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ABSTRACT 

 

True prediction of protein coding regions in a deoxyribonucleic acid (DNA) is a major task in the field of 

Bioinformatics. Study of regions which code for proteins is a key aspect of disease identification and designing 

drugs. The sections of DNA that include protein coding information are known as exons. Mainly exon regions 

in the genes show three base periodicity (TBP), which serves as a base for all exon locating methods. For 

locating the exon regions many techniques have been applied successfully, but development is still needed in 

this area. Using signal processing methods, TBP can be easily determined. Adaptive signal processing 

techniques found to be apt due to their diverse ability to alter filter co-efficients depending on the genomic 

sequence. In this paper, we propose efficient an adaptive exon predictor (AEP) based on these deliberations for 

DNA sequence analysis and computing. In order to increase the exon locating capability, we develop various 

AEPs using normalized least mean forth algorithm (NLMF) and its variants. These proposed AEPs notably 

reduces computational complexity and provides better performance in terms of performance measures like 

sensitivity, specificity, and precision. It was shown that variable normalized least mean forth (VXENLMF) 

based AEP is found to be superior than NLMS in exon identification applications based on performance 

measures with Specificity 0.7468, Sensitivity 0.7562, and Precision 0.7523 at a threshold of 0.8 for a genomic 

sequence with accession AF009962. Also, this algorithm performs better with respect to convergence by 

normalization of step size. Finally the exon locating capability of various AEPs is tested using several real DNA 

sequences obtained from National Center for Biotechnology Information (NCBI) database and compared with 

existing LMS method. It was shown that proposed AEPs are more efficient for locating exon regions in a DNA 

sequence. 

 

Keywords: Adaptive Exon Predictor, Computational Complexity, Deoxyribonucleic Acid, Disease 

Identification, Exons, Three Base Periodicity  

 

1. INTRODUCTION 

 

The extensive area of research in the field of 

bioinformatics is locating the exon regions in a 

genomic sequence by DNA sequence analysis and 

computing. Vital genes form a subset in organisms 

which are needed for development, survival and 

fertility [1]-[2]. Hence, identification of exons has 

pragmatic importance to spot human diseases [3] and 

drug targets discovery in new pathogens [4]-[5] 

through analysis of DNA sequences. The protein 

coding regions and non-protein coding regions are 

present in a genomic sequence. The Sub section of 

genomics that foucsses on locating the protein coding 

regions in a genomic sequence is known as gene 

prediction. The study of prime protein region 

structure helps the secondary and tertiary structure of 

protein coding regions for detection of all anomalies, 

cure diseases and design drugs, as soon as the entire 

structure of protein regions is analyzed. These studies 

support in knowing the assessment of phylogenic 

trees [6] - [7]. Based on the elemental structure of 

molecules, the living organisms are divided into two 

types termed as prokaryotes  and eukaryotes. The 

sections which code for proteins are continuous and 

long in prokaryotes; examples of prokaryotes are 

bacteria and archaea. The genes are a combination of 

coding sections divided by long non-protein coding 

sections in eukaryotes.  These sections which code for 

proteins are also called as exons, whereas the non-

protein coding sections are termed as introns. All 

living organisms other than bacteria and archaea 

come under this category. The coding sections reside 

in human eukaryotes are only 3% of the sequence and 
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the remaining 97% are non-coding regions. Hence the 

identification of protein coding sections is a 

significant task [8]-[9]. Almost in all DNA sequences, 

a three base periodicity (TBP) is exhibited by the 

protein coding regions. This is obvious by a sharp 

peak at a frequency f=1/3 in the power spectral 

density (PSD) plot [10].  Several techniques for 

predicting exon regions are presented in literature 

based on various signal processing methods [11] - 

[13]. But, the length of the sequence in real-time gene 

sequence is extremely long and also the location of 

exons varies from sequence to sequence. Existing 

signal processing techniques are not so accurate in 

prediction of protein coding regions. Adaptive signal 

processing techniques are found to be favorable 

techniques to to process very long sequences in 

several iterations and can change weight coefficients 

in accordance to the statistical behavior of the input 

sequence [13]. In this paper, efficient Adaptive Exon 

Predictors (AEPs) are developed using adaptive 

algorithms for DNA sequence analysis and locating 

protein coding sections. Least mean square (LMS) 

