
Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1655

MDAASI: MODEL DRIVEN ARCHITECTURE APPROACH
FOR APPLICATION SECURITY INTEGRATION

1
LASBAHANI ABDELLATIF,

 2
MOSTAFA CHHIBA,

 3
ABDELMOUMEN TABYAOUI,

4
OUSSAMA MJIHIL

1 FST, Hassan 1st University, PSI Laboratory, Settat, Morocco
2 FST, Hassan 1st University, PSI Laboratory, Settat, Morocco
3 FST, Hassan 1st University, PSI Laboratory, Settat, Morocco

4 FST, Hassan 1st University, CNMM Laboratory, Settat, Morocco

E-mail:
1
abbdellatif.lasbahani@gmail.com, 2 moschhiba@yahoo.fr, 3atabyaoui@gmail.com,

4o.mjihil@uhp.ac.ma

ABSTRACT

There have been many research works suggesting Model-driven Architecture (MDA) approaches for
automatic application generation and personalization. MDA approach allows code generation from
platform-specific models (PSMs) by the means of generators that automatically transform models into the
source code for a chosen platform to automate software engineering process. Previous works have widely
addressed code generation, but they are not considering nonfunctional aspects such as application security.
In this current work, we are proposing some additional MDA mechanisms to generate secure applications
based on a given set of security policies. In this context, this approach is used for integrating security
properties, such as Authorization, Authentication, Communication encryption, Message Integrity, and
Confidentiality of critical data, thus security properties will be incorporated in the generated software
during the whole development process or in early abstraction stages. In other words, security models will be
merged with the system models in different abstraction levels by applying a set of model-to-model
transformation. As a result of this process, the system's source code and configuration files will be
generated automatically from communication diagrams by applying a model-to-code transformation.

Keywords: Model Driven Architecture, Code Generation, Application Security, Communication Diagram.

1. INTRODUCTION

Nowadays, applications are gaining

increasing importance according to their broad and
diverse utilization. Software tools are currently
used in different areas such as banking, health-care,
telecommunications, e-commerce, e-learning, and
other domains. Consequently, application security
becomes a determinant factor, thus any interaction
between the application and its external actors shall
be done according to the security policies already
established by the application designers.

The security aspect is one of the most
important no-functional specifications, which can
be defined through five dimensions: Availability,
Integrity, Traceability, No-Repudiation, and
Confidentiality of critical data called (CAITN)
standard. But we have limited the area of this work
only to the following security properties:
Authorization, Authentication, Communication
encryption, and Integrity. The others aspects will be
treated in future work.

Currently, there is a massive use of mobile
and web applications. In order to address this
increasing use, and respond to customers’ needs,
we have proposed a model-driven methodology to
reduce building time of applications, and resolving
security vulnerability problems. This approach also
allows generating secure applications by taking into
account no-functional aspect during system design
and not during the implementation phase. So
software building process should be improved for
automating security policies integration at software
design and generating security infrastructures. This
integration will allow us to check user permissions
that have been guaranteed to this user.

In fact, software Building tools should
follow a well-defined software development
process for getting a high-quality product, because
the previous processes are limited only to establish
analysis and design process of software without
taking into account code generation and security
integration. However, these approaches have been
radically changed because of customer’s needs and

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1656

information technology evolution. For adapting this
process with this continued growth, we need to
reform, adopt, and modernize this process to find a
revitalized strategy to automate generating secure
software for reducing production lead time and
improving planning quality.

In software development process, software
can be represented by a set of models: functional
models which are a structured representation of the
system functionality, and no-functional models as
security aspects, robustness, availability, and
performance. So the both aspects can be merged to
improve the quality of service. Specifications
models will be enriched with even more powerful
models including security policies which will be
designed by security modeling language based on
RBAC models extended with object constraint
language (OCL)[1] during system design. In other
word, generating automatically security policies
infrastructure needs to incorporate security
requirements in all system abstractions during
system design process in the form of security
models; functionality models will be extended to
cover full security concerns by using OCL together
with UML profile. So as to generate automatically
secure applications respecting integrity constraints,
structural integrity modeling was carried out in
parallel with design system models to ensure the
integrity of operations and data by means of
OCL.we also incorporate authorization policies
constraints models to ensure secure access to
applications.

In this work, authorization policies are
modeled using a modeling language based on Role
Based Access Control (RBAC) extended with OCL
and UML profile technology in order to enhance
functionalities models with authorization policies
concepts such as permissions, roles, and privileges.
Consequently, authorization policies constraints
should be verified and respected during customer
interaction after implementation phase. In addition,
security policies didn't limit on authorization,
authentication, and integrity. But, it combines
application access control with encryption of data
flows and exchanges of sensitive data; data
encryption has been also integrated with business
models. Security integration is based on model
transformation: model-to-model (M2M) and model-
to-text (M2T); The models are enriched with
further information during the design phase and
transformed from more abstract models into more
secure concrete models closer to reality by applying
a set of transformation to obtain a significant gain
in productivity.

