetric Key Encryption (Block Cipher). It also 
includes k*l -- Anonymous Oblivious Transfer 
protocol that implies to the approach of the 
anonymous request problem where the server 
cannot articulate which record the querying client 
wants from the registers and neither also the client 
could obtain anything but the record relating to his 
request. Through observation, the protocol can 
achieve anonymity. It is also practical in scenarios 
in which privacy is most preferred to speed. 

 In [18], social networks or mobile social 
networks are becoming common in the world today 
because of the rapid growth of mobile devices and 
partly because the mobile users are allowed to 
communicate within a certain distance with their 
friends. Because of this feature, many mobile phone 
companies have come up with many interesting 
applications, and this creates a security concern for 
the freedom of their customers.  

Therefore, authors proposed a customized 
privacy mechanism that will not only protect the 
privacy of user's profile but also it will establish a 
secure connection between matched users. Besides, 
the inventor is free to customize the request profile, 
as well as choosing the needed features and 
assigning each feature a specific value. 
Furthermore, the initiator can customize his or her 
privacy protection level depending on what they 
desire.  

Collusion attacks among unmatched users are a 
sensitive threat that we guarantee to address 
because it has precisely not been worked on. 
Proposed protocol will, therefore, ensure that only 
matched users can communicate securely with the 
initiator while there will be little or no information 
that will be obtainable by the other participants. 

 To achieve this, they adopted a bloom filter that 
protects the privacy profile and hence decreasing 
computational overheads. Finally, conducted a 
security analysis and performance evaluation to 
justify the superiority of the protocol. 

Moreover, in [19], location-aware applications 
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are one of the biggest and crowned innovations 
brought by the smartphone era and are well of 
changing our daily lives throughout the generations. 
To say just but the truth, the human race is only 
starting to understand what privacy risks are 
associated with constant tracking of our localities. 
For the great acknowledgment location-based 
services in the future that provide for privacy and 
security, there is the need for new, privacy-friendly 
applications and protocols. A new compact data 
structure is carefully proposed based on Bloom 
filters that are designed to store location 
information. 

 The spatial Bloom filter (SBF), as it is known, 
is designed with privacy in mind, where it is proved 
through presenting two private positioning 
protocols basing the assessment of the old to the 
new primitive. These rules save the user's exact 
position privately and also allow the provider of the 
service to pick up the users' closeness and 
specificity points of interest, or exclusively 
predefined areas. In concurrence of time, the user 
remains much oblivious to the points and areas of 
interest. 

 These two proposed protocols are focused on 
different scenarios that are regarding a two-party 
setting where communication happens directly 
between the user and the service provider while, in 
a three-party setting, the service provider, 
outsources and the third-party contact with the user. 
A much more emphasized and detailed evaluation 
of the effectiveness and safety of the solution 
shows that privacy can and will be achieved with 
least computational and communication directly 
above the ranges of scrutiny. The possibility of 
spatial Bloom filters regarding overview, safety, 
and firmness mark them set for distribution, and 
this creates mode for confidentiality hence 
protecting location-aware applications. 

In this paper [20], the availability of cheap 
positioning systems made it possible to embed them 
in smartphones and other small devices. This idea 
led to the development of a location-aware 
application that makes it possible for users to 
demand personalized services depending on their 
geographical location. There is a need to disclose 
only a small amount of a user's whereabouts at any 
given time because of the position of a user that is 
highly sensitive. 

 Some applications such as navigation system 
are based on the movement of the user and will, 
therefore, require constant tracking while others 
only require the knowledge of a user's position with 
an individual area of interest. In this paper, authors 
hence focus on the application that will only require 

the knowledge of a user's position with a particular 
area of interest to determine membership in one or 
more geographical sets. So they addressed the 
problem by using Bloom filters which are a 
compacted data structure for representing sets. In 
particular, in the paper used the spatial bloom filter 
(SBF) which are designed to manage spatial and 
geographical information. Moreover, spatial filters 
are well suited in enabling privacy in location-
aware applications.  

