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ABSTRACT

This paper investigates the structural controllability of switched linear singular systems (SLSS). Graphical
methods are proposed in order to determine different conditions for the structural controllability of SLSS
systems. These methods are based on simple causal paths and causal manipulations on the switching bond
graph model. Our approach can be implemented in software such as Symbol2000 or 20sim, in order to

control the systems in real time.
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1. INTRODUCTION:

Switched systems are frequently encountered in
practice, for example (hydraulic systems with
valves, electric systems with diodes, relays,
mechanical systems with clutches...). It is for this
reason that various researchers have approached the
study of controllability/observability for this
systems, and a lot of results have emerged during
the twenty last years with different approaches
(algebraic, graphical...) [1]-[6].

Some sufficient conditions and necessary
conditions for controllability of hybrid system were
presented in [3], where the system operating period
within each mode was assumed to be fixed and
known. Complete geometric criteria  for
controllability and reachability are established in
[1], [2]. Some necessary and sufficient conditions
for controllability are derived in [4], [S5]. The
observability of the continuous and discrete states
of hybrid systems are studied in [6], [7].

The switched linear singular systems are an
important class of switched systems. Due to the
existence of switching, discontinuity phenomenon
appears in the state variables at the switching
moments. Physically, some problems such as sparks
and short circuits can occur. Therefore the stability,
controllability and observability of switched

singular systems are important research topics in
the area of switching control. Little works have
been done on the controllability of switched linear
singular systems. In [8] and [9], the solvability and
controllability of periodically switched singular
systems were studied. By using the geometric
approach, a necessary condition and a sufficient
condition on complete reachability are presented in
[10].

Up to now, all previous work mentioned above
has been based on the traditional controllability
concept, for example in [10] the conditions
proposed require a lot of matrix calculates to check
controllability, Hence it is desirable to investigate
controllability and observability by structural
properties and not by the parameter numerical
values, this properties are independent of the
numerical value of the system and depending only
on the architecture of the system.

The analysis of structural properties of linear
multivariable time invariant systems has received
great attention. Different approaches have been
used. The first one is the graph approach introduced
in [11], and extended for the design of
multivariable control systems in [12]-[14]. The
bond graph approach has also been exploited to
analyses the structural properties. Some recent
works permit to highlight structural properties of
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these systems [15]-[22], based on simple causal
manipulations on the bond graph model.

The controllability and observability study of
linear time invariant system (LTI) is based on two
fundamental notions: attainability and structural
rank, the latter is determined directly from the bond
graph model [20], [21].

When switched linear system has just one mode,
it can be considered as a LTI system. So we can
therefore apply the same results obtained for the
LTI systems. In this context some necessary and
sufficient conditions for controllability and
observability for switched systems are derived in
[18], [19], with the aid of simple causal
manipulations on the switching bond graph (SBG).

On the other hand, the controllability property is
decomposed into  R-controllability, impulse
controllability and complete controllability [23].
For R-controllability of switched singular systems,
we proposed some conditions using simple causal
manipulations on the bond graph model in [24].

In this paper, we investigate the structural
controllability problem for switched linear singular
systems modeled by switching bond graph. Unlike
the other approaches (algebraic) [8]-[10], the
results obtained in this work are more applicable
since the conditions developed in this paper are
based on simple causal manipulations on the bond
graph model, which not only avoids lot of matrix
calculates but can also check controllability without
knowing the system parameters.

This paper is organized as follows: the second
section formulates algebraic results related to the
analysis of controllability. Section three recalls
some background about bond graph modelling of
switched systems. The modelling is done using the
structure junction equation, leading to an implicit
model. In section four, graphical methods for
structural R-controllability, [-controllability and C-
controllability of these systems are proposed. This
procedure is based on simple causal manipulations
on the bond graph model. Finally, a simple example
illustrating the previous results is proposed.

2. ALGEBRAIC ANALYSIS
CONTROLLABILITY

OF THE

2.1. System description and preliminaries

Considering a switched linear singular system,
given by equation (1):

{E(o—(t))x(t) = A(a(t))x(t) + B(a()u(t) M
y() = C(a(®))x(®)

Where x(t) € R", u € RP, and y(t) € R™ are
respectively the state, input and output vectors.

If we consider this system in a particular mode j,
the equation (1) can be written as:

yi () = Cjx(t)
With B =E(gi(0)), 4 = A(Gy(t))  .B; =

B(0j()), C; = C(0;(t)), j €{1,..,q} and q is the
number of modes.

