
Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3383

SERVICE COMPOSITION ALGORITHMS IN CYBER
PHYSICAL SYSTEMS
1SWATI NIKAM , 2 RAJESH INGLE

1Research Scholar, DIT, Pune, Maharashtra, India
2Professor, PICT, Pune, Maharashtra, India

E-mail: 1swatinikam3@gmail.com, 2ingle.ieee@org

ABSTRACT

Service composition in Cyber Physical Systems (CPS) means integrating individual services used for
different purposes which individually cannot accomplish the goal, but if integrated then it can achieve a
specific goal. So there is need of combining various services into one composite service to satisfy complete
requirement. CPS is an emerging field in which cyber and physical world interact closely. By nature CPS is
application oriented so the need of composing the existing services arises frequently. Hence understanding
and resolving the service composition issues in the context of CPS becomes very important. Service
composition is very well studied in Web service, Cloud Computing, Grid Computing and Wireless Sensor
Network domain. Service composition work has initiated in CPS domain also, but still it lacks in maturity
as compared to other domains. Service composition in CPS becomes critical firstly because of the dynamic
and unpredictable nature of CPS which comes from the involvement of cyber and physical domain.
Secondly lot of heterogeneity is observed in CPS components which range from simple sensors, actuators
to high end computing devices. Thirdly resources also needs to be considered in the process of service
composition and last but not the least, while looking at the practical applications of CPS, it needs to be
considered in networked CPS context. Selecting best individual services for service composition is the main
problem which is addressed in this paper. A middleware is designed for performing service composition
and also phase wise algorithms for service composition are presented. Two significant methods of Multi
Attribute Decision Making (MADM) methods are used to solve the service selection problem. Algorithms
are tested in simulated environment with different scenarios to check suitability of MADM methods for
service selection problem. The observation is few significant methods of MADM like PSI can be used to
select best service for service composition.

Keywords: Cyber Physical System, Service Composition, Quality of Service (QoS)

1. INTRODUCTION
Cyber-Physical Systems have emerged in recent
years as a new technological revolution to support a
collection of resources in the execution of physical
processes. The National Science Foundation (NSF)
CPS Summit[1] defines CPS as “Physical and
engineered systems whose operations are
monitored, coordinated, controlled and integrated
by a computing and communication core”. Various
research challenges in CPS are presented in [2,3].
Detailed study of three major research challenges
namely service composition, resource provisioning
and autonomics is given in [4]. Service composition
is well studied in various domains like Web service
[5], Pervasive computing [6], Opportunistic
network [7], Cloud computing [8], Internet of
things [9] and many more, but CPS service
composition lacks in maturity. As CPS service
consists of lot of resources which are present in the

physical world, so service composition problem
cannot be solved only by considering the service,
but it has to be considered in the context of
resources as well. Our work focuses on phase wise
service composition method in the context of CPS
where numerous resources like sensors and
actuators are also considered. So when service
composition is done efficiently, the required
services can be combined as per the requirement of
user. Section 2 gives an overview of related work
of service composition in the field of CPS. Section
3 gives an idea about the background of service
composition. Section 4 gives detailed problem
formulation along with execution flow and
algorithms. Section 5 elaborates experimental setup
followed by results and analysis in Section 6
whereas section 7 is comparison with the work

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3384

done by other researchers followed by concluding
remarks in section 8.

2. RELATED WORK

Many researchers have worked towards service
composition problem [10-16]. The related work
found can be categorized as per the service
composition phases. Some of them have worked on
individual phases like service discovery, service
composition, service deployment and service
execution. But very limited literature is present in
the context of CPS which has considered phases of
service composition. Yajing Zhao[10] have
discussed about collaboration problem amongst
multiple CPS in which they have extended OWL-S
framework to address the functionalities. They have
used the abstract service and concrete service
representation. Hell Brucke [11] has given details
about name centric service architecture for CPS.
Tao Wang [12] has presented efficient context-
aware service composition framework along with
algorithm of atomic service filtering algorithm.
Service composition problem is discussed as two
phase context sensitive service composition
optimization problem[13] which is solved using
particle swarm optimization method. They have
also proposed PE-SOA ontology model for the
same along with case study discussion of traffic
accident rescuing task. It talks about
implementation results but comparison with other
algorithms or results is not present. J.Huang[14]
have extended the conventional SOA model, where
PE-ontology is used to connect different physical
entities based on their capabilities (services they
can provide) and PE-SOA model helps in service
specifications that are suitable for physical entities.
Thus it simplifies PE service specifications and
reduces the complexity of the reasoning procedure.
Jian Huang[15] has discussed context-sensitive
resource-explicit service model and for service
composition, an AI planning technique is used.
They have enhanced graph plan algorithm for
context consideration. The discussion is limited to
framework and a case study, but there is no
discussion on implementation and results. S.
Wang[16] has discussed service composition
problem in cyber physical social systems using
mixed integer programming approach but the
service characteristics are like a web service. As
discussed above, many of the researchers have
worked either on framework or given theoretical
discussion on ontology. Also very few have
captured CPS characteristics and discussed all
phases of service composition. While choosing
optimal services also many of the researchers have

considered either one or two attributes. Using either
skyline operator or dominance relation they have
minimised search space. Whereas optimal service
selection based on all QoS attributes is not
considered. In this work the focus is on phase wise
service composition as well as solving optimal
service selection problem where all the attributes of
CPS service are considered.