To do so, we have given more attention to
modeling rather than programming by using an
approach based on models called model driven
architecture (MDA) [2] which is an implementation
of the Model Driven engineering (MDE), proposed
by the Object Management Group (OMG) [3]
initiated in 2000. The main objective of MDA is to
develop suitable models and more productive. It
also allows code generation from models.
Therefore, functionality models will be refined to
incorporate security information and all no
functional aspects through applying a set of model
transition. Then, the final products are
automatically generated from these high-level
specifications with a domain-specific code
generator which automatically transforms PSMs
models into the source code.

The main objectives of this paper are
summarized as follows:
� MDAASI automates software development

process (SDP) which is beginning by analysis
and design phase and ending by
implementation phase and reducing design
mistakes.

� MDAASI proposes an approach based on
models allowing security integration.

� MDAASI develops a code generator that
include model-driven security and allows
generate application security infrastructure.

� MDAASI allows automatically code
generation for chosen platforms (JEE, .Nets,
PHP, etc.) from communication diagram (CD)
which is used like platform independent model
called in terminology MDA (PIM).

� MDAASI allows generating maintainable, less
costly and reusable software systems.

This paper is organized as follows. Section
2 summarizes related works. An Overview MDA is
presented in Section 3. We present how do to
generating secure applications together with MDA
approach in Section 3. In this section we present
utility of models in our approach. We discuss the
proposed approach and an example of code
generator in Section 4. In Section 5 we apply
security constraints on system models. In Section 6
we discuss on tools and technicals. We present
results in Section 7. And finally, we briefly discuss
future works and conclude our paper in Section 8.

2. RELATED WORKS

Various works and many suggestions have
been proposed in the domain of code generation
and data security during the last few years. These
works are very interesting and play an important
role in technology evolution. These propositions

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1657

have been deployed in numerous areas, more
precisely for industrial communities, banking,
health-care, telecommunications, e-commerce, e-
learning, scientific organization, and other domains.
In this work, we present some projects and
suggestions of the high relevance and they will be
considered as the knowledge base related to code
generation and security integration.

The first type of code generator has been
investigated in traditional paradigm as the study of
code generation represented in many works based
on code generation from Petri-Nets which has a
long tradition and used only to add further semantic
definition because the model UML is still largely
undefined from a semantic point of view. Petri-Nets
give several solutions allowing automatic
generation of code. One among these solutions is
presented in [4] which give an overview of
different strategies to generate code from high-level
Petri-Nets. However, in some review, the most of
the suggestions have been focused on automatic
code generation from low-level Petri-Nets as [5,6]
which automates generating of controllers code.
But the weakness or vulnerabilities of these
approaches that automatically code generation from
low-level Petri-Nets can’t produce complex
systems based on object-oriented principles. In
addition, these approaches are used frequently in
validation and verification of requirements during
design system process without analyzing no-
functional details.

Moreover, the second category of code
generation is discovered for solving design errors,
mistakes, and accidents which have appeared in the
first category of code generation. So code
generation in the second category is based on
model transformation by using the model as a
productive element promises a number of benefits
including development of code with high quality,
improving productivity performance, improving
maintainability, reducing design errors, keep
traceability between customer needs and the final
code, integrating chosen platform description
during design phase, and keeping a consistency
between final code and design. Consequently, this
category address the generated code as a models
which can be transformed to other models more
specific by applying a model to model
transformation so as to extended the target language
with other semantics and enhanced generated code
with further features such as methods, interfaces
classes, partial classes which allow for a single
class’s members to be divided among multiple
sources code files, and partial method, security
requirements, supported platforms, authorization

policies constraints, application security files, and
configuration files.

However, model-driven engineering
approaches (MDE) based only on model-to-code
transformation or translation from model to plain
text without going on the intermediate model. So,
the generated models through this process can’t be
enhanced and enriched with others features, so they
stay limited on producing plain text based on text-
based notation. According to this approach, several
kinds of research have been proposed as [7] which
describe how UML models of a system can be
transformed into a code of an object-oriented
imperative programming language or executable
models by defining transformation rules which are
based on the reconciliation of the differences
between UML meta-model and meta-model of the
target language. Other studies have been developed
in this context like [8] which provides a method
allowing generating operations specifications from
domain class diagram using transition state
diagram. While [9], addresses code generation from
sequence diagram of system’s internal behavior. In
the both last works, they have concentrated on code
generation of the operations signatures with their
bodies without talked about the security properties
which are a key success factor for these generated
applications. So, code generation should be
performed to take into account security
infrastructures or rather authorization policies
infrastructures and all no functional aspects. In
addition, [10] present a case study of code
generation based on model transformation together
with stratego which is based on rewrite rules with
programmable strategies for integrating model-to-
model, model-to-code, and code-to-code
transformation. These strategies were supported by
tow dimension of transformation modularity:
vertical and horizontal modularity. But this work
doesn't support the entire development process,
object-oriented systems, and security integration.

