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ABSTRACT 
 

The problem studied in this paper is the Transportation job shop problem with blocking and no wait 
constraints. This problem is an extension of the classical job shop problem that take into account transport 
operations and the absence of storage space between machines. We formulate the problem by means of a new 
disjunctive graph. We modelized blocking situations and described properties of partial schedule that lead to 
deadlock situations. The new disjunctive graph and deadlock situations properties served us to develop a 
greedy heuristics based on priority and avoiding blocking cycle rules. We also propose to resolve our problem 
by an exact method based on a Mixed Integer Linear Program (MILP). Computational results for a set of 
benchmarking tests are reported and the effectiveness of our methods are discussed.  

Keywords: Job Shop Scheduling problem, Transport, Blocking No Wait Constraint, Mixed Integer Linear 
Program, Heuristics 

 
1. INTRODUCTION  
 

The classical job-shop problem is known as a 
standard problem in scheduling and has been widely 
investigated over the last few decades. However, in 
real world, several problems often cannot be 
modeled as a classical job-shop problem, due to 
additional features. This is especially the case in 
flexible manufacturing systems where the model set 
by researchers have to take into account some 
aspects such as material handling, storage space etc. 

The jobs shop problems with transportation, 
blocking and no wait constraints (NWBT JSSP) are 
met for example in factories with robotic cells. A 
robotic cell is a flow-shop or job-shop scheduling 
cell in which the jobs are transported from machine 
to machine by one or more robots. %We have to 
assign the transport operations to the robots and to 
schedule both the machine and robot operations.  

In some kind of production systems, there is no 
buffer between machines and jobs must be 
conducted from one machine to another one with no 
interruption, so we have to deal with blocking no 
wait constraints.  

Applications related to the Job shop problems with 
blocking constraints (BJSSP) have been reported in 
the processing and logistics industries, such as 
scheduling for the manufacturing of concrete blocks 
by [12], steelmaking by [13], chemical batch 
production by [14], container handling at a port by 
[15] and railway networks by [16]. [3] describes 
several applications of machine scheduling with 
blocking and no wait in process and reviews the 
computational complexity of a variety of related 
problems.  

Several researchers studied the BJSSP and the No 
Wait Job Shop Scheduling Problem (NWJSSP). [4] 
and [5] formulate these problems by means of 
alternative graphs. [7] develop a genetic algorithm 
for solving no-wait and Blocking Job Shop problems 
(NWB JSSP) and [8] and [9] introduce a local search 
approach for the generalized Blocking Job Shop 
problem with application in automated warehouses. 
[6] study a multi-resource job shop problem with 
blocking constraints. [10] propose a tabu search 
algorithm to solve the BJSSP for cyclical scheduling. 
[11] proposes a combination of a branch and bound 
algorithm with alternative graphs and develops two 
methods based on genetic algorithms to solve the 
BJSSP. 
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Several researchers have devoted to study job 
shop scheduling problems with transportation 
constraints (TJSSP) in various systems. However, 
the progress is limited as this kind of problem is 
difficult to solve even for simplified and small size 
cases. [19] developed a mixed integer programming 
(MIP)formulation raising this constraint on the 
vehicles. [29] used a mixed integer linear program 
(MILP) to find optimal solutions for the Flexible 
Manufacturing Systems Scheduling Problem with 
one vehicle. [31] studied coupled task problem and 
one-machine robotic cell problems. It reported new 
algorithmic procedure for this problem with or 
without tolerances on the distance. [32] applied a 
decomposition method where the master problem 
(scheduling) is modeled with constraint 
programming and the subproblem (conflict free 
routing) with mixed integer programming. [30]  
proposed a polynomial algorithm for finding the 
optimal cycle in a robotic cell with production of 
identical parts. [17] integrated transport constraints 
in the scheduling problem with one robot. [28] 
considered a cyclic hoist scheduling problem with a 
single hoist, but without assignment problem. [18] 
proposed a dynamic programming approach to 
construct optimal machine and vehicle schedules. 
[20] and [21] elaborated a genetic algorithm. [22]  
and [23] proposed, respectively, neural networks and 
tabu search approaches. [24] described a hybrid 
method composed of a genetic algorithm for the 
scheduling of machines and a heuristic for the 
scheduling of vehicles. [25]  and [26]   considered a 
job shop problem with several robots, with fixed 
operation times andfixed assignment of machine for 
each job’s operation. [27]   studied a two machines 
flow shop scheduling problem with intermediate 
transportation with a single transporter.  