The author presented this by providing two 
multi-party protocols for privacy-preserving 
computation of location information which is based 
on well-known homomorphic properties of the 
public key encryption schemes. The rules keep 
private the exact position of a user while allowing 
the provider of the service to learn when the user is 
near specific points of interest. 

 With [21], From the study undertaken, a Bloom 
filter is a simple space-efficient randomized data 
structure for representing a group so that it backs up 
the connection requests. In recent years, Bloom 
filters have improved in acceptance in their 
database and networking applications. A Bloom 
filter entails two major phases that termed 
programming and membership request. From this, 
there is the introduction of a new method that 
integrates a hash table (HT) with Bloom filter to 
reduce the HT access time. This effectively means 
that when a Bloom filter for an external entry of a 
program, the next item thus is simultaneously 
stored in an HT. 

 Furthermore, to the connection request stage, if 
the application is proper, concurrently the address 
of the entry in the HT is created. Thus, the analysis 
is done for the average bucket size, maximum 
search length and a number of collisions for the 
projected method. Moreover, there is the 
comparison with the fast hash table (FHT) method. 
The executed approach in a software packet 
classifies it based on tuple space search within the 
H3 class of universal hashing functions. 
Conclusively, as compared to FHT, the method is 
capable of minimizing the average bucket size, 
maximum search length and a number of impacts 
when related to FHT. 

On the other hand with [22], there is an 
academic study entailing interactive hashing. The 
paper begins by introducing the notion of 
interactive hashing as a cryptographic primitive 
while differentiating it from the specifics of the 
implementations it may present.  

In this regard, this paper showed application-
independent information ideal conditions that must 
be ideally satisfied by the interactive hashing. 
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Moreover, the paper provides in detail an analysis 
of a standard implementation of interactive hashing 
that meets all the conditions of our definition. From 
the analysis, get that it represents improvements in 
restricted contents than in previous attempts. In 
spite of its generality, the interactive hashing offers 
a simpler proof of security, which establishes 
security from a dishonest sender hence reducing his 
or her probability of cheating. 

 To prove that a sender who tries to manipulate 
the protocol in a way that makes it possible for 
output strings to have a uniquely desirable property 
would represent a fraction of all the strings from 
which the probability of both outputs will be from 
the set. Also, showed the power of interactive 
hashing as a cryptogrammic tool by looking into 
the protocols achieving oblivious transfer and 
which characteristically depends heavily on 
interactive hashing. 

 
3. PRELIMINARIES 
    This section will emphasize the concepts, 
adversary model, and motivations that are 
incorporated into this paper. This section will also 
explain the methods used. 

3.1 Basic Concept 
  A Bloom Filter (BF) is a probabilistic data 

structure that allows for a test for set membership 
without revealing more than a single bit of 
information about the set. If A is a putative element 
of a set S, then a Bloom Filter provides a 
probabilistic algorithm for determining if A is an 
element of S without any explicit recursion over the 
elements of S [23]. Furthermore, a Bloom filter has 
the property of never having false negatives, so that 
an assertion “A is not a member of S” is always an 
accurate assertion, assuming that the algorithm 
performing the test is benign. False positives are 
possible, however, so that an assertion “A is a 
member of S” is only probabilistically correct. 
Based on the number of bits used to implement the 
BF, an example will show in figure 1, B denotes 
Bloom filter; H denotes a hash function. 

 
Figure 1: Test set for Bloom Filter 

A (BF) is an array of m bits together with a set of 
k hash Hk functions. Initially, all bits are zero. It is 
required that the Hk be trapdoor functions, that is, 
given Hk(x) = y, it is not possible to recover the 
value of x from y except with negligible 
probability. It is also required that either: 

 The range of all the functions Hk is the 
range of natural numbers [0, m-1]. 

 The hash computation is performed mod m, 
that is that the range of each Hk is a natural 
number, and the value y is computed as 
(Hk(x) mod m).  

