
Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3511

 DETERMINING THE SIMILARITY OF UML-MODELS BY
COMBINING DIFFERENT SOFTWARE PROPERTIES

1ALHASSAN ADAMU, 2* WAN MOHD NAZMEE WAN ZAINON
1Department of Computer Science, Kano University of Science and Technology Wudil, Nigeria

2School of Computer Sciences, Universiti Sains Malaysia, Malaysia
E-mail: 1kofa062@gmail.com, 2nazmee@usm.my

ABSTRACT

One of the most important elements of every software system is its design architecture. Software design is a
demanding task that requires lot of experience, expertise and knowledge of many different types of design
alternatives. Each software engineers acquires more specific knowledge as he/she participate in a new project.
Experienced engineers are very vital asset to Software Company, especially in a high competitive market
environment; as such reusing knowledge of experienced engineers can save a lot of cost and time to the
software company. UML models are de facto modelling language used by many software engineers during
the software design stage, its receiving a widespread attention in the field of software reuse. It’s not surprising,
because of the benefits that can be reaped out during the reuse of early software design is numerous, and it
can lead to reuse of all related work-products. There is considerable amount of works that takes place within
the scope of UML models reuse, this paper presents an experimental results of different features of UML
models that are used during the matching and retrieval of UML diagrams from repository.

Keywords: UML Models, Similarity, Software Properties, Reuse.

1. INTRODUCTION

Software reuse is the creation of software system
using previously developed software rather than
development from the scratch [1]. It helps to prevent
the reinvention of the wheel during the software
development. The benefit of software reuse includes
accelerated software development, risk reduction
process, effective use of specialists, reduction of
development time, improvement of productivity and
increase in the overall quality of software products
[2]. However, these advantages do not come without
any drawbacks. According to Salami and Ahmed [3],
some of the challenges of software reuse include
increased effort to create and maintain components
library, effort to find and adapt reusable components,
lack of tool supports and increase in maintenance
cost.

According to Kotonya, Lock [4] every year, more
than $5 billion worth of software projects are
cancelled or abandoned worldwide. Many of these
projects are dropped not because their software failed
but because the project objectives and assumptions
changed. Usually, the failed software projects are
locked in potentially reusable software components.
If we can find efficient ways to salvage and reuse
these components, significant amount of the original
investment can be recovered and new software can be

developed rapidly at low-cost.
There are two types of software reuse: systematic and
opportunistic [5]. In systematic reuse, software is
particularly developed to be used in the future. This
results in robust, well documented, and thoroughly
tested artifacts. However, according to Salami and
Ahmed [3], Keswani, Joshi [6] these types of reuse
requires time, effort and additional cost of making
components reusable. Meanwhile, many
organizations are unwilling to sacrifice since there is
no guarantee that such components can be reused in
the future. However, in opportunistic reuse,
developers come to the conclusions that a component
is reusable when they realised that the previously
developed component can be used in the new
software products. However, according to Salami and
Ahmed [3] the components might not be in their best
form of reuse.

Software reuse can be carried out in four phases:
representation, retrieval, adaptation, and
incorporation [7]. During the representation phase,
the fragment (i.e. query) of the software to be
developed is presented. In the retrieval phase, the
software components that are similar to the query
with minimal adaptation cost are selected from the
repository. During the adaptation, the components
are modified to suite the need for the current software
under development. Finally, in the incorporation

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3512

phase, the new software components are integrated
back to the repository for future reuse.

Software systems consist of many artifacts that can
be used to develop other software. These artifacts can
range from the software requirement gathering down
to software documentations, with source code reuse
as the most practice type of reuse. However, reuse at
the source code level represents a small fractions type
of software reuse, because the reuse is delayed to
occur at the later-stage of software development. The
benefit of software reuse can be multiplied if it occurs
at the early stage (such as software designs) of
software development [8], because all the
corresponding later stage artifacts can also be reused.
However, the main challenges faced by software
developers is the appropriate tools that can support
the matching and retrieval of previous software
artifacts from repository.