2

2.2. Decomposition of the singular system

It is usual, when analyzing the properties of (2),
define equivalent forms by pre-multiplying it by a
non-singular matrix P, and by operating a variable
change @; in order to obtain a new equivalent
implicit state equation [23]:

PEQ, (075®) = PAQ; (07'x(®)
+ PBju(t) 3)

I,

0
Such that BE;Q; = ( 0 N])’

40 — Gj 0 d _(H;
P, = o 1) an Pfo‘(Jj)
Introducing the state transformation:

x1(8)

ol = )

% = |

Using (4), the equivalent canonical form of
equation (2) can be defined as:

(1) = Gx, () + Hu®t)  (a)
Niky () = x,(8) + Jju(t)  (b) (5)
y;(®) =l () + Clx, () (0

The equation (5) usually called Kronecker form.
The subsystems (5.a) and (5.b) are called slow and
fast subsystems respectively.

x,(t) € R™ and x,(t) € R™™ are the slow and
fast substates respectively, and N; is a nilpotent
matrix of index h.
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The Kronecker form separates the finite dynamic
modes from pulse and non-dynamic modes, and
solves each of the subsystems separately.

2.3. R-controllability of SLSS system in a
particular mode j

When system (1) has just one mode, it can be
considered as a singular LTI system, and we
consider the equivalent form of Kronecker-
Weierstrass [23].

Thus, the slow subsystem (5.a) is an ordinary
differential equation. It has a unique solution for
any piecewise continuous input u(t) and an initial
condition x, (0), given by (6).

%y = %%, (0) + [ e%™ Hu(r)d(7) (6)

The slow subsystem is controllable if rank(W;) =
ny and the controllability matrix defined as W; =
[H; G;H; ...G;"™ ' Hj].

Definition 1 [23]: R-controllability is related to the
ability to control the finite dynamic modes
(classical controllability of exponential modes for
regular system). It is associated with the differential
part composing the state space.

The R-controllability guarantees our controllability
for the system from any admissible initial condition
x1(0) to any reachable state and this process will be
finished in any given time period if the control u(t)
is suitably chosen.

Theorem 1[23]: The system (2) in a particular
mode j is called R-controllable, if the slow
subsystem (5.a) is controllable.

2.4. R-controllability of SLSS system with
q modes

We can define a combined matrix Wy, of SLSS
system as:

WRC = [Wl WZ ...M/]’ e Vl/q] (7)
With W; is the controllability matrix in mode j.

Theorem 2(Extension of Yang’s Theorem): The
SLSS with g modes is R-controllable; if the
controllability matrix Wy defined in (7) is of full
row rank, i.e. rank(Wgc) = n,.

Proof of theorem 2: See the Appendix. OJ
Remark 1: From theorem 2, we can deduce that:

- The system (1) can be R-controllable, if the
system (2) in a particular mode j is R-controllable.

- However, it is possible that no mode is R-
controllable but the system (1) is R-controllable.

2.5. Impulse controllability

There exist impulse terms that is set out either by
the initial condition or by the possible jump
behavior in control input u(t) and its derivatives.
Therefore, it is necessary to analyze the control
effect on impulse terms in the stale response.

Definition 2: Impulse controllability is important
for the necessity to eliminate the impulse portions
in a system in which impulse terms are generally
not expected to appear.

Theorem 3 [23] : The system (2) in a particular
mode j is called I-controllable, if the fast subsystem
(5.b) is controllable.

2.6. C-controllability

Definition 3 [23]: The system (2) in a particular
mode j is called C-controllable, if both its slow and
fast subsystems are controllable.

3. REPRESENTATION OF A LINEAR
SINGULAR SYSTEM FROM A
SWITCHING BOND GRAPH

The structure junction of a switching bond graph
(SBG) can be represented by figure 1.

ﬂle continuous COntinuOus\
: art of system detectors i

| panoly oy DeeDh !