In order to add an element x to the BF, the set of 
values Hk(x) is computed for each k. For each 
value y = Hk(x) we then set m[y] = 1. Has 
collisions are irrelevant; if Ha(x) = Hb(x) = y, 
where 0 <= a < k and also 0 <= b < k, then we still 
set m[y] = 1. Thus, it is possible for an input x to be 
hashed into any number of different values of y, 
which may have any multiplicity in the range (1k).  

      In order to test if any element x is a member, 
each of the Hk(x) is computed. If any of the 
m[Hk(x)] = 0 then it is known with certainty that 
the element x is not a member. However, if all 
m[Hk(x)] = 1 then with probability p we can assert 
that x is a member of the set. A straightforward yet 
tedious computation shows that p is approximately 
equal to (1 – 10-(k/10)) [24]. 

In a LBS scenario, the LBS has a BF that has 
been populated with location information encoded 
as bit vectors. The user generates q (query, 
assertion) pairs. These queries are then transmitted 
to the LBS, which generates a bit vector of q 
values. If the i-th position of this vector is 0, then 
the pair (Qi, Ai) is absolutely inconsistent, while if 
the i-th position in this vector is 1, the pair (Qi, Ai) 
is probabilistically consistent [25]. If the LBS 
server is benign, then each evaluation will be 
accurate, within the limits of the BF algorithm. If 
the LBS server is malicious, then only some 
evaluations will be accurate. Since the user can 
generate (Q, A) pairs with a known state, the 
responses from the server can be tested against 
these known values.  

Even a single false negative is an absolute 
indication that the server is malicious. A false 
positive is an indication that the server might be 
malicious; as with the other algorithms this false 
positive rate can be tuned to be as small as possible 
by using N iterations of q queries. Thus, except 
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with negligible probability, a malicious LBS server 
can be detected with a probability of (1 – pN), 
where p was the legitimate false positive rate stated 
earlier. Note also that an eavesdropper cannot learn 
anything from the exchanges, except with 
negligible probability, due to the fact that it is 
computationally intractable to invert the Hk. 

 
3.2 Adversary Model  

Create a data transfer between an LBS client an 
LBS server and a secondary server (such as a social 
media portal) that obeys the following properties: 

 The LBS server cannot determine more than 
1 bit of information from any list of queries; 
the secondary server cannot determine any 
information for the list of queries 

 A malicious LBS server can be detected by 
probability q and the hash functions Hk 
require careful design and security analysis 
so that they are orthogonal and independent. 
This means that even if Hi is broken, for 
some i, nothing can be learned about any 
other Hj (secured), j= i. 

 
3.3 Motivation and Basic Idea 
  

The hash functions should be independent to 
the greatest extent possible. (We will precisely 
define this word below.)  A Bloom filter has the 
following operations: Add, Test, Change, and 
Unset. There is no delete operation, for reasons that 
will be described shortly. 
       Before specifying these operations and the 
associated standard Bloom filter protocol, it is 
necessary first to define two additional concepts: 
backing store and set comprehension. In many 
cases, the set member is the key in a key-value pair. 
As a result, one must store not only the members of 
the set but also their associated values. In this case, 
the value cannot be stored in the Bloom filter; it 
must be stored somewhere else, in a data structure 
known as the backing store. For small sets, this data 
structure may be kept in memory, while for larger 
sets, such as LBS datasets, the backing store is 
almost always some form of database. Set 
comprehension refers to the operation of choosing 
particular members of the set that belong to a 
specific subset. If S is a set and x is a potential 
member, we denote the membership test by the 
notation { x in S }. In the case of set 
comprehension, we not only test for set 
membership, but we also test for the truth value of 
an addition function f().  Since f() must be a 
boolean function, we often refer to this function as 