3. BACKGROUND OF SERVICE
COMPOSITION

The lifecycle of CPS service composition is
different than a web service composition lifecycle
[17] because web service gives only software
service whereas CPS service consists of resources
as well. Similarly CPS service composition phases
can be written as shown in figure 1.
Phase1: Service Definition: Service is defined
along with their input and output.
Phase 2: Service Discovery: Services are
discovered by matching input and output of the
service.
Phase 3 : Service Selection : It is likely that more
than one candidate service will meet the
requirement which are same in functionality but are
different in QoS. So from this huge set of services
an optimal service is selected.
Phase 4: Service Dependency Resolution and
Scheduling: Here all the service dependencies are
resolved and the priorities of services are decided.
Phase 5: Service Deployment: In this phase
constructed composite service is deployed to allow
its instantiation and invocation. For deployment the
optimal resource system is selected. The output of
this phase is called as executable composite service.
Phase 6: Service Execution: In this phase, the
composite service instance will be created and
executed.
This phase wise detailing of service composition
helps us to understand how these different phases
impact overall service composition process. The
execution flow of the service composition process
is shown in figure 2
Step 1: User input request is submitted for service
composition request in the form of task list along
with the requirement on quality of service.
Step 2: The input request may or may not contain
dependencies. If the task dependencies are present
then they are resolved.
Step 3: The runtime CPS model is generated which
consists of all the runtime information of existing
CPS domains along with resource systems
registered under each CPS systems and resource
nodes registered under each resource systems.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3385

Figure 1. Service Composition phases

Figure 2. Service Composition Flow

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3386

Step 4: The resources may get impacted by the
context in which it is present, hence only the
currently available resources and its corresponding
services should be reflected while generating the
CPS model. So at resource system, service filtering
based on availability of resource node is done i.e.
the resources which are currently not available are
not considered for service composition and hence
its corresponding services can not be considered as
a candidate services for service composition. Those
services will be filtered in the CPS model. Later on
when the resources becomes available, then it can
be considered for service composition. So all
resource systems hold a list of services which are
the candidate service at that instant whose
corresponding resources are available. So these
systems are discovered in service discovery phase
and form a discovered service list.
Step 5 : While composing services, for a particular
task many candidate service with the same
functionality but different quality of service
attributes may be found in step 4. All the
discovered services many not prove suitable as a
candidate service for service composition process,
hence they need to be ranked as per their quality of
service attributes which is done in this step. Now
the service list contains the list of services which
are arranged in ranked order as per their quality of
service. The topmost service is now the best
service.
Step 6: But only choosing the best service for
service composition may not be sufficient as these
services are given by resources and hence the
corresponding resource should be provisioned. So
the optimal resource is selected for resource
provisioning.
Step 7: The services chosen for each input task are
the elements of composition plan. So the ranked
services are selected and a constructed composite
service list is formed. The aggregated attributes are
calculated considering all the elements of this
constructed composite service. Then the plan is
evaluated to see that this combination of services
in constructed composite service list is best or not
using best plan generation algorithm and as an
output now the best plan is generated.
Step 8: If any service dependencies are present then
they are resolved and services are scheduled.
Step 9 : In this phase the constructed composite
service is deployed to allow its instantiation and
invocation by end users. The result of this phase is
the executable composite service.
Step 10 : Service is executed and a composite
service result is delivered to the requester.

4. PROBLEM FORMULATION

4.1 Problem Description
Many times the available services are not sufficient
to satisfy the task requirement. So there is a need of
combining various services into one composite
service to satisfy complete task requirement. This is
called as service composition problem. Different
phases and its detailed flow of service composition
process is described in section 3. The scope of this
paper is limited to phases of service composition.
Hence resource provisioning (step 6) is not
considered for this paper rather it is assumed that
with the help of resource provisioning algorithms
appropriate resources are provisioned. The focus is
on detailing of the main phases of service
composition process including task dependency
resolution, CPS model generation, service
discovery, service ranking & optimal service
selection, best plan generation and finally for
service dependency resolution and scheduling.
Various algorithms for these phases are designed.

4.2 Solution Approach

To solve this service composition problem
middleware approach is adopted. Nikam, Ingle[18]
have presented detailed study of existing
middleware present in CPS and the middleware for
service composition & resource provisioning along
with its working is discussed. The following CPS
model is assumed which considers that CPS
systems of different domains like Transport CPS,
Medical CPS, Environmental CPS, Water
Distribution CPS are already in existence. Under
each CPS system, multiple resource systems are
present who will take care of various resource
nodes and services which are present in resource
system. The resource nodes can be sensors,
actuators and processing nodes. Resource system is
responsible for keeping the updated list of resource
nodes and services. After reviewing the literature of
service composition, the observation was that while
solving service selection problem either one or two
attributes of service were taken into
consideration[15] and no solution approach focuses
on all the attributes of service. One more challenge
is that, the attributes are combination of positive
and negative attributes which needs to be
considered simultaneously. The literature on
literature on Multi Attribute Decision Making
methods(MADM) is reviewed as a potential
solution approach including methods like
SAW(Simple Additive Weighting Method), WPM
(Weighted Product Method), TOPSIS (Technique
for Order Preference by Similarity to Ideal

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3387

Solution), PSI (Preference Selection Index), AHP
(Analytic Hierarchy Process), PROMETHEE
(Preference ranking organization method for
Enrichment Evaluation Method, VIKOR, Entropy,
Fuzzy Based methods, WEBDA(Weighted
Euclidean distance based approach), Grey
Relational Analysis, ANP(Analytical Network
Process) etc. Few MADM methods are also applied
in web service, cloud computing, wireless network
domain for solving optimal selection problem. A
study on comparative analysis on few significant
methods of MADM is presented by Nikam, Ingle
[19]. So the service selection sub problem is solved
using MADM methods.