To the best of our Knowledge there is no research 
that addressed the problem of job shop scheduling 
that take into account transfer time between machine 
performed by a limited number of robots and the 
absence of buffers between machines that lead to 
blocking and no wait constraints. 

Two common approaches to tackle the Job Shop 
scheduling problems with additional constraints are 
the utilization of exact methods and heuristic 
approaches [1]   and [33].  The exact methods allow 
us to find optimal solutions but are not suitable for 
large instances. Heuristic approaches allow us to find 
a good quality approached solutions for a large size 
instances in a reasonable calculating time.  

In this paper, we propose a Mixed Integer Linear 
program based on the model of [34] to find exact 
solutions and a construction heuristics based on 

priority rules and preventing deadlock situations 
during the construction of partial schedules. 
Scheduling problems with blocking constraints 
appear more difficult to solve by heuristics than the 
classical job shop. This is due, to the fact that a 
feasible partial schedule for BJSSP cannot always be 
extended to a feasible complete schedule [4]   and 
[5]. As a consequence, any heuristic that 
incrementally builds up a solution (e.g. based on 
priority rules) risks the chance of running into 
infeasibility. Therefore, the effectiveness of any 
greedy heuristic is evaluated based on its capacity to 
find good quality solution and to reach feasible 
schedules. 

This paper is structured as follows. In the next 
section, we will define our problem and the notations 
associated to its formulation. After, in Section 3, we 
present the disjunctive graph representation for the 
NWBT JSSP.  In Section 4, we describe our Mixed 
Integer Linear Program for the NWBT JSSP. In 
section 5, we describe and illustrate blocking cycles 
and present our two developed heuristics. 

Section 6 discusses a series of experimental tests 
and computational results. Conclusion follows in 
section 7. 

2. PROBLEM DEFINITION 

We consider a job shop problem with 
several transport robots and no buffers. In this 
problem, a set of n jobs {J1, J2, …, Jn} are processed 
on a set of m machines {M1, M2, …, Mm}  and 
transported by a set of k {r1, r2, …, rk}. 
Transportation times are robot-independent. Every 
job Ji require an operation order, {Ji={Oi1, Oi2 …, 
Oini}}, that must be executed according to its 
manufacture process. Operation Oij of the job Ji 

requires the exclusive use of Ml(1{1,2,…m}) for an 
uninterrupted duration pij, its processing time; the 
preemption is not allowed; each machine can process 
only one job at a time; the machine which execute 
the operation Oij is denoted as Mij. In addition, we 
consider transportation operations between two 
machines. Consider two successive operations of the 
same job Oij and Oij+1 to execute in two machines Mij 
and Mij+1. Tij is used to denote transport operation of 
job Ji from machine Mij to machine Mij+1. Each robot 
can handle at most one job at one time. Loaded 
transfer times do not depend on the job transported, 
but only on the travel routes and the robot which 
perform the transportation operation. These times 
are given by  
௣௟ܥ
௥  where r represents the robot and p,l represents 

the route between machine Mp and  Ml. It is assumed 
that the triangle inequality is satisfied: 
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∀	ሼ݌, ݈, ݄ሽ ∈ ሼ1,2, . . , ݉	ሽ machine indexes. 

ݎ	∀ ∈ ሼݎଵ, ,ଶݎ . . ,  ሽ	௞ݎ
 

௣௛ܥ
௥ ௛௟ܥ +  

௥ ௣௟ܥ ≤ 
௥  (1) 

 
 

(1) means that the direct way between two machines 
is at least as short as the detour through a third 
machine. Otherwise, the robot always takes the 
shorter way through the third machine. 
 
Note that a sequence of loaded transport operations 
indirectly induces necessary empty moves. Empty 
transfer time from machine Mp to Ml is denoted ௣ܸ௟

௥ . 
It is assumed that: 
∀	ሼ݌, ݈ሽ ∈ ሼ1,2, . . , ݉	ሽ machine indexes. 