algorithm is the fundamental adaptive technique. This 

algorithm is popular because of its simplicity in 

implementation. But this algorithm suffers problems 

like gradient noise amplification, weight drift and 

poor convergence. So, we put forward to normalized 

least mean forth (NLMF) adaptive algorithms to 

improve the performance of AEP. NLMF algorithm 

overcomes the drawbacks of LMS and improves exon 

locating ability and faster convergence when the error 

is high [14]. This also leads to reduced excess EMSE 

in the process of exon prediction. To cope up the 

computational complexity of an AEP in real time 

applications, proposed normalized least mean forth 

adaptive algorithms are combined with variable 

excess mean square. Sign based algorithms apply 

signum function and minimizes multiplication 

operations. The proposed LMF algorithm overcomes 

the hitches of LMS and NLMS methods by improving 

exon locating ability and speed of convergence [15]. 

This also leads to reduced excess mean square error 

(EMSE) in the process of exon prediction. In real time 

applications, the computational complexity of an 

adaptive algorithm plays a key role. Particularly when 

the sequence length is very large, if the computational 

complexity of the signal processing technique is large 

the samples overlap on each other at the input of the 

exon predictor. These leads to inaccuracy in the 

prediction and causes inter symbol interference (ISI). 

Also, the large computational complexity tends to 

bigger circuit size and large operations. Hence, to 

cope up with the computational complexity of an AEP 

in real time applications we combine the adaptive 

algorithms with sign based algorithms. Sign based 

algorithms apply signum function and lessen the 

number of multiplication operations [16] - [17]. The 

three signum based simplified algorithms are sign 

regressor algorithm (SRA), sign algorithm (SA) and 

sign sign algorithm (SSA) [18] - [19]. Therefore, in 

order to minimize the computational complexity and 

for faster convergence in DNA sequence analysis and 

computing, we propose normalized least mean forth 

and its variants. Normalized LMF algorithm enjoys 

the advantages of better stability and faster 

convergence performance resulting due to 

normalization. The resulting algorithms are 

normalized least mean forth (NLMF) algorithm, 

excess mean square error normalized least mean forth 

(XENLMF) algorithm and variable excess mean 

square error normalized least mean forth 

(VXENLMF) algorithm. In these algorithms, the step 

size is normalized with respect to signal and noise 

power. When the tap length is larger, which is 

common in real time applications the large tap length 

causes an additional computational burden on the 

AEP. Based on the proposed normalized least mean 

forth algorithms, we develop various AEPs and the 

performance is tested using real genomic sequences 

taken from National Center for Biotechnology 

Information (NCBI) data base [20]. We consider 

sensitivity (sn), specificity (sp), precision (pr), 

convergence characteristics, and computational 

complexity (O) as performance characteristics to 

evaluate the performance of the various AEPs. These 

performance measures of proposed AEPs are 

compared with existing LMS method in terms of exon 

locating capability. It was shown that proposed AEPs 

are more better than existing method for exon 

prediction. The theory of the adaptive algorithms, 

discussion on the performance of various AEPs and 

results of AEPs are presented in the following 

sections. 

2. ADAPTIVE ALGORITHMS FOR EXON 

PREDICTION 

In the AEP proposed, the input genomic 

sequence is converted into binary representation. This 

is a significant task in genomic signal processing, as 

signal processing techniques can be applied only on 

digital or discrete signals. At this point, we use the 

binary mapping to convert the input DNA sequence 

into binary data [14]. This mapping method is used to 

represent an input DNA sequence as four binary 

indicator sequences. Using this binary mapping, the 

nucleotide occurrence at a location is indicated by 1 

and absence by 0. Now the resulting sequence is 

appropriate to give as an input to an adaptive 
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algorithm. Four binary indicator sequences are used 

as input to the adaptive filter [15]. Now, we consider 

an adaptive exon predictor (AEP) to be applied on 

converted binary sequences. Let S(n) be the DNA 

sequence, M(n) is the binary mapped sequence, R(n) 

is the TBP obeyed genomic sequence, Y(n) is the 

output from the adaptive algorithm and F(n) is the 

feedback signal to update weight coefficients of the 

algorithm.  Consider an LMS adaptive algorithm of 

length ‘N’. In this algorithm, the next weight 

coefficient can be predicted based on the current 

weight coefficient, step size parameter ‘P’, input 

sequence sample value S(n) at the instance and the 

feedback signal F(n) generated in the feedback loop. 