4.3 Definitions
Before formulating the problem of SC, it is
important to understand the basic definitions.
Definition 1 : Task is defined as the functionality to
be performed by service.
Task = {Functionality, Task UUID, Domain Id,
Input Set, Output Set, Input Task List, Output Task
List, Node-Type Id, Sub-node Type Id }
where functionality is the name of functionality to
be performed by service.
UUID Stands for Universal Unique Identifier. It is
the unique identity of each task.
Domain Id is a integer number represents the
unique id of domain defined by middleware system
such as Medical, Electricity, Water etc.
Input Set = Set of inputs required to task.
Output Set = Set of outputs generated by task.
Input Task List = List of tasks from where the
inputs are available. If task is independent then this
list is blank and if task is dependent, then task
dependencies are resolved and this list is updated
Output Task List = List of task to which generated
output of current task is given.
Node-Type Id = If task depends on sensor or
actuator then node-Type-Id will contain the unique
id of sensor or actuator.
Sub-Node-Type Id= Represents the unique id of
sub types of sensor or actuator.

Definition 2 : Service is a logical implementation of
functionality of task and they are used to
encapsulate every functionality of resource node.
Service ={ Service UUID, Task Id, Node-Type Id,
Sub-Node-Type Id, QoS attributes Q= { EC, R,
RT, F , SER ,CC , A }}

i)Execution Cost (EC) : Is the fee that users must
pay for invoking a service.
ii) Reputation (R) : It is the aggregate of ratings of
that service by other principals.
iii) Response Time (RT) : It is the delay between

service invocation and the result is obtained.
iv) Frequency (F) : Measures the number of times
the service is requested for execution.
v) Successful Execution Rate (SER) : It measures
the number of times the service is successfully
executed. SER is the ratio of number of times the
service is requested to number of times the service
is executed.
vi) Communication Cost (CC) : It is the cost of
communication between the service provider and
service responder.
vii) Availability (A) : It is the probability of
accessing the service where its domain is [0.1].
Now QoS attributes are classified as Positive and
Negative attributes.
Positive attributes: They denote the higher value
with higher user utility. Eg. Availability,
Frequency, Reputation, Successful Execution Rate.
Negative attributes: They denote the lower the
utility with higher values . Eg. Negative QoS
Attributes like Response Time, Execution Cost and
Communication Cost.

Definition 3 : Feature count is the number of best
attributes in comparison of first service with
another service .

Definition 4: Score is defined as the measure
used to compare the goodness of service. It is
calculated when the feature count of both the
services is same.

For positive attribute, calculate score as follows

Score= (1)

Where FL1 and FL2 are feature lists.
For negative attributes calculate score as follows

Score= (2)

Calculate final score as
Calculate final Score =

where n > 0

(3)

Definition 5 : Resource System is defined as a
representative computing node which is
coordinating the resource nodes connected to it. It
has following attributes.
Resource system={UUID, Communication cost,
Computation cost, Communication speed,
Computation speed, No of cores, No of deployed
service}

Definition 6: Resource Node can be sensor and
actuator node along with their sub types known as
sub node types

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3388

Resource Node = {UUID, Node-type Id , Node sub-
type Id, Description, Geo-location{latitude,
longitude eg, Node Attributes{ Cost, Availability,
Status of Battery, Service allocation count} }

Definition 7 : Aggregated Attributes of composite
service are defined as the aggregation of all the
individual services. Aggregated attributes of the n
elements (where n>0) of the Constructed
Composite service (CCS) list are calculated as
follows.

AEC =

(4)

ART =

(5)

ACC =

 (CCS(i))
(6)

AR =
(7)

ASER =

(8)

4.4 Problem Formulation
Let us consider that user gives the input in the form
of a task list to compose a service.
Let T = {t1, t2, t3, ………………..tn } is a list of
tasks to be performed and individual task is
represented by t, n > 0. Each task is fulfilled by a its
corresponding service.

Let CS= {S1, S2, S3,……Si) be an abstract
composite service that consists of m abstract
service, where Si denotes ith abstract service of S.

Let an abstract atomic Service Si ={ Ci1 , Ci2,
Ci3………..Cij) } consists of j concrete services
where Cij denotes jth concrete service of ith abstract
service. It denotes that they all are similar in
functionality but differ in QoS.

 Let Q = (q1, q2…… qk) is set of QoS attributes of
Cij, where qk is the value of kth attribute of Cij.

Let CO = { co1, co2, co3……………..com} be a set of
constraints given by user where each com is a
constraint on qk. If qk is positive attribute then com
imposes lower bound and if qk is negative then com
imposes upper bound.