I X; |

: Integral - Junction
I causality )=

D .
Structure | |
! (0,1, MTF,M :
GY) | Din(t !
"

The discrete
! partof system |

Spontaneous
transitions

Controlled event

Figure 1: Junction structure of a switching bond graph

Five fields model the components behavior: -
source field which produces energy, - R field which
dissipates it, - | and C field which can store it, - De
and Df continuous detectors fields, and the Sw field
is the switching component. These elements are
linked directly to the control system discrete. x;(t)
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is the state vector. It contains the variables p on |
elements and the variables q on C elements when
these elements are in integral causality. x;(t) is the
pseudo state vector: it contains the variables p on |
elements and the variables g on C elements when
these elements are in derivative causality. z;(t) and
z4(t) are vectors that contain the coenergy
variables associated to x;(t) and x;(t). D;,(t) and
D,(t) contain the effort and flow variables
respectively entering and exiting from resistive
ports. ug,,;(t) and Ya; (t) are vectors that contain

the variables respectively imposed and exiting from
switches in mode j.

3.1. Bond graph models of switch and
switched sources elements

The switch elements can be modelled using two
main bond graph approaches: non ideal switches
[16] or ideal switches [15]. In the second case, the
sources standing for ideal switches have two states
(figure 2): the first state denoted by ON, when they
behave like zero effort sources (Se;: 0) and a
second state denoted by OFF when they behave like
zero flow sources (Sf;: 0). These two sources
represent the discrete inputs and are noted ugyj,
they can be efforts or flows entering in structure of
junction. For a system contain N switchs, we need
to define the discrete sources ug, (t) by: ug, (t) =

{(uSWj)l,j ef{1,-,q} L€ {1,-~,N}} with ¢ =

2V those define the set of discrete inputs, and are
presented in Figure 2.

Sfdiusm:o : Seq

<-=-»
/7
Internal
Sw discrete
event
—C ~Q!L]//>

a) Spontaneous commutation

uTVSWj=O :Seq
ey d
)
4 External

< discrete
Sw

_t event

- Qor] 0™
b) Controlled commutation
Figure 2: Bond graph models of switched sources Se,
and Sf,;

3.2. State representation from switching
bond graph

Each output of the junction structure (x;(t),
z4(t), D, (1), ydj(t) and ycj(t)) can be expressed

as function of all its inputs (z(¢),

%q(t), Din(t), usy(t), and u;(t)):

x;(t)

74(t)

D,(©) | =

ya;(t)

Ve, ()

51]1' 51]2 51]3 51]_4 S{s [Zi(t)]

T o h 0|

| s o si, sl sl [[Pa® ) (8
S A ““swl-“)J
soshoshooshosh 1MUY

This linear relation can be written as an implicit
equation that is called in the following the standard
implicit form:

[z () ]
; z4(t)
Ly, Siz D (1)
0 0 .
0 0 [xi(t) = [5] uDO(Ez) )
0 SU xd(t) SW]'
2‘; }’dj(t)
0 -
52 u;(t)
_yc](t) i
Where
S1jz 0 Slj3 0 51j4 0 Sljs 0
2 . :
—51; by 00 S 0 S5 0
s1=[ s o S s, 0 sk oo
-850 =Sl 0 Sl I, 5;5 0
sio0 s, 0o sl o Sk -,

: JJN J J :
Matrices S;;, S35, S;, and St are skew symmetric
due to energy considerations.

Let the constitutive law of the R field be:
Din(t) = LjDo(t)~

[R] 0 ]

L; is a positive matrix, with L; = [ 0 [1/R]
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. -1
If H; = L;(I — S),L;) exists, which is particularly
true when L; is a symmetric and positive definite
matrix, then third row of (8) leads to:

Din(®) = Hy (=5470) + Shyttsn, (O + S50 (10)
By eliminating D;,(t) and D,(t) from (8) we
obtain the equation (11):

[EECR BT ()

[ Kg][uj(t)
zd(t) Sl SL,| usw, (®

Ve (t S K 0 Z K u;(t

C]( - ]Zx ©= [ ! ] [ ((tt))] [ 1” 2”] [usi,(()t) (1 l)
+ S' = zi(t u;(t

Yd] ® xd(t) K' 0] [z ((t)) [K{ 2,] [uS:«/(. ()t)

x;(t)
xq(t)

K'=—S +SYHSH, Ky = S] +S],HS),

Where x(t) = [ ],K =S/, —SLHS{,

K, =Sl +SL,H;S],, K= 545 — SUH;SL,

K; = Si4 S;iH 53147 55]5 + SésH 535’

Ky =S., +SL,H;S), and K" = -S}, — SL,H;S!]

