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ABSTRACT 

This paper investigates the structural controllability of switched linear singular systems (SLSS). Graphical 
methods are proposed in order to determine different conditions for the structural controllability of SLSS 
systems. These methods are based on simple causal paths and causal manipulations on the switching bond 
graph model. Our approach can be implemented in software such as Symbol2000 or 20sim, in order to 
control the systems in real time. 
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1.   INTRODUCTION: 

Switched systems are frequently encountered in 
practice, for example (hydraulic systems with 
valves, electric systems with diodes, relays, 
mechanical systems with clutches...). It is for this 
reason that various researchers have approached the 
study of controllability/observability for this 
systems, and a lot of results have emerged during 
the twenty last years with different approaches 
(algebraic, graphical...) [1]–[6]. 

Some sufficient conditions and necessary 
conditions for controllability of hybrid system were 
presented in [3], where the system operating period 
within each mode was assumed to be fixed and 
known. Complete geometric criteria for 
controllability and reachability are established in 
[1], [2]. Some necessary and sufficient conditions 
for controllability are derived in [4], [5]. The 
observability of the continuous and discrete states 
of hybrid systems are studied in [6], [7]. 

The switched linear singular systems are an 
important class of switched systems. Due to the 
existence of switching, discontinuity phenomenon 
appears in the state variables at the switching 
moments. Physically, some problems such as sparks 
and short circuits can occur. Therefore the stability, 
controllability and observability of switched 

singular systems are important research topics in 
the area of switching control. Little works have 
been done on the controllability of switched linear 
singular systems. In [8] and [9], the solvability and 
controllability of periodically switched singular 
systems were studied. By using the geometric 
approach, a necessary condition and a sufficient 
condition on complete reachability are presented in 
[10]. 

Up to now, all previous work mentioned above 
has been based on the traditional controllability 
concept, for example in [10] the conditions 
proposed require a lot of matrix calculates to check 
controllability, Hence it is desirable to investigate 
controllability and observability by structural 
properties and not by the parameter numerical 
values, this properties are independent of the 
numerical value of the system and depending only 
on the architecture of the system. 

The analysis of structural properties of linear 
multivariable time invariant systems has received 
great attention. Different approaches have been 
used. The first one is the graph approach introduced 
in [11], and extended for the design of 
multivariable control systems in [12]–[14]. The 
bond graph approach has also been exploited to 
analyses the structural properties. Some recent 
works permit to highlight structural properties of 
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these systems [15]–[22], based on simple causal 
manipulations on the bond graph model. 

The controllability and observability study of 
linear time invariant system (LTI) is based on two 
fundamental notions: attainability and structural 
rank, the latter is determined directly from the bond 
graph model [20], [21]. 

When switched linear system has just one mode, 
it can be considered as a LTI system. So we can 
therefore apply the same results obtained for the 
LTI systems. In this context some necessary and 
sufficient conditions for controllability and 
observability for switched systems are derived in 
[18], [19], with the aid of simple causal 
manipulations on the switching bond graph (SBG). 

On the other hand, the controllability property is 
decomposed into R-controllability, impulse 
controllability and complete controllability [23]. 
For R-controllability of switched singular systems, 
we proposed some conditions using simple causal 
manipulations on the bond graph model in [24]. 

In this paper, we investigate the structural 
controllability problem for switched linear singular 
systems modeled by switching bond graph. Unlike 
the other approaches (algebraic) [8]–[10], the 
results obtained in this work are more applicable 
since the conditions developed in this paper are 
based on simple causal manipulations on the bond 
graph model, which not only avoids lot of matrix 
calculates but can also check controllability without 
knowing the system parameters. 

This paper is organized as follows: the second 
section formulates algebraic results related to the 
analysis of controllability. Section three recalls 
some background about bond graph modelling of 
switched systems. The modelling is done using the 
structure junction equation, leading to an implicit 
model. In section four, graphical methods for 
structural R-controllability, I-controllability and C-
controllability of these systems are proposed. This 
procedure is based on simple causal manipulations 
on the bond graph model. Finally, a simple example 
illustrating the previous results is proposed. 

2.   ALGEBRAIC ANALYSIS OF THE 
CONTROLLABILITY  

2.1.   System description and preliminaries 

Considering a switched linear singular system, 
given by equation (1): 

ቊ
ሶݔሻ൯ݐሺߪ൫ܧ ሺݐሻ ൌ ሻݐሺݔሻ൯ݐሺߪ൫ܣ  ሻݐሺݑሻሻݐሺߪሺܤ

ሻݐሺݕ ൌ 																																												ሻݐሺݔሻ൯ݐሺߪ൫ܥ
    (1)       

Where ݔሺݐሻ ∈ Ը, ݑ ∈ Ը, and 	ݕሺݐሻ ∈ Ը are 
respectively the state, input and output vectors. 

If we consider this system in a particular mode	݆, 
the equation (1) can be written as: 

ቊ
ሶݔܧ ሺݐሻ ൌ ሻݐሺݔܣ  ሻݐሺݑܤ
ሻݐሺݕ ൌ 																				ሻݐሺݔܥ

                       (2) 

With ܧ ൌ ܧ ቀߪሺݐሻቁ , ܣ ൌ ܤ	, ሻሻݐሺߪሺܣ ൌ

ܥ	,ሻሻݐሺߪሺܤ ൌ 	݆ ,ሻ൯ݐሺߪ൫ܥ ∈ ሼ1, … ,  is the ݍ ሽ andݍ
number of modes. 

2.2.    Decomposition of the singular system 

It is usual, when analyzing the properties of (2), 
define equivalent forms by pre-multiplying it by a 
non-singular matrix P, and by operating a variable 
change ܳ in order to obtain a new equivalent 
implicit state equation [23]: 

  	 ܲܧܳ ቀܳ
ିଵݔሶ ሺݐሻቁ ൌ 	 ܲܣܳ ቀܳ

ିଵݔሺݐሻቁ		 

                            										 ܲܤݑሺݐሻ

Such that ܲܧܳ ൌ ൬
భܫ 0
0 ܰ

൰

 ܲܣܳ ൌ ൬
ܩ 0
0 ିభܫ

൰and ܲܤ ൌ ൬
ܪ
ܬ
൰

Introducing the state transformation: 

ሻݐሺݔ̅ ൌ 
ሻݐଵሺݔ
ሻݐଶሺݔ

൨ ൌ ܳ
ିଵݔሺݐሻ

Using (4), the equivalent canonical form of 
equation (2) can be defined as: 

൞

ሻݐሶଵሺݔ ൌ ሻݐଵሺݔܩ  ሺaሻ									ሻݐሺݑܪ

ܰݔሶଶሺݐሻ ൌ ሻݐଶሺݔ  ሺbሻ											ሻݐሺݑܬ

ሻݐሺݕ ൌ ଵܥ
ݔଵሺݐሻ  ଶܥ

ݔଶሺݐሻ									ሺcሻ


The equation (5) usually called Kronecker form. 
The subsystems (5.a) and (5.b) are called slow and 
fast subsystems respectively. 