Let W ={ w1, w2, w3……………….., wp} be a set
of weights given by users. Each wp (1<= p<= n)
corresponds to each QoS property . For each qk

user assigns a weight wp such that all weights
satisfy

 (9)

Equal weights to all the attributes are given so as to
give equal importance to all the attributes which
can be changed to as per equation (9) to give
importance to the specific attribute.
Service Composition problem is represented as
SC= {T, C, RS, S, OP {SD,SRSC}}
 Where
T = Task list
C= CPS Systems
RS= Resource Systems
S= CPS service and OP is a set of operations
defined as OP= { DR, SD,SRSC, PG} where

where
DR = Dependency Resolution,
SD = Service Discovery,
SRSC = Service Ranking and Selection and
PG = Composite Plan Generation.
OP is set of operations including service discovery,
service ranking and selection.
To evaluate SC, the objective function is mapped
with the QoS attributes mainly response time.
Tsc = T dr + T sd + T srsc + T pg (10)

Where
Tsc = Service composition time, Tdr = Task
dependency resolution time, Tsd = Service
discovery time, Tsrsc = Service ranking and
selection time, Tpg = Best plan generation time

Table 1: Notations
NOTATIONS MEANING

T Input task list
CS Abstract Composite Service
S Abstract atomic service

CCS Constructed composite service
ECS Executable composite service
Cij Concrete Service
Q Set of QoS attributes

CO Set of constraints
W Set of weights of QoS attribute
C CPS Systems
Cn Number of CPS
RS Resource System
RSn Number of Resource Systems
Sn

Number of services deployed on
each Resource Systems

Rn Number of nodes registered on
each Resource Systems

N Number of Discovered Services
Ct Number of Attributes
Sl Selection Limit
Pn Total number of generated plan

AEC Aggregated Execution cost

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3389

ART Aggregated Response time
ACC Aggregated Communication Cost
AR Aggregated Reputation

ASER Aggregated Service Exec. rate
Our objective is to select an optimal service Cij
from the set of similar functionality service list
subject to constraints that Tsc is minimum.

4.5 Assumptions
Following are the assumptions made.

i) Task is defined by administrator in middleware
system which is already decomposed into task list.
ii) Administrator can define N number of task for
each domain.
iii) For one task there can be one or more than one
services but the input and output of each service is
same as defined in task but with different QoS and
they may reside on different physical node.
iv) Each invocation to a service implementation
will materialize into a unique task in a physical
node.

4.6 Algorithms
Algorithms 1 to 13 are designed for different phases of service composition. Algorithm 1 (Service
Composition) as an input takes task list and ranking limit and generates the optimal composition plan. It is
the main algorithm of service composition. In step 2 it resolves task dependency and in step 3 it generates
CPS model. In step 4 , it ranks the discovered services and thus compositeServiceList is formed by
appending atomic services. Then calculates aggregated values of attributes in step 19 and generates optimal
composition plan in step 22.

Algorithm 1 : Service Composition
Input : Task list, ranking limit
Output : Optimal composition plan
1. Tasklist = Task_Dependency_Resolution (inputtasklist) // Resolve task dependency using

 Task Dependency Resolution
2. map = CPS Model Generation // Generate a CPS model to access the
 corresponding information
3. discoveredServiceList=Service Ranking(tasklist, map) // To rank the Discovered Services.
4. bestPlan=NULL
5. newPlan=NULL
6. set serviceRankingLimit = n // where n > 0
7. while TRUE
8. compositeServiceList=0
9. for i=0 to taskListsize
10. task=taskList[i]
11. serviceList= map[task]
12. selectedService= Service Selection(task, serviceList,serviceRankingLimit)
13. if selectedService ≠ NULL then
14. compositeServiceList.add(selectedService) //Select best services and thus keep
 appending all the best atomic services to composite
 service list
15. end if
16. end for
17. aggregatedQoSAttribute=Aggregated_QoS_Attributes(compositeServiceList)
18. newPlan.service=compositeServiceList
19. newPlan.attributes= aggregatedQoSAttribute
20 bestPlan=Optimal Composition Plan(plan, newPlan) // And keep counter on number of plans
 generated
21. Repeat steps 19 to 22 if (counter < threshold) // generate z= threshold composition plans.
22. else stop generating composition plans
23. end if
24. end while

Algorithm 2 : Task Dependency (input_Task_List)
Input : Inputtasklist.
Output : Finaltasklist.
1. Create empty list called as finalTaskList

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3390

2. For each task in InputTaskList do
3. CALL Execute(task, finalTaskList)
4. End for
5. Return finalTaskList
Procedure Execute (task list, final task list)
1. Begin
2. Status= CALL IsAvaliable(task)
3. If status= FALSE then
4. finalTaskList.add(task)
5. inputTaskList=task.inputTaskList
6. CALL Addtask(inputTaskList,finalTaskList)
7. Endif
8. End Procedure

Procedure isAvailable(task)
1.Begin
2. uuid=task1.uuid
3. for each task in finalTaskList
4. if task.uuid=uuid
5. then Return TRUE
6.End for
7.Return FALSE
8.End procedure

Procedure AddTask(taskList,finalTaskList)
1.Begin
2.For each task in tasklist do
3. CALL Execute(task,finalTaskList)
4. End for
5.End Procedure

Algorithm 2(Task Dependency Resolution) takes inputtasklist and finds the list of all dependent tasks from
the given task list which is finaltasklist. It calls procedures Execute, isAvilable and AddTask to resolve the
dependency. The best case time complexity is Ω (Tn-1) and worst case time complexity is O(Tn-1 * Tn)
where Ti is input task and Tn is total number of tasks.