The mathematical expression and analysis of LMS 

algorithm is presented in [16]. A typical block 

diagram of proposed AEP is shown in Figure 1.  

Figure 1. Block Diagram Of An Adaptive Exon Predictor. 

 Because of its simplicity and robustness, the 

conventional LMS algorithm may be used in exon 

prediction applications. For Stability and 

convergence, the LMS filter needs a prior knowledge 

of the input power level to select the step size 

parameter for stability and convergence[17]. Since the 

input power level is usually one of the statistical 

unknowns, it is normally estimated from the data 

before beginning the adaptation process. But the LMS 

algorithm suffers with two drawbacks in practical 

situations. It is clear that the input data vector is 

directly proportional to the weight update mechanism, 

by observing the weight update recursion of LMS 

algorithm. Another one is the fixed step size. In 

practice, an algorithm has to be designed such that, it 

has to tackle both strong and weak signals. Hence, the 

tap coefficients should be adjusted accordingly 

depending upon the filter input and output 

fluctuations. Therefore, LMS algorithm suffers from a 

gradient noise amplification problem, when the input 

data vector is very large. To avoid this problem 

normalization has to be applied. The adjusted weight 

To further reduce computational complexity of LMS 

algorithm and for faster convergence, the sign 

algorithm is to be normalized with adjusted filter 

weight vector coefficients with respect to input. 

Less computational complexity of the 

adaptive algorithm is highly desirable in exon 

prediction applications for developing nano devices. 

This reduction is generally obtainable by clipping 

either the input data or feedback signal or both. The 

algorithms based on clipping of error or data are 

presented in [18]-[19]. Among the adaptive 

algorithms, the signed algorithms have a convergence 

rate and a steady-state error that is slightly inferior to 

those of the LMS algorithm for the same parameter 

setting. The signum function is written as follows.  

 

������� � 	 1: ���� � 00: ���� � 0�1: ���� � 0�																								(1)

vector at each iteration, adjusted filter weight vector 

coefficient is normalized with respect to squared 

euclidian norm of the input vector at each iteration. 

 

The weight update relation of the LMS adaptive 

algorithm is given by 

��� � 1� � ���� � �	��������																		�2� 
 

Due to normalization, the step size P varies iteratively 

and it is proportional to the inverse of the total 

expected energy of the instantaneous values of the 

coefficients of the input data vector.    

To reduce the computational complexity compared 

with an adaptive LMS algorithm, sign regressor 

algorithm (SRA), sign algorithm (SA) and sign sign 

algorithm (SSA) algorithms are considered. The 

advantage of here is that the step size can be chosen 

independent of the input signal power and the number 

of tap weights. On the other hand, some additional 

computations are required to compute F(n). 
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The weight update equations of SRA, SA and SSA 

algorithms are given by 

��� � 1� � ���� � �	�����������									�3� 
 ��� � 1� � ���� � �	�����������										�4� 
 ��� � 1� � ���� � �	��������������				�5� 
 

Further, to reduce the computational complexity of 

the algorithms we apply least mean forth algorithm to 

develop AEPs. The LMF algorithm possesses faster 

convergence when the error is high and it reduces 

when the error decreases. LMF algorithm offers better 

performance if the weights are initialized nearer to 

optimum value. One of the advantage of LMF over 

LMS and NLMS is its faster convergence. But the 

stability of LMF algorithm depends on input signal 

power, noise power, and wight initizlization vector.  