ሻݐଵሺݔ	 ∈ Ըభ and ݔଶሺݐሻ ∈ Ըିభ are the slow and 
fast substates respectively, and ܰ is a nilpotent 
matrix of index h.  
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The Kronecker form separates the finite dynamic 
modes from pulse and non-dynamic modes, and 
solves each of the subsystems separately. 

2.3.   R-controllability of SLSS system in a 
particular mode  

When system (1) has just one mode, it can be 
considered as a singular LTI system, and we 
consider the equivalent form of Kronecker-
Weierstrass [23]. 

Thus, the slow subsystem (5.a) is an ordinary 
differential equation. It has a unique solution for 
any piecewise continuous input ݑሺݐሻ and an initial 
condition ݔଵሺ0ሻ, given by (6). 

ଵݔ ൌ ݁ீೕ௧ݔଵሺ0ሻ   ݁ீೕሺ௧ିఛሻ
௧
  ሺ߬ሻ݀ሺ߬ሻ            (6)ݑܪ

The slow subsystem is controllable if ݇݊ܽݎሺ ܹሻ ൌ
݊ଵ and the controllability matrix defined as ܹ ൌ
ሾܪ	ܩܪ ܩ…

భିଵܪሿ. 

Definition 1 [23]: R-controllability is related to the 
ability to control the finite dynamic modes 
(classical controllability of exponential modes for 
regular system). It is associated with the differential 
part composing the state space. 

The R-controllability guarantees our controllability 
for the system from any admissible initial condition 
 ଵሺ0ሻ to any reachable state and this process will beݔ
finished in any given time period if the control ݑሺݐሻ 
is suitably chosen. 

Theorem 1[23]: The system (2) in a particular 
mode j is called R-controllable, if the slow 
subsystem (5.a) is controllable. 

2.4.   R-controllability of SLSS system with 
q modes 

We can define a combined matrix ோܹ of SLSS 
system as: 

        ோܹ ൌ ሾ ଵܹ	 ଶܹ … ܹ … ܹሿ                          (7)  

With ܹ is the controllability matrix in mode ݆. 

Theorem 2(Extension of Yang’s Theorem): The 
SLSS with ݍ modes is R-controllable; if the 
controllability matrix ோܹ defined in (7) is of full 
row rank, i.e.  ݇݊ܽݎሺ ோܹሻ ൌ ݊ଵ. 

Proof of theorem 2: See the Appendix. □ 

Remark 1: From theorem 2, we can deduce that:  

- The system (1) can be R-controllable, if the 
system (2) in a particular mode ݆ is R-controllable.  

- However, it is possible that no mode is R-
controllable but the system (1) is R-controllable. 

2.5.   Impulse controllability 

There exist impulse terms that is set out either by 
the initial condition or by the possible jump 
behavior in control input ݑሺݐሻ and its derivatives. 
Therefore, it is necessary to analyze the control 
effect on impulse terms in the stale response. 

Definition 2: Impulse controllability is important 
for the necessity to eliminate the impulse portions 
in a system in which impulse terms are generally 
not expected to appear. 

Theorem 3 [23] : The system (2) in a particular 
mode j is called I-controllable, if the fast subsystem 
(5.b) is controllable. 

2.6.   C-controllability 

Definition 3 [23]: The system (2) in a particular 
mode ݆ is called C-controllable, if both its slow and 
fast subsystems are controllable. 

3.   REPRESENTATION OF A LINEAR 
SINGULAR SYSTEM FROM A 
SWITCHING BOND GRAPH   

The structure junction of a switching bond graph 
(SBG) can be represented by figure 1.  

 

Figure 1: Junction structure of a switching bond graph 

Five fields model the components behavior: - 
source field which produces energy, - R field which 
dissipates it, - I and C field which can store it, - ݁ܦ 
and ݂ܦ	continuous detectors fields, and the Sw field 
is the switching component. These elements are 
linked directly to the control system discrete. ݔሺݐሻ 

ሻݐሶሺݔ
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is the state vector. It contains the variables p on I 
elements and the variables q on C elements when 
these elements are in integral causality. ݔௗሺݐሻ is the 
pseudo state vector: it contains the variables p on I 
elements and the variables q on C elements when 
these elements are in derivative causality. ݖሺݐሻ and 
 ሻ are vectors that contain the coenergyݐௗሺݖ
variables associated to ݔሺݐሻ and ݔௗሺݐሻ. ܦሺݐሻ	and 
 ሻ contain the effort and flow variablesݐሺܦ
respectively entering and exiting from resistive 
ports. ݑௌ௪ሺݐሻ and ݕௗೕሺݐሻ are vectors that contain 

the variables respectively imposed and exiting from 
switches in mode ݆.  

3.1.       Bond graph models of switch and 
switched sources elements 

The switch elements can be modelled using two 
main bond graph approaches: non ideal switches 
[16] or ideal switches [15]. In the second case, the 
sources standing for ideal switches have two states 
(figure 2): the first state denoted by ON, when they 
behave like zero effort sources (ܵ݁ௗ: 0) and a 
second state denoted by OFF when they behave like 
zero flow sources (ܵ ௗ݂: 0). These two sources 
represent the discrete inputs and are noted ݑௌ௪, 
they can be efforts or flows entering in structure of 
junction. For a system contain N switchs, we need 
to define the discrete sources ݑௌ௪ሺݐሻ by: ݑௌ௪ሺݐሻ ൌ

ቄቀݑௌ௪ೕቁ
, ݆ ∈ ሼ1,⋯ , ,ሽݍ ݈ ∈ ሼ1,⋯ ,ܰሽ	ቅ with ݍ ൌ

2ே those define the set of discrete inputs, and are 
presented in Figure 2. 