In a linear case, the law constitutive for the fields of
storage | and C can be written as:

ol=E ol

M

Where Fij = [161 1(/)C] and (F’)

In mode j, we have uSWj(t) =0,

=o ol
0 C
so for t€
[tj-1,t;) the state representation is given by:
E;x(t) = Ajx(t) + Beju;(t) ()
Ye; (1) + Lixa(t) = Gx(t) + D (1) (b) (12)
Ya;(8) + Lixq(t) = Cqjx(t) + Deju;(t) (c)

Where

o=(ha- H-ly

I P
Dolay Al =sgE R LB = sl

=-5L.G=[k"F o]=[c] o
D =K{',  Dej=Si5 = SiiH;S5s,
L =S;5Ca; = [K'F/ o] =[c] o]

Where x; € R™ and x; € R™

Thus, for a system with N switches, the number of
modes is given by 2V = q. The hybrid system
evolves by according to the following dynamical:

Eyx(t) = Apx(t) + Boyuq (8) (@)
{ycl(t) + L%y () = Cx(0) + Dayuy (&) (D)t € [to, ty)
Va, (&) + Lix4(t) = Cqx(t) + Dequq () ()
Eji(t) = Ax(t) + B (t) (@
{ycl(t) + Likg () = Cx(®) + D (1) (b) t € [tj_q,t;) (13)
Ya;(8) + Lz (t) = Capx(8) + Dejuy(8)  (c)

Yoy () + Lgia(t) = Cox(®) + Dlgug(t) () ¢ € [t,_y.t,)
Yaq (t) + qud(t) = qux(t) + chuq (t) (C)

{qu(c) = Agx(®) + Bug(®) (@)

3.3. Decomposition of the singular system

To go further in the analysis of the implicit
equation (12), it is pre-multiplied by the
nonsingular matrix:

j_ (1 —Ai.sf>1 0
P _<o 712 (0 —Rf) (14)
Where R = (A%,S), +41,) "
Defining also the variable change:
~x1(t)) (xi(t)>
j = 15
' (am) = (o (>
Where
i (I si )( I 0)
¢ <o PI\=rial, 1 (16)

Leads to the following explicit state representation:

10y () _ (Al[1-s,,rRiAL] 0)(x®
(0 0) (Xz(t)) = ( e )(xz(t))
B/ + Ay’S1,’RB,’
+< _RiB, u;(t) (17)
Equation (17) is equivalent to an ordinary state
representation:

Where the state is continuous at the origin,
associated to an algebraic equation:

x,(t) = Jju;(t) = Rdejuj(t)

Where G=A},[I

(19)
- szRjA{ii]

and H; = B/ + A/ S,,’ R/ B,/
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3.4. Determination of the equivalent bond
graph of slow subsystem

The following procedure shows the symbolic
calculation of the equivalent ordinary state
representation (18) for linear singular systems
directly from their bond graph model.

x1(t) components of vector are calculated so as to
reduce the components of the vector x;(t) (which
are causally connected to an element of the vector
x;(t)) to the components of the vector x;(t)
extracted by equation (15) :

X1 (1) = x;() — S12%4(1)

Changing the x;(t) elements by x;(t) element in
bond graph model. To explain that, we propose the
following example:

(20)

Example 1: We consider the bond graph model
given by Figure 3.a and its equivalent bond graph
(EBG) model given by Figure 3.b.

S—= = 0— C:C, Se— =0

[ S

3 R:R C:C R:R, C:Ci+C

Figure 3 a) BGI, b) Equivalent bond graph model (EBGI)

Where

X1 (8) = qc2(t) + qc1 () = Crex(t) + Cre (1) (21)
Note that

e;(t) = ez(t) (22)
Then, we obtain the relations:
x1(8) = (C+C)e(t) = Cey (D)
andC =C; +C, (23)

So the EBG of slow subsystem is found by
changing the value of C; through C = C; + C, and
by removing the element in derivative causality.
Physically, we can explain that by the existence of
an equivalent C-element, which groups the two
elements in parallel.

G; and H; are obtained by causal manipulations on

the EBGI; model of slow subsystems and, they are
given by the following propositions:

Proposition 1[24]: In the G;-matrix, the (g;)kn -
term is obtained by expression (24).

(9)kn = Zpep(a((xl)h; (xl)k))p X gx)n (24

Where h € {1,...,ny}, k €{1,...,n,},j € {1, ..., q}.

