
Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3541

A WEB APPLICATION FOR TRAFFIC STATUS UPDATE

USING CROWD-SOURCED DATA ACQUISITION AND

REAL-TIME MODIFICATION

1SHUVASHISH PAUL, 2PINKU DEB NATH, 3NASEEF M. ABDUS SATTAR, 4HASAN U.
ZAMAN

1,2,3Student, Dept. of Electrical and Computer Engineering, North South University, Bangladesh
4Professor, Dept. of Electrical and Computer Engineering, North South University, Bangladesh

E-mail: 1shuvashish.paul@northsouth.edu, 2pinku.nath@northsouth.edu,
3naseef.mohammed@northsouth.edu, 4hasan.zaman@northsouth.edu

ABSTRACT

Traffic jams are one of the most frustrating inconveniences experienced in all the major cities of the world.
In the case of Dhaka, the capital of Bangladesh, factors such as high population density and increasing usage
of private transport result in horrendous traffic jams on a daily basis and loss of valuable working hours. This
paper introduces rTraffic -- a smartphone based web application that aims at making this issue a little more
bearable by combining a crowd-sourced data acquisition model and real-time notifications system to provide
a visual representation of the current traffic conditions in Dhaka and send notifications pertaining to the major
intersections in the city. The paper also talks about the basic methodology, low-level implementation details
and scaling factor considerations for real world deployment and performance benchmarks.

Keywords: Real-time Traffic Notifications, Crowd-sourced Data Model, RESTful Application, Android,
Traffic Congestion

1. INTRODUCTION

Bangladesh is one of the developing
countries and has been seeing continuous growth in
its gross domestic product (GDP) per capita for the
past few years [1]. As the GDP per capita increases,
so does the purchasing power an individual
possesses. Many industries are thus currently
experiencing a "boom" in the local Bangladeshi
market as citizens are able to afford more and more
products. Research has shown that the automotive
industry is one of the heavyweights among them [2].

However, as the amount of cars people own
increases - the roads that they are to drive on seldom
see any improvements. They are over-congested, and
over capacity. As a result, traffic congestion has
become a part of "Bangladeshi life." The fact that
one has to brave traffic congestion if they are out on
the streets is unfortunately now a certain
phenomenon [3]. It is not uncommon for one to have
to brave traffic jams that last from thirty minutes to
as long as three hours on the streets of Dhaka, time
that could otherwise have been put to more
productive use [4]. This issue has been growing for
the past 15 years bit by bit, and is starting to reach
critical mass [5]. There are infrastructural problems

that aggravate the traffic conditions since there are
no fast and dedicated mas rapid transits (MRTs) such
as trains etc. In addition, most the governmental and
commercial centers and service providers are located
in the capital city, including universities, banks etc.
These lead massive traffic load at all hours of the day
[4]. A feasible solution to these problems will require
long term implementations of policies and
constructions.

Nonetheless, faced with this fact of life, we,
the team behind rTraffic (Realtime Traffic) sought to
provide a logistical crowd-sourced solution to the
problem by building an application that makes the
situation a little more bearable. It collects real-time
traffic information from users who are currently on
the roads around key intersection by applying a
crowd-sourced data model, aggregates this
information and makes it available to all users of the
application. So to say, one can find out about the
status of roads one has to pass through to go to their
destination at the planning phase of their trip. They
may then make adjustments to their travel plan, or
wait until the congestion clears up. The application
also features alerts for traffic anomalies (that may or
may not be causing congestion) - which are all too
common in Bangladesh.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3542

The initial work of this proposed solution
presented in this paper was presented in [1].

2. EXISTING SOLUTIONS

Much work has been done in this area that
aims to make commuters aware of traffic conditions
before they set out on their trip globally. It is
common to find municipal governments provide
websites or APIs that make this data available for
use. This data is then leveraged by 3rd party service
providers like Google Traffic to provide real-time
traffic status updates [7]. Unfortunately though,
there are no such feeds that contain data for
Bangladesh.

Researchers from MIT have also attempted
to use cell-phone base station (BTS) data to
triangulate location information from it and then run
analysis atop it to track congested roads [8], however
this approach requires a partnership with telecom
infrastructure providers, which renders it
inaccessible for us. Researchers from IBM have
devised a way to predict traffic congestion in the city
of Dublin using Semantic Web Technologies relying
on integration with numerous sensors such as
weather data, road work information, incident or
event trackers [8], however there is no way to get
access to such data in Bangladesh in a streamlined
way even if one wishes to. Researchers from
University of Pennsylvania have tried to tackle the
issue of traffic congestion using what they refer to as
"Congestion Prediction Networks," which try to
dictate the traffic flow based on real time feedback
from the streets in an algorithmic way [9] that aims
to maximize road utilization, however this approach
also requires a feedback mechanism which we do not
have.

However, there have been some efforts in
the local Bangladeshi market to tackle this problem
as well. We have attempted to review the most
prominent ones to get an understanding of their
methodology.