a predicate. Set comprehension is written as { x in 
S | f(x,S) }. The vertical bar | is read as “such that” 
so the set comprehension test may be read as “x is a 
member of the set S such that the predicate f(x,S), 
which denotes f applied to x and S, is true.”  As an 
example, consider P, the set of all primes. A 
membership test for an prime x would be { x in P }, 
while the membership test for a prime of the form 
4n + 1 would be { x in P | (x-1)%4 == 0 }. 
      Let h1 to hk denote the k hash functions. In what 
follows, we will use x to denote the potential set 
member, with the hash functions only acting on x. 
If there is an associated value, we will refer to it as 
v. We assume the general case where v is always 
present, with the understanding that if we are only 
using a Bloom filter with no backing store, the 
parameter v is omitted. To add a member <x,v> to a 
Bloom filter we first compute the k values of the 
hash functions operating on x, that is h1(x) to hk(x). 
Since each of these k values is a positive number 
less than 2m, it can be written as a binary number 
with at most m bits. For each of the hi(x) values, we 
note the bit position of each 1 bit in the 
corresponding binary expansion and set that same 
bit in the Bloom filter. If v is present, we also add 
the <x,v> pair in the backing store. For future 
convenience, we write M = 2m  and  K = k2. In 
order to test if x is a member of the set, and 
potentially recover its backing store value, we again 
calculate the k hash-function values hi(x) and then 
perform the following algorithm: 
 
FOREACH hash function value H = hi(x) 
   FOREACH 1 bit in H 
        IF that bit is not set in the Bloom filter  
        THEN 
RETURN  
not_a_member 
        ENDIF 
   ENDFOR 
ENDFOR 
RETURN maybe_a_member 

 
 Note that the algorithm never has a false 

negative, but it may have false positives. That is if 
the algorithm determines that x is not a member, 
this is always correct. However, if the algorithm 
determines that x might be a member, then this is a 
probabilistic statement. False positives come about 
because the binary representations of the hash 
values of x and x’ might overlap in some of the bits 
set in the Bloom filter. After many elements have 
been added it is possible that the all the bits 
conforming to the hash-values for x may be set in 
the Bloom filter, even if x is not a member. If there 
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is a backing store, the ambiguity may be resolved 
by querying the value that corresponds to x. This 
type of exchange [21] is shown in figure 2 below. 

 
 
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Standard Bloom filter query protocol 

The Change operation, which changes a key-value 
pair <x,v> to a new pair <x,v’>, is simply a Test 
operation followed by a store operation to the 
backing store. The Change operation will fail if x is 
not already a member of the set, so it may be 
necessary to perform an Add operation, as shown 
by the following algorithm: 
 
 b = Change(x,v’) 
        IF  b is false  THEN 
  Add(x,v’) 
 ENDIF 
 
      Finally, the Unset operation is the same as 
Change(x, null). There is no way to delete a value 
x from the Bloom filter, because each 1 bit may 
have been the result of hash values that have that 
bit set for some other member x’. In the case of 
LBS providers, it should be relatively rare to need 
to delete a set element, and it may be sufficient to 
nullify the corresponding value in the backing 
store simply. Note, however, that for each 
additional null value in the backing store the cost 
of a look-up becomes very slightly slower. Thus, if 
many unset operations have been performed, the 
LBS provider may need to delete all null values, 
and then regenerate the Bloom filter based on the 
keys that are still in the backing store after the 
removal of the null values. 

 

