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ABSTRACT 
 

The present paper proposes the approach to the universal non-parametric detector of seismic signals based 
on the amplitude spectrum analysis. The decision statistics of spectral components exceeding over reference 
ones is proposed. The maximal amplitude spectrum mean value over several adjacent reference cycles is 
subtracted from each working cycle spectrum to stabilize false alarm probability. The range of frequency 
components has been selected. The threshold estimation procedure is stated with respect to spectrum 
averages fluctuation. It has been shown that the detection probability achieves 0.9 for signal-to-noise ratio 
about 3 dB when the number of working cycles is 5. 
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1. INTRODUCTION  
 

Passive seismic location (PSL) solves the 
complex of location observation problems in 
unattended ground sensors systems [1-5] including 
automatic target detection by its seismic action on 
the ground surface. Detection quality influences on 
classification and location quality. Seismic target 
detection is complicated by seismic noise waves 
which are generated by natural and anthropogenic 
wave sources. The oscillations caused by such 
sources are caused by random factors including 
multipath propagation. Therefore seismic wave 
receiver antennas accept seismic signals as 
normally distributed random processes. Seismic 
noise parameters are different in different points of 
the propagation medium and at different rime 
moments. Therefore it is necessary to use signal 
receiving methods overcoming the influence of 
signals spatial and time change. 

Signal detection appears to be effective 
with help of non-parametric statistics. It is 
necessary to provide given false alarm probability 
and maximize true detection probability with 
respect to the Neiman-Pearson criterion [6]. 
Requirements on false alarm probability and true 
detection probability are important for seismic 
guard systems that are monitoring long perimeters 
of large factories, plants and private detached 
houses. Such systems are advantageous because of 
hidden sensors and capability of intruder early 

detection.  There are two wide-spread approaches to 
detection algorithm design in PSL systems. One of 
them is directed on certain targets signals detection. 
Such signals are often caused by person motion [2]. 
A person is one of the main seismic targets. The 
target class is found by an activated detector which 
is unique for a certain target class. The second 
approach can detect any target generating a seismic 
signal. Here the target classification after detection 
appears to be important.  

The mentioned above approaches are 
implemented by various algorithms. The basic 
problem which is not still solved is how to create 
such seismic signal processing algorithms that meet 
the two following conditions. The first condition 
means getting high detection probability value for a 
real seismic object with universal signal properties 
for any object including person, vehicle, animal and 
etc. The second very important condition for 
automatic detection systems is the guaranteed 
detection probability value when there is really no 
seismic object but the false alarm can appear 
because of seisic noise. The combination of these 
two conditions is  the Neyman-Pearson Criterion 
which is well-known in radiolocation.  

As it follows from the analysis of previous 
paper the best solution of the automatic detection 
task is still unknown. 

The human detection algorithm based on 
acoustic and seismic signals spectrums is proposed 
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in [7], where human occurrence a-posterior 
probability is determined in passive location system 
observation zone by means of the Bayesian 
approach. The proposed approach provides true 
detection probability about 70% without taking into 
account false-alarm probability. 

The algorithm of symbols dynamic 
filtration (SDF) based on signal Discrete Wavelet 
Transformation is stated in [8]. Object detection 
probability is determined by probabilities of finite-
state machine status change. It is proposed to 
improve detection probability by adding infrared 
sensors witout solving the Neyman-Pearson 
problem. The seismic location system becomes 
more complicated and expensive with infrared 
sensors. 

It is proposed in [9] to build a seismic 
signal detection algorithm based on autocorrelation 
functions in the time domain without the deep 
analysis of statistical aspects. The short-coming of 
such approach is the direct calculation time 
dependence on width of the interval where the 
autocorrelation function is calculated. 

The procedure of seismic signal detection 
is proposed in [10] where wavelet spectrum 
coefficients are processed by the correlation 
analysis to separate the coefficients of an object 
signal from the coefficients of noise. The wavelet 
spectrum advantage is the capability of non-
stationary signals properties analysis. However 
wavelet transformation practical application is 
complicated by enormous number of operations. 

Seismic signals can be also detected and 
classified by neural networks [11,12]. The proposed 
in [11] neural network of perceptrons operating 
with seismic signal spectral components is able to 
provide false alarm probability about 1% with is too 
high for practically used passive seismic location 
systems.  

Detection and classification of seismic 
signals is proposed to be implemented with a back 
propagation neural network united with a zero-cross 
counter and the power ratio integrated on higher 
frequencies and lower frequencies [12]. 