2.1 GO! Traffic BD

This is a somewhat well-known application
that has attempted to tackle this issue we are with
limited success in the past. When our team tried to
use the application just to get a feel for the
application / environment, we ran into a few issues,
all of which are documented and explained below.

a) Slow / Unresponsive UI

 We got stuck several times in the log-in
screen that required us to reset the entire app.

b) Data Availability

Due to reliance on a Facebook group for

data that then has to be manually parsed and entered
into the application, data availability remains a
concern.

c) Data Quality

Contributing data is further complicated
by having to find a Facebook group and posting
there, this lowers the quality and frequency of the
average submission.

2.2 FACEBOOK GROUPS

The other solution to the issue is usually
volunteer run Facebook groups where people post
updates manually as they travel. Unfortunately, it
has the same problems as GO! Traffic due to
methodology overlap. In addition, traffic updates of
only the most frequent locations are posted and the
users have to query in the groups to know about the
traffic conditions in a specific region and wait for
others to give the updates. Another problem is that
the information is text-based, that is, the users have
to read the posts to get an idea of the traffic
conditions and there is a lack of a simple and
intuitive visualization.

2.3 PROPOSED SOLUTION

Our proposed solution, rTraffic, aims to be
free of all these issues. We have spent a considerable
amount of time to ensure a lag-free experience
throughout the application as long as there is Internet
connectivity. Our data entry methods perform
automatic validation and are available for indexing
immediately by users to deal with data quality
concerns. We are also implementing several "quality
of life" features that make it as painless as possible
to automatically contribute data since contribution
complexity plays a big role in the willingness of
users to submit data.

3. METHODOLOGIES

 At the core of the application is the
Haversine distance calculation formula, which is
used to calculate the "great-circle distance" between
two points on a sphere from their longitude and
latitude data. The formula gets its name from the
term "versed sine," which refers to a trigonometric
function which defines that the versine of an angle
equals one minus that angle's cosine. Haversine

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3543

literally refers to "half a versine." The formula is
given in its entirely below [10]:

ݒ݄ܽ ቀ

ௗ

௥
ቁ ൌ ଶݕሺݒ݄ܽ െ ଵሻݕ ൅ cosሺݕଵሻ cosሺݕଶሻ݄ܽݒሺݔଶ െ ଵሻ (1)ݔ

where ݄ܽݒሺݔሻ refers to the haversine function, and
is defined as:

ሻݔሺݒ݄ܽ ൌ ଶ݊݅ݏ ቀ
௫

ଶ
ቁ ൌ

ଵିୡ୭ୱ௫

ଶ
 (2)

 Here, ݀ is the variable in (1) that we solve
for. It refers to the great circle distance between two
points. ݎ refers to the radius that we are searching
within (defined as 5 kilometers for our application)
and ݔ	/	ݕ variables refer to the latitude of point (1,2)
and longitude of point (1,2) respectively. Once
expanded further mathematically, we can solve for
݀.

 ݀ ൌ ଵሺ݄ሻିݒ݄ܽݎ ൌ ሺ√݄ሻ (3)	arcsin	ݎ2

 Here h refers to the earlier hav (d/r). Once
fully expanded, the final formula is:

 ݀ ൌ ݎ2 arcsin (4) ݖ√

 where

ݖ ൌ ଶ݊݅ݏ ቀ
௬మି௬భ
ଶ
ቁ ൅ cosሺݕଵሻ cosሺݕଶሻ ଶሺ݊݅ݏ

௫మି௬௫భ
ଶ

ሻ (5)

 It uses this formula to calculate locations
using longitude / latitude data that is a certain radius
(5 kilometers) away from where the user is. This
formula is implemented using Structured Query
Language (SQL) by the application and is used to
lookup surrounding points of interest every time a
request comes in real time.

4. TECHNOLOGIES USED

The system is made up of two components
- an Application Programming Interface (API) that
implements the Representational State Transfer
(RESTful) design paradigm, and an API consumer
application that runs on the users' smartphones. The
server providing the API also provides access to a
database which is streamlined for fast storage and
query of Global Positioning System (GPS) data.
Several well-established web technologies are being
used to build the components, a non-exhaustive list
is shared in the next section.

5. SYSTEM DESIGN

As mentioned earlier, the system is in fact
two separate components working together in
harmony to implement a common goal. Their
implementation details as well as the components

that make up each application are shared in the
subsequent subsections. The sections discuss the
API and the Application separately for clarity. For
the API server, we used the Laravel framework
developed in PHP, which provides some of the
frequently features such as views, routes etc.
integrated with the framework which speeds up the
development and testing phases of the system
development [11].

5.1 SYSTEM COMPONENTS

5.1.1 API COMPONENTS

● Core Language – PHP 7
● Virtual Machine – Facebook HipHop
● Database Server – MariaDB 10.1 with

Galera Cluster
● Framework – Laravel 5.3
● Cache Layer – Redis 3.2
● Web Server – Engine-X (“nginx”) mainline
● CDN – CloudFlare
● Push Notifications – Firebase Cloud

Messaging
● E-mail Services – Mailgun
● Web Host – Amazon Web Services (AWS)

These components are tied together to build
a RESTful Application Programming Interface that
serves as a common gateway for information
exchange between all API consumer applications on
many platforms. We are using HTTP with TLSv1.2
as transport and Javascript Object Notation (JSON)
as the “language” our API accepts and speaks. JSON
was chosen due to ease of parsing (almost all
programming languages offer libraries – some even
native), and widespread use in API applications [12].
In addition, we can easily upgrade the various sub-
components of our servers and client applications
with the latest community-driven and enterprise
packages because the mode of data transfer of all the
popular packages is JSON.