G, ((%)p, (x1)) is the causal path gain of length
L, =1 from x; to x;,.
G(x,) is the gain of the I or C element in integral

causality associated with x,: g(I) = % and §(C) =
1

E.

Proposition 2[24]: In the H;-matrix, the (h;)); term
is obtained by expression (25):

(Rt = Zpep(Gr (Wy, (x1)z))p (25)
Where l€{1,..,n;}, ke{l,..,m} and j€
{1,...,q}.

G, ((W)y, (x1),) is the constant term of the gain of
the causal path of generalized length from the (Se
or Sf ) associated with u;, to dynamical element
(1,C) in integral causality associated with x;.

4. STRUCTURAL CONTROLLABILITY

The objective of this part is to present graphical
methods using the bond graph methodology to
derive information on structural controllability. For
the SLSS, the controllability property is
decomposed into  R-controllability, impulse
controllability and complete controllability.

In the following, EBGI and EBGD denote
respectively the equivalent bond graph model of
slow subsystem when the preferential integral
(respectively derivative) causality is affected.

4.1.  R-controllability

- Graphical sufficient condition 1

To study structural R-controllability of switched
singular system modeled by switching bond graph,
we must for each mode, transform it to an
equivalent bond graph of the slow subsystem.
Therefore, we can therefore apply the same results
obtained for the LTI systems.

Proposition 3: In a particular mode j, the slow
subsystem (18) is structurally controllable if:

1- All dynamic elements in integral causality are
causally connected with a continuous input control.

2- EBG — rank[G; H;] = ny, withj € {1, ..., q}.
Proof of proposition 3: This result is derived from
digraph theory [25]. O

Property 1: EBG — rank[G; H;] =n; — tg.

—————————
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Where t! is the number of elements remaining in
integral causality in EBGD;, when a dualism of the
maximum number of continuous input sources is
applied (in order to eliminate elements in integral
causalities). And n; is the number of element in
integral causality in EBGI;.

Proof of Property 1 : After transformation of
switched singular system modeled by switching
bond graph, to an equivalent bond graph of the slow
subsystem, the proof of this property is equivalent
to the one proposed in the case of switched systems

[21].0

On the other hand, the switched linear singular
system (12) in a particular mode is called R-
controllable, if the slow subsystem (18) is
controllable. Hence to study the R-controllability of
system (1), it is necessary to apply this result to all
modes; if one controllable mode exists, the
procedure is stopped. The case where no mode is R-
controllable, but the system (1) is R-controllable,
Therefore the sufficient condition 1 cannot be
applied in this case, where the interest of the
proposed condition below.

- Graphical sufficient condition 2

After transformation of switched singular system
modeled by switching bond graph, to an equivalent
bond graph of the slow subsystem, we can apply the
proposed procedure in [22], in order to calculate the
subspace of structural controllability of each

mode j, noted Ry,

On the EBGD; when a dualization of the maximum
number of continuous input sources is applied (in
order to eliminate elements in integral causalities),
we can write for each element | and C remaining in

integral causality ti algebraic equations:

ik i —

gl -Y,alfg] (26)

g,’c' is either an effort variable e, for l-element in
integral causality or a flow variable f,. for C-
element in integral causality.

g} is either an effort variable e, for l-element in
derivative causality or a flow variable f,. for C-
element in derivative causality.

a’¥ is the gain of the causal path between the K" |
or C-elements in integral causality and the " | or
C-elements in derivative causality.

Let us consider the tg row vectors Zé. (k=1,.., tg)
whose components are the coefficients of the
variables g/ (I = k, ) in the equation (26).

Property 2: The tg row vectors Z,{ k=1,.., tg) are
orthogonal to the structural controllability subspace
vectors of the I mode. We write Z; = (Zli)k=1,...,t§

and Rél =Im(Z;). With Rél is uncontrollable
subspace in mode j, used to check orthogonality.

In the same way, from the EBGD; (with dualization
of inputs sources), we can write for each element |
and C remaining in derivative causality n, — t!
algebraic equations:

jr j=0

gl = %vi gl 7)

gi is either a flow variable f, for l-element in
derivative causality or an effort variable e, for C-
element in derivative causality.

g,{,i is either a flow variable f. for Il-element in
integral causality or an effort variable e, for C-
element in integral causality.

y,{r is the gain of the causal path between the rtt
element in derivative causality and the K" element
in integral causality.

