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ABSTRACT 
This paper shows the comparison of various lossless compression techniques. This research only concerns 
on audio the WAV 2 channel audio format. If an audio is said to be stereo, it means it has 2 channels (left 
channel and right channel). The code prefix to be generated becomes more and may appear more diverse. In 
this paper gives little change in the rule model for the allocation of bits to the prefix code generated. It gives 
different conclusions on the size and time ratios, toward existing research. The result of compression can 
accelerate transmission of information from one individual to another. Compression requires a technique 
which can be strategy against the pack of data. Information that can be compressed not only text but it can be 
Audio, pictures and video information. Furthermore, lossless compression is the most approach which is 
frequently used in data compression. Lossless compressions consist of some algorithm, such as Huffman, 
Shannon-Fano, Lempel Ziv Welch and run-length encoding. Each algorithm can play out another pressure. 
Finally, this paper generates the conclusion about the comparison of performance in Huffman and Shannon-
Fano based on discussion of the result. The conclusions are difference result of compression-decompression 
speed and compression factor and ratio both of this algorithm. 
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1. INTRODUCTION  
 

The communication system is designed to 
transmit information that is generated by a source of 
multiple destinations. Source of information has a 
number of different forms. For example, in radio 
broadcasting, the source is usually in form of audio 
(voice or music). In TV broadcasting, information 
sources is usually a video that outputs in the form of 
the moving image. The output from these sources is 
an analog signal, and the source is called an analog 
source. Otherwise, computer and data storage such 
as magnetic or optical disks, generate output in the 
form of discrete signal (usually binary or ASCII 
characters) and the source is called a discrete source 
[1]. 

The lossless data compression consists of a 
conversion of data input to output data of which size 
is smaller because it uses reduction of data 
redundancy [2]. It can be achieved by assigning 
shorter code word to more frequent symbols in input 
data (a statistical compression) or by replacing 
possibly longest substrings with their dictionary 
codes (a dictionary compression). There are 
compression methods which use one or both of these 

approaches. In the paper, we focus on details of 
approaches as sources of ideas for our method[3]. 

 

Figure 1. Lossless Compression Illustration 

The source stemming analog or discrete, 
digital communications is designed to transmit 
information in digital form. Consequently,  the 
output of the source must be changed previously into 
digital source output which is usually done on the 
source encoder, the output can be assumed to be a 
binary digit sequential [1]. 

At the end of the 40-50s, the idea of 
developing new efficient coding method started and 
developed. Commencement of the exploration of the 
idea of entropy, information content and redundancy 
[1][4]. 
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The first model appears for the digital 
signal compression. The model is the Shannon-Fano 
Coding. Shannon and Fano (1948) develop this 
algorithm which generates the binary code word for 
each symbol in the data file[1]. 

Huffman coding [1952] uses almost of all 
the characteristics of the Shannon-Fano coding. 
Huffman coding can produce an effective data 
compression by reducing the amount of redundancy 
in the coding symbol. It has been proven, that the 
Huffman Coding occurring fixed-length method is 
the most efficient[1][4]. 

In fifteen years, Huffman Coding has been 
replaced by arithmetic coding. Arithmetic coding 
attempt to replace a symbol input with a specific 
code. This algorithm replaces a stream of symbols 
input with a numeric floating-point single output. 
More bits are needed in the output numbers, and it 
causes the more complicated of received message[4]. 

Dictionary-based compression algorithm 
uses a very different method for compressing the 
data. This algorithm replaces the variable-length 
string of symbols into a token. The token is an index 
in the order of words in the dictionary. When the 
token is smaller than the word, so the token will 
replace the phrase and compression occurs. There are 
many methods and compression algorithms, but in 
this paper will be discussed the method of 
compression using Huffman, Shannon-Fano and 
Adaptive Huffman[1][4][3]. 

The important thing in data compression is 
the removal of redundancy. After redundancy is 
omitted, the information must be encoded into binary 
code. In the implementation phase, shorter code 
words are used to represent letters that appear more 
frequently in order to reduce the number of bits 
needed to represent each letter. 

The same situation exists in digital 
communication. The speed in the communication 
channel, either through cable or wireless, is 
increasing slowly. Therefore the data sent between 
telephone lines, fax machines, mobile phones, even 
a set can be compressed. The data uploaded to an 
internet site is also compressed when uploaded or 
downloaded. 