5.1.2 ANDROID APPLICATION

● Core Language - Java with Android NDK
● Virtual Machine - Android Runtime (ART)
● Local Database - SQLite
● REST Client - Retrofit
● JSON Handler - Moshi (GSON)
● GPS Handler - Google Play Services
● Notifications - Firebase Cloud Messaging
● Object Relational Mapper (ORM) -

ActiveAndroid

These components are tied together to
implement a native, lag-free Android application

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3544

that communicates with our API to act as an API
consumer. The application is available in the form of
an apk installation in Google Play Store.

5.2 SYSTEM ARCHITECTURE

In this section, we discuss a general
overview of the system architecture of the server for
handling API requests and the Android application
which provides an interface to the users.

Figure 1: High-level Solution Layout for the API

5.2.1 APPLICATION PROGRAMMING
INTERFACE

Figure 1 illustrates the inner workings of
the individual API components. At the heart of the
application is the HipHop Virtual Machine
(HHVM), this is where our code is executed based
on user requests and the results are then sent back.
However, to do so, HHVM requires data and
services from many other components.

For our data-store, we are using the
MariaDB Database server. It was chosen instead of
other SQL implementations mainly due to two
reasons: i) ease of clustering for redundancy and
scaling factors, ii) native support for geo-spatial data
(which longitude and latitude points are). We make
use of the ARIA Database Engine (implemented by
MariaDB) to manipulate spatial data effectively
[13]. However, one database server is a single point

of failure for the application and ends up becoming
a barrier to effective scaling and clustering.

To resolve this, we are deploying MariaDB
alongside Galera - an application that makes it easier
to cluster SQL database servers. It sets up a master-
slave relationship where requests are load-balanced
between slave based on policies. This gets us high
performance alongside considerable reliability.

For the cache system, we are utilizing two
different kinds of caching. Firstly, we rely on Just In
Time (JIT) compilation features from HHVM [14] to
run our code effectively - this forms the first layer of
caching. We have a 2nd layer of caching for the data-
store itself to cope with extremely high loads in the
form of sharded redis servers. Any time an expensive
query that repeats multiple time is run, the results are
cached for a period of time. If the same query is
made before the cache timer expires, we serve that
request directly from the cache and do not have to
re-do any processing.

There are some 3rd party services that the
API also integrates with. Twilio is used to send SMS
alerts for many operational as well as traffic status
updates. The same updates are also available over
Android Notifications (through Firebase) and E-mail
(through Mailgun). All of these services are tied
together and used to expose one common interface
into the public internet through the use of the
Engine-X ("nginx") web server. We had two options
for web servers, one was the Apache HTTP server
and the other one was NGINX server. We chose
NGINX because it provides us the features to
concurrently handle multiple requests and built-in
support for load-balancing in the case of excess
HTTP requests [15]. These features will help to
upgrade our system when the number of users of our
system will increase in the future.

The entire system runs on highly resilient
infrastructure provided by Amazon Web Services
(AWS) in Singapore [16]. We used an EC2 instance
for hosting our server and a S2 instance to store the
coordinates and user updates. We are also using a
content delivery network (CDN) for performance
acceleration and security purposes. We used
Cloudflare as our CDN because it provides the
feature to cache some the frequent queries online for
a stated period of time so that the same requests are
fetched from Cloudflare instead of making a query
to our servers. The main advantage is that the
frequent requests can be serviced for a brief period
of time even if our servers go offline.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3545

5.2.2 API CONSUMER - ANDROID
APPLICATION

Figure 2 illustrates the inner workings of
the client android application. We have chosen to
design the application in a way that aims to lessen
the load on the users' personal devices as much as
possible. This is done for a myriad of performance
as well as reliability reasons - namely to prevent our
application from consuming too much resources
(which is then reflected on the device's battery life),
but also to keep the user experience as snazzy as
possible.

Figure 2: High-level Solution Layout for the Android

Application

The application delegates authentication
management and data aggregation / storage duties to
the API. Since our API exclusively communicates
using JSON, we first needed an way to be able to
speak JSON from Java. This is where Google's
GSON library comes in, it provides us with JSON
Serialization / De-serialization services.

We also needed a HTTP client that could
understand the RESTful design paradigm. For this,
we chose Retrofit - a common and popular library
for RESTful communications. By using this, we did
not have to implement things like HTTP verb
parsing, or header parsing or building interfaces for
compression/decompression.

Local data storage on the user's device is in
the form of SQLite, however the traditional ways of
implementing SQLite in Java (via JDBC) can be

quite cumbersome. Since we are using an object
relational mapper (ORM) in the API itself, we also
chose to use one in Android as well - namely
ActiveAndroid. This allows us to manipulate data in
the SQL datastore without having to write any SQL
statements manually, we can simply access data in a
object-oriented way instead. In addition, we opted to
use SQL, instead of NoSQL databases, because we
can make structured queries easily.