 
Figure 2: Bond graph models of switched sources ܵ݁ௗ 

and ܵ ௗ݂ 

3.2.   State representation from switching 
bond graph 

Each output of the junction structure ሺݔሶሺݐሻ,
,ሻݐௗሺݖ  ሻሻ can be expressedݐೕሺݕ ሻ andݐௗೕሺݕ ,ሻݐሺܦ

as function of all its inputs ሺݖሺݐሻ,
,ሻݐሶௗሺݔ ,ሻݐሺܦ	 ,ሻݐௌ௪ሺݑ and	ݑሺݐሻሻ: 



ۏ
ێ
ێ
ێ
ێ
ۍ
ሻݐሶሺݔ
ሻݐௗሺݖ
ሻݐሺܦ
ሻݐௗೕሺݕ

ےሻݐೕሺݕ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଵܵଵ


ଵܵଶ


െ ଵܵଶ
௧ 0

ଵܵଷ
௧ 0

								
ଵܵଷ
 			 ଵܵସ



0 			ܵଶସ


ܵଷଷ
 				ܵଷସ



				
ଵܵହ


ܵଶହ


ܵଷହ


		
		െ ଵܵସ

௧ െܵଶସ


		ܵହଵ
௧ 	ܵହଶ

 			
െܵଷସ

 			 ܵସସ


ܵହଷ
 ܵହସ

 					
ܵସହ


ܵହହ
 			

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
ሻݐሺݖ
ሻݐሶௗሺݔ
ሻݐሺܦ
ௌ௪ೕݑ

ሺݐሻ

ሻݐሺݑ ے
ۑ
ۑ
ۑ
ۑ
ې



This linear relation can be written as an implicit 
equation that is called in the following the standard 
implicit form:   

 

ۏ
ێ
ێ
ێ
ێ
ۍ ܫ ଵܵଶ



0			 0	
0			 0	
0 ܵଶସ

௧

0 െܵହଶ

ے
ۑ
ۑ
ۑ
ۑ
ې


ሻݐሶሺݔ
ሻݐሶௗሺݔ

൨ ൌ ሾܵሿ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ሻݐሺݖ
ሻݐௗሺݖ
ሻݐሺܦ
ሻݐሺܦ
ሻݐௌ௪ೕሺݑ

ሻݐௗೕሺݕ

ሻݐሺݑ
ሻݐೕሺݕ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې



Where  

ሾܵሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଵܵଶ

 0

െ ଵܵଶ
௧ ೕܫ

ଵܵଷ
௧ 0

								
ଵܵଷ
 0
0 0
ܵଷଷ
 ோೕܫ	

									
ଵܵସ
 0

ܵଶସ
 0

ܵଷସ
 0

													
ଵܵହ
 	0

ܵଶହ
 	0

ܵଷହ
 	0

							

		
െ ଵܵସ

௧ 	0

ଵܵହ
௧ 	0

								
െܵଷସ

 0

ܵହଷ
 0

										
ܵସସ
 ௌ௪ೕܫ

ܵହସ
 0

									
ܵସହ
 0

ܵହହ
 െܫ௬ೕ

				
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې



Matrices ଵܵଵ
 , Sଷଷ

୨ , ܵସସ
  and ܵହହ

  are skew symmetric 
due to energy considerations. 

Let the constitutive law of the ܴ field be: 

ሻݐሺܦ  ൌ  .ሻݐሺܦܮ

ܮ is a positive matrix, withܮ ൌ 
ሾܴሿ 0
0 ሾ1/ܴሿ

൨

0 or 1

Sw 

a) Spontaneous commutation 

Internal 
discrete 
event

ܵ ௗ݂:  ௌ௪ೕୀ : ܵ݁ௗݑ

0 or 1

Sw 

b) Controlled commutation 

External 
discrete 
event

ܵ ௗ݂:	ݑௌ௪ೕୀ : ܵ݁ௗ 
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If ܪ ൌ ܫ൫ܮ െ Sଷଷ
୨ ൯ܮ

ିଵ
exists, which is particularly 

true when ܮ is a symmetric and positive definite 
matrix, then third row of (8) leads to: 

ሻݐሺܦ ൌ ܪ ൬െSଵଷ
௧୨ ሻݐሺݖ  Sଷସ

୨ ௌ௪ೕݑ
ሺݐሻ  Sଷହ

୨ ሻ൰ݐሺݑ

By eliminating ܦሺݐሻ	and ܦሺݐሻ from (8) we 
obtain the equation (11): 

ە
ۖ
ۖ
۔

ۖ
ۖ
ܫۓ െ ଵܵଶ



0 0
൨ ሶݔ ሺݐሻ ൌ 

ܭ 0
െ ଵܵଶ

௧ ܫ
൨ 
ሻݐሺݖ
ሻݐௗሺݖ

൨  ቈ
ଵܭ ଶܭ
ܵଶହ
 ܵଶସ

  ቈ
ሻݐሺݑ
ௌ௪ೕݑ

ሺݐሻ

ሻݐೕሺݕ െ ܵହଶ
 ሻݐሶௗሺݔ ൌ ሾܭᇱᇱ 0ሿ 

ሻݐሺݖ
ሻݐௗሺݖ

൨  ሾܭଵ
ᇱᇱ ଶܭ

ᇱᇱሿ ቈ
ሻݐሺݑ
ௌ௪ೕݑ

ሺݐሻ						

ሻݐௗೕሺݕ  ܵଶସ
௧ݔሶௗሺݐሻ ൌ ሾܭᇱ 0ሿ 

ሻݐሺݖ
ሻݐௗሺݖ

൨  ሾܭଵ
ᇱ ଶܭ

ᇱሿ ቈ
ሻݐሺݑ
ௌ௪ೕݑ

ሺݐሻ							

  

Whereݔሺݐሻ ൌ 
ሻݐሺݔ
ሻݐௗሺݔ

൨ܭ ൌ ଵܵଵ
 െ ଵܵଷ

 ܪ ଵܵଷ
௧ 

ᇱܭ ൌ െ ଵܵସ
௧  ܵଷସ

௧ܪ ଵܵଷ
௧ ܭଵ ൌ ଵܵହ

  ଵܵଷ
 ܵଷହܪ

 

ଶܭ ൌ ଵܵସ
  ଵܵଷ

 ܵଷସܪ
 ܭଵᇱ ൌ ܵସହ

 െ ܵଷସ
௧ܪܵଷହ

 

ଶܭ
ᇱ ൌ ܵସସ

 െ ܵଷସ
௧ܪܵଷସ

 ܭଵᇱᇱ ൌ ܵହହ
  ܵହଷ

 ܵଷହܪ
 

ଶܭ
ᇱᇱ ൌ ܵହସ

  ܵହଷ
 ܵଷସܪ

 and ܭᇱᇱ ൌ െܵହଵ
 െ ܵହଷ

 ܪ ଵܵଷ
௧ 

In a linear case, the law constitutive for the fields of 
storage ܫ and ܥ can be written as: 