In this study, statistical analysis and 
performance comparison of the Shannon-Fano and 
Huffman algorithms were performed on WAV 2 
Channel Audio file compression. Judging from the 
speed of the compression and decompression 
process, the required memory ratio or the size of the 

compressed file to the original file) and the proof that 
no data is lost or changed. 

The expected advantage of this research is 
to determine the optimal algorithm in the 
compression process of WAV 2 Channel audio data 
so as to minimize memory or bandwidth usage, 
speed up the data transmission process. 

2. THEORY 

In Lossless compression, the information 
contained in the result file is the same as the 
information in the original file. The resulting file 
compression process can be perfectly restored to the 
original file, no loss of information, no information 
error. Therefore, this method is also called error-free 
compression. Because it must maintain the 
perfection of information, so there is only the 
process of coding and decoding, there is no process 
of quantitation. This type of compression is suitable 
to apply to database files, spreadsheets, word 
processing files, biomedical images and audio. 

The basic view of source coding is to 
remove redundancy from the source. Source Coding 
produces data and reduces the rate of compression 
transmission. Reduction of the rate of transmission 
can reduce the cost of connection and gives the user 
the possibility to share the same connection. In 
general, we can to compress data without removing 
information (lossless source coding) or compressing 
data with the loss of information (the loss of source 
coding) [5]. 

The theory of Source Encoding is one of the 
three fundamental theorems of information theory 
introduced by Shannon (1948). The theory of Source 
Encoding declared a fundamental limit of a size 
where the output of sources of information can be 
compressed without causing a huge error 
probability. We already know that the entropy of a 
source of information is a measure of the 
information content of a resource. So, from opinion 
the theory source encoding that the entropy of a 
source is very important[1][4][6]. 

 

ሺܺሻܪ ൌ െ ݈ܲ݃ଶ ܲ



ୀଵ

 

 
The source is determined by the efficiency 

of H (X)/H (X) max, where pi is the probability of 
symbol to-I, and H (X) maximum when sources have 
the same probability of symbol [7][8][9][10]. 

(1) 
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Where Pi is a probability of occurrence of 
an i-th symbol of the alphabet. Redundancy is a 
difference between the maximum theoretical entropy 
of the data and it has actual entropy. It is calculated 
as follow: 
 

ܴ ൌ െ݈ܲ݃ଶܲ
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where P represents the highest entropy symbol 

ratio (P = 1/n). 

Shannon's Noiseless Source Coding theory 
states that the average value of binary symbols per 
output source can be used to reach the entropy of the 
source. In other words, the efficiency of the 
resources can be generated from source coding. For 
the resource with the same symbol, the probability 
and statistics are not tied to the other, and then it can 
be encode each symbol in a code word of length 
n[11]. 

In this paper is discussed and analyzed 
source encoding based on a mathematical model of 
resource information and quantitative measurement 
of the information which is generated by the source. 

 

 
 

Figure 2. The Classification Of Lossless Compression 
Techniques[12] [13][14][15]. 

 
2.1 A Statistical Approach 

Consequences of factual perceptions can be 
fused into information compression techniques. The 
insights might be gotten by breaking down 
information (frequencies of symbols or words) or be 
given from the earlier from more broad perceptions 
(i.e., letter, di-and trigrams frequency in a language). 
The thought behind this approach is to utilize a 
variable estimated prefix code and appoint briefest 
code words to the most successive substrings in the 
source or to utilize an entropy encoding in light of 
scopes of numbers with go width relative to 
substring probabilities[3]. 

A prefix code, by and large, is a variable 
estimated code where none of the codewords can be 

a prefix of the other. The codewords are created on 
a paired tree. The symbols are leaves and a course to 
leaves is coded by bits (1 for the left youngster and 
0 for the privilege on each level of the tree). Leaves 
with the most successive symbols are nearer to the 
base of the tree and in this manner have shorter 
codes. This code is normally created by both - a 
coder and a decoder. The coder tallies events of 
every image and spares acquired esteems into the 
yield, so the decoder can manufacture a similar code 
tree. The decoder just peruses input bit-by-bit and 
goes down the tree picking the correct kid each time 
it peruses 0 and the left kid when it peruses 1. At the 
point when decoder achieves a leaf it peruses an 
encoded image and begins again from the root. There 
is additionally a versatile variation of Huffman 
coding, where a tree is remake powerfully when 
handling consequent info symbols (more often than 
not it is a superior answer for on-line compression, 
when input information can't be prepared twice).  