Neural networks have noticeable 
disadvantages. It is difficult to create a network 
architecture of a certain task and to interpret 
training results [13]. It is impossible to explain 
neural network parameter in terms of the subject 
area. Hence the neural network remains a “black 
box” both for researchers and users. Optimization 
methods application for root-mean-square error 

minimization leads to neural network overtraining 
[14]. Network sensitivity to noise strongly depends 
on its architecture. True detection probability more 
than 90% demands enormous hierarchical 
architecture where the criterions vector is processed 
by a tough network and then obtained solution is 
corrected by more exact and slower network. 

Therefore the mentioned above papers do 
not focus on the main problem of seismic signal 
detection with respect to the Neiman-Pearson 
statistical criterion. 

The purpose of the paper is to develop and 
investigate a non-parametric detector of seismic 
signals under a-priori uncertainty providing true 
detection probability more than 90% at stable false 
alarm probability level. Automatic detection of 
seismic signals is significantly complicated by 
continuous change of seismic noise properties 
including correlation and dispersion. With respect 
to such conditions false alarm probability 
stabilization when true detection probability is 
maximized is strictly based on well-known concepts 
of statistical properties of signals and noise. Non-
parametric tests are successfully used in 
radiolocation detection. However the non-
parametric tests known from radiolocation cannot 
be used in seismic signals detection because signals 
and noise have different properties in radiolocation 
and seismic location. 

The non-parametric detection based on 
zero-cross counter was considered in [15]. Such 
approach is simpler than mentioned above ones. 
The number of zero crossings decreases when a 
seismic target generated component appears in an 
observed signal. The detection is made after seismic 
signal de-correlation. The target signal after de-
correlation remains correlated. Thus zero-crossings 
number becomes less than for only a seismic noise. 
Such detection has a short-coming because it 
requires high-quality de-correlation especially when 
seismic noise parameters change. 

However it is often not clear how to 
efficiently analyze the output of the system in the 
time domain. A frequency domain or spectral 
analysis of the output is often more informative 
[16]. 

It is also a question when we should 
transform a seismic signal from the time domain to 
the frequency domain: directly after measurement, 
after decorrelation or after taking an envelope and 
smoothing it. The amplitude spectrum of a seismic 
signal envelope is suitable for classification [16]. 
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When our purpose is target detectioniIt is most 
preferable to make FFT for a initial signal. 

 

2. NON-PARAMETRIC SPECTRAL 
DETECTION 

The paper proposes a special approach to 
non-parametric detection design based on the non-
parametric analysis of the received seismic signal 
amplitude spectrum. Non-parametric methods are 
useful when there is no enough a priori knowledge 
on investigated non-stationary signals [17, 18]. 

There is a lot of experimental data was 
analyzed to extract necessary properties from 
seismic signals. The seismic signals structure and 
sampling properties are described in details in [16]. 
A signal of some target has a certain structure. For 
example, the signal of a moving car or a scooter is 
continuously increasing when a vehicle approaches 
seismic sensors and then decreasing when it goes 
away from sensors. A signal of a person consists of 
three pulses corresponding to three steps per each 
time interval 1.7 s.  

Examples of seismic signals are stated in 
figures from 1 to 4. Each signal has its special 
features. Signals of people and animals consist of 
pulses. Frequency of horse steps is twice of people 
steps. Establishing difference between a person and 
a group of people needs additional preprocessing 
and spectral analysis. The paper is focused of 
detection of a single person. 
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Figure 1: Initial signal for the signal of a  person 
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Figure 2: Initial signal for the signal of a group of people 
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Figure 3: Initial signal for the signal of a big animal like 
a horse 
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Figure 4: Initial signal for the signal of vehicle like a car 
or a scooter 
 

Sampled signals are divided into cycles of 
J samples. Then each cycle is transformed into the 
amplitude spectrum by the Fast Fourier 
Transformation (FFT). The seismic signal 
representation as a sequence of cycles is shown in 

figure 5, where ,    ,    1,n nSx Sy n N  are J-element 

vectors in different observed cycles.  
 

 
Figure 5: Structure of the detected seismic signal 

 
The decision on useful signal presence is 

made in the detector for the vector nSy  considered 

to be the work group of samples. The reference 
vector nSx  has the size and structure which are 

similar to nSy . Both vectors nSx  and nSy  are 

transformed by FFT into the corresponding 
amplitude spectrums, in the reference cycle 

( )( ) ,    1, ,       1,nn
jX x j J n N    and work cycle 

( )( ) ,    1,nn
jY y j J   1,n N  . Then the decision 

statistics is formed as        
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( ) ( ) ( )

1

1
( , ) ( , )

N
n n n

n

U X Y U X Y
N 

   (1) 

 
The decision rule for presence or absence 

of a seismic target has the form 
 

0

0

           detected
( , )

       not detected   

U
U X Y

U

 
 

 (2) 

 
The statistics ( , )U X Y  is made of the 

separate cycle local statistics  
 

2
( ) ( ) ( ) ( ) ( )

1

( , ) ( )
J

n n n n n
j j j

j

U X Y f u y x


    (3) 

where 
1     for  0

( )
0     for  0

z
u z

z


  

, f is the function of 

target signal spectral distribution.  
 