There are four stages that are involved in software
reuse: representation, retrieval, adaptation and
incorporation [9]. At the representation the initial
draft of the software to be developed is presented as
query to the reuse system. The software artifacts that
are similar to the query with minimal adaptation cost
are selected in the retrieval stage. During the
adaptation, the retrieved artifacts are modified for
future reuse. Finally, at the integration stage the new
artifacts are stored back to repository. Among all the
reuse stages retrieval plays a critical role [7]. It
consists of two main activities: navigation and
matching. The navigation determines the order in
which artifacts are visited in the repository, while the
matching defines the order in which artifacts are
selected based on their similarity with the query draft.
This paper focus on the matching based on the
similarity between the software designs modelled
with UML diagrams.

Similarity assessment of UML diagrams is the task
that correspond to identifying the semantic
correspondence between elements of two diagrams
(e.g. class names). It is task that is error-prone,
because these diagrams while representing similar
software system functionalities are used
independently by different software engineers, thus
creating inconsistencies and design differences
among the diagrams.

Most of the existing works in the literature
software design reuse rely on the use on single type
information contained in the diagrams, with some
relying on the information contained inside the UML
diagrams, for example the studies by Robles et. al
[10] and Gomes and Leitão [11] which focus only
class diagrams. Others focus on the structural
representation of the diagrams and usually
formulated as graph matching problems, such as the

work of Salami and Ahmed [8], Park and Bae [7], and
Assuncao and Vergillio [12]. This paper proposed an
approach on how the similarity between UML
diagrams can be computed by combining different
software properties.

2. RELATED WORKS

There are several works in the literature that focus
on the reuse of software design, with some relying on
the information contained inside the UML diagrams,
for example the studies by Robles et. al [10] and
Gomes and Leitão [11]. Others focus on the structural
representation of the diagrams and usually
formulated as graph matching problems, such as the
work of Salami and Ahmed [8], Park and Bae [7], and
Assuncao and Vergillio [13]. Most of the existing
work that consider the internal information of UML
diagrams to compute the similarity are based on
ontologies.

The ontology approaches rely on the semantic
meaning of the objects in UML diagrams, for
example the names of classes, attributes, and
methods. This approach is particularly important
when all the names of the objects appearing in the
diagrams are written using Standard English words.
However, if the object names in the class diagrams
are not Standard English words, the ontology will
break. Therefore, the similarity values returned by
such approaches will be inaccurate. On the hand, the
structural similarity is based on the relationship
between the classifiers. Class diagrams are converted
to equivalent graph representation in which the
classes represent the nodes of the graph and the
relationship between the classes represent the edges
of the graph.

Significant research has been carried out on UML-
based matching. For example, Ali and Du [14] used
conceptual graph to aid the retrieval of software
models. The similarity computation was based on the
estimation of the conceptual distance between terms
in the query and the terms in repository models.

On the other hand, Robinson and Woo [15]
compute the similarity between sequence diagrams
using SUBDUE [16] graph matching algorithm.
Sequence diagrams were represented as conceptual
graphs in which the object names in the sequence
diagrams represents vertices, and the relationships
between the diagrams (messages) represented the
edges of the graph. The SUBDUE algorithm find the
similarity between the graph by comparing the
substructures of sequence diagrams in query and
repository.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3513

Srisura, Daengdej [17] proposed an approach of
retrieving previous use case diagrams stored in
repository using CBR. The retrieval method is based
on two dimensions: use case and actor dimension, and
relationships dimension. The use case and actor
dimension consist of use case, actor, and system
boundary components represented as text-based
information. During retrieval, the words found in
query and repository are extracted and formed a
searched dictionary.

The similarity is computed as the average of the
number of matched words found between query and
repository use case diagrams. In the relationships
dimension, the similarity is calculated based on three
subcomponents: the relationship type, navigator, and
multiplicity relationship. Each of the relationships is
assigned a weighted value indicating the influence of
the relationship in the diagram. Finally, the actual
degree of similarity is returned by the CBR engine,
and the appropriate diagrams were selected for reuse.