Unary coding is the least complex coding 
strategy where codeword is made by n "set bits" 
trailed by one "reset bit" (i.e. 111110 speaks to 
esteem 5). A general unary code is made of two 
sections: an unary advance number and n-bits paired 
esteem. The codewords are produced by the begin 
step-stop calculation. The resulting parameters have 
the accompanying importance: begin is equivalent to 
the underlying length of a paired part, step decides 
addition of the parallel part and stop decides the 
longest codeword estimate (on account of the longest 
codewords, the progression number isn't trailed by 
the reset bit). For the situation when the progression 
is equivalent to 1, this code is very like Elias Gamma 
code that is built of l-zeros took after by one and a 
parallel piece of length l. 

 
2.2 Algorithm of Huffman Coding 

In the Huffman Coding, a long block from 
the source output is mapped to the binary blocks 
based on post variable. This way is referred to as 
fixed to variable-length coding. The basic idea of 
how this is starting to map a Huffman symbol most 
widely found in a source sequence to the binary 
sequence appear to be jarring. In the variable-length 
coding, synchronization is a problem. This means 
there must be a way to break the binary sequence is 
received into a code word[16] [17]. 

As mentioned above, that the idea of 
Huffman Coding was choosing the length of the 
code word from the greatest probability up to order 
code word which the smallest probability. If we can 
map each source output from the pi probability to a 
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code word with a length of 1/pi and at the same time 
can ensure that can uniquely encode, We can find the 
average length of the code H (x). Huffman Code can 
be uniquely decoding has with H (x) minimum, and 
optimum on the uniqueness of the codes[18] [19] [5]. 

The algorithm of Huffman encoding is: 
1. Sorting output source starts with the highest 

probability[20]. 
2. Combine two outputs the same close into one 

output probability is the sum of probabilities 
before[21][22]. 

3. If after the split there is still two outputs, then 
continue to the next step, but if there are still 
more than 2, return to step 1[23]. 

4. Give it a value of 0 and 1 for the second 
output[3]. 

5. If an output is a result of merging two output 
from the previous step, then give the sign of 0 
and 1 for the code word, repeat until the output 
is one output that stands on its own[24]. 

 

Figure 3. Huffman Code Program Flow[25] 

2.3 Shannon-Fano Algorithm Encoding 

Shannon-Fano coding technique is one of 
the first algorithms whose goal is creating a code 
word with minimum redundancy. The basic idea is 
creating a code word with variable-length code, such 
as Huffman codes, and discovered a few years 
later[26]. 

As mentioned above, Shannon-Fano coding 
based on variable length-word, has means that some 
of the symbols in the message (which will be 
encoded) is represented with a code word. It is 
shorter than the existing symbol in the message. The 

higher the probability makes the code word is getting 
short [19][27]. 

Estimating the length of each code word 
can be determined from the probability of each 
symbol and it is represented by the code word. 
Shannon-Fano coding generates a code word that has 
not the same length, so the code is unique and can be 
encoded[28][29]. 

The efficient of other variable-length 
coding in Shannon-Fano can be done. So, it needs 
steps for encoding well. The procedure in the 
Shannon-Fano encoding are: 

1. Compile a probability of a symbol of the source 
of the highest to the lowest [30]. 

2. Divide into 2 equal parts, and provide a value  0 
for the top and once for the bottom [21]. 

3. Repeat step 2, each Division with an equal 
probability up to impossible to divide again 
[20]. 

4. Encodes each symbol of the original source 
being a binary sequence generated by the 
Division of each process [20][12]. 

 
3.  ANALYSIS AND COMPARISON 

There are different criteria to measure the 
performance of a compression algorithm. However, 
the main concern has always been the space 
efficiency and time efficiency. 

Compression Ratio is a ratio between the size of 
the compressed file and the size of the source file. 
The compression factor is the inverse of the 
compression ratio [31][32][33][34][35]. 