If the samplings X and Y are homogeneous and 
belong to seismic noise then 

( ) ( ) ( )( ),    n n nz u y x
j j j

   1, 2,     1,j J n N   is 

the binary sequence of independent zeros and ones 
with the uniform probability distribution 

0 1 0.5p p  . The binary elements independence 

follows from the known property of spectral 
samples of stationary random processes [19]. Such 
samples are uncorrelated and normally distributed. 
 
3. AMPLITUDE SPECTRUMS 

CORRELATION PROPERTIES 
ANALYSIS 

Figure 6 shows the seismic noise 
amplitude spectrum autocorrelation function (ACF) 
 with the correlation interval j obtained from the 
sampling of 1000 samples at seismic receiver 
bandwidth 120 Hz and analog-to-digital converter 
(ADC) sample frequency 600 Hz corresponding to 
the frequency resolution 0.6 Hz. The central part of 
the ACF is shown in the larger scale. The ACF 
resembles the Dirac function so there is no 
spectrum components correlation at different 
frequencies.  

 

 
Figure 6: Seismic noise amplitude spectrum ACF 

The amplitude spectrum shown in figure 7 
is different from the real and imaginary components 
of the complex Fourier spectrum.  

Real and imaginary parts of the seismic 
noise complex spectrum are stated in figure 8 and 
figure 9. 

Figure 7 states an example of seismic 
noise non-stationary amplitude spectrum 
represented by the continuous line with varying 
samples mean and std values. 

The non-stationary components simulating 
spectral fluctuation mean and intensity are slow 
correlated frequency functions. Thus they should be 
suppressed by Fourier spectrum normalization. 

Figure 8 shows the noise spectrum 
averaged over 1000 cycles. This mean spectrum 
reflects the main features of seismic noise. 

 

 
Figure 7: Amplitude spectrums (S) examples: seismic 

noise (solid line) and person line (dashed line) 
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Figure 8: Amplitude spectrums (S) examples: seismic 
noise (solid line) and person line (dashed line) 

 
The real and imaginary parts of the 

spectrum in figure 9 and figure 10 have zero mean 
values. They are less correlated than the amplitude 
spectrum. The autocorrelation functions of the real 
and imaginary spectrums in figure 9 and figure 10 
are correspondingly shown in figure 11 and figure 
12. 
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Figure 9: Real part of the noise complex spectrum 
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Figure 10: Imaginary part of the noise complex spectrum 
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Figure 11: ACF of the real part of the noise complex 
spectrum 
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Figure 12: ACF of the imaginary part of the noise 
complex spectrum 

 
The ACFs in figure 11 and figure 12 

rapidly decrease almost until zero. 
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4. NON-PARAMETRIC SPECTRAL 
STATISTICS THRESHOLD FINDING 

The decision statistics ( , )U X Y  with 

respect to spectrum normalization does not depend 
on initial data probabilistic properties. Therefore 
false alarm probability also does not dependent on 
them. The proposed detection algorithm stabilizes 
false alarm probability at any degree of seismic 
noise correlation. 

When the amplitude spectrum form is 
known the procedure (3) appears to be the agreed 
filtration maximizing the signal-to-noise ratio 
(SNR). Otherwise it is reasonably to use general 
knowledge on noise spectrum properties and target 
signal spectrum properties. For instance, one of 
such properties is target high-frequency spectral 
components exceeding over corresponding noise 
spectral components. This property is explained by 
relatively small distances where targets are PSL 
detected. Therefore seismic wave propagation 
medium can be represented by relatively wideband 
filter which slightly attenuates seismic signal high-
frequency components. Seismic noise is usually 
generated by sources situated at big distances when 
medium can be represented by narrowband low-
frequency filter which suppresses high-frequency 
spectral components. Thus the rectangular window 
function  

1,  
min max

0,  otherwise             

j j j
f

j

  


 

can be selected where 1f
j
  in the frequency 

range where target seismic signal spectral 
components are more than corresponding noise 
spectral components. As it follows from figure 7 
the normalized boundary spectral components 
should by 40 50,      140 150.