4. DATA ANONYMIZATION: 
INDEPENDENT SECURED HASH 
FUNCTION 

 
        Choosing good hash functions for a Bloom 
filter is a critical aspect of creating a secure 
implementation. Since the hash functions map the 
bits of a member x into the bits that are set in the 
Bloom filter, it is important to keep these hash 
functions independent so that information leakage 
by a side channel cannot successfully occur (except 
with negligible probability). 
       We will now formally define this notation of 
independence of hash function using the notion of 
conditional probability. If E is an event, then we 
refer to <E> as the probability that E has occurred. 
This has the standard definition of probability as 
the ratio of the number of times that E has occurred, 
divided by the number of samples that have been 
taken.  
       Given two events E and F we refer to <E|F> as 
the conditional probability that E has occurred, 
given that F has already occurred. We can define 
this as the ratio of the number of occurrences of E 
following an occurrence of F, divided by the total 
number of samples. If E and F are not events but 
functions, then we can extend this definition to the 
conditional probability of a function f(x) given that 
the value of a function g(x) is already known. We 
write this as above, <f|g>, which we define as the 
number of bits of f(x) that can be detected given 
that all bits of g(x) is known. If S is a discrete 
sample space (set), then we define the conditional 
probability <f|g> over S as the summation of  
#nbits(<f(x)|g(x)>/|S|, where the summation is 
taken over all elements x that are in S. 
 
If h1 to hk is the hash functions used in a Bloom 
filter then we desire that 
 <hi|hj> = 0   for all i and j such that  i != j 
 <hi|hi> = 1 for all i 
     
   If these conditions are satisfied, then the set of 
hash functions is said to be orthogonal or 
completely independent. We introduce the 
orthogonality measure e(H,k), where H denotes the 
entire set of k hash functions, as the sum of all the 
<hi|hj>, for all indices i and j, divided by the scale 
factor k. For an orthogonal set of hash functions H 
we have immediately that e(H,k) = 1, while for 
non-orthogonal hash functions we will have e(H,k) 
> 1. The goal of the orthogonalization procedure is 
to introduce a functional P (a function that operates 
on functions, rather than numerical values), with 
the following two properties: 
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             e(P(H),k)  <  e(H, k)                                (4) 
 

for any value w in the range (0,1], there exists an 
integer y such that e(Py(H),k) < 1 + w. 
      Note that the latter condition is equivalent to the 
statement that e(Py(H),k) converges to 1 as y tends 
toward infinity, for any sample set, so long as 
e(H,k) < 2. 
      The functional P is also referred to as a 
projection operator. Before we plunge into the 
mathematical details of the projection, it is 
important to consider an example that is much 
easier to visualize, namely the stereographic 
projection. The stereographic projection is a 
mapping between the surface of the sphere in 3-
space, centered on (0,0,0) to the (x,y) plane (the 
plane defined by the equation z=0). This projection 
is shown in figure 3.  Below [26]: 
 

  
Figure 3: Stereographic Projection 

       Given a point Z on the surface of this sphere, a 
ray is shown in the North pole ( the point (0,0,1)) 
through Z. When this ray is extended, it will 
eventually intersect the xy plane, at a point z as 
shown above. This mapping Z → z is the 
stereographic project from a 3-space object (the 
sphere) to a 2-space object (the xy plane). Note that 
the North pole is mapped to the point at infinity, so 
this projection’s output is often referred to as the 
xy+  plane rather than the xy plane. 
      Recall the abbreviations K = k2 and M = 2m and 
introduce the new abbreviation J = K – k. The 
projection operator is a projection [27], [28] from 
K-space to k-space that can be defined by a 
geometric formulation. First, we define the 
polynomial B(x) of a single variable x. The 
polynomial B(x) is formed by using a pseudo-
random number generator (PRNG) to generate K 
coefficients, each in the range [1,M-1], which we 
will denote as ci. The polynomial is then  cixi 
where the index i ranges from 0 to K. To define the 
projection in geometric terms; we use the PRNG to 
generate J angles in the range (0, 4). We use these 
angles to create a planar projection of B(x) from K-

space to k-space. We refer to the resulting 
polynomial as P1. Note that this polynomial has 
dimension k. We repeat the above procedure, using 
newly generated random angles to generate 
additional polynomials P2, P3 until we reach 
Pk.(similar to the procedure in [29]). We then define 
the projection operator P on the hash functions H = 
{ hi }: 
              P(H) = P({ hi }) = { Pi(hi) }                    (5) 
         So that   P(H)(x) = { Pi(hi(x)) }                   (6) 
 
Since P is a projection function, it follows 
immediately after e(P(H)) < e(H). As a result, we 
can create increasingly secure hash functions by 
simply applying P multiple times using different 
angles for each iteration. Note carefully that 
generation of the Py(H) is an offline operation. It 
needs to be computed only once when the Bloom 
filter is created. There is no impact on runtime 
performance. 
 