Thus, the weight update equation of the least mean 

forth (LMF) algorithm becomes 

 ��� � 1� � ���� � �	���������              (6) 

 

A normalized LMF is more advantageous than LMF 

in addition to stability obtained from the 

normalization. The idea behind normalization is to 

normalize the step size with respect to signal power. 

The basic equations of normalized LMF are taken 

from the work presented in [13]. Compared with other 

normalized algorithms, the NLMF algorithm requires 

a small number of computations.  

Thus, the weight update equation of the normalized 

least mean forth (NLMF) algorithm becomes 

 ��� � 1� � ���� � �	 �!�"#�!�$%&'(	�#�!��)           (7) 

 

where є is a small constant used to avoid the system 

from becoming unstable when the signal approaches 

zero. Also, α is usually unity. In order to overcome 

the dependency on mixing parameter in [20], a 

variable XE-NLMF algorithm is proposed. So, α 

value is varied according to the step size. 

 

The weight update equation of the variable 

normalized least mean forth (XE-NLMF) algorithm 

becomes 

 ��� � 1� � ���� � �	 �!�"#�!�$%�*+,�-��	�#�!��.	%	#�!� �!�.   (8)                              

 

Generally, in addition to the even powered 

signal in the denominator, it is customary to place a 

very small value є to prevent the system from 

becoming unstable when the signal approaches zero. 

As a whole, these terms are making the filter to be 

variable step size. But this above equation has 

disadvantages in terms of its stability based on the 

signal power. Here, both the signal and error power 

are used in normalization along with a mixed power 

parameter є which manages the convergence rate in 

maintaining stability. The MSE performance clearly 

indicates the improvement of it over NLMF. It is 

called as XE-NLMF. 

 

The weight update relation of XE-NLMF 

algorithm is given as - 

 ��� � 1� � ���� � �	 �!�"#�!�$%�*+,�	�#�!��.	%	є	 �!�.      (9) 

 

As long as the error is small in the above equation, the 

mixed term will be small and the steady state error is 

small. If the error is more then the mixed term 

parameter will tend towards unity thereby the stability 

is achieved. In order to observe the efficiency of LMF 

over LMS, the normalized least mean square 

algorithm is used. 

 

The weight update relation of XE-NLMF 

algorithm is written as - 

 ��� � 1� � ���� � �	 �!�#�!�$%&'(	�#�!��.                   (10) 

 

3. COMPUTATIONAL COMPLEXITY AND 

CONVERGENCE ISSUES 

In general, to estimate and compare 

algorithm complexity, number of multiplications 

required to complete the operation is taken as a 

measure. However, most of the DSP’s have a built in 

hardware support for multiplication and accumulation 

(MAC) operations. Usually they perform this 

operation in a single instruction cycle as well as 

addition or subtraction. In this paper, we concentrate 

on presenting a comparison between different 

adaptive algorithms in terms of the computational 

complexities as summarized in Table 1. Further, as 

these sign based algorithms are largely free from 

multiplication operation, these algorithms provide an 

elegant means for adaptive exon prediction 

applications.  For example, LMS algorithm P+1 MAC 

operations are required to compute the weight update 

equation. In case of variable normalized least mean 

forth algorithm(VXENLMF) only one multiplication 

is required to compute ‘S.F(n)’. Whereas other 

NLMS, NLMF, XENLMF and VXENLMF based 

algorithms does not require multiplications if we 

choose ‘S’ value a power of 2. In these cases 
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multiplication becomes shift operation which is less 

complex in practical realizations. In SSA we apply 

signum to both data and vector, and then we add ‘S’ 

to weight vector with addition with sign check (ASC) 

operation. Among all the algorithms the NLMS 

adaptive algorithm is more complex, as they require 

2P+1 MACs and 1 division operations to implement 

the weight updating equation (10) on a DSP 

processor. Among the proposed AEPs, VXENLMF 

algorithms provide less computational complexity 

with 1 MAC and 1 division operations for DNA 

computing and sequence analysis. However, by using 

a maximum normalization approach, we can 

minimize multiplications in the denominator from ‘P’ 

to ‘1’.  