ሻݐሺݖ
ሻݐௗሺݖ

൨ ൌ ቈ
ܨ
 0

0 ௗܨ


ᇣᇧᇧᇤᇧᇧᇥ
ெ


ሻݐሺݔ
ሻݐௗሺݔ

൨

Whereܨ
 ൌ 

ܫ/1 0
0 ௗܨ൨and൫ܥ/1

൯
ିଵ
ൌ ቂܫ 0

0 ܥ
ቃ

In mode ݆, we have ݑௌ௪ೕሺݐሻ ൌ 0, so for ݐ ∈
ሾݐିଵ,  :ሻ the state representation is given byݐ

൞

ሶݔܧ ሺݐሻ ൌ ሻݐሺݔܣ  ሺܽሻ																					ሻݐሺݑܤ
ሻݐೕሺݕ  ܮ

ᇱݔሶௗሺݐሻ ൌ ሻݐሺݔܥ  ܦ
ᇱᇱ ሺܾሻ				ሻݐሺݑ

ሻݐௗೕሺݕ  ሻݐሶௗሺݔܮ ൌ ሻݐሺݔௗܥ  ሺܿሻ		ሻݐሺݑܦ


Where  

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ ሻݐሺݔ ൌ ൬

ሻݐሺݔ
ሻݐௗሺݔ

൰ , ܧ ൌ ܧ
 ௗܧ



0 0
൨ ൌ ܫ െ ଵܵଶ



0 0
൨ ,

ܣ	 ൌ ቈ
ܣ
 0

ௗܣ
 ௗௗܣ

  ൌ ቈ
ܨܭ

 0

െ ଵܵଶ
௧ܨ

 െܨௗ
 , ܤ ൌ ቈ

ܤ
 ൌ ଵܭ

ௗܤ
 ൌ ܵଶହ

  ,

ܮ
ᇱ ൌ െܵହଶ

 , ܥ ൌ ܨᇱᇱܭൣ
 0൧ ൌ ܥൣ

 0൧
									

ܦ		
ᇱᇱ ൌ ଵܭ

ᇱᇱ, ܦ ൌ ܵସହ
 െ ܵଷସ

௧ܪܵଷହ
 	,																			

ܮ	 ൌ ܵଶସ
௧ , ௗܥ ൌ ܨᇱܭൣ

 0൧ ൌ ௗܥൣ
 0൧



Where	ݔ ∈ ܴ and	ݔௗ ∈ ܴ 

Thus, for a system with ܰ switches, the number of 
modes is given by 2ே ൌ  The hybrid system .ݍ
evolves by according to the following dynamical: 

ە
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۓ
ቐ
ሻݐሶሺݔଵܧ ൌ ሻݐሺݔଵܣ  ሺܽሻ																								ሻݐଵሺݑଵܤ
ሻݐభሺݕ  ଵܮ

ᇱ ሻݐሶௗሺݔ ൌ ሻݐሺݔଵܥ  ଵܦ
ᇱᇱ ሺܾሻ						ሻݐଵሺݑ

ሻݐௗభሺݕ  ሻݐሶௗሺݔଵܮ ൌ ሻݐሺݔௗଵܥ  ሺܿሻ			ሻݐଵሺݑଵܦ
ݐ				 ∈ ሾݐ, 																							ଵሻݐ

⋮

൞

ሻݐሶሺݔܧ ൌ ሻݐሺݔܣ  																																					ሺܽሻ																										ሻݐሺݑܤ

ሻݐೕሺݕ  ܮ
ᇱݔሶௗሺݐሻ ൌ ሻݐሺݔܥ  ܦ

ᇱᇱ ݐ		ሺܾሻ						ሻݐሺݑ ∈ ,ିଵݐൣ 													ሺ13ሻ	൯ݐ

ሻݐௗೕሺݕ  ሻݐሶௗሺݔܮ ൌ ሻݐሺݔௗܥ  																																						ሺܿሻ				ሻݐሺݑܦ
	

⋮

൞

ሻݐሶሺݔܧ ൌ ሻݐሺݔܣ  ሺܽሻ																								ሻݐሺݑܤ
ሻݐሺݕ  ᇱܮ ሻݐሶௗሺݔ ൌ ሻݐሺݔܥ  ᇱᇱܦ ሺܾሻ						ሻݐሺݑ

ሻݐௗሺݕ  ሻݐሶௗሺݔܮ ൌ ሻݐሺݔௗܥ  ሺܿሻ			ሻݐሺݑܦ
ݐ		 ∈ ,ିଵݐൣ 																			൯ݐ



3.3.   Decomposition of the singular system  

To go further in the analysis of the implicit 
equation (12), it is pre-multiplied by the 
nonsingular matrix: 

ܲ ൌ ൬ܫ െܣ


ଵܵଶ


0 ܫ
൰ ቀܫ 0
0 െܴ

ቁ

Where ܴ ൌ ൫ܣௗ


ଵܵଶ
  ௗௗܣ

 ൯
ିଵ

   

Defining also the variable change: 

ܳ ൬
ሻݐଵሺݔ
ሻݐଶሺݔ

൰ ൌ ൬
ሻݐሺݔ
ሻݐௗሺݔ

൰

Where 

ܳ ൌ ൬ܫ ଵܵଶ


0 ܫ
൰ ൬

ܫ 0
െܴܣௗ

 ൰ܫ

Leads to the following explicit state representation: 

ቀܫ 0
0 0

ቁ ൬
ሻݐሶଵሺݔ
ሻݐሶଶሺݔ

൰ ൌ ൬ܣ
 ܫൣ െ ଵܵଶ

 ܴܣௗ
 ൧ 0

0 ܫ
൰ ൬
ሻݐଵሺݔ
ሻݐଶሺݔ

൰ 

                             ቆ
ܤ

  ܣ

ଵܵଶ

ܴܤௗ


െܴܤௗ
 ቇ  ሻݐሺݑ

Equation (17) is equivalent to an ordinary state 
representation: 

ሻݐሶଵሺݔ ൌ ሻݐଵሺݔܩ   ሻ                    (18)ݐሺݑܪ

Where the state is continuous at the origin, 
associated to an algebraic equation:  

ሻݐଶሺݔ  ൌ ሻݐሺݑܬ ൌ ܴܤௗ
ݑሺݐሻ                         (19) 

Where ܩ=ܣ
 ሾܫ െ ଵܵଶ

 ܴܣௗ
 ሿ  

and ܪ ൌ ܤ
  ܣ


ଵܵଶ

ܴܤௗ
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3.4.   Determination of the equivalent bond 
graph of slow subsystem 

The following procedure shows the symbolic 
calculation of the equivalent ordinary state 
representation (18) for linear singular systems 
directly from their bond graph model. 