∀	ሼݎ, ᇱሽݎ ∈ ሼݎଵ, ,ଶݎ . . ,  ሽ	௞ݎ
 

ቐ
௣ܸ௣
௥ ൌ 0

௣ܸ௛
௥ ൅	 ௛ܸ௟

௥ 	൒ 	 ௣ܸ௟
௥

௣௟ܥ
௥ ൒ 	 ௣ܸ௟

௥
        (2) 

 
The first assumption means that no empty transfer 
time is considered if a robot waits at the same 
machine the next transportation operation. The 
second one is the triangular inequality for empty 
moves. The third one means that empty transfers 
between two machines by a robot r take less time 
than loaded transfers between this two machines by 
another robot r'. (It is also valid if r = r'). In the other 
hand, we consider the blocking constraint because 
there is no machine buffer. This means that after 
finishing its processing on the machine, a job has to 
stay there until it is unloaded by the robot. During 
this stay, the machine is blocked and not available 
for processing any other job. We also consider the no 
wait constraint that means if the robot transporting 
the job Ji reaches machine Mij, the operation Oij must 
start immediately without any interruption. 
We distinguish two cases of blocking: blocking with 
swap allowed and blocking no swap [37].  In our 
case, we consider that the job can move 
independently and therefore the swaps are allowed. 
It means that whenever there is a  job  Ji in Machine 
Ml and a Job Ji’ in a Robot rs , each one waiting for 
another to be freed as the job Ji has to be transferred 
from Machine Ml to robot rs and job Ji’ from robot rs 
to machine Ml , Job Ji and Ji’ could move 
simultaneously. 
The scheduling problem objectives are: 
‐ To determine the starting time dij for each 

machine operation Oij. (the completion time is 
denoted  fij). 

‐ To assign a handling robot to each transport 
operation Tij and to determine its starting time 
d’ij. (the completion time is denoted  f’ij) 

‐ To minimize the Makespan denoted Cmax = 
max (Ci) where Ci denotes the completion time 
of the last operation of job Ji . 

 
All data pij, ܥ௣௟

௥ 	, ௣ܸ௟
௥ , dij, d’ij, fij, f’ij, and Cmax are 

assumed to be non-negative integers. 
 

3. THE DISJUNCTIVE GRAPH MODEL 

In this section, the disjunctive graph model that we 
will use as a basis for developing our two Heuristics 
is described. It is an extension of the classical 
disjunctive graph model G = (N, A, E) [35] in order 
to take into account transportation and the blocking 
no wait constraint. [17] extend the disjunctive graph 
model for classical job shop to correspond to G = (V, 
C, DM, DR) to describe the classical job shop problem 
with transportation operation performed by a single 
robot. [25] extend it to G = (VM, VT, C, DM, DR) to 
encompass several robots. The disjunctive graph G 
= (VM, VT, C, DM, DR) dedicated to job shop problem 
with transportation by several robot consists of: a set 
of vertices VM  containing all machine operations; a 
set of vertices VT representing the set of transport 
operations obtained by an assignment of one robot to 
each transport operation ; two dummy nodes {0} and 
{*}. The graph consists also of a set of conjunctive 
arcs C representing precedence constraints between 
operations of the same job, a set DM of disjunctive 
arcs connecting the operations to be processed by the 
same machine and a set DR of disjunctive arcs 
connecting the transport operations to be processed 
by the same robot. [11] introduced Alternative 
graph formulation to model the blocking constraints 
in the classical job shop.  
Since the graph of [25] already deals with all 
conflicts regarding job-shop machines and transport 
operations we will use this graph to incorporate 
blocking and no wait constraints. 

 
To deal with the blocking constraint in the job 

shop with transportation, each disjunctive arc in the 
set DM is replaced by a disjunctive couple. More 
precisely, for each pair of operation Oij and Oi’j’ 
sharing common machine, we introduce a 
disjunctive couple of two arcs: one from vertex Tij to 
Oi’j’ and another one from Ti’j’ to Oij. Since the swap 
is allowed, the weight of the disjunctive couples is 
zero. 

To deal with no wait constraints, for each two 
consecutive transport and machine operations Tij et 
Oij+1, we add to the Set C a negative arc between 
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(4)

these two operations, The weight of the negative arc 
is -tij. This negative arc assume that a machine 
operation must start processing immediately after 
the completion of transport operation. 