As our application makes extensive use of
global positioning data (GPS), we also needed a
robust way of reliably accessing the GPS subsystem
in Android. This is where Google Play Services
come in, they have built a nice abstraction layer that
takes care of GPS initialization and triangulation for
you - we can simply ask the library for the GPS
coordinates. Google Cloud Messaging (Firebase) is
used any time the API has to push a notification to
the user's device. Firebase is a form of online
database that provides fast real time access to data
and is ideal for push notifications [17]. Google Maps
is used to make sense of the surroundings around
users as well as to show real time updates via
overlaying. All of these components are tied together
by the Android Runtime (ART) to implement one
application.

6. API OPERATIONAL WORKFLOW

This section aims to explain how the
various API methods actually work under-the-hood.
Full implementation level details are given. A high
level request flow diagram can be seen in figure 3.
Each subsection explains a HTTP Verb (Request
Type), and Endpoint pair. Variables enclosed in []
are required, variables enclosed in [?] are optional.
HTTP Verb can be one of GET, POST, PUT or
DELETE. A special verb called CONSOLE will be
used to indicate that this action is not triggered by a
user, but automatically by the application itself.

6.1 GET /api/v1/points/[latitude?]/[longitude?]

By default, this endpoint returns a list of all
registered intersections/points in the system. Users
however also have an option of filtering the results
by providing the latitude and longitude parameters.
If the parameters are present, then the system tries to
locate relevant points of interest (from an user's
perspective) which are typically major traffic
intersections within a 5 kilometer radius. It is
expected that the longitude and latitude values given
are from the user's current location.

First, the data is validated to ensure that the
given parameters are in fact valid longitude and

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3546

latitude coordinates by checking if they fall within
acceptable ranges. We then check if we have cached
results for this (longitude, latitude) pair in our cache
service. If we do, we directly move to the JSON
serialization step. If we don't, the long/lat values are
converted into radians and plugged into the
Haversine distance calculation formula which is run
on all location entries in the database. The database
returns a set of rows that match the distance
requirements. This data is then serialized into JSON
and sent off to the requester over an encrypted HTTP
session. We also insert a copy of the data into our
cache servers so we can serve this exact query by
another client without having to calculate the
Haversine distance between eligible points in our
database. Since traffic architecture is fairly static, we
feel that it works well.

Figure 3: API Request Flow Depending on Request Type

6.2 GET /api/v1/reports/[id?]/[history?]

This endpoint by default returns all traffic
status update reports submitted in the last hour.
Users however have an option of narrowing down
the results that concern a specific point only by
specifying the optional ID parameter. If the history
flag is set to an acceptable value (between 1 hour and
24 hours), then historical reports will also be visible

on the generated output. Figure 4 shows a snapshot
of the json response provided by the server in the
response body when a request is sent to this
endpoint.

Figure 4: API Request Flow Depending on Request Type

6.3 GET /api/v1/reports/point/[id?]/[history?]

This endpoint is meant to return a list of all
traffic status update reports that were contributed in
the last hour by default about a specific point. If the
history flag is set to an acceptable value (between 1
hour and 24 hours), then historical reports will also
be visible on the generated output.

The very first thing that we check for is that
whether id is numeric and positive - if it is, we
consider it valid and pass it onto the database engine
to look up results. The results are cached but with a
1 minute interval (since the nature of the data is so
dynamic). If a cache-miss occurs, we go back and
fetch the data from the database. If not, it is served
directly from the cache. Once we have the data, we

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3547

serialize it in JSON and send it to the client for
further parsing.

6.4 GET
/api/v1/reports/geom/[long]/[lat]/[history?]

This method does the exact same thing as
"GET /api/v1/reports/point/[id]/[history?]," except
the user does not need to know the ID associated
with a location. They can simply look it up using
longitude and latitude. This lookup process includes
a "tolerance" of 100 meters, as in: we classify the
request to be about a specific point if the
longitude/latitude pair given is within 100 meters of
that point. This is done because pinpoint accuracy is
not possible to be achieved using consumer GPS
implementations.

6.5 POST /api/v1/reports

This method deals with the creation of
reports (both notification based and manual). In the
HTTP POSTFIELDS, a JSON encoded request body
is expected. The first thing we thus check for is
whether the request body is properly populated and
it contains valid JSON data that we can deserialize.
Once we have valid information, we then check the
report parameters for validity and if it passes this
check, it is finally committed into the database. The
validity check is meant to ensure that a few
constraints are applied on all committed data. We
check that a report does not include too many
intersections (currently, reports are rejected if they
contain more than 2 intersections to prevent spurious
or bogus reporting). We also check that all required
parameters are present.

Submitter reputation may be checked
before the final step however, if one has been found
to be submitting bogus reports - the submission may
be rejected. There are different policies that can be
tested to check reputation such as frequency of posts
and automatic detection of spam in the user updates.
Once everything is done, a success message is sent
back to the user thanking him for his contribution.

6.6 PUT /api/v1/reports/[id]

This method allows the user to edit a
previously submitted report (within the same hour).
Report ownership is checked before the edited
reports are committed into the database.