Compared with other normalized algorithms, 

the VXENLMF algorithm requires a small number of 

computations. To compute the variable step with 

minimum computational complexity, the error value 

produced in the first iteration is squared and stored. 

The error value in the second iteration is squared and 

added to the previously stored value. Then, the result 

is stored in order to be used in the next iteration, and 

so on. 

 
Table 1: Computational Complexities Of Various Algorithms Used For The Development Of Aeps. 

S.No. Algorithm MACs Add Divisions Shifts 

1 LMS P+1 Nil Nil Nil 

2 NLMS 2P+1 Nil 1 Nil 

3 NLMF P+2 P 1 Nil 

4 XENLMF P P+1 1 Nil 

5 VXENLMF 1 Nil 1 Nil 

 

The VXENLMF algorithm provides significant 

improvements in minimizing signal distortion. It is 

clear that variable XENLMF algorithm is able to 

handle the noises that occurs during transmission in 

the power spectral density of exons. The parameter α 

actually controls the convergence. When there is a 

large error, then α will tend towards unity and the 

convergence will be very fast. Similarly if the error is 

small then α will be small and convergence will be 

slow making the step size small. This actually occurs 

when the adaptive filter is reaching the steady state. 

The convergence curves results from plotting the 

MSE over several samples. It was observed that MSE 

is reducing over samples and iterations and 

specifically over the change in α value. It shows that 

as α value is increasing, error term is weighted more 

and as a result the noise is effectively suppressed. 

In order to cope up with both the complexity and 

convergence issues without any restrictive tradeoff, 

the corresponding normalized least mean forth 

adaptive algorithms are normalized least mean forth 

(NLMF) algorithm, excess mean square error 

normalized least mean forth (XENLMF) algorithm 

and variable normalized least mean forth  

(VXENLMF) algorithm. These algorithms provide 

less computational complexity, good filtering 

capability and faster convergence. The convergence 

characteristics of the error normalized and maximum 

error normalized adaptive algorithms are shown in 

Figure 2.  From these characteristics, it is clear that 

XENLMF is just inferior to its variable normalized 

least mean forth version. Hence, among the 

algorithms considered for the implementation of the 

AEPs VXENLMF algorithm is found to be better with 

reference to computational complexity and 

convergence characteristics.  
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Figure 2: Convergence Characteristics Of Error Normalized LMS With Its Signed Based Variants. 

4. RESULTS AND DISCUSSIONS  

In this section, the performances of various AEPs are 

compared with existing LMS method using real DNA 

sequences. The structure of proposed AEP is shown 

in Figure 1. The normalized least mean forth (NLMF) 

algorithm and its variants are used to implement 

various AEPs. For purpose of comparison, we also 

developed LMS and normalized based AEPs.  For 

evaluation purpose, we obtained ten DNA sequences 

from NCBI database [20]. For consistency of results, 

to evaluate the performance of various algorithms we 

considered ten DNA sequences as our data set. The 

description of the dataset considered is shown in 

Table 2.  The performance measure is carried using 

parameters like sensitivity (Sn), specificity (Sp) and 

precision (Pr). The theory and expressions for these 

parameters are given in [11].  The exon prediction 

results for sequence 5 are shown in Figure 3. The 

performance measures Sn, Sp and Pr are measured at 

threshold values from 0.4 to 0.9 with an interval of 

0.05. The exon prediction seems to be better at 

threshold 0.8. Hence at threshold 0.8 the values are 

tabulated in Table 3.    

 
Table 2:Dataset Of DNA Sequences From NCBI Database. 

Seq. No. Accession No. Sequence Definition 

1 E15270.1 Human gene for osteoclastogenesis inhibitory factor (OCIF) gene 

2 X77471.1 Homo sapiens human tyrosine aminotransferase (tat) gene 

3 AB035346.2 Homo sapiens T-cell leukemia/lymphoma 6 (TCL6) gene 

4 AJ225085.1 Homo sapiens Fanconi anemia group A (FAA) gene 

5 AF009962 Homo sapiens CC-chemokine receptor (CCR-5) gene 

6 X59065.1 H.sapiens human acidic fibroblast growth factor (FGF) gene 

7 AJ223321.1 Homo sapiens transcriptional repressor (RP58) gene 

8 X92412.1 H.sapiens titin (TTN) gene 

9 U01317.1 Human beta globin sequence on chromosome 11 

10 X51502.1 H.sapiens gene for prolactin-inducible protein (GPIPI) 

 

The steps in adaptive exon prediction are as follows:  

1. DNA sequences are chosen from genome 

data base [18]. Binary mapping technique is 

used to convert the DNA sequence to binary 

data.  