The Figure 1 represents the non-oriented 
disjunctive graph of the NWBT JSSP (P1) of size (3 
jobs × 3 machines × 4 robots) defined as follows: 
 
‐ Machine operations:  

 J1 [M1:8 ; M2:10 ; M3:6] ;  
J2 [M2:14 ; M3:10 ; M1:10] ;  
J3 [M1:14 ; M3:10 ; M2:8] ; 
 

‐ On load transfer times (Identical robots):  
M1 [M1:0 ; M2:2 ; M3:4] ;  
M2 [M1:2 ; M2:0 ; M3:2] ;  
M3 [M1:4 ; M2:2 ; M3:0]  
;  

‐ empty transfer times:  
M1 [M1:0 ; M2:1 ; M3:2] ;  
M2 [M1:1 ; M2:0 ; M3:1] ;  
M3 [M1:2 ; M2:1 ; M3:0] ;  

 
To solve the scheduling problem it is necessary 

to select one arc from each couple of the Set DM to 
assign one robot to each transport operation and to 
turn all undirected arcs between robots into directed 
ones. We suppose that (S1) defined by table 1 is the 
solution of the problem (P1).. This solution (S1) is 
represented by the conjunctive Graph of the figure 
2. 

Table 1: Solution (S1) of the NWBT JSSP (P1) 

Machine 1 {O11, O31, O23i} 
Machine 2 {O21, O12, O23i} 
Machine 3 {O22, O32, O13i} 

Robot 1 {T11, T22, T32i} 
Robot 2 T12

Robot 3 T21

Robot 4 T31

 
 

4. MIXED INTEGER LINEAR PROGRAM 

This section presents the MILP model to 
formulate NWBT JSSP. Our following formulation 
is based on the model of [34]. We used their ideas 
to model the NWB JSSP. 

To model NWB JSSP, the following notations 
are used. 

List of parameters: 
‐ pij the processing time of operation Oij 
௣௟ܥ ‐

௥ : on load transfer time of robot r between 
machine p and machine l. 

‐ ௣ܸ௟
௥ : Empty transfer time of robot r between 

machine p and machine l. 
‐ H a large number  

List of variables: 
‐ dij: the start time of machine operation Oij 
‐ fij: the completion time of machine operation 

Oij. (Time when operation Oij leave machine 
Mij 

‐ d’ij: the start time of machine operation Tij 
‐ f’ij: the completion time of machine operation 

Tij. 
List of decision variables: 
 

 ij;lq: Binary variable that takes value 1 if Oij. isߙ ‐
processed before Olq. and 0 otherwise. 

 ij;rs: Binary variable that takes value 1 ifߚ ‐
Tij.require processing on robot rs, and 0 
otherwise. 

 ij;lq: Binary variable that takes value 1 if Tij isߜ ‐
processed before Tlq and 0 otherwise. 

 ij;lq: Binary variable that takes value 1 if Tijߛ ‐
and Tlq are processed by the same robot and 0 
otherwise. 

௜௝,௟௤ߪ ‐
௥ : Binary variable that takes value 1 if Tij 

and Tlq are processed by the same robot and 0 
otherwise. 

 
The problem is formulated as follows : 

Minimize Cmax 

Subject to :  
‐ Finish time of machine operations: 

For i[1,n]; j   [1,m] 
fij  dij + pij  (3) 
 

‐ Precedence Constraints between transport 
operations and machine operations: 

For i[1,n]; j   [1,m-1] 
 

ቐ
݂′௜௝ ൌ ݀௜௝ାଵ	

݀௜௝ାଵ ൌ ݀′௜௝ାଵ 	෍ ெ೔ೕெ೔ೕశభܥ௜௝,௥ೞߚ

௥ೞ
௞

௦ୀଵ

	 

 
‐ Precedence constraints between machine 

operations and transport operations: 
For i[1,n]; j   [1,m-1] 

d'ij = fij    (5) 
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Figure 1: The Disjunctive Graph representing the problem (P1) 

 
 
 

Figure 2: The conjunctive Graph representing the solution (S1) of 
 the problem (P1) 
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(6)

(7)

(8) 

‐ Disjunctive constraints between machine 
operations: 
For i,l[1,n]; j,q   [1,m]/ Mij=Mlq 

ቐ
݀௜௝ ൒ ௟݂௤ െ ܪ ∗ ௜௝;௟௤ߙ

݀௟௤ ൒ ௜݂௝ െ ܪ ∗ ሺ1 െ ௜௝;௟௤ሻߙ
௜௝;௟௤ߙ ൅ ௟௤;௜௝ߙ

 

 
‐ Robot assignment constraints: 

For i[1,n]; j   [1,m-1] ; s   [1,k] 