6.7 DELETE /api/v1/reports/[id]

This method allows the user to delete a
previously submitted report (within the same day).
Report ownership is checked before the deletion may
proceed.

6.8 GET
/api/v1/oauth?[code?][error?][provider?]

This endpoint handles users logging into
the application using credentials belonging to 3rd
party service providers like Google or Facebook.
Non OAuth users are currently not supported. In our
system, we implemented the three legged oauth
verification. The client application makes requests to
this endpoint specifying the OAuth service provider
and the OAuth authorization code. The API reaches
out to that provider using that authorization code and
asks them to validate it. If everything goes well, the
user is granted a session and logged in. Once this is
done, an unique access token is generated and sent
back to the user. The API expects all further requests
from that user to include this API token for them to
be considered valid. If not, an error message is sent
back to the user.

6.9 GET /api/v1/excluded-regions

This endpoint returns a JSON encoded list
of all the excluded regions that an user has
registered. We first check if the request contains a
valid authentication token and then look up the user's
details via this token. The excluded regions are then
queried from the database using this user reference.
If it is found that the user has indeed registered
excluded regions before, the results are JSON
encoded and returned. If not, an empty array is
returned.

However, if API authentication fails, an
error message is returned instead.

6.10 POST /api/v1/excluded-regions

This endpoint deals with the creation of a
new excluded region. A latitude/longitude pair and a
canonical name are expected to be within the JSON
serialized request body. If all parameters are found
to be present and API token is valid, the new entry is
added to the database and a success message
containing the ID of the newly created region is
returned to the user.

In case of any error, the user is notified of
such error by the API.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3548

6.11 DELETE /api/v1/excluded-regions/[id]

This endpoint handles the deletion of an
excluded region from an user's account. If a numeric
and positive ID parameter is given, we first validate
whether the resource referenced by the ID actually
exists in the database. If it does, we then check that
the API token provided alongside the request
actually has authorization to perform this deletion
request.

 If authorization is confirmed, we remove
the record from the database and return a success
message in the form of a JSON encoded payload to
the user.

6.12 GET /api/v1/poi

This endpoint returns a JSON encoded list
of all the points that the user has registered to receive
real-time notifications about. We first check if the
request contains a valid authentication token and
then look up the user's details via this token. The
points of interest are then queried from the database
using this user reference. If it is found that the user
has indeed registered points of interest before, the
results are JSON encoded and returned. If not, an
empty array is returned.

However, if API authentication fails, an
error message is returned instead which is handled
appropriately and the user is notified about the
request failure.

6.13 POST /api/v1/poi

This endpoint deals with the creation of a
new point of interest. A valid ID belonging to any of
the points currently in the database is expected to be
within the request body. If all parameters are found
to be present and API token is valid, the new entry is
added to the database and a success message is
returned to the user. In case of any error, the user is
notified of such error by the API.

6.14 DELETE /api/v1/poi/[id]

This endpoint handles the deletion of an
excluded region from an user's account. If a numeric
and positive ID parameter is given, we first validate
whether the resource referenced by the ID actually
exists in the database and that the user has actually
designated it as a point of interest. If authorization is
confirmed, we remove the record from the database
and return a success message in the form of a JSON
encoded payload to the user.

6.15 CONSOLE /api/v1/automate

This is a pseudo endpoint that is used for all
the automation. Any notifications of any type to be
sent to users is generated by this endpoint (behind
the scenes). This is where traffic congestion
notifications are generated based on user preferences
and sent out to users via Firebase post aggregation.
Any pre-aggregation or preemptive caching tasks are
also handled by this endpoint since it is
automatically invoked every minute. When this is
done, any task that might have been queued earlier
for background processing (to make API responses
faster) are also gradually de-queued and processed.

7. OPERATIONAL WORKFLOW

The application is built using components
of Google's material design and tries to follow all
design requirements strictly. This means that
rTraffic is visually similar to many native Android
applications by Google or other publishers and users
can fully expected "gestures" that they are used to
function just as effectively in our application. One
example of such gestures could be the presence of a
navigation drawer that pops out anytime the
application's home button is clicked, or a toolbar-
based UI.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3549

Latter subsections aim to explain how

every implemented feature on the application
actually works behind the scenes. Figure 5 aims to
break this down in a graphical way.

7.1 Android Application Structure

In android architecture, a specific page of
an application is referred to as an "activity." Specific
use cases or application scenarios are implemented
as activities that are paired with an XML layout
defining the design of that page.

The activity itself is defined as a java class
file which controls the behavior of the elements
defined in the XML file. The control flow of the
activities and the activity to take control at
application startup is defined in a special XML file
called AndroidManifest.xml. When an activity takes

control of the application, it passes through different
stages of its life-cycle determined by the user's input
and may pause or terminate its life-cycle and pass
control to other activities.

7.2 Use Cases And Features Of The Application

The following lists the generalized use
cases of the many features of the client application
described on a per activity basis. In android
development terminologies, an activity class is
dedicated to handle the logic involved in each of
these user activities.