 ሻ components of vector are calculated so as toݐଵሺݔ
reduce the components of the vector ݔௗሺݐሻ (which 
are causally connected to an element of the vector 
 ሺtሻݔ ሻ) to the components of the vectorݐሺݔ
extracted by equation (15) : 

ሻݐଵሺݔ   ൌ ሻݐሺݔ െ ଵܵଶݔௗሺݐሻ                    (20) 

Changing the ݔሺtሻ elements by ݔଵሺtሻ	element in 
bond graph model. To explain that, we propose the 
following example: 

Example 1: We consider the bond graph model 
given by Figure 3.a and its equivalent bond graph 
(EBG) model given by Figure 3.b. 

 

 

                      
Figure 3 a) BGI, b) Equivalent bond graph model (EBGI) 

Where   

ଵሺtሻݔ ൌ ሻݐଶሺݍ  ሻݐଵሺݍ ൌ ሻݐଶ݁ଶሺܥ   ሻ  (21)ݐଵ݁ଵሺܥ

Note that  

                      ݁ଵሺݐሻ ൌ ݁ଶሺݐሻ       (22) 

Then, we obtain the relations: 

ሻݐଵሺݔ    ൌ ሺܥଵܥଶሻ݁ଵሺݐሻ ൌ   ሻݐଵሺ݁ܥ

and ܥ ൌ ଵܥ   ଶ                                     (23)ܥ

So the EBG of slow subsystem is found by 
changing the value of ܥଵ through ܥ ൌ ଵܥ   ଶ andܥ
by removing the element in derivative causality. 
Physically, we can explain that by the existence of 
an equivalent C-element, which groups the two 
elements in parallel. 

  are obtained by causal manipulations onܪ  andܩ
the EBGIj model of slow subsystems and, they are 
given by the following propositions: 

Proposition 1[24]: In the ܩ-matrix, the ሺ݃ሻ -
term is obtained by expression (24). 

(݃ሻ ൌ ∑ ൫ܩ෨ଵሺሺݔଵሶ ሻ, ሺݔଵሻሻ൯ ൈ ݃ሺݔଵሻ∈     (24) 

Where ݄ ∈ ሼ1,… , ݊ଵሽ, ݇ ∈ ሼ1,… , ݊ଵሽ, ݆ ∈ ሼ1, … ,   .ሽݍ

ଵሶݔ෨ଵሺሺܩ ሻ, ሺݔଵሻሻ is the causal path gain of length 
ଵܮ ൌ 1 from ݔଵሶ  to ݔଵ. 

݃ሺݔଵሻ is the gain of the I or C element in integral 

causality associated with ݔଵ:	 ݃ሺܫሻ ൌ
ଵ	

ூ
 and ݃ሺܥሻ ൌ

ଵ


. 

Proposition 2[24]: In the ܪ-matrix, the ሺ ݄ሻ term 
is obtained by expression (25): 

ሺ ݄ሻ ൌ ∑ ൫ܩ෨ଵሺሺݑሻ, ሺݔଵሻሻ൯∈ 
                     (25) 

Where ݈ ∈ ሼ1, … , ݊ଵሽ, ݇ ∈ ሼ1,… ,݉ሽ and ݆ ∈
ሼ1, … ,  .ሽݍ

,ሻݑ෨ଵሺሺܩ ሺݔଵሻሻ is the constant term of the gain of 
the causal path of generalized length from the (Se 
or Sf ) associated with ݑ to dynamical element 
(I,C) in integral causality associated with ݔଵ. 

4.   STRUCTURAL CONTROLLABILITY 

The objective of this part is to present graphical 
methods using the bond graph methodology to 
derive information on structural controllability. For 
the SLSS, the controllability property is 
decomposed into R-controllability, impulse 
controllability and complete controllability.  

In the following, EBGI and EBGD denote 
respectively the equivalent bond graph model of 
slow subsystem when the preferential integral 
(respectively derivative) causality is affected.  

4.1.       R-controllability 

    - Graphical sufficient condition 1 

To study structural R-controllability of switched 
singular system modeled by switching bond graph, 
we must for each mode, transform it to an 
equivalent bond graph of the slow subsystem. 
Therefore, we can therefore apply the same results 
obtained for the LTI systems.  

Proposition 3: In a particular mode ݆, the slow 
subsystem (18) is structurally controllable if: 

1- All dynamic elements in integral causality are 
causally connected with a continuous input control. 

ܩܤܧ -2 െ ሿܪ	ܩሾ݇݊ܽݎ ൌ ݊ଵ, with ݆	 ∈ ሼ1, … ,  .{ݍ

Proof of proposition 3: This result is derived from 

digraph theory [25]. □ 

Property 1: ܩܤܧ െ ሿܪ	ܩሾ݇݊ܽݎ ൌ ݊ଵ െ ௦ݐ
. 

1 0 C : C1 S

a) R : R1 

1 0Se 

b R : R1
C : C1 +C2 C : C2 



Journal of Theoretical and Applied Information Technology 
15th June 2018. Vol.96. No 11 

  © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
3313 

 

Where ݐ௦
 is the number of elements remaining in 

integral causality in EBGDj, when a dualism of the 
maximum number of continuous input sources is 
applied (in order to eliminate elements in integral 
causalities). And 	݊ଵ is the number of element in 
integral causality in EBGIj. 

Proof of Property 1 : After transformation of 
switched singular system modeled by switching 
bond graph, to an equivalent bond graph of the slow 
subsystem, the proof of this property is equivalent 
to the one proposed in the case of switched systems 

[21]. □ 

On the other hand, the switched linear singular 
system (12) in a particular mode is called R-
controllable, if the slow subsystem (18) is 
controllable. Hence to study the R-controllability of 
system (1), it is necessary to apply this result to all 
modes; if one controllable mode exists, the 
procedure is stopped. The case where no mode is R-
controllable, but the system (1) is R-controllable, 
Therefore the sufficient condition 1 cannot be 
applied in this case, where the interest of the 
proposed condition below.  

- Graphical sufficient condition 2 

 After transformation of switched singular system 
modeled by switching bond graph, to an equivalent 
bond graph of the slow subsystem, we can apply the 
proposed procedure in [22], in order to calculate the 
subspace of structural controllability of each 
mode	݆, noted ܴ

. 

On the EBGDj when a dualization of the maximum 
number of continuous input sources is applied (in 
order to eliminate elements in integral causalities), 
we can write for each element I and C remaining in 
integral causality ݐ௦

 algebraic equations: 

݃
 െ ∑ ߙ

݃
 ൌ 0                                  (26) 

݃
  is either an effort variable ݁ for I-element in 

integral causality or a flow variable ݂ for C-
element in integral causality. 

݃
 is either an effort variable ݁ for I-element in 

derivative causality or a flow variable ݂ for C-
element in derivative causality. 

ߙ 
	is the gain of the causal path between the ܭ௧ I 

or C-elements in integral causality and the ݎ௧ I or 
C-elements in derivative causality. 