෍ߚ௜௝,௥௦ ൌ 1

௞

௦ୀଵ

 

 
‐ Disjunctive constraints between robot: 

For i,l[1,n]; j,q   [1,m-1] ; s   [1,k] 

 
(3) Ensures that each operation is processed at least 
for its process duration. 
(4)   Ensures that each machine operation starts 
immediately after the finish of the transport 
operation that precede it.  
(5)  As there is no buffer in machines, transport 
operation starts immediately when the job leaves a 
machine.  
(6)   Ensures that each machine process one 
operation at a time. 
(7)     Ensures that each transport operation is 
performed by only one Robot. 
(8)  Ensures that each robot process one operation at 
a time. No two transport operations are performed by 
the same robot at any time  
 
5. HEURISTICS 

5.1 Blocking Situations cycles - Graph of last 
scheduled operations 
In this section, we will look for situations that 

could lead to blocking states in order to avoid them 
during the construction of our algorithm. For this 

purpose, we will identify blocking situations by 
using a graph Gs = (M,J) we will call the graph of 
last scheduled operations. This graph is defined as 
follows: Consider the graph of last scheduled 
operations Gs = (M,J). A set of vertices M represents 
machines; A set of arcs J represents the last 

scheduled operations Oij  of job Ji . The starting point 

of the last scheduled operation Oij  of job Ji  is the 

machine Mij  and its end point is the machine Mij+1.  
Blocking condition (C1) can be formulated 

as follows: "Systems may confront a blocking 
situation if the graph of the last scheduled operations 
Gs = (M,J) contains a cycle of length p ≥ 2. 

Consider for example a problem with 5 
machines {M1, M2,…, M5}   and 4 jobs {J1, J2, 
…, J4} . The last scheduled operations are:  

 J1: M1--> M2 ; J2: M2--> M3; J3: M3--
> M1, J4: M4--> M5 .  

The associated graph Gs is modeled 
as follows: 

 

 
Following the topology of Gs = (M,J), the 

graph contains a cycle of length p=3 (p equals the 
number of jobs that forms the cycle).  Under this 
cycle, the necessary condition of blocking (C1) is 
satisfied because job J1 that is processed on the 
machine M1 cannot pass to machine $M_2$ 
occupied by the job J2, as well as for job J2 that is 
processed on machine M2 cannot pass to machine M3 

occupied by job J3 as well as for job J3  that is 
processed on machine M3 cannot pass to machine M1 
occupied by the job J1. 

 Thereafter, we will check if the condition 
(C1) is a sufficient condition to blocking situation in 
BNWT JSSP. Consider the graph Gs which a cycle 

of length p ≥ 2. 
 
 
 
 
 

 
 

Figure 3: Associated graph of last scheduled 
operations 

	

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ ௜௝;௟௤ߪ

௥௦ ൒ ൫1 െ ܪ௜௝,௥௦൯ߚ െ ൫1 െ ܪ௟௤,௥௦൯ߚ

௜௝;௟௤ߪ
௥௦ ൑ ௜௝,௥௦ߚ

௜௝;௟௤ߪ
௥௦ ൑ ௟௤,௥௦ߚ

௜௝;௟௤
௥௦ ൌ෍ߪ௜௝;௟௤

௥௦

௞

௦ୀଵ

݀′௜௝ ൒ ݀ᇱ௟௤ ൅෍ߚ௟௤,௥௦

௞

௦ୀଵ

ቀܥெ೗೜ெ೗೜శభ
௥௦ ൅ ெܸ೗೜శభ;ெ೔ೕ

௥௦ ቁ ൅ ൫௜௝,௟௤ െ 1൯ܪ െ ܪ௜௝,௟௤ߜ

݀′௟௤ ൒ ݀ᇱ௜௝ ൅෍ߚ௜௝,௥௦

௞

௦ୀଵ

ቀܥெ೔ೕெ೔ೕశభ
௥௦ ൅ ெܸ೔ೕశభ;ெ೗೜

௥௦ ቁ ൅ ൫௜௝,௟௤ െ 1൯ܪ െ ሺߜ௜௝,௟௤ െ 1ሻܪ

௜௝,௟௤ߜ ൅ ௟௤,௜௝ߜ ൌ 1



Journal of Theoretical and Applied Information Technology 
31st May 2018. Vol.96. No 10 

  © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
2788 

 