7.2.1 Welcome

The welcome activity is run only once after
the user installs rTraffic on their phone. Its goal is to
inform the user of the application's features and

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3550

many use cases. Essentially, it is a list of 5
presentation slides that the user may "swipe" through
to learn more about the application's various
functionalities. Once the user is finished going
through the slides, execution control is handed over
to the authentication flow described in the next
subsection.

7.2.2 Authentication

Authentication is the first "activity" called
once the application has successfully started up. As
we are authenticating against Google (instead of a
local user database exclusive to our application), the
first thing we check for is whether Google's
authentication services API is available and
reachable from the client application. If this check
succeeds, we simply instruct the user to choose from
a list of Google accounts that are currently active on
the Android device. Users may choose to add a new
Google account to the system from this window as
well if they do not have any accounts already
registered to the device, or if they would like to use
a separate account for rTraffic.

Once the user chooses the account that they
would like to use, a request is formed and sent to
Google to validate the user's authenticity. If Google
responds positively to this API request, the user's
authentication state is internally updated and they are
then redirected to the "Main Activity". The API
returns an authentication token at the end of this
process and all subsequent requests are expected to
be signed using this token. If a request is sent without
this token, the API refuses to service said request.
This token has an expiry date and the server requests
to the Google’s authentication services if the token
expires during the user’s usage period of the system.

 However, if Google denies the
authentication request, the user is notified that their
log-in attempt has failed and given the option to try
again. It is worth noting that we import the user's
name, e-mail address and current avatar from their
Google account. Any changes made on the account
will also show up in our application.

7.2.3 Main Activity

The main activity features a full-screen
map where traffic conditions are represented using
various colorful markers and drawings across the
roads. Key intersections are marked with 3 vertical
dots that can change color to indicate the traffic
condition of that intersection. We support 3 states -
namely, Un-congested, Congested and Slow but

Moving. Based on the current state of a location, the
3 vertical dots also change color to Green, Red and
Yellow (respectively). A special color (white) is
used to indicate the lack of data about a point. It is
expected that most users wishing to consume the
data provided by rTraffic will be using this activity
the most.

Individual users' reports are visualized on
the map as "polylines" that go along roads or
highways. The term polyline refers to "polygonal
lines." This is what Google calls lines that follow a
road or a specific area. These are also color-coded in
the same way as the intersection status indicators.
The intersections' status is derived from the status of
the polylines passing through them, in fact. So to say,
if a polyline with the status set to "congested" passes
through an intersection, that intersection's status will
also be set to "congested," and it will change its color
to red to reflect this change. Users may also click on
intersection markers to read comments contributed
by users when submitting reports that go through the
intersections. Users may also utilize the search
module to find an intersection quickly. Figure 6(a)
shows the Main Activity and figure 6(b) shows the
Search Module that is accessible from the toolbar.

 Figure 6: Main Activity

7.2.4 Traffic Reporting

This activity incorporates a full-screen map
much like the main activity. Once loaded, it tells the
user to long-tap at the starting point of the location
in the map that they intend to submit a report for.
Once they do so, the app prompts them to similarly
tap at the ending point of their reported location.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3551

Once this information is provided, the application
consults the Google Maps directions API to find all
possible paths between these two points that go
through publicly accessible roads. The user is then
instructed to choose one of them and confirm their
intent of submitting a report. The user may choose to
start over by pressing the "Clear" button in case of
malformed input being accidentally provided.

Once they confirm that everything is
alright, a new window pops up that asks the user to
select the severity of the traffic condition in the
region. They may also provide an optional comment
at this stage. The option to anonymously submit a
report is also provided here. Once all data is
provided, the application consults the back-end API
to submit the report and thanks the user. All of this
data is encapsulated into a "report" and also added to
the main map in the Main Activity. Figure 7(a) and
figure 7(b) show the visual representation of this
activity.

Figure 7: Traffic Report Activity

7.2.5 Account Management

Users may invoke this activity from the
navigation drawer. Its purpose is to allow an user to
sign out and change the Google account that they
may be using rTraffic with at present. Users also
have the option of revoking all previously granted
permissions to rTraffic on their Google account via
a special "Disconnect" button. Both actions are
performed by making API requests to Google with
previously saved access tokens and updating the
user's authentication state based on response from
Google.

7.2.6 Excluded Regions

Users may register arbitrary locations as
"excluded." What this means is that the application's
background data-collection services as well as real-
time notification services will all be suppressed if it
detects that the user is very close to or inside of an
area that they had designated as excluded. The
primary motivation behind implementing this
feature was to give users more control to the
application's behaviors. For example: an user might
live next to a highway and thus receive requests to
contribute data on a regular basis. The user may not
appreciate such requests, and this feature allows the
user to suppress the application from ever bothering
him inside his own home.

Users may mark a region as excluded by
long-tapping that location on the full-screen map of
this activity. Once done, they will be asked to
provide a name for this region and it will be
committed to the API server as well as the local,
internal database. Users may also remove any
previously registered excluded regions from this
activity by pressing the "Delete" button associated
with that region. A visual representation of this
activity may be seen at figure 8(a).