Let us consider the ݐ௦
 row vectors ݖ

ሺ݇ ൌ 1,… , ௦ݐ
ሻ 

whose components are the coefficients of the 
variables ݃

ሺ݈ ൌ ݇,  .ሻ in the equation (26)ݎ

Property 2: The ݐ௦
 row vectors ݖ

ሺ݇ ൌ 1,… , ௦ݐ
ሻ are 

orthogonal to the structural controllability subspace 
vectors of the ݈௧ mode. We write ܼ ൌ ሺݖ

ሻୀଵ,…,௧ೞ  

and  ܴ
ୄ ൌ ሺ݉ܫ ܼሻ. With ܴ

ୄ is uncontrollable 
subspace in mode ݆, used to check orthogonality. 

In the same way, from the EBGDj (with dualization 
of inputs sources), we can write for each element I 
and C remaining in derivative causality ݊ଵ െ ௦ݐ

 
algebraic equations: 

    ݃
 െ ∑ ߛ

݃
 ൌ 0                                   (27)               

݃
 is either a flow variable ݂ for I-element in 

derivative causality or an effort variable ݁ for C- 
element in derivative causality. 

݃
  is either a flow variable ݂ for I-element in 

integral causality or an effort variable ݁ for C-
element in integral causality. 

ߛ
 is the gain of the causal path between the ݎ௧ 

element in derivative causality and the ܭ௧ element 
in integral causality.  

Now, we consider the ݊ଵ െ ௦ݐ
 column vectors ݓ 

whose components are the coefficients of ݃
 and ݃

  
variables in equation (27). 

Property 3: nଵ െ tୱ
୨ column vectors 	w୨୰ሺr ൌ

1,… , nଵ െ tୱ
୨ ሻ compose a basis for the structural R-

controllability subspace of j୲୦ mode. With ܹ ൌ
ݓ

ୀଵ,…,భି௧ೞ
ೕ and ܴ

 ൌ  .ሺܹሻ݉ܫ

Proof of Property 3: Equations (26) and (27) 
provide dual algebraic relations. So we can easily 

verify that ݖ
ݓ ൌ 0. □ 

Now, we can define a combined matrix ܹோ of 
SLSS system as: ܹோ ൌ ሾܹଵ	ܹଶ …ܹ …ܹሿ. 
With ܹ ൌ ݓ

ୀଵ,…,భି௧ೞ
ೕ is the controllability 

matrix of ݆௧ mode. 

Using the graphical calculation of structural 
controllability subspaces and theorem 2, the 
following theorem is proposed. 

Theorem 4: If ݇݊ܽݎሾܹோሿ ൌ ݊ଵ, the switched 
linear singular system (1) is structurally R-
controllable. 

Proof of theorem4: 
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We have shown for a given mode ݆ that the EBGDj 
(with dualization of inputs sources) is characterized 
by an algebraic equation (27). From this equation 
we build a basis ܹ for the structural R-
controllability subspace of j୲୦ mode. With ܹ ൌ
ݓ

ୀଵ,…,భି௧ೞ
ೕ and ܴ

 ൌ  ,ሺܹሻ. In the same way݉ܫ

we build ܹோ ൌ ሾܹଵ	ܹଶ …ܹ …ܹሿ, with 
ܹ ൌ ݓ

ୀଵ,…,భି௧ೞ
ೕ for all mode. 

However, the condition of Theorem 2 is sufficient 
for the controllability of the system, which implies 
that the condition ݇݊ܽݎሾܹோሿ ൌ ݊ଵ is also 

sufficient. □ 

4.2.   Impulse controllability 

Proposition 4 [19]: A SLSS system is impulse 
controllable if and only if the number of impulse 
modes is equal to the number of disjoint causal 
paths between input sources and switches passing 
through (I,C) elements in derivative causality in the 
BGIj. 

ሾܵଶସ݇݊ܽݎ_ܾ݃ 
௧ܤௗ

ሿ ൌ ሾܵଶସ݇݊ܽݎ_ܾ݃
௧ ሿ                   (28) 

- ܵଶସ
  represents causal paths between (I,C) 

elements in derivative causality and switches 
elements and ܾ݃_݇݊ܽݎሾܵଶସ

௧ ሿ is equal to the 
number of impulse modes. 

ௗܤ -
 is the input sub-matrix connecting input 

sources and (I,C) elements in derivative 
causality in the BGIj, 

- ܵଶସ
௧ܤௗ

 is composed by causal paths between 
input sources and switches passing through 
elements in derivative causality in the BGIj. 
So ܾ݃_݇݊ܽݎሾܵଶସ

௧ܤௗ
ሿ corresponds to the 

number of disjoint causal paths between 
input sources and switches passing through 
elements in derivative causality.  

5.   EXAMPLE  

We consider the following acausal switching bond 
graph model (Figure 4): 

 

Figure 4: Acausal switching bond graph model 

This switching bond graph model contains two 
switches (Sw1 and Sw2), so four modes are 
possible, but only three are considered: Mode 1 
(Sw1 open, Sw2 closed), Mode 2 (Sw1 closed, Sw2 
closed), Mode 3 (Sw1 closed, Sw2 open). 

There are five state variables (ݍ	, ூܲଵ, ூܲଶ, ூܲଷ, ூܲସ), 
one element in derivative causality (ݍ) and four 
element in integral causality ( ூܲଵ, ூܲଶ ூܲଷ,	 ூܲସ). The 
switching bond graph models in integral causality 
for these three modes are given in figure 5.       

 

 

 

Figure 5: Switching bond graph model in integral 
causality for a) mode 1, b) mode 2, c) mode3 

The switching bond graph models in integral 
causality for slow subsystems are found by ignoring 
elements in derivative causality (ݍ). The three 
bond graph models in integral causalities for slow 
subsystems EBGIଵ, EBGIଶ and EBGIଷ are associated 
respectively to mode 1, mode 2 and mode 3 (Figure 
6).  
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Figure 6 : EBGIj for a) mode 1, b) mode 2, c) mode 3 

The application of the derivative causality and 
dualisation of these modes are given in Figure 7:  

 

 

 
Figure 7 : EBGDj+dualisation a) mode 1, b) mode 2, c) 

mode 3 

Application of graphical sufficient condition 1 

i. On the EBGIଵ, all the elements in integral 
causality are connected with a continuous 
input control, and on the EBGDଵ, one element 
stays in integral causality ூܲସ (Figure 6.a), 
and the dualization of inputs sources does not 
change its causality. So this mode is not R-
controllable. 

ii. On the EBGIଶ, all the elements in integral 
causality are connected with a continuous 
input control, and on the EBGDଶ, two 
elements stays in integral causality ூܲସ and 
ூܲଷ (Figure 6.b), and the dualization of inputs 

sources does not change its causality. So this 
mode is not R-controllable. 

iii. On the EBGIଷ, all the elements in integral 
causality are connected with a continuous 
input control, and on the EBGDଷ, one element 
stays in integral causality ூܲସ (Figure 6.c), 
and the dualization of inputs sources does not 
change its causality. So this mode is not R-
controllable. 