More research in this concern by Park and Bae [7]
put forward two-stage framework to retrieve UML
artifacts from repository. In the first stage the
similarity between class diagrams was computed
using structured mapping engine (SME). SME is
analogical reasoning mapping technique which
allows mapping of knowledge from one domain to
another by considering the relational communalities
between objects in the domain regardless of the
objects involved in the relationships. The subset of
the repository UML projects was selected for
subsequent comparison using class diagram. In the
second stage, sequence diagrams in the shortlisted
models were converted to message-order-graph
(MOOGs), where nodes denote the location where
events occur (message send or received) in sequence
diagrams and the edges denote the flow of events
between objects and the flow of time inside each
object. The similarity between two MOOGs was
computed based on the number of nodes and edges in
each of the graph using graph matching algorithm.

Paydar and Kahani [18] suggested a semi-
automatic approach to adapt UML activity diagrams
to create new use case diagrams. The information
regarding use case diagrams, activity diagrams and
class diagrams are stored in a model repository.
Consequently, the similarity of two use cases was
computed based on their semantic similarity. The
semantic similarity was computed in two aspects: the
similarity of the sole use cases and the similarity of
the context in which the use case exists. The measure
of the semantic similarity was based on WordNet.
Finally, the semantic similarity of two use cases was

computed as the weighted sum of their similarity
values.

In [19] the similarity between class diagrams is
computed from their graph representation, in which
class diagrams are converted to a weighted directed
graph, where class names represent the nodes of the
graph and the relationship between the classes
represents the edges of the graph. The similarity
between two class diagrams is computed from the
adjacency matrix of their graph representation with
the aid of GA. The adjacency matrix contained the
type of relationships between the classifiers.

In [13] particle swamp optimization algorithm was
used to aid the retrieval of UML class diagrams from
repository. The similarity between two class
diagrams is computed as a n aggregation of two
similarity measures: (i) name similarity and (ii)
relationship similarity. The name similarity is
computed using Levenshtein Distance [20] as the
measures of the number of characters in a strings
required to change to obtain another string. The
relationship similarity is computed based on the
relationship between classifiers in a class diagram.

In [21] a method of computing the similarity
between query and repository models is presented.
The similarity between class diagrams is computed
using three type of UML diagrams information: (i)
lexical naming information (shallow), (ii) internal
information, and (iii) neighborhood information. The
shallow lexical information is used to compute the
similarity between entities names in UML class
diagram. The internal information is used to compute
the similarity of the internal properties of classes (i.e.
attributes) and the behaviors (i.e. operations).

The neighborhood information is used to compute
the similarity of the structural relationships of class
diagrams. The similarity between concepts in class
diagrams are computed based on their semantic
similarity (e.g. synonyms, hyponyms) according to
the WordNet is–a hierarchy of concepts. The
neighborhood information is compute from the
graphical representation of class diagrams. Finally,
greedy algorithm is applied to find the
correspondence between the elements as an
aggregation of the similarity measures.

Furthermore, a similar approach was reported by
[22] where sequence diagrams were converted to a
directed graph, the similarity between the graphs was
determined with the aid of genetic algorithm (GA).
The GA helped to terminate the searching process in
order to avoid exhaustive comparison. The
termination criteria were based on three conditions:
first, if the fitness value reached 0, it indicated the
maximum similarity between class diagrams, second,
if the maximum number of iteration reached, or if the

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3514

fitness function did not improve within a given
number of iterations.

In more recent studies by [1] state machine
diagrams retrieval approach was presented. State
machine diagrams were represented by finite state
machine diagram in which i) every states in the state
machine diagrams represents states in the finite state
machine, ii) the transition between one state to
another in state machine represents the transition in
finite state machine. The similarity between state
machines diagrams is computed by means of
similarity function table containing the differences
between the various types of relationship in UML
state machine diagram.

Different to the existing works, this paper presents
an approach of accessing the similarity between
UML-models by combining different software
properties. Typically for each software system there
is a set of UML models that describe it’s structural,
functional, and behavioral perspectives [21]. Our
focus on this paper is on two different diagrams
namely class and state machine diagrams.