2. The obtained binary data is given as input to 

AEP arrangement shown in Figure 1.  

3. A DNA sequence that obeys three base 

periodicity is given as reference to the AEP. 

4. As shown in Figure 1, a generated feedback 

signal is used to update filter coefficients.  

5. When a minimum feedback signal is 

obtained, the adaptive algorithm accurately 

predicts the location of the protein coding 

region sequence 

6. The exon location is plotted using power 

spectral density. The performance measures 

like Sn, Sp and Pr are measured.  
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Figure 3: Locations of exons predicted using various adaptive algorithms for genomic sequence with accession AF009962 

(a). LMS based AEP, (b). NLMS based AEP, (c).  NLMF based AEP, (d). XENLMF based AEP, (e).  VXENLMF based AEP. 

 

Figure 3 shows power spectrum for the predicted 

exon locations of sequence 5 presented in Table 2 by 

applying various adaptive algorithms. From these 

plots it is clear that the LMS based AEP has not 

predicted the coding regions accurately. This 

algorithm causes some ambiguities in location 

prediction by identifying some non protein coding 

regions from the input genomic sequence. In Figure 3 

(a) some unwanted peaks are identified at locations 

1200th, 2300th and 3700th sample values using LMS 

based AEP. At the same time the actual exon location 

4084-4268 is not predicted accurately. Similar kind of 

results using LMS based AEP and other signal 

processing methods for DNA computing and 

sequence analysis have been presented in the 

literature [11]–[14]. But, using proposed normalized 

least mean forth based AEP versions of NLMF, 

XENLMF, and VXENLMF algorithms for DNA 

computation and analysis, exactly predicted the exon 

locations at 4084-4268 with good intensity of PSD. 

These PSDs are shown in Figure 3 (b), (c) and (d). 

Because of the normalization involved in these 

algorithms the tracking capability of these algorithms, 

sensitivity, specificity and accuracy are much better 

than LMS and NLMS algorithms. Among these three 

proposed algorithms, VXENLMF is found to be better 

with reference to its convergence characteristics and 

computational complexity. This algorithm needs only 

two multiplications, the number of multiplications 

involved in VXENLMF algorithm are independent of 

tap length of AEP. The convergence characteristics of 

XENLMF are just inferior to VXENLMF, but due to 

a large number of reduced multiplications for DNA 

computation and analysis this inferior behavior in 

convergence can be tolerable. Therefore, based on 

computational complexity, convergence 

characteristics, exon prediction plots, Sn, Sp and Pr 

calculations, it is found that VXENLMF based AEP is 

found to be the better candidate in realistic 

applications for the development of SOCs, LOCs and 

nano devices in future research.  

 
Table 3: Performance Measures Of Various Aeps With Respect To Sn, Sp And Pr Calculations For Geneomic Sequence 

With Accession AF009962 

Seq. No. Parameter 
LMS 

NLM

S NLMF 

XENLM

F 

VXENL

MF 

1 

Sn 0.6286 0.7085 0.7284 0.7364 0.7594 

Sp 0.6435 0.7267 0.7094 0.7247 0.7436 

Pr 0.5922 0.6954 0.7159 0.7327 0.7582 

2 

Sn 0.6384 0.7137 0.7223 0.7362 0.7572 

Sp 0.6628 0.7458 0.7084 0.7214 0.7483 

Pr 0.5894 0.7027 0.7141 0.7312 0.7556 
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3 