Figure 8: Excluded Regions and Points of Interest

Activities

7.2.7 Point Of Interest

This activity allows the user to register for
real-time updates about specific intersections. The
user interface consists of a list of all intersections
that the application knows about, each row of the list
contains a button that may be toggled to express
interest. When the toggle button is clicked, a request

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3552

is made to the API back-end server to keep track of
the users' interest or disinterest. The API will send
any and all reports concerning these intersections as
Firebase push notifications to this user's device. We
chose to require users to register to receive push
notifications because otherwise the amount of
notifications that we have to push might end up
overwhelming the user.

A search functionality is also available to
allow users to quickly find the intersections that they
are interested in. A visual representation of this
activity may be seen at figure 8(b). Here, the labels
‘ON’ and ‘OFF” at the right corner of each
intersection indicates whether the system should
send updates regarding the specific intersection.

7.2.8 Settings

This activity has some crucial application
settings that allow the user to customize the
application's behavior to their liking. Notably, the
user may toggle the background service that prompts
them for data collection on and off here. Users may
also centrally disable all notifications here and
choose an agreeable synchronization period for the
API (defaults to every 5 minutes). A visual
representation of this activity may be seen at figure
9(a).

7.2.9 Help

This activity features a list of "Frequently
Asked Questions (FAQ)" that the user may go
through to learn more about the application. We have
also tried to put justifications behind the various
device permissions that we require from the user to
access facilities such as GPS/Internet here. The help
contents are not stored alongside the application in
the user's device, but rather retrieved dynamically
from the back-end system. For this reason, it is
possible for us to update the help content without
updating the application.

7.2.10 Feedback

Users may choose the feedback option from
the navigation drawer anytime they choose to send
feedback to us. We are using the Doorbell feedback
management system which allows to get a
description of which activity the user was using as
well as what they were trying to do when they ran
into issues and chose to submit feedback. We can
then reply back to the feedback as needed. A visual
representation of this activity may be seen at figure
9(b).

Figure 9: Application Settings and Feedback Activities

7.3 Background Services

The application also runs a number of
background services that run on the user’s’ devices
indefinitely and are designed to handle events when
the application is dormant or perhaps not running at
all. These services are designed to be as lightweight
as possible which means that their memory and
power usage do not hamper the user experience. This
section is meant for describing them.

7.3.1 Real-Time Notification Services

This service consumes the Firebase
notifications sent to the application and updates the
internal database(s) accordingly. For example: If the
service is notified that a new report has been
received by the API, it reaches out to the API and
downloads that report. It then draws that report atop
the main map of the application. Once this is all
done, it checks (to double confirm) that this report
concerns a location that the user had previously
"shown interest" in (via the Points of Interest UI). If
that check comes back as positive, it generates a
notification to alert the user on the traffic status
change.

This service also handles informational
notifications that we can send to the user announcing
changes to the app or any generic information
broadcast.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3553

7.3.2 Traffic Status Services

This service is invoked every n minutes (n
can be altered by the user in the settings activity) and
is meant to determine whether a user should be
prompted to contribute traffic status data to the
application or not. It first determines whether
internet access and GPS access is available to us. If
yes, it then locates the user's longitude/latitude via
the GPS and reaches out to the Google Geocoding
API to convert that to a human readable address. It
then checks the address to determine whether the
user is currently on a road or not. If positive, user's
current movement speed is profiled (to determine if
a possible traffic jam is in play). If the movement
speed is determined to be less than 10 kilometers an
hour while on a road, a notification is generated
asking the user to confirm whether they are stuck in
a traffic jam.

The user has the option of dismissing the
notification or agreeing to contribute data. If they
respond positively, the user is taken directly to the
"Traffic Reporting" activity with the GPS focus on
their current location.

8. RESULTS AND DISCUSSIONS

We have implemented an API back-end
application as well as a native Android application
following the system design that we described in the
previous sections. The application is presently
available on the Google Play Store (Android
marketplace). Any user with a suitable Android
device can simply search for 'rTraffic' in Google
Play Store to download it.

The general user interface of the
application is shown in figure 6 - 9. We have taken
care to preserve precious system resources as much
as possible, the application is designed to be fast and
lightweight. This section includes some performance
benchmark results from the solution that we built.

8.1 Benchmarking Api Performance

APIs (and web properties in general) are
benchmarked in terms of how much time it takes
them to service a single request and how many
requests the system is capable of servicing in a
second. We have benchmarked the rTraffic web API
accordingly, the results can be seen in the table
below. The tests were performed using the industry
standard ApacheBench tool. It is worth mentioning
that the system where the API was deployed at the

time had the following hardware specifications: Intel
Core i7 3770k CPU, 32GB DDR3 RAM and a
512GB SSD.

The test only included those endpoints that

would potentially receive the most load. The first
column defines the endpoint and the HTTP request
verb. The second column is the amount of requests
that the API answered within a second while the
third column is the (average) time taken to service a
single request. It should be noted that network
latency is ignored in this benchmark as the testing
was performed from the same machine where the
API service was running. The results in table 1 are
from a single non-load balanced instance of the API
server, it is possible to increase performance
exponentially by switching to a load balanced design
as needed.