3. RETRIEVAL APPROACH

Retrieval involves the process of matching query and
repository diagrams focusing on the most useful
related to the problem at hand. A similarity measure
has to be applied to allow retrieving the most similar
diagrams. The retrieved diagrams provide a solution
to the new problem at hand. Fig. 1 shows the retrieval
engine cycle: it consists of old problems and their
solutions stored in the repository. The repository is a
library system for storing and managing of software
components for building business applications. It
supports the storing, registration and management of
all software artifacts produce during software
development lifecycle, and support the reuse of those
components. It can contain different information,
depending on the scope of the system [23].

Fig. 1: Retrieval System

In similarity computation, query and repository
diagrams are retrieved based on measuring their
similarity. The usefulness of a diagram is estimated
based on the presence or absence of similar features
between the query and repository. The similarity is
access through numeric computation and reflected as
a single value; for example weighted sum, which
shows all aspect of the similarity. There are three
similarity metrics to be used by the retrieval engine.
These metrics are Concept Similarity computation
(CSim), Functional Similarity Computation (FSim)
and Metric Based Similarity Computation (MBSim)
as shown in Figure 2.

Concept similarity computation is performed by
comparing the concept name appearing in both query
and repository models with the aid of WordNet
ontology. WordNet is built around the concept of
synset. Synset is concept represented by one or more
words. One words can be used to represents the
meaning of the same synset, for example a word
mouse have two meanings, it can refers to computer
mouse or rat; a words that can be used to represents
one synset are called synonyms while words with
more than one meaning are referred to as
polysemous.

If the concept appearing in query and repository
are not valid English word, the similarity
computation can break since WordNet ontology is
centered on the use of valid English words. In this N-
Gram similarity is applied to compute the similarity
based on the number identical substrings of length n
contained in both strings. The second approach of
similarity computation is the Metric Based.
Computes the similarity between query and
repository by comparing the metric values of both
query and repository diagrams. It is expected the
corresponding metric for similar software should not
differ significantly.

Figure 2: Similarity Computation Approach

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3515

Software engineers are often faced with many
problems in finding perfect solutions. These solutions
are either impossible or impractical to achieve.
Software engineers are left with the options of near
optimal solutions or solutions that fall within a
specified acceptable tolerance. Precisely, these
factors make robust metaheuristics search-based
optimization technique readily applicable [24].
Taking into consideration when exploring large
repository, the search space can be exponential since
huge number of candidates solutions need to be
analyzed, accordingly finding a mapping that
produces optimal similarity of UML artifacts
represents an NP-hard problem. These limitations
motivated some authors to use heuristics search
techniques, particular Genetic Algorithm [19] and
Particle Swamp Algorithm [8] to properly deal with
UML artifacts retrieval problem. Different to the
existing approaches, this paper proposed the use
Harmony Search Algorithm to aid the retrieval of
similar diagrams from repository.

Harmony Search algorithm (HS) was developed
by Geem, Kim and Loganathan [25] in 2001. The
algorithm mimics the behaviors of music
improvisation process. Harmony search had been
applied in a wide range of optimization problem, and
has proved to have several advantages over the
traditional optimization techniques. The general
procedures of harmony search algorithm is describe
as follows:

Step1: Create and randomly initialize a harmony
memory (HM) with size HMS.

Step2: Improvise a new harmony from the HM.
Step3: Update the HM. If the new harmony is better

than the worst harmony in the HM, include
the new harmony into the HM, and exclude
the worst harmony from the HM.

Step4: Repeat Steps 2 and 3 until the maximum
number of iterations is reached.

Harmony memory is a set of solution vectors [26], it
is similar to population in genetic algorithm. It is
governed by three distinct rules: i) the harmony
memory size (HMS), or the number of solution
vectors in the harmony memory; harmony
consideration rate (HMCR); pitch adjustment rate
(PAR); and finally the number of improvisation or
the algorithm stopping criteria [27]. Figure 3 shows
how Harmony search algorithm is used in the
retrieval of similar diagrams from repository.