Algorithm 3(CPS Model Generation)

Output : map // Map = HashMap containing list of CPS System Model against the UUID of
 CPS System, UUID is key and CPS System Model is value.
1. CPSList = get List of all registered CPS from middleware.
2. For (i=0 to CPSlist.size-1)
3. url= CPSlist[i]. url // for each CPS System get URL
4. uuid= CPSlist[i].uuid // for each CPS System get UUID
5. CPSSystemModel = Connect(url) // connect with CPS system of given URL and get detailed
 information from Resource Systems in CPS System Model.
6. Map[uuid] = CPSSystemModel // Store it against UUID in map.
Algorithm 3(CPS Model Generation) collects list of services of all resource system connected with
different CPS systems and generates a model to hold information of service along with CPS and resource
system's id. This algorithm executes in middleware. The best case time complexity is Ω(Cn*Rsn*
(Sn+Rn)) and worst case time complexity is O(Cn*Rsn* (Sn+Rn)) where Cn is number of CPS, Rsn is
number of resource System, Sn is number of services deployed on each resource system and Rn is number
of nodes registered on each resource system..

Algorithm 4 : Service Discovery (task, map)
Input : task, map
Output : discoveredSservicelist

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3391

1. domainid = get domain details from task uuid // for a given task against which an atomic
 service is to be found.
2. For (i=0 to map.size) // Find matching CPS system by matching Domain details and for
 each CPS system which is found, search its Resource System List
3. cpsSystemNode = map[i].cpsSystemNode
4. If (domainid= cpsSystemNode.domainid) then
5. resourceSystemList= cps.SystemNode. resourceSystemList
6. For(j=0 to resourceSystemList.size)
7. resourceSystemNode=resourceSystemList[i]
8. for (k=0 to serviceList.size)
9. if (serviceList[k]. taskUUID= taskUUID) then
10. discoveredService=(cpsID, resourceSystemID, service)
11. discoveredList.add(discoveredService)
12. end if
13. end for
14. end for
15. end if
16. end for
17. return discoveredList
For a given task, algorithm 4(Service Discovery) is called by Service Ranking algorithm. It takes task and
map as input and generates discoverdServiceList as an output. It first gets the domain details for the given
task and then searches its resource system and service list. The best case time complexity is Ω((Tn *Cn)
and worst case time complexity is O(Tn* Cn* Rsn* Sn) where Cn is number of CPS, Rsn is number of
resource System, Sn is number of services deployed on each resource system and Rn is number of nodes
registered on each resource system and Tn is total number of tasks.

Algorithm 5 : Service Ranking(task list, map)
 Input : tasklist, map.
 Output : ranked service list.
1.for (i=0 to taskList.size)
2. discoveredList= Service Discovery(task, map)
3. Apply merge sort on discoveredList by injecting Service Comparator.
3. Iterate all services of discoveredList
4. Result = Service Comparator(DS1, DS2) // where DS1 and DS2 are discovered services.
5. end iteration
6. end for
7. return discoveredList
Algorithm 5(Service Ranking(task list, map)) ranks all the discovered services using Service Comparator
algorithm with merge sort. The best case time complexity is Ω (Tn * N* log {N}*Ct) and worst case time
complexity is O(Tn* N*log {N} *(Ct+Ct/2)) where Tn is total number of tasks and N*log {N} is
complexity of sorting algorithm where Ct is Criteria.

Algorithm 6 : Service Comparator(DS1, DS2)
Input : DS1, DS2 // DS1 is first discovered service and // DS2 is second discovered service.
Output : case 1: -1 when DS1 > DS2 ,

case 2: 1 when DS1 > DS2 ,
 case 3: 0 when DS1 = DS2

1. get Attribute List of both discovered services.
2. Call Multi Attribute Comparator Algorithm for attribute wise comparison.
3. Return result..
Algorithm 6 (Service Comparator) takes as an input DS1 and DS2 and returns output as 1,-1 or 0. It is used
to compare two discovered services on the basis of their respective QoS attributes. It calls Multi Attribute
Comparator which is called with service attributes, so it compares two services.

Algorithm 7 : Multi Attribute Comparator(attribute List1, attribute List2)
Input : attributeList1 = attributes List of first entity

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3392

attributeList2 = attributes List of second entity
Output : Total Score
1. For given two entities compare all positive and all negative attributes by calculating feature count and
 prepare feature list.
2. If Feature count (first entity) > Feature count(second entity)
3. then first entity is best
4. Else if Feature count(first entity) < Feature count(second entity)
5. then Second entity is best
6. else if Feature Count(first entity) = Feature Count(second entity) then
7. Calculate Score of positive and negative attributes of both the entities using equations (1) ,(2) and (3)
8. end if
9. end if
10. if score1 > score 2 then first entity is best
11. else second entity is best.
12. end if
Algorithm 7 (Multi Attribute Comparator) is a generic comparator who compares two entities considering
all positive and negative attributes by considering feature count and score in case of positive and negative
attributes as defined in definition 3 and 4.

Algorithm 8 : Service Selection (task, servicelist, serviceRankinglimit)
Input : task , servicelist, serviceRankinglimit
Output : rankedServicelist
1. if (discoveredServiceList < serviceRankingLimit)
2. then serviceRankingLimit= discoveredServicelist.size
3. Within serviceRankinglimit choose services randomly from rankedservicelist for each task and form
 plan1 and plan2.
4. With plan1 and plan2, call Optimal Composition Plan
5. Repeat step 5 and 6 for all the Services of rankedServiceList.
Algorithm 8 (Service Selection) selects services within service ranking limit from the ranked service list for
a given task and calculates optimal composition plan by calling Optimal Composition Plan algorithm.