Table 1: API Benchmark Results
API Endpoint Requests

Per
Second

Time Per
Request

points(GET) 852 1.175 ms

reports(GET) 799 1.251 ms

reports(POST) 621 1.457 ms

excluded-regions (GET) 904 1.107 ms

excluded-regions (POST) 653 1.394 ms

poi (GET) 820 1.210 ms

poi(POST) 580 1.642 ms

8.2 Android Application - Resource Usage

Unfortunately, due to how fragmented the
Android ecosystem is, benchmarking applications
yield subjective rather than objective results. The
following results were obtained from a Samsung
Galaxy Note 3 device through the use of the Android
Device Monitor. It should be noted that resource
usage and performance can vary wildly from device
to device due to how vendors can customize the
systems.

Table 2: Resource Benchmark Results
Metric Measurement

CPU Usage (active) 30%

CPU Usage (background) less than 5%

RAM Usage 46MB

Network I/O (init) 5MB

Battery Impact (active) 10% per hour

Battery Impact (background) determined by config

9. FUTURE WORK

The objective of our endeavor is to mitigate
the traffic congestion in a major city and help users

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3554

plan their schedules and travel paths in order to save
time and money. The current system works solely
based on user contributed data. We have plans to
implement pattern recognition capable of actually
predicting traffic conditions using machine learning
or artificial intelligence algorithms in a future
version.

10. CONCLUSION

In this paper, we have demonstrated the
methodology to develop an application that collects
traffic updates from the users and present the data in
the form of relevant notifications and structured
visualization on the map of Dhaka city. We have
experimented the usage of the application on a daily
basis and satisfied with the application’s
consumption of mobile resources and the speed of
receiving real time updates. While we believe our
method is technically superior to all existing
implementations within the country at the time of
writing, success will only be possible if a significant
amount of adopters use the app and contribute data
towards the service.

REFRENCES:

[1] “Per capita income rises to $1466”, The Daily
Star, 2016. [Online]. Available:
http://www.thedailystar.net/frontpage/capita-
income-rises-1466-1204930. [Accessed: 28-
Nov- 2016].

[2] “2015 Auto Industry Trends In Emerging
Markets - Carmudi BD”, 2015 Auto Industry
Trends In Emerging Markets - Carmudi BD.,
2015. [Online]. Available:
http://www.carmudi.com.bd/research.
[Accessed: 28- Nov- 2016].

[3] J. Rosen, “The Bangladeshi Traffic Jam That
Never Ends”, The New York Times, 2016.
[Online]. Available:
http://www.nytimes.com/2016/09/23/t-
magazine/travel/dhaka-bangladesh-traffic.html.
[Accessed: 28- Nov- 2016].

[4] K. Mahmud, K. Gope, S. Mustafizur and S.
Chowdhury, “Possible Causes & Solutions of
Traffic Jam in Dhaka City”, Journal of
Management and Sustainability, vol. 2, no. 2,
2012.

[5] K. Nasrin, R. Jonathan, “Urban development
and livelihoods of the poor in Dhaka”, 2005.

[6] S. Paul, P. D. Nath, N. M. A. Sattar and H. U.
Zaman, “rTraffic - a realtime web application
for traffic status update in the streets of
Bangladesh”, 2017 International Conference on

Research and Innovation in Information
Systems (ICRIIS), Langkawi Island, Malaysia,
16-17 July, 2017.

[7] “Stuck in traffic?”, Official Google Blog , 2007.
[Online]. Available:
https://googleblog.blogspot.com/2007/02/stuck
-in-traffic.html. [Accessed: 28- Nov- 2016].

[8] C. L. David, “Traffic lights: There’s a better
way”, MIT News. [Online]. Available:
https://news.mit.edu/2014/traffic-lights-theres-
a-better-way-0707. [Accessed: 28- Nov- 2016].

[9] M. Rahul, L. Insup, and S. Oleg, “Real-Time
Traffic Congestion Prediction”, NSF-
NCO/NITRD National Workshop on High
Confidence Transportation Cyber-Physical
Systems, November 2008.

[10] Van Brummelen, Glen Robert, “Heavenly
Mathematics: The Forgotten Art of Spherical
Trigonometry”, 2013, Princeton University
Press. ISBN 9780691148922. 0691148929.
Retrieved 2015-11-10.

[11] “Laravel”, laravel.com [online]. Available:
https://laravel.com

[12] C. Douglas, “The application/json Media Type
for JavaScript Object Notation (JSON)”,
JSON.org, July, 2006.

[13] “SPATIAL INDEX”, MariaDB
KnowledgeBase.[Online]. Available:
https://mariadb.com/kb/en/mariadb/spatial-
index. [Accessed: 28- Nov- 2016].

[14] “Faster and Cheaper: The Evolution of the
hhvm JIT”, HHVM. [Online]. Available:
http://hhvm.com/blog/2027/faster-and-cheaper-
the-evolution-of-the-hhvm-jit.[Accessed: 28-
Nov- 2016].

[15] “nginx”, www.nginx.com [online]. Available:
https://www.nginx.com

[16] “Cloud Products”, aws.amazon.com [online].
Available: https://aws.amazon.com/products

[17] “Firebase”, firebase.google.com [online].
Available: https://firebase.google.com