Figure 3: Retrieval with Harmony Search Algorithm

At the initial stage, a new harmony vector or
population is generated based on the three rules:
memory consideration rate, pitch adjustment rate and
random selection. This procedure is called
improvisation in harmony search algorithm. The
initial vectors are generated randomly from the old
software designs in the repository. Once the initial
population is formed the fitness value of each solution
vector in the HM is computed and the best values are
determined. The improvisation continues until the
stopping criteria is reached. If the best value is found
the algorithm will re-evaluate the fitness function and
determined the new best fitness values and then
update Harmony Memory, otherwise the algorithm
will run until the maximum number of improvisation
reached.

4. SIMILARITY MATCHING

Similarity estimated the present or absent of
similar features between query and repository
diagrams. The similarity is computed through a
numeric computation and reflected a single value
indicating how similar the query is with the existing
software projects in the repository, the value always
lies between 0 and 1. There are three similarity
measures used during the Multiview similarity
assessment: structural similarity, functional similarity
and behavioral similarity. Each of this similarity is
discuss in the subsequent subsections.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3516

4.1 Structural Similarity

Class diagram depicted the structure of a system by
showing the system’s classes and the relationships
between them. This section discusses the metrics for
computing the similarity between different software
systems by comparing the system UML class
diagrams. Class diagrams consist of two different
properties:

i) The structural relationship between the
classifiers in class diagrams and

ii) The conceptual elements within the class
diagrams classifiers.

Therefore, the similarity of class diagrams can be

computed as the aggregation of these two elements.
For the structural relationship the similarity between
class diagrams is computed as the mapping of one
type of relationship to another type of relationship in
different class diagrams. For example what is the cost
of mapping association relationship to an aggregation
relationship? Interested readers may refer to [13, 19]
for more details. On the other hand, the conceptual
similarity is inspired from [13] in which the similarity
of the internal information in the classifiers was
computed as the edit distance between the classifier’s
elements Edit Distance is the minimum number of
edits required to transform one string into another
string [28]. It had several applications in the areas of
bioinformatics such as DNA or protein alignment,
file comparison, gas chromatography and speech
recognition [29]. The similarity between two class
diagrams is computed based on the minimum
(characters) of edits required to transform one
concept in one diagram to another.

Let C1 and C2 be two class diagrams having
number of classifiers of size of |S1| and |S2|
respectively, the similarity measure of two class
diagrams can obtain from the number of matching
classifiers. We defined a mapping (R1,R2) from one
class diagram to another if the relationship between
classifiers in class diagram A mapped to the type of
relationship in classifiers in class diagram B as shown
in Eq. (1) as follows:

CA,Bi,j are number of classifiers in class diagram A
and B respectively. R1 and R2 are the types of
relationships contained in class diagrams A and B.

The similarity between two class diagrams is
computed as the aggregation of the structural and the

internal information between the classifiers in class
diagrams using Eq. (2) as follows:

Where C1 , C2 are two class diagrams, map(Rc1 ,
Rc2) are the mapping of the relationship in one class
diagram to another, ED(CI1 , CI2) is the similarity of
internal information contained in class diagrams, and
w1 and w2 are weight factors that determined the
relative importance of structural and internal
information of class diagrams.

4.2 Behavioral Similarity

The behaviour of a software system is manifested
in state machine diagram. State machine is a
behavioural diagram that portrays the states an object
goes through during its life time in response to
events, together with the responses to those events by
the object. The similarity between two state machine
diagrams can be computed from their graphical
representation. The approach of accessing the
similarity of groups of state machine diagrams is also
discussed since software system are hardly modelled
using single state machine diagram.

The similarity of two state machine diagrams can
be computed from their given transition matrix
representations. Let S1 and S2 be two state machine
diagrams whose degree of similarity is to be
determined, and let Tm be the transition matrix that
contained all the type of relationship between one
state and another in state machine diagram. The
similarity of two state machines diagrams can be
computed using Eq. (3).