min max
j j     

With respect to (1)-(3) false alarm 
probability is controlled by the threshold 

0
U   

0

/ 2 2

/ 2
1

2

J J
j

F j J
j U

P f C


   
 

,  (4) 

 
As the detection statistics (1) is a sum of 

many independent components its probability 
distribution can be approximated by the normal 
distribution law. Hence the false alarm probability 
approximation is 

 

01F
U

U U
P F

D

 
  
 
 

,  (5) 

where 
2 21

( ) exp
2

t
F t d 





   is the 

probability integral, 
2

0,5
1

J
U f j

j
 


is the mean 

and 
20,25 2

1

J
D fU jN j

 


 is the variance of the 

statistics (1) when there is no target detected. The 
detection threshold  

 
1

0 (1 )U FU U D F P    

 
is found from (4). 

Figure 13 shows the dependences of false 
alarm probability on threshold for the decision 
statistics (1) based on the binary distribution and its 
normal approximation (4) for N=1 and N=2. If false 
alarm probability is less than 10-5 then difference 
between the curves for the dependences (4) and (5) 
are not noticeable. Therefore the approximation (5) 
is quite suitable for the further research. 

 
5. AMPLITUDE SPECTRUM CORRECTION 

FOR FALSE ALARM PROBABILITY 
AGREEMENT 

Unfortunately amplitude spectrum seismic 
signal detection is complicated by spectral 
components mean values change from one cycle to 
another especially in the range  min maxj j j  . 
Difference between noise amplitude spectrum mean 
values in separate cycles is illustrated by figure 14 
where the amplitude spectrums for five cycles of 
1000 samples are shown. Such noise spectrum 
mean value fluctuations which are not very high 
make the Neiman-Pearson criterion not to be 
suitable. 

 
Figure 13: False alarm probability decimal logarithm 

dependence on threshold: solid thin line is the 
approximation (5) of the function (4), N=1; thin dashed 

line is the function (4), N=1; solid thick line is the 
approximation (5) of the dependence (4), N=2; dashed 

thick line is the function (4), N=2 
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Figure 14: Seismic noise amplitude spectrums in five 

cycles 

 
The noticeable difference between cycle 

amplitude spectrums means significantly effects on 
the probabilities 0p  and 1p as 

 
( ) ( )

11 20

n nx y(n) (n)p w(z )dz F
σ

     
 
 

, (6) 

where ( )nx  and ( )ny are correspondingly the 

amplitude spectrum mean values in the reference 

cycle and work cycle, σ is the ( )nx j  and ( )ny j  

spectral fluctuation std. 0.51p   only if 

( ) ( )n nx y . If ( ) ( ) 0n nx y   then 0.51p   and 

the false alarm probability exceeds the given value 
in defiance of the Neiman-Pearson criterion 
requirements. Such effect influence is proposed to 
be compensated by M seismic noise reference 
cycles with spectrums mean values 

( )    1    nx , n , M  in the spectral component range 

 min maxj j j  . Then the maximal mean value 

( )maxmax
nx x

n
  is found. It is proposed replace 

the measured values ( )nx j  and ( )ny j  with 

correspondingly the centered value 
( )

( ) ( )
n

n n
j jx x x 


 and the pseudo-centered value 

( )
( )

max

n
n
jjy y x 


. The pseudo-centering 

procedure increases the probability of the difference 
( ) ( )n n

j jx y
 

being negative and leads to 0,51p  . 

The pseudo-centering procedure is illustrated by 
Figure 15 where the seismic amplitude spectrums 
are presented for five reference cycles and five 
work cycles. When the maximal mean value over 
five reference cycle is subtracted the reference and 
working cycle spectrum become very close to each 
other. Therefore the false alarm probability 
obtained with the mentioned above approach is less 
than its calculated value. Hence the calculated value 
of the false alarm probability is considered to be its 
upper bound. 

 
6. CORRECT DETECTION PROBABILITY 

ESTIMATION 

Correct detection probability calculation 
by analytical methods is difficult because of 
correlation between spectral samples of non-
stationary signals such as seismic signals from 
targets making impulse actions of the ground. It is 
proposed to use the statistic simulation of the 
seismic target signal and seismic noise mix for 
correct detection probability estimation. Seismic 
noise is simulated by the linear prediction model 
with the parameters vector obtained from measured 
noise samples [20, 21].  