Since no mode is controllable, we apply the second 
graphical sufficient condition: 

Application of graphical sufficient condition 2 

i. In the EBGDଵ (Figure 7.a), ܫସ remain in 
integral causality, we can write ݁ூସ ൌ 0, thus 
ଵଵݖ ൌ ሺ0	0	0	1ሻ. The dynamic elements	ܫଵ,	ܫଶ, 
and ܫଷ are not causally connected with ܫସ. So 
f୍ଵ ൌ f୍ଶ ൌ f୍ଷ ൌ 0. The three corresponding 
vectors are ݓଵଵ ൌ ሺ1	0	0	0ሻ௧, ݓଵଶ ൌ
ሺ0	1	0	0ሻ௧	and ݓଵଷ ൌ ሺ0	0	1	0ሻ௧. 

We have ܼଵܹଵ ൌ 0, then ܴ
ଵ ൌ

ଵଷሻ and ܹଵݓ	ଵଶݓ	ଵଵݓሺ݉ܫ ൌ ሾݓଵଵ	ݓଵଶ	ݓଵଷሿ ,  
with ݇݊ܽݎሺܹଵሻ ൌ 3 

ii. In the EBGDଶ (Figure 7.b), ܫସ and ܫଷ remain 
in integral causality, we can write ݁ூସ ൌ 0, 
thus ݖଵଶ ൌ ሺ0	0	0	1ሻ. And ݁ூଷ  ݁ூଶ ൌ 0 thus 
ଶݖ
ଶ ൌ ሺ0	1	1	0ሻ. The algebraic equations 

corresponding to ܫଵ and	ܫଶ are given by: ூ݂ଵ ൌ
0 and ூ݂ଶ െ ூ݂ଷ ൌ 0.	then ݓଶଵ ൌ ሺ1	0	0	0ሻ௧ 
and ݓଶଶ ൌ ሺ0	1 െ 1	0ሻ௧. 

We have ܼଶܹଶ ൌ 0, then ܴ
ଶ ൌ  ଶଶሻݓ	ଶଵݓሺ݉ܫ

and ܹଶ ൌ ሾݓଶଵ	ݓଶଶ	ሿ, with ݇݊ܽݎሺܹଶሻ ൌ 2 . 

iii. In the EBGDଷ (Figure 7.c), The element ܫସ is 
in integral causality and causally connected 
with ܫଷ and ܫଶ, we can write ݁ூସ െ ݁ூଷ  ݁ூଶ ൌ
0, thus ݖଵ

ଷ ൌ ሺ0	1 െ 1	1ሻ. The algebraic 
equations corresponding to	ܫଵ,	ܫଶ and ܫଷare 
given by : ூ݂ଵ ൌ 0, ூ݂ଶ െ ூ݂ସ ൌ 0 and ூ݂ଷ 
ூ݂ସ ൌ 0. The three corresponding vectors are 
wଷଵ ൌ ሺ1	0	0	0ሻ୲, wଷଶ ൌ ሺ0	1	0 െ 1ሻ୲	and 
ଷଷݓ ൌ ሺ0	0	1	1ሻ௧. 

 We have ܼଷܹଷ ൌ 0, then ܴ
ଷ ൌ

ଷଷሻ and ܹଷݓ	ଷଶݓ	ଷଵݓሺ݉ܫ ൌ ሾݓଷଵ	ݓଷଶ	ݓଷଷሿ, 
with ݇݊ܽݎሺܹଷሻ ൌ 3 

From theorem 4 we have:  

ܹଷሿሻ	ܹଶ	ሺܹଵ݇݊ܽݎ

ൌ ݇݊ܽݎ ൦

1 0 0 ⋮ 1 		0	 ⋮ 1 0 0
0 1 0 ⋮ 0 		1	 ⋮ 0 1 0
0 0 1 ⋮ 0 െ1 ⋮ 0 0 1
0 0 0 ⋮ 0 		0	 ⋮ 0 െ1 1

൪ ൌ 4	 

Then the system is R-controllable. 

Impulse controllability 

Four all mode, element in derivative causality (ݍ) 
is not causally connected with the switches Sw1 and 
Sw2 so, the number of impulse modes equal to 
0.Then according to proposition 4 the system is 
structurally Impulse controllable. 

C-controllability 
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The system is structurally R- controllable and 
Impulse controllable then the system is structurally 
C- controllable. 

6.   CONCLUSION 

In this paper, we have shown a very simple 
graphical method, based on the manipulation of the 
causal path leading to the determination of the 
equivalent explicit state equation of the singular 
state equation. From this result we have been able 
to extend the procedures of controllability analysis 
of switching systems to SLSS. On the other hand 
the controllability property is decomposed into R-
controllability, impulse controllability and complete 
controllability. For that we have proposed two 
sufficient graphical conditions for R-controllability, 
and a procedure that allows an easy determination 
of impulse modes from a bond graph model. This 
procedure is based on simple causal manipulations 
on the equivalent bond graph model in integral and 
derivative causality. Finally, we have proposed a 
simple example illustrating our results. 

The bond graph model appears to be an excellent 
tool for structural analysis, through its graphic 
character and its causal structure. It provides 
directly to the user information about controllability 
and observability, sometimes difficult to obtain by 
other routes. 

The second graphical sufficient condition that we 
have proposed in this paper is limited to the case 
when all storage elements keep their initial 
causality during the commutation. Therefore, in our 
next work, we will take into consideration the 
changes of causality in the storage elements at the 
commutation time.  

Other aspects which remain to be investigated are:  
-proposition of a feedback control of finite mode 
(slow subsystem) -compensation of infinite modes 
(fast subsystem), in the case where the system is 
impulse controllable. 

Appendix A.   Proof of Theorem 2 

The proof is similar to that of Yang’s theorem in [4] 

We consider the slow subsystem (5.a) and we 
assume that the 	݇݊ܽݎሺݔଵሺݐሻሻ is invariable for all 
mode, i.e. ݊ଵ

ାଵ ൌ ݊ଵ
with	݆ ∈ ሼ1, … , ݍ െ 1ሽ. 