ܵ݅݉ሺ ଵܵ, ଵܵሻ ൌ 	
∑ ∑ ܶ݉ሺ݅, ݆ሻ

ୀଵ

ୀଵ

max	ሺܶ݉ሺ݅, ݆ሻ

Where Tmi and Tmj are the transition matrix of S1

and S2, max are functions that return maximum values
of two of its arguments, i,j are the number of rows and
columns in Tm. Interested readers may refers to our
earlier work [1] for more detailed.

4.3 Aggregation of Two Similarity Methods

Software system is commonly modelled from
different perspectives using different UML diagrams.
These diagrams represent the different views of
software. Rather than relying on single views, this
section discussed the way of accessing the similarity
of software system from multiple views by

ܵ݅݉ሺܥଵ, ଶሻܥ ൌ ܵ݅݉ሺ݉ܽሺܴଵ, ܴଶሻ ∗ ଵሻݓ
 ܵ݅݉ሺሺܦܧሺܥூଵ	, ூଶሻܥ ∗ ଶݓ

1

3

2

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3517

aggregating individual similarity measures into one
single similarity measure

Since software designs are modelled using more
than one type of UML diagrams, assessing the
similarity of software designs using multiple
diagrams may produce better similarity value
compares to using only one single diagram. This
paper combine two type of UML diagrams to
determine the similarity between software designs.
The approach is based on the aggregation of
structural and behavioral views of software systems
using class and state machine diagrams respectively.
The similarity is computed using Eq. (4) as follows:

ሻ࢜ࢎࢋ,ࢉ࢛࢚࢘ࡿሺ࢚ࢇࢍࢋ࢘ࢍࢍ ൌ 	∑ ,ࢉሺ࢙ሺࡿ ሻࢉ ∗
,	࢝ ,࢙ሺ࢙ ሻ࢙ ∗ (࢝

Where sim(c1,c2) is the similarity values obtained
from structural similarity computation and sim(s1,s2)
is the similarity value obtained from behavioral
similarity computation, w1 and w2 are the weight
factor that determined relative important of the
similarity assessment method.

5. EXPERIMENT

A repository of six projects containing class diagrams
and state machine diagrams as shown in Table 1 has
been created. The projects were created by randomly
adding, changing, and/or deleting class diagrams
relationship and state machines transitions. For
example, generalization relationship can be change to
composition relationship. The projects were obtained
from undergraduate student projects. The original
project before alterations are used as the queries.

Table 1: Description of Query used for experiment

6. RESULTS

The matching quality was measured using Mean
Average Precision (MAP), a measured commonly
used to evaluate information retrieval system.
Average precision (AP) for a given query was
obtained using precision values calculated at each
point whenever a new project was retrieved (i.e.
precision = 0 for each of the relevant project that is
not retrieved). The Mean Average Precision for a set
of query was the mean of the AP scores for each
query, also referred as mean precision at seen
relevant projects [18]. The formula is given in Eq.
(5).

N is the number of queries, Qj is the number of
relevant documents for query j and P(rel=i) is the
precision at the ith relevant document.

Additionally, the time to search repository by
each method is measured as the time taken to return
similar software designs with the query. The mean
average precision and average time required to search
the repository is shown in Figure 4 and Figure 5
respectively. Figure 4 shows the comparison of the
percentage of time when each of the method return
better similarity values.

Figure 4: Number of times when each Method produce

better similarity values (MAP)

Query Description
#class

diagrams

#state
machine
diagrams

P1 Bank System 1 1

P2
Online
Booking
system

1 3

P3
Traffic
Management
System

1 4

P4
Student Course
registration
system

1 2

5
4

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3518

Fig 5: Time to search Repository by each Method

It can be examined that structural similarity

assessment methods produce the best MAP compared
to behavioral similarity assessment method with
34.43% as against 29.74%. Moreover, the
aggregation of the two methods produce better MAP
as compared to the single methods with 35.83% of
time when it produce better similarity values. It is not
surprising that the aggregation of the approach
produces better similarity as against the single
methods, this is because both cases of the structural
and behavioral are considered during the similarity
assessment.