 
 

Figure 4: Graph with a cycle of length p ≥2 

 
We suppose that the processing of all the 

jobs Ji has finished. Each job Ji remains blocked on 
machine Mi until its transportation operation Ti from 
Mi to Mi+1  start. We assume that a robot r1 is 
available and will be assigned to transportation 
operation Ti. This operation can start and liberate the 
machine Mi. No wait condition imply that the 
processing of job Ji on machine Mi+1 must start 
immediately after the termination of  transport 
operation Ti otherwise Ji cannot be transported by r1 
and then machine  Mi remains blocked. On the other 
hand, Mi+1  is blocked by Ji+1 and will be liberated at 
the latest when the transport operation Ti ends. 
Therefore The transport operation Ti+1 of Ji+1 starts 
and so on until the blocking cycle is totally liberated. 
In the case of SWAP allowed (Our case) transport 
operations can be performed by the same robot r1 
(jobs between machines and robots can be done 
simultaneously) or an other robot rs if available. If 
swap is not allowed Mi+1  must be liberated before 
the transport operation Ti  ends, therefore we must 
have a second robot to perform transport operation 
Ti+1 . 
Proposition :  
‐ In the case of NWBT JSSP with Swap allowed: 

If the graph of last scheduled operations  Gs = 
(M,J) contains a cycle of length p ≥ 2, the 
system is partially blocked (every blocking 
situation can be liberated). 

‐ In the case of NWBT JSSP with Swap allowed, 
If the graph of last scheduled operations  Gs = 
(M,J) contains a cycle of length p ≥ 2, the 
system is partially blocked (every blocking 
situation can be liberated) if the number of 
robots k ≥ 2 and eternally blocked if the number 
of robots k = 1 

 
5.2 The proposed Heuristics 

In this subsection we propose two 
dedicated heuristic (HC1) and (HC2) to the BNWT 
JSSP. During construction of the algorithm, we 
complete iteratively a partial schedule S consisting 
of two vectors: A vector AM representing the 
scheduling of machine operations and  vector AR 
representing the assignment of robots to transport 
operations. The scheduling of transport operations is 

deduced directly from the scheduling of machine 
operations given the constraints of no wait. U 
denotes the set of non-scheduled operations. For 
each iteration of these two heuristic, a machine 
operation is selected according to eligibility and 
priority rules. When a machine operation is chosen 
on the basis of selection rules, the transportation 
operation which precedes this machine operation is 
automatically selected and a robot is assigned 
according to another priority rules.  

The Heuristic pseudo code is given on 
algorithm 1. 

 
Algorithm 1 : (HC1) and (HC2) Heuristic Pseudocode
Function generate_OM_AR; 
Data: Problem inputs (operating range of jobs, 
processing times, transfer times). 
Result: AM : machine selection ; AR : robot 
assignement 
Begin 

U := O /* set of non-scheduled operations */ 
S := ∅ /* set of scheduled operations */ 
while U ≠ ∅ 

 E := Elire(U,S) /* set of eligible  operations  
according to the rules 1, 2 et 3.*/ 
Oij:= Rule_operation(E,S,J) /* Select an 
operation Oij from the set E according to the 
rules 4 and 5} 
S := Update (S,Oij) /* Adding  Oij  to AM*/ 
rs := Rule_Robot (Tij-1,R,S) /* Assign a 
robot to transport operation Tij-1 according 
to the rules 6 and 7.*/ 
S := Update (S, rs)  /* Adding rs to AR */ 
U := U - Oij /* Subtract Oij from U */ 
 
/* Case of (HC2)*/ 
if {the selection of Oij lead to Gs (M,J) that 
contains a blocking cycle Bs = {Oij, Oij+1, Olq, 
Olq+1) } then 

S := Update (S, {Oij+1,Olq+1}) /* Adding  
Oij+1,Olq+1 to AM to liberate Bs } 
rs := Rule_Robot (Tij,R,S) /* Assign a 
robot to transport operation Tij according 
to the rules 6 and 7.*/ 
rs’ := Rule_Robot (Tlq,R,S) /* Assign a 
robot to transport op eration Tlq according 
to the rules 6 and 7.*/ 
S := Update (S, rs, rs’)  /* Adding rs, rs’ to 
AR */ 
U := U – {Oij+1,Olq+1} /* Subtract 
{Oij+1,Olq+1}  from U */ 

end if  
          

end while 
end 
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Eligible Operations: 
 
The Iteration starts with the construction of the 

set E of eligible machine operations. An operation is 
eligible for partial schedule S if it is a non scheduled 
operation that can start without violating any 
constraints. 
‐ Rule 1: Eligible operations must respect 

operations precedence constraints within each 
job. 