5. INDEPENDENT SECURED HASH 

FUNCTION IMPROVEMENT 
 
    Suppose a browser needs to check if an input url 
is malicious or genuine. To check this, the browser 
will create a bloom filter with a known malicious 
url  list (Add operation), which will result in a bit 
vector. The browser will then use this bit vector to 
test if a user input url is in the list of known 
malicious url and then act accordingly. 

 Algorithm for Add: Add operation 
involves hashing the input data (e.g., url) 
to a bit vector and setting specific bit 
positions to 1 based on the outcome of the 
hash function. 

 Algorithm for Test:  Test involves hashing 
the input data and checking if all 1 
position of hashed data is also set to 1 in 
bloom filter bit vector. The Hash function 
is most important part of the bloom filter. 

Here is a brief method of a hash function: 

1. Create some random constant value say c. 
The same constant has to be used for both 
Add operation and Test Operation. 

2.  Divide the input data into equal size 
blocks. 

3. Multiply each block with the constant 
value and do some other operations. It’s 
like creating a polynomial operation on the 
input data. Like say for input data 
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xyz123.com, we are creating a runtime 
polynomial like( x*c8+y*c7+z*c6). 

4. Apply hashing function operation based on 
the last/tail part. 

5. Calculate two-part hash say h1 and h2. 

   Bloom filter involves multiple hash functions. We 
use the same hash function with some 
multiplication (to get nth hash function multiply by 
n) to derive the difference in the hash functions. 

//Test Bloom Filter 
 std::ifstream infile("test.txt"); 
 std::string value; 
 while (infile.good()) 
  { 
 getline(infile, value, '\n'); 
if (value.size() < 3) { 
 continue; 
  } 
vector <string> record; 
 splitString(value, record); 
if (record.size() == 2) {   
 const char* pdata = record[1].c_str(); 
int len = record[1].size(); 
bool b = bf.Test((const uint8_t*)pdata, len); 
if (b == false) { 
std::cout << "Not in the set :" <<record[1] <<   
              std::endl; 
   } 
if (b == true) { 
std::cout << "May be in the set :" << record[1] <<  
              std::endl; 
    } 
   } 
  } 
 } 
 { 
//Save Bloom Filter 
ofstream outf("BF.dat",  td::ofstream::binary); 
char acBuff[2048] = ""; 
int nSize = bf.m_bits.size(); 
 for (int i = 0; i < bf.m_bits.size(); ++i) 
  { 
 acBuff[i] = bf.m_bits[i]; 
  } 
 outf.write(acBuff, nSize); 
 outf.close(); 
 } 
std::cout << "Final bloom vector" << std::endl; 
for (int i = 0; i < bf.m_bits.size(); ++i) 
 { 
 std::cout << bf.m_bits[i]; 
              } 
std::cout << std::endl; 

return 0; 
} 
Result: With 128-bit bloom filter bit vector and 
three hash function we experimented. For 1000 
randomly selected url, our algorithm detects 17 
possibly in set and 983 definitely not in the set 
which means good secure and more efficiency. 

6. Hash Functions Simulation Parameters 
 
   Following are the parameters used for simulation: 
 

Table 1: SIMULATION PARAMETERS 
S. 
No 

Parameter Value 

1 Number of elements in 
bloom filter 

1000 

2 Bloom filter size 128 bits 

3 Number of hash 
functions 

3 

     A simulation was conducted using the above 
mentioned in table 1, parameters and the results 
were compared with the BMobishare hash 
functions. 