݅ݐܴܽ	݊݅ݏݏ݁ݎ݉ܥ ൌ
݊݅ݏ݁݁ݎ݉ܿ	ݎ݁ݐ݂ܽ	݁ݖ݅ݏ
݊݅ݏݏ݁ݎ݉ܿ	݁ݎ݂ܾ݁	݁ݖ݅ݏ

 100	ݔ

 
ݎݐܿܽܨ	݊݅ݏݏ݁ݎ݉ܥ ൌ

݊݅ݏݏ݁ݎ݉ܿ	݁ݎ݂ܾ݁	݁ݖ݅ݏ
݊݅ݏݏ݁ݎ݉ܿ	ݎ݁ݐ݂ܽ	݁ݖ݅ݏ

 100	ݔ

Speed (in compression and 
decompression): how fast is it? When evaluating 
data compression algorithms, compression and 
decompression speed must be taken into 
consideration. Compression speed is the number of 
uncompressed bits that can be handled in one 
second, and decompression speed is the number of 
compressed bits that can be handled per second 
Compression and decompression speed can be 
calculated according to [36][19].  
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݀݁݁ݏ	݊݅ݏݏ݁ݎ݉ܿ ൌ
ݏݐܾ݅	݀݁ݏݏ݁ݎ݉ܿ݊ݑ
ݏݏ݁ݎ݉ܿ	ݐ	ݏ݀݊ܿ݁ݏ

 

 

݀݁݁ݏ	݊݅ݏݏ݁ݎ݉ܿ݁݀ ൌ
ݏݐܾ݅	݀݁ݏݏ݁ݎ݉ܿ

ݏݏ݁ݎ݉ܿ	ݐ	ݏ݀݊ܿ݁ݏ
 

 
Comparing the results of a lossless 

compression especially on WAV audio data is very 
difficult to get assumptions which algorithm is 
better, because various researches with audio data 
objects do not have the same data, there are public 
and private. Research in the field of image 
processing using data and objects are always the 
same, making it easier for researchers in comparing 
and looking for novelty. In the study using audio data 
that is public, some previous research already exists 
that use this data for test data. 

 
To conduct data compression program 

simulation in Matlab, we use WAVE Sound file 
(*.Wav). This file was originally (J.S.Bach; Partita E 
major, Gavotte en rondeau (excerpt) - Sirkka  
Väisänen, violin), from resource 
http://www.music.helsinki.fi/tmt/opetus/uusmedia/e
sim/index-e.html.  

The data file is “a2002011001-e02.wav” 
(Original recording (PCM encoded 16 bits per 
sample, sampling rate 44100 Hertz, stereo, Duration 
54.3 Second ). Size 9.13 MB (9,580,594 bytes). 

Problems will be analyzed, and processed are: 
1. The influence of the number of symbols against 

the gain compression. 
2. The influence of the abundance frequencies of 

each symbol against the gain compression. 
3. The entropy value against the influence of gain 

compression. 
4. The advantages of each method of compression 

used in the simulation program. 
5. Lack of each compression method used in a 

simulation program.  
 
Algorithm for Huffman coding: 
Huffman algorithm procedure based on research on 
the optimum prefix code is. 
1. Symbols that have a frequency of appearances 

more often will have a code word shorter than 
other symbols. 

2. Two symbols that have the least number of 
occurrences will have a code word of the same 
length 

 
Data structure used: Priority queue = Q, A is given 
alphabet 

Huffman (c) { n = |c| Q = c 
For i = 1 to n-1 
{ 
 do Z = Allocate-Node ()  
x = left[z] = EXTRACT_MIN (Q)  
y = right[z] = EXTRACT_MIN (Q) 
F[z] = F[x] + F[y] INSERT (Q, z) }  
return EXTRACT_MIN (Q) } 
Complexity is O (n log n), each priority queue of 
complexity is O (log n).  

Limitations of Huffman Coding: 
1. This code gives an optimal solution when 

only if the exact probability distribution of 
the source symbols is known. 

2. The encoding of each symbol is with an 
integer number of bits. 

3. When changing the source statistics then 
Huffman coding is not efficient.  

4. Due to the large length of the least probable 
symbol of this code. So, storage in a single 
word or basic storage is complex. 

A Shannon– Fano tree is worked by a particular 
intended to characterize a successful code table.  