However, this come with a price as can be
observed from Figure 4 that the aggregation of the
two method required more time to search the
repository compared to the single method. The
structural method required less retrieval time
compared to the other methods, this is because only
the classifiers are involved in this similarity
assessment method, which requires a small search
space compared to other method. A method of
computing the similarity between software projects
based on the metric values (e.g. size) was presented.
The metric based similarity of two UML artefacts
was computed by comparing the metric values in
query and repository projects. The set of metric
values of UML artefacts in query and that in
repository were presented by dimensional feature
vector space. Each of the dimension held the
information regarding particular metric. The metric
similarity of two UML artefacts was calculated as the
Euclidean distance between their feature vectors.
These metrics were particularly used during the pre-
filtering of repository projects.

Behavioral similarity assessment method
requires more time as compared to the structural
method. This is expected because it is normal to
represent one class diagrams with many number of

state machine to represent the behavior of the objects
involved in a class diagrams, as result of this the
search space when state machine is used become very
large as compare to when class diagram is used.

7. CONCLUSION

The benefits of software reuse can be maximized
if it is carried out at the early-stage. This paper
discussed the retrieval of software projects from
repository based on the degree of similarity of their
UML diagrams. Two important issues were
addressed:
1. Software systems are usually described from

multiple perspectives using UML diagrams,
which results to inconsistencies during retrieval
if not properly handled.

2. A repository usually contained voluminous
software projects with many diagram entities,
thus exhaustive mapping of this entities during
similarity computation is computationally
demanding.

This paper presents an approach for computing the
similarity between UML diagrams, the aim of this
paper is to compare the effect of different UML
diagrams properties in accessing the similarity
between software designs. Several similarity
measures are being discussed and experimental
results has been presented.

The results of the experiment show that the use
of aggregation produce better similarity values
compared to other methods. Therefore, it is
recommended to use this method especially when the
repository size is not large. On the other hand,
structural similarity produce better similarity as
compared to behavioral method and it requires less
retrieval time compared to the other method,
therefore it is recommended to use this method
especially when the size of the repository is large
since it return the similarity values faster than the
other methods.

Finally, this paper concentrate only on two types
of diagrams class and state machine diagrams
representing the structural and behavioral view of the
software system, in the future we intend to include
other UML diagrams such sequence and deployment
diagrams in order improve the MAP of the
aggregation similarity assessment method.
Furthermore, in the future we plan to develop a tool
in order to assist the reuser to retrieved old software
designs from repository and integrate into new
software development. At present, the proposed
approach is implemented as prototype for evaluation
purpose. Henceforward, a case tool should be
developed and integrated into UML diagrams tools
for effective reuse of UML diagrams.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3519

Next, the behavioral similarity assessment does
not take into account the names of states, events, and
guards conditions at this moment. In the future, all of
these should be considered to improve the retrieval
quality of state machines diagrams.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Higher
Education of Malaysia, under the Fundamental
Research Grant Scheme
(FRGS: 203/ PKOMP/6711533).

REFERENCES

1. Frakes, W.B. and K. Kyo, Software reuse

research: status and future. Software
Engineering, IEEE Transactions on, 2005. 31(7):
p. 529-536.

2. Al-Badareen, A.B., et al. Reusable software
components framework. in European
Conference of Computer Science (ECCS 2011).
2010.

3. Salami, H.O. and M.A. Ahmed, UML artifacts
reuse: state of the art. arXiv preprint
arXiv:1402.0157, 2014.

4. Kotonya, G., S. Lock, and J. Mariani, Scrapheap
software development: lessons from an
experiment on opportunistic reuse. IEEE
software, 2011. 28(2): p. 68-74.

5. Kulkarni, N. Systematically selecting a software
module during opportunistic reuse. in
Proceedings of the 2013 International
Conference on Software Engineering. 2013.
IEEE Press.

6. Keswani, R., S. Joshi, and A. Jatain. Software
Reuse in Practice. in Advanced Computing &
Communication Technologies (ACCT), 2014
Fourth International Conference on. 2014.
IEEE.

7. Park, W.-J. and D.-H. Bae, A two-stage
framework for UML specification matching.
Information and Software Technology, 2011.
53(3): p. 230-244.