The target signal for a walking person is 
described by the model 

 
x si i i   

 
where i  is the normally distributed stationary 

process, si  is quasi-periodic impulse train 

 
2( )

( ) exp
22

i kT ks a ri k k
k





       
  

, (7) 
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Figure 15: Seismic noise amplitude spectrums for five 
reference cycles (solid line) and five working cycles 

(dashed line) before the pseudo-centering procedure(left 
column) and after the pseudo-centering procedure(right 
column), average mean value of five reference spectrums 

is reflected by the horizontal solid lines 

 
 
where k is the pulse or step number, T is the mean 
step period, k is the random step fluctuation, τ is 

the parameter proportional to pulse width while 
total estimated width is 6τ, ( )a rk k is the parameter 

proportional to signal amplitude depending on the 
distance rk  between a person a seismic signal 

sensor. The proposed model is based on the 
properties of experimental records of a walking 
person seismic signal. Such signal is localized in 
the time domain and frequency domain like Berlage 
or Gabor pulse signals [22, 23]. The simulated 
seismic noise is shown in figure 16. Te simulated 
person signal variants are shown in figures 17-19. 
The simulated person seismic signal with the 
additive seismic noise is shown in figure 20. With 
respect to the mentioned above parameters the real-
time signal duration is 3.5 s.  The SNR q is 
determined as the ratio of the continuous 
fluctuations std values used as the base of the noise 
and signal model when ( ) 1a rk k  . The curve in 

figure 20 is for 11q dB . 
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Figure 16: Seismic noise model 
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Figure 17: Seismic signal Berlage model 
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Figure 18: Seismic signal Gabor model 
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Figure 19: Seismic signal model (7) 
 

Figure 20: Seismic noise and person signal mix model 
 
Seismic signals detection reliability is 

achieved by detection characteristics which are the 
true detection probability  dependences on signal-
to-noise ratio at fix false alarm probability values. 

The detection characteristics obtained by 
means of the statistic simulation for 1000 cycles 
and three false alarm probability values and two 
working cycles numbers 1N   and 5N   are 
shown in figure 25. The working cycles number 
increase lead to significant growth of correct 
detection probability when the false alarm 
probability remains unchanged. At the same time 
detection characteristics family density also 
increases for different false alarm probabilities. If 

5N  which is about 15 steps of a walking person 
or 8.3 s, then the detection probability 0.9PD   is 

achieved at 3 4 .q dB   Further increase of cycles 

number will lead to better correct detection 
probability but calculation time and memory buffer 
size will be greater. 

 

 
Figure 25: Person detection characteristics 

 
The proposed non-parametric detector of 

seismic signals is recommended for application in 
seismic guard systems operated in rough 
environment conditions.  

If a target is detected with signals from 
several sensors then their number increase is similar 
to increase of the working cycles number N but 
time for taking a decision is reduced. 

The proposed non-parametric detector of 
seismic signals provides true detection probability 
more than 90% at fixed false alarm probability 
0.001 and signal-to-noise ratio 5 dB and more. 
These indicators are achieved by less hardware and 
software resources than it is proposed in [7-12]. 
Non-parametrical approach to object detection is 
free of overtraining taking place in neural networks 
especially if environment conditions are not stable. 
In addition, such non-parametrical detector is self-
sufficient as there is no need to use any sensors 
besides seismic ones. 

 
3. CONCLUSION 

Therefore the proposed non-parametric 
detector of seismic signals based on comparison of 
amplitude spectrum components in an operating 
cycle over corresponding components if the 
reference cycle provides statistical indicators good 
for practice at minimal expenses of hardware and 
software resources. High true detection 
probabilities are provided at satisfactory fixed false 
alarm probabilities in the wide range of signal-to-
noise ratio. 
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The proposed non-parametric algorithm of 
seismic targets detection based on seismic signal 
and noise amplitude spectrums improve the PSL 
system detection characteristics when there is no 
enough a-priori information on statistical properties 
of measured data. Increase of work cycles or 
sensors number leads to increase of the correct 
detection probability. False alarm probability is 
stabilized by amplitude spectrum mean correction 
by the pseudo-centering procedure. The model of 
the seismic noise and walking person signal mix 
based on properties of experimental records is 
proposed for the correct detection probability 
investigation with respect to signal-to-noise ratio. 
Achievement of high enough correct detection 
probability values at small signal-to noise ratio is 
possible when false-alarm probability is not very 
high. The correct detection probability is improved 
at the same false alarm probability when the 
number of cycles is about five times increased. 
Correct detection probability achieves 0.9 at small 
signal-to-noise ratio values about 3-4 dB when the 
number of cycles is about 5. 

Further research will be directed on 
investigation of the seismic signal amplitude 
spectrum frequency range influence on false alarm 
and correct detection probability values. 
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