 Going through all the modes with ݐ ൏ ଵݐ ൏
ିଵݐ⋯ ൏   can beݐ  the continuous state atݐ
expressed as:         

൯ݐ൫ݔ ൌ ݁ீ൫௧ି௧షభ൯݁ீషభ൫௧షభି௧షమ൯ … ݁ீభሺ௧భି௧బሻݔሺݐሻ                                

         ݁ீ൫௧ି௧షభ൯݁ீషభ൫௧షభି௧షమ൯ …
௧భ
௧బ

݁ீభሺ௧భିఛሻܪଵݑሺ߬ሻ݀߬ 

            ⋯  ݁ீ൫௧ିఛ൯ܪݑሺ߬ሻ݀߬
௧
௧షభ

                 (A.1) 

Note that ݐ ൌ  . Then, from (A.1) we can obtainݐ
the relation:           

ݔ̅ ൌෝ ൯ݐ൫ݔ െ
										݁ீሺ௧ି௧షభሻ݁ீషభሺ௧షభି௧షమሻ … ݁ீభሺ௧భି௧బሻݔሺݐሻ  (A.2) 

For ݆ ൌ 1,… , ݍ െ 1 we define :                          

ܶ ൌෝ ݁
ீሺ௧ି௧షభሻ݁ீషభሺ௧షభି௧షమሻ … ݁ீೕశభ൫௧ೕశభି௧ೕ൯     (A.3) 

Such that ܶ ൌ  denotes the unitary ܫ where ,ܫ
matrix. 

So the equation (A.1) can be transferred into: 

ݔ̅ ൌ ଵܶ න ݁ீభሺ௧భିఛሻܪଵݑሺ߬ሻ݀߬
௧భ

௧బ

 

           ଶܶ  ݁ீమሺ௧మିఛሻܪଶݑሺ߬ሻ݀߬ 
௧మ
௧భ

 

          … ܶ  ݁ீ൫௧ିఛ൯ܪݑሺ߬ሻ݀߬
௧
௧షభ

             (A.4) 

For ݆௧ term of (A.4) we define: 

   ܺ ൌෝ ܶ  ݁ீೕ൫௧ೕିఛ൯ܪݑሺ߬ሻ݀߬
௧ೕ
௧ೕషభ

                   (A.5) 

On the other hand, the exponential matrix ݁ீ௧ can 
be expressed as [26]: 

 ݁ீ௧ ൌෝ ܾሺݐሻܫ  ⋯ ܾభିଵሺݐሻܩ
భିଵ ൌ ∑ ܾሺݐሻܩ

భିଵ
ୀ      (A.6) 

Divide interval ሾݐିଵ,  ሻ into ݊ଵsubintervals, withݐ
property  ݐିଵ, ൏ ିଵ,ଵݐ ൏ ⋯ ൏  ିଵ,భ. It is notedݐ
that ݐିଵ, ൌ ିଵ,భݐ ିଵandݐ ൌ  . And we canݐ
define the piecewise continuous input ݑሺݐሻ as a 
piecewise constant function, denoted as ݑሺݐሻ ൌ
ܷିଵ,  for ݐ ∈ ሾݐିଵ,ିଵ	, ିଵ,ሻ where ܷିଵ,ݐ ∈ Ը 

for ݅ ൌ 1,2, … . , ݊ଵ. Substitute the above-defined 
input ݑሺݐሻ and equation (A.6) into (A.5), then we 
have: 

                ܺ ൌෝ ܶ ܹܨ ܷ                                 (A.7) 

Where ܹ ൌ ሾܪ	ܩܪ ܩ…
భିଵܪሿ , 

ܨ  ൌ

ۏ
ێ
ێ
ۍ  ܾ

൫ݐ െ ߬൯݀߬
௧ೕషభ,భ
௧ೕషభ,బ

⋯  ܾ
൫ݐ െ ߬൯݀߬

௧ೕషభ,భ
௧ೕషభ,భషభ

⋮ ⋱ ⋮
 ܾభିଵ

 ൫ݐ െ ߬൯݀߬
௧ೕషభ,భ
௧ೕషభ,బ

⋯  ܾభିଵ
 ൫ݐ െ ߬൯݀߬

௧ೕషభ,భ
௧ೕషభ,భషభ ے

ۑ
ۑ
ې
 , 

and ܷ ൌ 
ܷିଵ,ଵ

⋮
ܷିଵ,భ

. 
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Where ܾ
ሺݐሻ for ݇ ൌ 0,1, … , ݊ଵ െ 1 are the 

expansion coefficients of ݁ீ௧ as shown in (A.6). 

By following the same process, equation (A.4) can 
be expressed as: 

ݔ̅ ൌ ଵܶ ଵܹܨଵ ଵܷ  ଶܶ ଶܹܨଶܷଶ  ⋯ ܶ ܹܨ ܷ 

                                               

ൌ ሾ ଵܶ ଵܹ ⋯ ܶ ܹሿ 
ଵܨ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ܨ

൩ 
ଵܷ
⋮
ܷே
൩     (A.8) 

Denote ߛ ൌෝ ݐ െ ݆	ିଵforݐ ൌ 1,… ,  then with ݍ
respect to (A.3), we have lim

ఊೕାଵ,..,ఊ→బ
ܶ ൌ   .ܫ

When ߛ for ݆ ൌ 1,… ,  are small enough, we can ݍ
get:                 

ሺሾ݇݊ܽݎ ଵܶ ଵܹ ⋯ ܶ ܹሿሻ  ሺሾ݇݊ܽݎ ଵܹ ⋯ ܹሿሻ       (A.9) 

Considering the assumption that the controllability 
matrix ோܹ is of full row rank, then we have 
ሾ݇݊ܽݎ ଵܶ ଵܹ ⋯ ܶ ܹሿ ൌ ݊ଵ. 

Summing up the above analysis, we can see that 
there exists a timed mode-switching sequence 
ሼߪ, ,,భݐ ାଵሽୀଵߪ

ିଵ, and a corresponding piecewise 

continuous input signal ݑሺݐሻ ൌ ܷିଵ,  for ݐ ∈
ሾݐିଵ,ିଵ	, ݆ ିଵ,ሻ withݐ ൌ 1,… , ݅ and ݍ ൌ 1,… , ݊ଵ, 
they make hybrid state ሺߪ;  ሻ reachable fromݔ
ሺߪ; ;ݐሻ within period ሾݔ  ሿ. Here, the properݐ
selection of ݐିଵ, for ݅ ൌ 1,… , ݊ଵ െ 1 makes the 
corresponding ܨ nonsingular; the proper selection 
of ݐିଵ,భfor ݆ ൌ 1,… ,  makes condition (A.9) ݍ
satisfied and the assignment of ܷିଵ, is the 
corresponding solution of (A.8) when ݔ൫ݐ൯ ൌ  ݔ
and ݔሺݐሻ ൌ  .ݔ
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