Algorithm 9 : Optimal Composition Plan(plan1, plan2)
Input: plan1, plan 2
Output : optimalPlan
1.QoSAttributes.Attributes1=plan1.Attributes //take Aggregated QoS attributes by Aggregated
 QoS Attributes algorithm for plan 1 and plan2
2. QoSAttributes1.Attributes = plan2.Attributes
3. code=Multi Attribute Comparator(plan1, plan2)
4. If code= -1 then
5. return plan1
6. else if code= 1 then
7. return plan2
8. else return plan1
9. end if
10. end if
Algorithm 9 (Optimal Composition Plan) generates optimal composition plan by comparing plan1 and
plan2 using Multi Attribute Comparator which is now called with aggregated attributes of composition
plan1 and plan2 and returns best plan. The best case time complexity is Ω (3*Tss) and worst case time
complexity is O(Pn*Tss) where Pn is total number of generated plans.

Algorithm 10 : Aggregated QoS Attributes(compositeServiceList)
Input: compositeServiceList
Output: AggregatedQoSAttributes
1. For the given constructed composite service list calculate Aggregated QoS attributes using equation
 (3),(4),(5),(6),(7).

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3393

Algorithm 10 (Aggregated QoS Attributes) calculates aggregated attributes of all the elements of
constructed composite service List.

Algorithm 11 : Service Deployment(task)
Input : task
Output : executable composite service
1. At resource system, filter resource System list on the basis of QoS parameters. i.e. the availability of the
resource node.
2. Get all resource system list in current CPS system
3. For all members in the resource system list, connect with resource system.
4. Calculate resource system parameters using algorithm Resource Parameter Calculation(CPS Model)
5.Compare resource systems using algorithm Multiattribute Comparator and Score .
6.Return optimal resource system to deploy the service.
Algorithm 11(Service Deployment) deploy the constructed composite service to allow instantiation. While
deploying the service against the task, it chooses optimal Resource System using algorithm Resource
System Comparator and it also takes into consideration the count of already deployed services which is
maintained by Resource System. The best case time complexity is Ω (Rsn * log {Rsn}*Ct) and worst case
time complexity is O(Rsn* log {Rsn} *(Ct+Ct/2)) where Pn is total number of generated plans.

Algorithm 12 : Resource System Parameters(CPS Model)
Input : CPS Model
Output: Parameters P
1. cs = CALL CommunicationSpeed(cps)
2. cc = CALL CommunicationCost //get Communication Cost from stored information. Resource
 System‘s admin will fill it one time, per unit cost
3. ps = CALL ComputationSpeed // Computation Speed in MIPS (million instructions per second)
4. cost = CALL ComputationCost // get Computation Cost from stored information
5. nc = Find the no of cores of resource system
6. nds = get the count of deployed service
7. ns = get the count of registered sensors
8. na = get the count of registered actuators
9. return P = (cs , cc , ps , cost , nc , nds , ns , na)
Algorithm12 (Resource Systems Parameters) executes in resource system to find all the parameters of
resource system.

Algorithm 13 : Service Scheduler(discoveredServiceList)
Input : discoveredServiceList
Output : TimeLayer[]
1. discoveredMAp= Map to store DiscoveredService object against taskID with the help of
 discoveredServiceList
2. Prepare weight matrix from given service list. // It finds dependency matrix (Initialize all
 diagonal elements as 0 means no dependency
 and if there is dependency then mark it as 1)
3. To prepare Time Layer array, check all predecessors. // Mark 1 for those who are having predecessors
 and default as 0)
4. Those who are not allocated Time Layer, take it in a separate queue and repeat for all unallocated
 services of queue
5. Repeat for all unallocated services of queue {

Find its predecessor
Check if predecessor is scheduled, then increment time layer by 1 }
 If it has multiple predecessors then find Time Layer by same method and take maximum

6. return TimeLayer
Algorithm13 (Service Scheduler(discoveredServiceList) schedules discovered service list by resolving
dependency by checking its predecessors.

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3394

5. EXPERIMENTAL SETUP DETAILS

The implementation is done in Java. For data model
.XML is used. For experimental setup the
hierarchical structure as described in CPS Model is
followed. The hierarchy of the prototype consists of
all computer with configuration as Intel i5, 2GHZ
CPU, 8 GB RAM. On one computer middleware is
running. There can be one or more computers
representing CPS system and one or more
computers representing Resource System. All the
present CPS systems are registered in the
middleware. Middleware holds a list of all CPS
systems which are stored as per their domain
information. All the Resource Systems are
registered in the CPS system, so CPS systems
maintain a list of all Resource Systems details.
Finally all the information of Resources, may it be
the sensors or actuators, they all are registered in
Resource Systems.

Here the idea is to use sensors which are
commonly found in any mobile handset. Every
sensor is treated as an object, which makes it easy
to deal with large number of sensors. To represent
an actuator, a separate web applications depicting
the function of actuator is developed. Eg. Light
sensor is used from mobile handset as a sensor node
which senses the input in lux then the actuator
corresponding to that is a control which can depict
ON and OFF operation through a web application.
Each machine may it be a Middleware, CPS System
or Resource System, they can communicate with
each other by specifying URL of the computer to
which you want to communicate. The data transfer
will take place with the help of HTTP protocol.
From this a runtime CPS Model is generated. The
algorithms are validated in the above said setup. For
results of services composition the algorithms are
run in the above said setup which can be
categorised as follows.

Category 1: CybReal PhyReal : Here Cyber system
and physical system both are real.
Category 2: CybSim PhyReal : Here Cyber system
is simulated and physical system is real. For
working on a large number of services and
resources, a simulator is written in java in which by
giving a maximum and minimum value of all the
positive and negative attribute, it will generate
resource nodes and services.