Now, we consider the n; — t! column vectors w/”

whose components are the coefficients of gf and g,};
variables in equation (27).

Property 3: n; — tjscolumn vectors W' (r =
1,..,n; — t’s) compose a basis for the structural R-
controllability subspace of j" mode. With W/ =

wiT mant] and R) = Im(W/).

r=1

Proof of Property 3: Equations (26) and (27)
provide dual algebraic relations. So we can easily

verify that zJw/™ = 0. O

Now, we can define a combined matrix WR¢ of

SLSS system as: WRC=[wlw?.w/..wi).

With W/ =w/" . 1s the controllability
S

r=1,.,n1—
matrix of j* mode.

Using the graphical calculation of structural
controllability subspaces and theorem 2, the
following theorem is proposed.

Theorem 4: If rank[WR¢] =n,, the switched
linear singular system (1) is structurally R-
controllable.

Proof of theorem4:

—————————
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We have shown for a given mode j that the EBGD;
(with dualization of inputs sources) is characterized
by an algebraic equation (27). From this equation
we build a basis W/ for the structural R-
controllability subspace of j™* mode. With W/ =

W"r_1 - and R(J) = Im(W). In the same way,
=1,.n-t]
we build WRC=[Wiw?. . .wW/.W19, with
Wi =wr__ ; for all mode.

r=1,.,n1—tg

However, the condition of Theorem 2 is sufficient
for the controllability of the system, which implies
that the condition rank[WR‘]=n, is also

sufficient. O
4.2. Impulse controllability

Proposition 4 [19]: A SLSS system is impulse
controllable if and only if the number of impulse
modes is equal to the number of disjoint causal
paths between input sources and switches passing
through (1,C) elements in derivative causality in the
BGI;.

bg_rank [S;f;Bé‘ ] = bg_rank [Szti (28)

- Sj, represents causal paths between (1,C)
elements in derivative causality and switches
elements and bg_rank[S;i] is equal to the
number of impulse modes.

- Bé is the input sub-matrix connecting input
sources and (I,C) elements in derivative
causality in the BGI;,

- SYBJ is composed by causal paths between
input sources and switches passing through
elements in derivative causality in the BGI;.
So bg_rank[S;,B)] corresponds to the
number of disjoint causal paths between
input sources and switches passing through
elements in derivative causality.

5. EXAMPLE

We consider the following acausal switching bond
graph model (Figure 4):

c g

RN

S,.-L’,_,O_,. L—-n—ri—n—ri—r | —Fy —*0—rl;
I R )

Figure 4: Acausal switching bond graph model

This switching bond graph model contains two
switches (Swl and Sw2), so four modes are
possible, but only three are considered: Mode 1
(Swl open, Sw2 closed), Mode 2 (Swl closed, Sw2
closed), Mode 3 (Sw1l closed, Sw2 open).

There are five state variables (q., P;1, P2, Pr3, Pra),
one element in derivative causality (q.) and four
element in integral causality (P;q, P;y Pj3, Ppy). The
switching bond graph models in integral causality
for these three modes are given in figure 5.

¢ Iy S l2 5e:Uz E Suz R

Fvl ot

Sl —pf0 —f L 010y u—.vLﬁO s

a) 1 R Rs

Iy St bos:u, B, Re

)

SerUr —pf0 — R_.o—,qo—m_,o A0 —0 —pls

o b4

I, Sa los:U, B s, R

i Us =0 —pf b O ph i} U Ty 0 | 0l

, |

RZ Rg

Figure 5: Switching bond graph model in integral
causality for a) mode 1, b) mode 2, ¢) mode3

The switching bond graph models in integral
causality for slow subsystems are found by ignoring
elements in derivative causality (q.). The three
bond graph models in integral causalities for slow
subsystems EBGI;, EBGI, and EBGI; are associated
respectively to mode 1, mode 2 and mode 3 (Figure
6).