‐ Rule 2: Eligible operations S(Mp) that need to 
be processed on machine Mp cannot be 
scheduled as long as machine Mp is occupied 
by another job. These operations will be 
eliminated from the set E. 

‐  Rule 3 : Eligible operations that could lead a 
cycle in the graph Gs = (M,J) with p ≥ 2 will be 
eliminated from the set E. For (HC2), If E is 
Empty we continue our algorith and select an 
operation with p=2 

 
Selection rules of machine operations: 
 

After the determination of eligible operations, it 
remains to appoint the machine operation to be 
scheduled.  

‐ Rule 4: We associate each operation Oij  E to 
a pair (Mp, g) where Mp = Mij and g is the total 

time of operations S(Mp)  U, g can be seen as 
the weight of Mp on the set of non scheduled 
operations U. Machine operation to be 
scheduled is the one associated to a pair (Mp, g) 
with the largest (g=gmax). 

‐ Rule 5: If we have on the set E two or more 
operations with the same g=gmax, we choose the 
operation that has the longest queue   

Q( ௜ܱ௝)=∑ ௜௤݌
௡భ
௤ୀ௝  

‐ Rule 6: To select the robot that will perform the 
transportation operation Tij, we opted to choose 
the robot which provides the minimal 
completion time of the transportation operation 
f'ij, which involves exploring all robots for each 
assignment. 

‐ Rule 7: In the case of two or more robots 
provide the minimal completion time f'ij, we 
choose the robot that has the minimal empty 
robot arrival time to arrive at the departure 
machine for the loaded move Tij. 

 
For (HC2), if the selection of Oij lead to Gs (M,J) 

that contains a blocking cycle Bs = {Oij, Oij+1, Olq, 
Olq+1} then the machine operation Oij+1, Olq+1 are also 
added to AM to liberate Bs and a robots are assigned 
to transport operations Tij and Tlq 

6. NUMERICAL RESULTS 

The evaluation of our methods is carried out 
using a first set of instances from a well Known 
Benchmark for the problem of a job shop with 
transport and second set of instances developed by 
ourselves. The Well-known benchmark is suggested 
by [23] and has been used by [36]. This instance set 
encompass two subsets P1 and P2 whose size (n * 
m) is respectively (6 * 6) and (10 * 10). This set of 
instances is used to compare MILP results between 
NWBT JSSP and T JSSP for instances of size 
(6*6*1).  

The second set of instances comprises 30 
instances grouped into three subsets S1, S2 and S3 
with respective sizes of (4 * 4), (6 * 6), (10 * 10). 
For these instances, the jobs routing are randomly 
generated and the processing times and transfer 
times are randomly distributed respectively over 
[10; 100] and [1; 20]. The evaluations are carried 
out using respectively 1 robot and 2 robots. For all 
instances, that encompass more than one robots, the 
robots are considered as similar. 

In the table 2 & 3, we report the results of our 
heuristics and MILP. These results are obtained used 
the C++ programming language for the construction 
Heuristic Program and CPLEX 12.2 as LP solver. 
The C++ and the linear program using CPLEX 12.2 
program were run on a simple desktop PC running 
Windows 7 with an Intel Core i5 processor running 
at 2.40GHz with 4,00GB of memory. 

The notations below are used in the numerical 
results table: 
‐ Problem size n *m *k: n:  number of jobs, m: 

number of machines k: number of robots ; 
‐ C_max[1]:  The MILP solution found by [36] 

for the job shop problem with transportation (T 
JSSP).  

‐ C_max[2]:  The optimal solution found by the 
execution of MILP for the NWBT JSSP.  We 
allowed a maximum computation time of 4 
hour;  

‐ FS-(HC1): The number of feasible solution 
found by (HC1). 

‐ FS-(HC2): The number of feasible solution 
found by (HC2). 

‐ C_max[3]: the approached solution found by 
the Construction Heuristic algorithm (HC1). 

‐ C_max[4]: the approached solution found by 
the Construction Heuristic algorithm (HC2). 