6. RESULTS AND ANALYSIS

i) Category1 (CybReal PhyReal) : The results are
achieved by varying number of CPS Systems,
number of Resource Systems and number of
Service instances. For various phases of Service
Composition the total execution time is calculated
as per equation (9). Table 2 shows the total service
composition time with and without dependency
consideration. Here number of CPS is 1, number of
RN(Resource Node) is considered as 10 per
resource system and number of RS(Resource
System) is varied from 1,3,6,9 and 15. Service
composition time is recorded for each case. Figure
4 shows results only for the first case when number
of RS is 1, which indicates that Service
Composition time with task dependency
consideration is more than service composition
time without consideration of task dependency and
same is the observation when RS = 3,6,9,15. Table
3 shows the result when number of CPS is 1,
number of RN considered per resource system is
50, and number of RS is varied as 1,3,6,9,15. Same
observation is seen even when number of RN per
RS is more. Table 4 and figure 4 shows the result of
average service composition time without
dependency consideration whereas table 5 and
figure 5 shows the result of average service
composition time with dependency consideration..

Table 2: SC time(ms) of Category 1(CyberReal-PhyReal) : Case 1

No. of
Services

Service Composition time(ms) when Number of CPS =1, Number of RN =10 per RS
No. of RS=1 No. of RS=3 No. of RS=6 No.of RS=9 No.of RS=15
W/O
DEP.

WITH
DEP

W/O
DEP.

WITH
DEP

W/O
DEP.

WITH
DEP

W/O
DEP.

WITH
DEP

W/O
DEP.

WITH
DEP

5 2 16 11 12 3 61 1 9 13 52
10 2 22 4 34 2 304 2 12 100 190
20 5 15 3 69 2 102 3 350 24 108
30 3 6 2 81 8 280 4 234 58 479
40 3 8 4 100 2 302 4 193 325 452

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3395

Figure 3: SC time of category1 of Category1 (CybReal PhyReal) : Case1

Table 3: Service Composition Time of Result of Category(CyberReal-PhyReal) : Case 2

No. of
Services

Service Composition Time in ms when Number of CPS =1, Number of RN =50 per resource
system
No. of RS=1 No. of RS=3 No. of RS=6 No.of RS=9 No.of RS=15
Without
Dep.

With
Dep

Without
Dep.

With
Dep

Without
Dep.

With
Dep

Without
Dep.

With
Dep

Without
Dep.

With
Dep

5 37 77 47 60 47 60 5 45 20 61
10 7 82 16 170 16 170 10 60 55 2105
20 19 71 15 270 15 270 13 1202 54 581
30 11 26 10 303 10 303 16 980 26 325
40 11 31 16 394 16 394 16 1103 182 2121

Table 4: Average SC time Without dependency of Category(CyberReal-PhyReal)

No of Resources Systems No. of CPS=1, No of Services =5, 10, 20, 30, 40
No. of RN=50 per resource system
Average Service Composition
time(ms) when RN=10

Average Service Composition
time(ms) when RS=50

1 4.4 17
3 4.6 20.8
6 3.4 16.4
9 2.8 12
15 3.4 67.4

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3396

Figure 4: Average Service Composition Time Without dependency consideration

Table 5: Average Service Composition Time with dependency consideration of Category(CybReal PhyReal)

No of Resources Systems No. of CPS=1, No of Services =5, 10, 20, 30, 40

Average Service Composition
time(ms) when RN=10

Average Service Composition
time(ms) when RN=50

1 13.4 57.4
3 59.2 293.4
6 209.8 876.6
9 159.6 678.0
15 504.8 1038.6

Figure 5: Average Service Composition Time with dependency consideration of Category(CybReal PhyReal)

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3397

ii) Category 2 (CybeSim PhyReal) : The results of service ranking is calculated using three algorithms a)
Multi Attribute Comparator(MAC) b) Preference Selection Index(PSI) and Technique for Order Preference
by Similarity to Deal Solution(TOPSIS) [17]. There are many MADM methods present in the literature but
PSI and TOPSIS are chosen because they do not have any requirement of weight assignment to the
attributes. Table 6 shows the result of Category 2 and figure 6 shows graph of comparative results of MAC
with PSI and TOPSIS.

Table 6: Comparative Result of MAC, PSI and TOPSIS of Category 2: CyberSim-PhyReal

Number of
Services

Multi Attribute
Selector(MAS)

Execution Time(ms)

PSI
Execution Time(ms)

TOPSIS
Execution Time(ms)

100 0.334 1.534 1.515
200 0.788 2.194 3.29
300 0.974 4.52 5.187
400 1.553 5.107 5.074
500 2.112 6.682 10.626
600 2.021 7.275 10.592
700 2.839 1.312 1.989
800 2.776 1.239 2.335
900 4.03 1.726 2.779

1000 4.682 2.038 2.36

Figure 6: Performance of MAC, PSI, TOPSIS .

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3398

7. COMPARISION WITH RELATED WORK

As mentioned in section 2 many of the previous
researchers have not defined CPS service attributes
whereas they have considered the attributes of web
service only. But considering attributes of web
service may not be sufficient as there is a difference
between Web service and a CPS service. Our work
clearly defines CPS service along with its attributes.
Secondly the service composition algorithms were
not defined phase wise and also all the phases were
not elaborated, whereas our work consists of phase
wise definition and description of service
composition algorithms along with results. Thirdly
previous researchers have worked either on
framework or given theoretical discussion on
ontology but very few have discussed the
implementation details of service composition
method whereas in our work the complete
description of middleware and implementation
details are given. And lastly the methods of MADM
were not yet explored for optimal CPS service
election problem, but our work includes comparison
of all the potential methods of MADM[19] and then
the best methods are applied for final service
selection phase. The results are achieved in
simulated environment where number of CPS
systems, Number of resource systems and number
of sensors and actuators are limited so remaining
combinations of CybReal, CybSim, PhyReal and
PhySim are not considered in this paper for
discussion.