This method begins with a sequence of 
symbols with known frequency occurrence. Then the 
set of symbols is divided into two parts that weigh 
the same or almost the same. All symbols on subset 
are given binary 0, while the symbols on subset II 
are binary 1. Each subset is subdivided into two 
subsets with the same as subset I and subset II. If a 
subset contains only two symbols, a binary is 
assigned to each symbol The process will continue 
until no subset is left 
 
1. For a given rundown of symbols, build up a 

comparing rundown of probabilities or frequency 
checks with the goal that every symbol’s relative 
frequency of event is known. 

2. Sort the arrangements of symbols as indicated by 
frequency, with the most as often as possible 
happening symbols at the left and minimal 
regular at the privilege. 

3. Divide the rundown into two sections, with the 
aggregate frequency checks of the left part being 
as near the aggregate of the great. 

4. The left piece of the rundown is allocated the 
parallel digit 0, and the correct part is relegated 
the digit 1. This implies the codes for the symbols 
in the initial segment will all begin with 0, and 
the codes in the second part will all begin with 1. 

5. Recursively apply the step 3 and 4 to every one 
of the two parts, subdividing gatherings and 
adding bits to the codes until the point when 
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every image has turned into a relating code leaf 
on the tree. 

comp_t = 0; 
for i = 1 : size(signal,2) 
    [us,~,ic] = unique(signal(:,i)); 
    us2{1,i} = us; 
    p = tabulate(signal(:,i)); 
    p(p(:,2) == 0,:) = []; 
    p = p(:,2); 
    p = reshape(p,1,length(p)); 
    p2{1,i} = p; 
    tic; 
    codex = norm2sf(p); 
    codexx{1,i} = codex; 
    codex2 = codex(ic); 
    info = cellfun('length',codex2); 
    info2{1,i} = info; 
    signal_comp{1,i} = cell2mat(codex2'); 
    comp_t = toc+comp_t; 
end 
dcomp_t = 0; 
for i = 1 : size(signal,2) 
    tic; 
    dsig2 = 
sf2norm(signal_comp{1,i},codexx{1,i},us2{1,i},inf
o2{1,i}); 
    dsig(:,i) = dsig2'; 
    dcomp_t = toc+dcomp_t; 
end 
 
The Entropy of the source. 

H ൌ െ ܲ	݈݃ଶ	 ܲ	

ିଵ

ୀ

 

 
The average length of the Shannon-Fano code is	

Lavg ൌ  ݈ܲ

ିଵ

ୀ

 

 
Thus the efficiency of the Shannon-Fano code is 
 

६ ൌ
H

Lavg
 

Following is the result of compression: 

 

 
Figure 4. waveform graph the results of Huffman and 

Shannon-fano with File Original 

 The result of decompression can be seen 
from waveform figure 4, that there is no change or 
reduction of data according to the principle of 
lossless compression. 

The results of testing these two methods are as 
follows : 

Table 1. Result Compression Huffman and Shannon-fano 

Parameter Huffman 
Shannon-

fano 

Original Size (KB) 9356.0039 9356.0039 

Compression Size (KB) 1684.5608 3571.165 

Compression Ratio % 18.0051 38.1698 

Compression Factor % 81.9949 61.8302 

Compression Speed (s) 2.5962 2.6212 

Decompression Speed (s) 329.374 241.0252 

 

Table 2. Result Coding Huffman and Shannon-fano 

Shannon-fano Channel 1 

Letter  Prob Count Length 
Num of 

Bit 
0 2.92E-05 70 12 840 

1 3.67E-05 88 12 1056 

2 8.39E-05 201 11 2211 

3 1.69E-04 405 10 4050 

4 2.84E-04 680 10 6800 

5 5.21E-04 1247 9 11223 

6 9.03E-04 2162 9 19458 

7 0.0016 3787 8 30296 

8 0.003 7197 7 50379 

9 0.0056 13439 6 80634 

10 0.0101 24078 6 144468 

11 0.0187 44757 5 223785 

12 0.0338 80883 4 323532 

(3) 

(4) 



Journal of Theoretical and Applied Information Technology 
15th June 2018. Vol.96. No 11 

  © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 

 
3473 

 