8. Salami, H.O. and M. Ahmed. Class Diagram
Retrieval Using Genetic Algorithm. in Machine
Learning and Applications (ICMLA), 2013 12th
International Conference on. 2013. IEEE.

9. Salami, H.O. and M. Ahmed, A framework for
reuse of multi-view UML artifacts. arXiv
preprint arXiv:1402.0160, 2014.

10. Robles, K., et al., Towards an ontology-based
retrieval of UML Class Diagrams. Information
and Software Technology, 2012. 54(1): p. 72-86.

11. Gomes, P. and A. Leitão. A tool for management

and reuse of software design knowledge. in
International Conference on Knowledge
Engineering and Knowledge Management.
2006. Springer.

12. Wesley Klewerton Guez Assunc, S.R.V., Class
Diagram Retrieval with Particle Swarm
Optimization, in 25th International Conference
on Software Engineering and knowledge
Engineering (SEKE 2013). 2013. p. 632-637.

13. Assunçao, W.K.G. and S.R. Vergilio. Class
Diagram Retrieval with Particle Swarm
Optimization. in The 25th International
Conference on Software Engineering and
Knowledge Engineering (SEKE 2013). 2013.

14. Ali, F.M. and W. Du, Toward reuse of object-
oriented software design models. Information
and software technology, 2004. 46(8): p. 499-
517.

15. Robinson, W.N. and H.G. Woo, Finding
reusable UML sequence diagrams automatically.
Software, IEEE, 2004. 21(5): p. 60-67.

16. Jonyer, I., D.J. Cook, and L.B. Holder, Graph-
based hierarchical conceptual clustering. The
Journal of Machine Learning Research, 2002. 2:
p. 19-43.

17. Srisura, B., et al., Retrieving use case diagram
with case-based reasoning approach. J. Theor.
Appl. Inf. Technol, 2010. 19(2): p. 68-78.

18. Paydar, S. and M. Kahani, A semi-automated
approach to adapt activity diagrams for new use
cases. Information and Software Technology,
2015. 57: p. 543-570.

19. Salami, H.O. and M.A. Ahmed. A Framework
for Class Diagram Retrieval Using Genetic
Algorithm. in SEKE. 2012.

20. Levenshtein, V.I. Binary codes capable of
correcting deletions, insertions, and reversals. in
Soviet physics doklady. 1966.

21. Al-Khiaty, M.A.-R. and M. Ahmed. Similarity
assessment of UML class diagrams using a
greedy algorithm. in Computer Science and
Engineering Conference (ICSEC), 2014
International. 2014. IEEE.

22. Salami, H.O. and M. Ahmed. Retrieving
sequence diagrams using genetic algorithm. in
Computer Science and Software Engineering
(JCSSE), 2014 11th International Joint
Conference on. 2014. IEEE.

23. Subedha, V. and S. Sridhar, Design of a
Conceptual Reference Framework for Reusable
Software Components based on Context Level.
IJCSI International Journal of Computer Science
Issues, 2012. 9(1).

24. Harman, M. and B.F. Jones, Search-based
software engineering. Information and Software

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3520

Technology, 2001. 43(14): p. 833-839.
25. Geem, Z.W., J.H. Kim, and G.V. Loganathan, A

new heuristic optimization algorithm: harmony
search. simulation, 2001. 76(2): p. 60-68.

26. Wang, C.-M. and Y.-F. Huang, Self-adaptive
harmony search algorithm for optimization.
Expert Systems with Applications, 2010. 37(4):
p. 2826-2837.

27. Mahdavi, M., M. Fesanghary, and E. Damangir,
An improved harmony search algorithm for
solving optimization problems. Applied
mathematics and computation, 2007. 188(2): p.
1567-1579.

28. Herman, D., Asset Reuse of Images From a
Repository. 2014, Walden University.

29. Begum, A., A Greedy Approach For Computing
Longest Common Subsequences. Journal of
Prime Research in Mathematics, 2008. 4: p. 165-
170.