8. CONCLUSION

The service composition problem is divided into
different phases and algorithms are designed for
phases. Optimal service selection is seen as a sub
problem of service composition. Multi attribute
decision making methods are used in CPS service
ranking and selection for service composition. For
solving optimal service selection problem Multi
Attribute Comparator algorithm is written. Existing
methods of Multi attribute decision making
methods mainly PSI algorithm and TOPSIS
algorithm are used for comparison of service
selection phase. The impact of task dependency on
service composition is shown with various
deployment scenarios which indicates that task
dependency resolution time impacts overall service
composition time.

 REFERENCES

[1]. Cyber Physical Systems Summit Report,
NSF, iccps2012.cse.wustl.edu.

[2]. Edward Lee, "Cyber Physical Systems :
Design, Challenges", Object IEEE
International Symposium on oriented real
time distributed computing (isorc), pp. 363-
369, 2008.

[3]. Jiafu Wan, Hehua Yan, Hui Suo and Fang
Li, "Advances in Cyber-Physical Systems
Research", KSII Transactions on Internet
and Information Systems, Vol. 5, Issue 11,
pp. 1891-1908, 2011.

[4]. Swati Nikam, Rajesh Ingle, "Survey of
Research Challenges in Cyber Physical
Systems", International Journal of Computer
Science and Information Security, Vol. 15,
Issue 11, pp. 192-199, 2017.

[5]. Jototh Chandrashekhar, G.R.Gangadharan,
Ugo Fiore, Rajkumar Buyya, "QoS Aware
Big Service Composition using MapReduce
based Evolutionary Algorithm with guided
mutation", Future Generation Computer
Systems, 2017.

[6]. Kalasapur, Swaroop, Mohan Kumar, and
Behrooz A. Shirazi, "Dynamic service
composition in pervasive computing", IEEE
Transactions on Parallel and Distributed
Systems, Vol. 18, Issue 7, pp. 907-918, 2007.

[7]. Tamhane, Sagar A, Mohan Kumar, Andrea
Passarella, and Marco Conti, "Service
composition in opportunistic networks",
IEEE International Conference on
Computing and Communications
(GreenCom), pp. 285-292, 2012.

[8]. Wu, Taotao, Wanchun Dou, Chunhua Hu,
and Jinjun Chen, "Service Mining for
Trusted Service Composition in Cross-Cloud
Environment", IEEE Systems Journal, Vol.
11, Issue 1, pp. 283-294, 2017.

[9]. Swati Nikam, Rajesh Ingle, "Comparative
Study of Service Composition in CPS and
IoT", International Conference on Advances
in Cloud Computing, pp 1-7, 2014.

[10]. Zhao Yajing, "Abstract Cyber Physical
Systems Service Composition", Chapter 14,
Service Life Cycle Tools and Technologies,
Methods, Trends and Advances , IGI Global,
pp. 2012-2014, 2012.

[11]. Hell Bruck Horst et.al, "Name Centric
Service Architecture for Cyber Physical
Systems", Proceedings of 6th IEEE
International Conference on Service
Oriented Computing and Applications, pp.
77-82, 2013.

[12]. Tao Wang et. al., "Automatic and Effective
Service Provision with Context-aware
Service Composition Mechanism in Cyber-

Journal of Theoretical and Applied Information Technology
15th June 2018. Vol.96. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3399

Physical Systems", International Journal on
Advances in Information Sciences and
Service Sciences, Vol. 4, Issue 11, pp. 151-
160, 2012.

[13]. Wang Tao, “A Two-phase Context Sensitive
Service Composition Method With a
Workflow Model in Cyber Physical Systems,
Proceedings 17th IEEE International
Conference on Computational Science and
Engineering, pp. 1475-1482, 2014.

[14]. J. Huang et. al., "Extending Service Model to
Build an Effective Service Composition
Framework for Cyber-Physical Systems",
IEEE International Conference on Service-
Oriented Computing and Applications, pp.
130-137, 2009.

[15]. Jian Huan et.al., "Towards a Smart Cyber
Physical Space- Context Sensitive Resource
Explicit Service Model", 33rd International
IEEE Conference on Computer Software and
Application, pp. 122-127, 2009.

[16]. Wang, Shangguang, Ao Zhou, Mingzhe
Yang, Lei Sun, and Ching-Hsien Hsu,
"Service Composition in Cyber-Physical-
Social Systems, IEEE Transactions on
Emerging Topics in Computing , 2017.

[17]. Quan Shen et.al., "Web Service
Composition- A Decades Overview",
Informatics Sciences, Vol 250, pp 218-238.

[18]. Swati Nikam, Rajesh Ingle, "Middleware for
Service Composition in Cyber Physical
systems", Journal of Computational and
Theoretical Nano science, 2018, (Accepted
and Under Publication)(Link- rbingle.in)

[19]. Swati Nikam, Rajesh Ingle, "Autonomics of
Self Management for Service Composition
in Cyber Physical Systems", Second
Springer International Conference on Smart
Innovations in Communications and
Computational Sciences (ICSICCS), 2018,
(Accepted and Under Publication)(Link-
rbingle.in).