13 0.0639 152959 4 611836 

14 0.1221 292556 3 877668 

15 0.2387 571657 3 1714971 

16 0.242 579615 2 1159230 

17 0.122 292302 3 876906 

18 0.0626 149948 4 599792 

19 0.033 79120 5 395600 

20 0.0178 42679 5 213395 

21 0.0098 23451 6 140706 

22 0.0056 13402 7 93814 

23 0.0033 8016 7 56112 

24 0.002 4886 8 39088 

25 0.0011 2661 8 21288 

26 5.75E-04 1376 9 12384 

27 3.02E-04 723 10 7230 

28 1.54E-04 368 10 3680 

29 8.89E-05 213 11 2343 

30 3.26E-05 78 12 936 

31 5.55E-05 133 12 1596 
 

Shannon-fano Channel 2   

Letter  Prob Count Length 
Num of 

Bit 
4 1.42E-05 34 14 476 

5 6.26E-05 150 12 1800 

6 2.10E-04 502 12 6024 

7 5.81E-04 1392 10 13920 

8 0.0015 3547 9 31923 

9 0.0031 7383 8 59064 

10 0.0065 15508 7 108556 

11 0.0133 31742 6 190452 

12 0.0278 66631 5 333155 

13 0.0574 137586 4 550344 

14 0.1204 288364 3 865092 

15 0.2699 646554 2 1293108 

16 0.2673 640235 2 1280470 

17 0.1223 292844 3 878532 

18 0.0574 137364 4 549456 

19 0.0272 65132 5 325660 

20 0.013 31119 6 186714 

21 0.0066 15733 7 110131 

22 0.0032 7561 8 60488 

23 0.0015 3474 9 31266 

24 6.12E-04 1467 10 14670 

25 2.19E-04 524 10 5240 

26 8.23E-05 197 12 2364 

27 2.92E-05 70 13 910 

28 5.85E-06 14 15 210 

29 3.76E-06 9 16 144 

30 4.18E-07 1 16 16 
 

Huffman Channel 1 

Letter Prob Count Length 
Num of 

Bit 
0 2.92E-05 70 16 1120 

1 3.67E-05 88 16 1408 

2 8.39E-05 201 15 3015 

3 1.69E-04 405 14 5670 

4 2.84E-04 680 13 8840 

5 5.21E-04 1247 12 14964 

6 9.03E-04 2162 11 23782 

7 0.0016 3787 10 37870 

8 0.003 7197 9 64773 

9 0.0056 13439 8 107512 

10 0.0101 24078 7 168546 

11 0.0187 44757 6 268542 

12 0.0338 80883 5 404415 

13 0.0639 152959 4 611836 

14 0.1221 292556 3 877668 

15 0.2387 571657 2 1143314 

16 0.242 579615 2 1159230 

17 0.122 292302 3 876906 

18 0.0626 149948 4 599792 

19 0.033 79120 5 395600 

20 0.0178 42679 6 256074 

21 0.0098 23451 7 164157 

22 0.0056 13402 8 107216 

23 0.0033 8016 9 72144 

24 0.002 4886 10 48860 

25 0.0011 2661 11 29271 

26 5.75E-04 1376 12 16512 

27 3.02E-04 723 13 9399 

28 1.54E-04 368 14 5152 

29 8.89E-05 213 15 3195 

30 3.26E-05 78 16 1248 

31 5.55E-05 133 16 2128 

 

Huffman Channel 2 

Letter  Prob Count Length 
Num of 

Bit 
4 1.42E-05 34 15 510 

5 6.26E-05 150 13 1950 

6 2.10E-04 502 11 5522 

7 5.81E-04 1392 10 13920 

8 0.0015 3547 9 31923 

9 0.0031 7383 8 59064 

10 0.0065 15508 7 108556 

11 0.0133 31742 6 190452 

12 0.0278 66631 5 333155 

13 0.0574 137586 4 550344 

14 0.1204 288364 3 865092 

15 0.2699 646554 2 1293108 
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16 0.2673 640235 2 1280470 

17 0.1223 292844 3 878532 

18 0.0574 137364 4 549456 

19 0.0272 65132 5 325660 

20 0.013 31119 6 186714 

21 0.0066 15733 7 110131 

22 0.0032 7561 8 60488 

23 0.0015 3474 9 31266 

24 6.12E-04 1467 10 14670 

25 2.19E-04 524 10 5240 

26 8.23E-05 197 12 2364 

27 2.92E-05 70 14 980 

28 5.85E-06 14 16 224 

29 3.76E-06 9 17 153 

30 4.18E-07 1 17 17 

 

From the calculation of memory capacity 
used after the decoding process is done, it looks 
different that may not look big. However, when it is 
an audio data that many variations of waveform, then 
the number of memory capacity is very instrumental 
in determining the more effective compression. This 
is more because the Huffman algorithm can form a 
more efficient prefix form than Shannon-fano. 
Compared with ASCII code means Huffman 
algorithm uses only 30% bit only. Since one 
character has 8 bits in the ASCII code, it means that 
at 100 times there are 800 bits. In other words, 
Huffman can compress files up to 80% and 
Shannon-fano can only file 60% based on above test. 