 
Figure 4: Proposed Hash dependency 

    The figure 4, shows the dependence of one hash 
function over other hash function using conditional 
probability. 
First of all, it can be seen from the graph (refer to 
figure 5) that the chances of repetition of H2 value 
if H1 is known is 0.022 in our proposed hash 
function, while 0.033 is BMobishare solution. 
Similarly, Probability of occurring H3 again with 
the same H1 has the probability 0.019 in our case, 
and 0.025 in BMobishare case. 
   Also, the third hash function has a probability of 
occurring the same H3 along with the same H1 is 
0.026 in our case and 0.41 in BMobishare. It can be 
an observer that H1, H2, and H3 when used 
together, are completely independent of each other. 
Therefore P(H2,H3/H1) =0. 
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Figure 5: Hash Functions Comparison results 

      It is obvious from results that our proposed 
Hash functions are less dependent than BMobishare 
and therefore has better performance. 
 At the same time, one has to keep this fact is a 
mind that these hash function cannot be completely 
independent in the given scenario, because of the 
fact that, we have 1000 elements in our bloom filter 
and only 128 possible values of the hash functions.  
Therefore it is very obvious the hash values will 
surely be repeated 1000/128 time each. Also, hash 
functions are random functions within a range. 
Therefore we cannot make them fully independent. 
If we try to make them fully independent, their 
randomness will be destroyed, and they will be 
more predictable then. 
     Finally, the fundamental difference between our 
proposed approach and BMobishare is reducing the 
information leakage. Our evaluation is based on the 
two goals previously set forth: increase entropy and 
decrease mutual information, so that the hash 
functions are almost completely independent of one 
another. Figure 5 highlights the reduction rate of 
leaked information has reached P<H2 to 
H1>=0.033-0.022= 0.011, which means 33% of 
information leaked is reduced. P<H3 to 
H1>=0.023-0.019= 0.004, which means 17% of 
information leaked is reduced, and P<H3 to 
H2>=0.041-0.026= 0.015, which means is 37% of 
information leaked is reduced.         
     Therefore, our independent hash function slows 
down the information leakage from the BF from 1 
bit on average per query (pure BF system), to 0.7/N 
bits per N queries., where N is arbitrarily large. 
While the compared approach used the standard 
bloom filter with two cryptography schemes, both 
public key encryption and symmetric key 
encryption, all of them could reduce the 
information leakage of 1 bit per query (pure BF 
system), to only 1 bit per N queries. 
 
 
 

7. CONCLUSION AND FUTURE WORK 

      In this paper, we develop a method to 
automatically generate an arbitrary set of 
orthogonal and independent hash functions, with 
the focus on increasing entropy and decreasing 
mutual information between the functions. In the 
event that one hash function leaks information for 
any reason, the rest of hash functions will not be 
affected. These two conditions make it harder for 
the adversary to obtain any meaningful information. 
It was observed that choosing good hash functions 
is a critical part of creating a secured 
implementation. The importance of fully orthogonal 
hash functions cannot be overstated, so as to 
prevent information leakage from occurring. Close 
examination of the description of the hash functions 
shows that the construction of the functional P is, in 
fact, independent. Accordingly, we used the same 
projective construction of the hash functions for our 
proposed bloom filter. Our results demonstrate that 
the proposed hash functions are less dependent and 
leak when compared to previous approaches, 
ultimately resulting in better performance. 

      We have also attempted to address the security 
deficiencies that are commonly found in current 
LBS application environments. In particular, hash 
function address the security of backing store 
information, and security of the information that is 
visible to an eavesdropper, or to a malicious 
presence on the LBS provider machine. We believe 
this approach can be used to automatically 
transform the Bloom hash functions with an 
expected increase in security. This will be a 
significant advancement for privacy preservation in 
LBS systems and also more generally. 

      For future work, we plan to create a higher-
order procedure in privacy-preserving framework 
for LBS, involving a combination of a Bloom filter 
with a resources. The resources here include 
memory (amount of data stored in the Bloom Filter 
bit arrays), computation time (time to generate k 
queries from 1 together time to execute all hash 
functions), and bandwidth (amount of data passing 
between sender and receiver per unit time). 
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