I Sw oscu, B, R
k]
Sl L O 01 0 1 T 0 —s
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Figure 6 : EBGI;j for a) mode 1, b) mode 2, ¢) mode 3

The application of the derivative causality and

dualisation of these modes are given in Figure 7:
Sl s g, R
Se: Ui‘—vI‘—— I—vo\ﬁlhﬂ}—ﬂHﬂLﬂ“ﬁw
a) 1 2 Rs

SecU: s Ry

Swz

b) 1 2 Rs

Se:Us Iz Sz Ra
S.: Uk II_.L —[ I I
< Ui—1 “ﬂiﬂ1ﬁ|0ﬂ1 —l0 —10 —jls

o Sm I
Ser Ui LLO I —g T DL T
: ﬁ} —A;—Alﬂiﬁm—r 0 iy
I Sw Iz
[

c) 1 Rz R;

Figure 7 : EBGDj+dualisation a) mode 1, b) mode 2, c)
mode 3

Application of graphical sufficient condition 1

i. On the EBGI;, all the elements in integral
causality are connected with a continuous
input control, and on the EBGD;, one element
stays in integral causality P;, (Figure 6.a),
and the dualization of inputs sources does not
change its causality. So this mode is not R-
controllable.

il. On the EBGI,, all the elements in integral
causality are connected with a continuous
input control, and on the EBGD,, two
elements stays in integral causality P, and
P;3 (Figure 6.b), and the dualization of inputs
sources does not change its causality. So this
mode is not R-controllable.

ii. On the EBGI;, all the elements in integral
causality are connected with a continuous
input control, and on the EBGD5, one element
stays in integral causality P;, (Figure 6.c),
and the dualization of inputs sources does not
change its causality. So this mode is not R-
controllable.

Since no mode is controllable, we apply the second
graphical sufficient condition:

Application of graphical sufficient condition 2

i. In the EBGD, (Figure 7.a), I, remain in
integral causality, we can write e;, = 0, thus
z} = (000 1). The dynamic elements I, I,
and I3 are not causally connected with I,. So
fi, = fi = fi3 = 0. The three corresponding
vectors are w'l=(1000), w'?=
(0100) and w'® = (001 0)%.

We  have Z,W!'=0,
Im(wt w2 wi3) and Wt =
with rank(W?') = 3

il. In the EBGD, (Figure 7.b), I, and I3 remain
in integral causality, we can write ey, = 0,
thus zZ2 = (000 1). And e;5 + e, = 0 thus
z2=(0110). The algebraic equations
corresponding to I; and I, are given by: f;; =
0 and f;, — f;3 = 0.then w21 =(1000)¢
and w??2 = (01— 10)%.

We have Z,W? = 0, then RZ = Im(w?! w??)
and W? = [w?! w?? ], with rank(W?) = 2.

iil. In the EBGD; (Figure 7.c), The element I, is
in integral causality and causally connected
with I3 and I,, we can write e;, — e;3 + e, =
0, thus z3=(01-11). The algebraic
equations corresponding to I, [, and Izare
given by : f;1 =0, f;; — f14 =0 and f;3 +
fia = 0. The three corresponding vectors are
w3l =(1000), w3*2=(010-1)and
w3 =(0011)"%

We ZW3 =0,
Im(w3* w32 w33) and W3 =
with rank(W3) =3

then R} =
[W WIZ W13]

have then RS =

[W W32 W33],

From theorem 4 we have:

rank(W* W2 w3])

1001 0: 1 0 0
k|0 1050 10 1 o0|_,
00 1: 0 -1: 0 0 1
000:0 0: 0 -1 1

Then the system is R-controllable.
Impulse controllability

Four all mode, element in derivative causality (q.)
is not causally connected with the switches Swl and
Sw2 so, the number of impulse modes equal to
0.Then according to proposition 4 the system is
structurally Impulse controllable.

C-controllability

—————————
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The system is structurally R- controllable and
Impulse controllable then the system is structurally
C- controllable.

6. CONCLUSION

In this paper, we have shown a very simple
graphical method, based on the manipulation of the
causal path leading to the determination of the
equivalent explicit state equation of the singular
state equation. From this result we have been able
to extend the procedures of controllability analysis
of switching systems to SLSS. On the other hand
the controllability property is decomposed into R-
controllability, impulse controllability and complete
controllability. For that we have proposed two
sufficient graphical conditions for R-controllability,
and a procedure that allows an easy determination
of impulse modes from a bond graph model. This
procedure is based on simple causal manipulations
on the equivalent bond graph model in integral and
derivative causality. Finally, we have proposed a
simple example illustrating our results.

The bond graph model appears to be an excellent
tool for structural analysis, through its graphic
character and its causal structure. It provides
directly to the user information about controllability
and observability, sometimes difficult to obtain by
other routes.