Sn 0.6457 0.7227 0.7273 0.7327 0.7576 

Sp 0.6587 0.7321 0.7053 0.7245 0.7472 

Pr 0.5934 0.6962 0.7193 0.7385 0.7562 

4 

Sn 0.6273 0.7086 0.7263 0.7322 0.7576 

Sp 0.6405 0.7278 0.7042 0.7262 0.7482 

Pr 0.5858 0.7096 0.7146 0.7336 0.7588 

5 

Sn 0.6481 0.7240 0.7246 0.7326 0.7562 

Sp 0.6518 0.7378 0.7045 0.7234 0.7486 

Pr 0.5904 0.6927 0.7134 0.7356 0.7523 

6 

Sn 0.6162 0.7162 0.7252 0.7334 0.7534 

Sp 0.6324 0.7284 0.7115 0.7215 0.7433 

Pr 0.5786 0.6857 0.7145 0.7383 0.7572 

7 

Sn 0.6193 0.7192 0.7223 0.7338 0.7545 

Sp 0.6529 0.7396 0.7034 0.7216 0.7446 

Pr 0.5896 0.6904 0.7112 0.7312 0.7593 

8 

Sn 0.6241 0.7282 0.7223 0.7382 0.7578 

Sp 0.6289 0.7274 0.7145 0.7298 0.7487 

Pr 0.5856 0.6857 0.7134 0.7353 0.7545 

9 

Sn 0.6268 0.7285 0.7265 0.7383 0.7587 

Sp 0.6452 0.7393 0.7054 0.7275 0.7484 

Pr 0.5814 0.6896 0.7132 0.7334 0.7523 

10 

Sn 0.6202 0.7286 0.7212 0.7337 0.7492 

Sp 0.6465 0.6976 0.7035 0.7294 0.7466 

Pr 0.5786 0.6825 0.7173 0.7346 0.7568 

        

5. MERITS AND LIMITATIONS 

 

Accuracy in prediction of exon locations in DNA 

sequences is crucial for disease diagnosis and 

therapy. The merits of proposed AEPs include 

more accuracy in exon prediction and less 

computational complexity when compared with 

existing techniques. Less computational 

complexity of proposed AEPs found to better 

techniques in realistic applications for the 

development of SOCs, LOCs and nano devices in 

future research. 

When the exon length is short, increasing the 

accuracy in prediction of exon locations in DNA 

sequences will become a challenging task for 

DNA computing and analysis. The limitation of 

proposed AEPs is improvement of accuracy in  

 

prediction of short exons is desirable which need 

to be considered in future research. 

 

6. CONCLUSION 

In this paper, the problem of identifying exons in a 

DNA sequence is illustrated. The concept of finding 

exact location of exons has several applications in 

current health care technology such as disease 

diagnosis. At this point, we considered adaptive exon 

identification technique using novel AEPs. To fulfill 

this we considered normalized least mean forth 

adaptive algorithms. In order to reduce computational 

complexity of the proposed implementations, we 

introduced the concept of normalization of step size 

with respect to signal power instead by using 

normalized least mean forth algorithms of data 

normalization. To further minimize the computational 

complexity, the proposed NLMF algorithm is 

combined with its variable normalized variants. As a 

result three new hybrid algorithms come into the 

scenario of exon prediction. The hybrid variants 

includes NLMF, XENLMF and VXENLMF are 

considered for present implementation. Different 

AEPs are developed and tested using NLMS 

algorithm and these three algorithms on real DNA 

sequences obtained from NCBI database. It is 

apparent that NXENLMF based AEP is better in exon 

prediction applications, based on the convergence 

characteristics shown in Figure 2, computational 

complexities shown in Table 1, and based on 

performance measures with Sensitivity 0.7562, 

Specificity 0.7486 and precision 0.7523 obtained at a 

threshold value of 0.8 for genomic sequence with 

Accession AF009962. This is also clear from the 

performance measures tabulated in Table 3 and PSD 

of exon locations shown in Figure 3 where exactly 

predicted the exon locations at 4084-4268 using 

proposed AEPs. Therefore, proposed AEP 

realizations are appropriate for practical genomic 

applications for the development of SOCs, LOCs and 

nano devices for future research.
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