This result cannot be beaten flat for all files, 
but this as an illustration for comparison only. The 
Shannon-fano algorithm works in conjunction with 
the Huffman algorithm in a particular case 
(depending on the probability of character 
occurrence). 

The results of compression in Table 1 and 
Table 2 give different results from several existing 
studies as follows : 

1. In the compression survey Table 3. between 
RLE, LZW and Huffman, in this paper the result 
is Huffman Fast to Execute [37]. 

Table 3. Compression between  of the Lossless 
Compression algorithm[37] 

 

2. Considering the size, there is a further reduction 
in the file size. The compressed file sizes are 
about 60% of the original files. Further 
reductions can be obtained by using more 
sophisticated models. Many of the lossless 
audio compression schemes, including FLAC 
(Free Lossless Audio Codec), Apple's ALAC or 
ALE, Shorten, Monkey's Audio, and the 
MPEG-4 ALS algorithms, use a linear 
predictive model to remove some of the 
structure from the audio sequence and use Rice 
coding to encode the residuals. Most others, 
such as AudioPak and OggSquish, use Huffman 
coding to encode the residuals[38]. 

Table 4.  Huffman coding of differences of 16-bit 
CD-quality audio 

 

3. Compression ratio for Huffman coding 
algorithm falls in the range of 0.57 to 0.81. The 
compression ratio is obtained by this algorithm 
and it has better result than Shannon-Fano 
algorithm. Furthermore, the average Bits per 
character is 5.27 [39]. 

Table  5.  Comparison of BPC for different 
Statistical Compression techniques 

 

4. It is conducted to comparing LZW, Huffman 
coding and Shannon-Fano coding techniques of 
data compression on English words in terms of 
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compression size, compression ratio, and saving 
percentage. After testing those algorithms, 
Huffman and ShannonFano coding are very 
powerful than LZW. Huffman and 
ShannonFano coding gives better results and 
can reduce the size [40]. 

Table 6. Comparison between LZW, Huffman 
Coding and Shannon-Fano coding 

 

5. Comparison of Arithmetic and Huffman have 
given in Table 2. Arithmetic coding of CR is 
higher than Huffman coding. Huffman coding 
takes less memory space than Arithmetic 
coding. Compression and decompression time 
of Huffman coding is slower than the 
Arithmetic coding[41][15]. 

Table 7. Comparison of Arithmetic & Huffman 
coding 

 

6. If there are not miss the data then the 
compression is called lossless compression. The 
Huffman coding comes with lossless 
compression.   The obtained results shows that 
the input with the similar probability gives 
better compression ratio, space savings and 
average bits than the input with the different 
probability. The Huffman code gives better 
compression ratio, space savings and average 
bits as compared with the uncompressed data 
[27]. 

4. CONCLUSION AND FUTURE WORK 

The testing results using Matlab, there is a 
big difference from the final result in Table 1. 
Huffman and Shannon-Fano can be concluded that 

the result of lossless compression for the data 
WAVE Sound file (* .Wav) as follows: 
1. Huffman decompression speed is slower than 

Shannon-fano, while decompression rate is 
relatively same. 

2. Shannon-fano compression gives the 
compression ratio of 38.14% and compression 
factor is 61.85%, Huffman are 18.0051% and 
81.9949%. Huffman is better than Shannon-
Fano in compression ratio and factor. 

3. A large number frequency of symbols and each 
symbol determines the value of entropy a data. 
The entropy value is used to determine the gain 
compression. 

4. If it has much more entropy value then there is 
few obtained gain value at the time of 
compressing data. 

The continuation of this research is trying to 
compare all of the lossless compression algorithms 
using the same data. So, it can give a better results of 
all the lossless compression methods. 
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