The second graphical sufficient condition that we
have proposed in this paper is limited to the case
when all storage elements keep their initial
causality during the commutation. Therefore, in our
next work, we will take into consideration the
changes of causality in the storage elements at the
commutation time.

Other aspects which remain to be investigated are:
-proposition of a feedback control of finite mode
(slow subsystem) -compensation of infinite modes
(fast subsystem), in the case where the system is
impulse controllable.

Appendix A. Proof of Theorem 2

The proof is similar to that of Yang’s theorem in [4]

We consider the slow subsystem (5.a) and we
assume that the rank(xl (t)) is invariable for all

mode, i.e. nJ*! = nlwithj € {1,..,q — 1}.
Going through all the modes with t, <t; <

tq—1 <ty the continuous state at tr can be
expressed as:

961(f1_f0)x(t0) +
eG1t=Dh y(7)dr

x(t )= eGa(tr—tq-1) gGq-1(tg-1—tq-2)

ftl G, (tf_tq—l)eGq—l(tq—l_tq—z)

ot ft:f_l eGq(ff_T)Hqu(T)dT (A.1)

Note that tf = t,. Then, from (A.1) we can obtain
the relation:

% = x(ty) —
eGq(tf_tq—l)eGq—l(tq—l_tq—Z)

e@ti=tdx(t,) (A.2)
Forj=1,..,q — 1 we define :
T; 2 efalta~ta-1)gla-1(tg-1tg-2) L eGis(tty)

(A3)

Such that T, =1, where I denotes the unitary
matrix.

So the equation (A.1) can be transferred into:

21
ff:Tlf e
t

0

G- u(r)dr

+T, fttlz eC2"OH u(r)dr +

-ty ft:q_l eGq(tq_T)Hqu(r)dT (A.4)
For jt" term of (A.4) we define:
X 2T féf_ S Hu()de (A.5)

On the other hand, the exponential matrix e®* can
be expressed as [26]:

€%t 2 by(E)] + -+ by, 1 (G™ = XU b(OGT (A.6)

Divide interval [t;_y,t;) into nlsublntervals with
property tj_qo < tj_qq < <tj_qp,. It is noted
that t;_;, =t;_jand tj—1,n1 =t. And we can
define the piecewise continuous input u(t) as a
piecewise constant function, denoted as u(t) =
Uj—l,i for t € [t]'—l,i—l ltj—l,i) where Uj—l,i € R™
for i =1,2,....,ny. Substitute the above-defined
input u(t) and equation (A.6) into (A.5), then we
have:

X; 2 T,W,FU; (A7)

Where W, = [H; G;H; .G 'H}]

[ s 101b}(t' —-1)dr

tja,

tj i b’(t )dt ]

t) 1ny-1

tj-11 tj-1nq ’
lf }; - b, 1(tj —1)dr . bnl_l(tj - r)er
Ui—11
and U; = :
Uj—l,n1
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Where b,]c.(t) for k=01,..,n;—1 are the
expansion coefficients of e%¢ as shown in (A.6).

By following the same process, equation (A.4) can
be expressed as:

ff = T1W1F1U1 + T2W2F2U2 + -+ TqVVquUq

F, - 01[U,

= [, TWal: ™ F] ¢ (A.8)
0 - Flluy

Denote y; =t; —tj_qforj=1,..,q then with

respect to (A.3), we have  lim

Ty =1.
Yjt1l.¥Yg-0

When y; for j =1, ..., q are small enough, we can
get:

rank ([T:W; TWol) = rank((Wy -+ WgD) (A.9)

Considering the assumption that the controllability
matrix Wge is of full row rank, then we have
rank[TiW; T,Wel =n,.

Summing up the above analysis, we can see that
there exists a timed mode-switching sequence
{cr]-,tjynl,ajﬂ}?:—ll , and a corresponding piecewise
continuous input signal u(t) =U;_,; for t€
[tj-1i-1,tj—1;) With j=1,..,q and i =1, ..,ny,
they make hybrid state (of;xs) reachable from
(005 xo) within period [to; tr]. Here, the proper
selection of i1, for i=1,..,n; —1 makes the
corresponding F; nonsingular; the proper selection
of tj_ynfor j=1,..,q makes condition (A.9)
satisfied and the assignment of U;_;; is the
corresponding solution of (A.8) when x(tf) =Xy
and x(ty) = xo.
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