‐ AM_{1-2}:  the relative gain obtained by using 
2 robots instead of 1 robot; 

‐ AM_{2-3}:  the relative gain obtained by using 
3 robots instead of 2 robot; 

‐ AM_{1-3}:  the relative gain obtained by using 
3 robots instead of 1 robot; 
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‐ Dev_[1]: The relative deviation between 
C_max[1]  and the C_max[2].  

‐ Dev_[2]: The average relative deviation 
between C_max[2] and C_max[3] 

‐ Dev_[3]: The average relative deviation 
between C_max[2] and C_max[4]. 

‐ R: Robot 

Table 2: Numerical results for P1- one robot 

 C_max[1]C_max[2]Dev_[1] Dev_[2][3]

D1-d1 60 94 57% 122% 

D1-t1 62 82 32% 132% 

D2_d1 71 152 114% 80% 

D3-d1 84 171 104% 98% 

T2-t1 68 112 65% 100% 

T3-t0 58 77 33% 136% 

Tkl.1 62 104 68% 102% 

Table 3: (HC1) and (HC2) Heurictics numercial results 
for (P1-P2) and (S1-S2-S3) instances. 

  S1 S2 S3 
FS-(HC1) 70% 50% 0 
FS-(HC2) 100% 90% 60% 
Dev_[2] 1-Robot 47% 82%  

2-Robot 43% 75%  
Dev_[3] 1-Robot 49% 84%  

2-Robot 46% 77%  
 
Since there is no benchmark results for the 

NWBT JSSP, the evaluation of the performance of 
our constructive heuristics is done by comparing the 
results of the two heuristics with each other and with 
the MILP for the second set of instances. The first 
set of instances served us to evaluate the effects of 
blocking and no wait constraints by comparing the 
optimal solutions found for the BNWT JSSP and the 
T JSSP. 

From our computational results in Table 3 and 
over the 30 test instances, we noted that (HC1) found 
a solution in 40% cases whereas (HC2) found a 
solution in 83,3%.  

These results are consistent with the way we have 
constructed our two heuristics. For Heuristic (HC2), 
the fact that we have authorized the selection of 
operation that lead to cycle p = 2 allowed us to 
greatly improve the ability of this heuristic to find 
feasible solutions. In contrast, Heuristic (HC1) was 
not able to find feasible solutions for the majority of 
test instances. 

The absolute quality of the results obtained by 
(HC1) and (HC2) are only compared for small and 
medium size instances. For large instances, we could 
not obtain an optimal solution within a reasonable 
computational time by MILP to compare it with the 

heuristics solutions. When solutions are feasible, the 
results show that the average relative error for the 
heuristic (HC1) is 62% and the relative error for 
Heuristic (HC2) is 64%.  

It is also interesting to observe the effects of the 
blocking and no-wait constraints on the value of the 
optimal solutions. As it is noted in table 2, the 
optimal solution of BNWT JSSP is 67% larger, on 
average, than the optimal solution of T JSSP. 

. 
7. CONCLUSIONS 

This paper addresses the NWBT JSSP problem 
with the objective of minimizing the make span. We 
developed a MILP to solve the problem exactly. We 
have modelized the problem by a disjunctive graph 
and proposed two heuristic based on priority rules 
and avoiding blocking situations. Since no 
benchmark tests for the NWBT JSSP problem were 
available in the literature, we have evaluated our 
methods by comparing our results firstly with the T 
JSSP benchmark results and secondly the results 
obtained by our heuristics with the MILP results.  

For the problem of job shop with blocking and 
no-wait constraints, greedy heuristics which 
involves enlarging step by step a partial schedule 
must deal with the quality and feasibility issue as a 
feasible partial schedule cannot always be extended 
to a complete feasible schedule. This difficulty is 
well illustrated by (HC1) & (HC2) heuristic 
numerical results. 

Numerical application show that heuristic (HC2) 
is quite efficient in terms of obtaining feasible 
solutions. The comparison with MILP shows that 
there is still room of improvements in terms of the 
quality. However, the application of the (HC2) 
heuristic remains more interesting than the MILP for 
very large instances in that it allows us to find 
approximate solutions in reasonable times.  

For further research, it would be interesting to 
ameliorate the solution obtained by our greedy 
heuristic by investigating other heuristics. These 
heuristics can be Meta –heuristics, such as Tabu 
Search, simulated annealing, or other special greedy 
heuristics. 
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