Furthermore, the complex tasks during the
specification of conceptual schemas (CS) is system
Behavior modeling, which is represented by a set of
operations that are used for executing application
uses cases. For that, some important approaches
have been intervened for solving modeling
behavior errors by simplifying the specification of
conceptual schemas. [11] Provides a solution for
modeling system operations and describing the
system behavior, and a method allowing generating
system Behavior by completing the static aspect of
the conceptual schemas, and suffice to perform all
typical life-cycle create/remove/update/delete
(CRUD) operation. This contribution takes as input

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1658

CS expressed as a UML class diagram, which is
enriched with the necessary specification, such as
specification of association. Then, the new CS is
generated that contains all necessary operations to
start operating the system. In contrast, there are
some approaches basing on a set of tools for
simplifying modeling behavior.

In the security integration domain, there
are some very important contributions about
security integration during the design phase.
According to these solutions, some technical
improvements need to be made in order better to
achieve secure software and enhancing software
development process with other iteration allowing
security policies integration. [12] Have been
addressed security integration into distributed
systems by providing an approach for developing
secure distributed systems based on UML and
additional support for specifying authorization
constraints. On the other hand, others approaches
have been integrated security aspects in software
engineering process using a modeling language like
UML which is used for modeling role-based access
control policies to restrict system access to
authorized users as shown in [13, 14], While some
works have extended UML for solving security
concerns that have an effect on productivity, quality
of the software, and data confidentiality. In these
works, security concerns not have been solved yet.
In addition, we found also UMLSEC contribution
which addresses security integration in the design
phase by using UML.

In [15, 16], David basin and al. have
combined secureUML with the design modeling
language basing on class diagrams called
componentUML, and conttrolerUML, which is also
based on states diagrams in order to facilitate
security integration and getting security
architectures for distributed systems from models.
While, [17] Provides some technical’s allowing
annotated UML models with authorization policies
based on RBAC to authorize signers. In this
context, [18] develops RBAC using MDA approach
to benefit from MDA advantages for reducing
systems vulnerabilities by providing a tool-
supported framework which use the MDA approach
with UML profile to build RBAC applications, and
security specifications for generating systems
security specifications in eXtensible Access Control
Markup Language (XACML) format for distributed
systems. There are also several works putting the
accent on generating access control infrastructures
for server-based applications as [19]. In addition,
Model-driven security has been extended to cover

database security as [20] which provides a
methodology to develop secure XML databases.

Finally, [21] defines a methodology to
refine application models with the appropriate
security policies which have already proposed by a
security administrator. In addition, [22] presents an
approach for developing secure data warehouses
independent of the target platform basing on UML
for specifying security constraints in conceptual
multidimensional database modeling. [23] Is
similar to [22]. But in [23], the proposed approach
is based on MDA.

This paper subscribes in the second
category of code generation. Our proposal aims to
generate secure applications via a code generator by
applying a set of model transformation or model
transition. Through these transformations and code
generator, implementation phase will be performed
automatically. In this work, we have generated an
intermediate model (IM) for chosen platform or the
target platform (PSM) to enable its extensibility by
extending generated IM (structural model) for
introducing others further improvements like non-
functional aspects. Notwithstanding the diversity of
these code generators and according to our best
research, there is no complete code generator
allowing generating secure applications from
communication diagram. In other words, there is no
complete code generator allowing security policies
integration, which have already mentioned by
application designers basing on solutions provided
by the security expert. According to our
comparison, the both categories of code generation
are concentrating just on functional aspects like
validation and verification of requirements, and
generation of CRUD operations like [9] and al.
However, these works still far to be the appropriate
tools for generating automatically secure
applications and they have a need to further
improvements.

The motivation of this work is to complete
the previous works that deal with code generation
without security integration into system design
phase by automating software development process
based on gait (Unified Process-eXtreme
Programming) (UP-XP).our proposal proposes a
code generator that supports the entire development
process together with security policies integration
into design phase for generating secure applications
with its security infrastructures.

3. OVERVIEW MDA

3.1 Mda Description

The model Driven architecture - (MDA)
[24] is an implementation of Model-driven

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1659

engineering (MDE) proposed by Object
Management Group (OMG) in 2001, and it is used
extensively for designing and building software
basing on the UML standard. Furthermore, MDA
provides many significant advantages. Among the
benefits offered by MDA we found: the separation
of concerns between the business logic of
applications and used platforms. According to this
separation, MDA provides three essential
advantages:
� Develop sustainable models; presenting the

business domain system without considering
the architecture of the used platform.

� Improving productivity gain; business logic
applications becomes more productive and
competitive through the transformation of
models and its extensibility.

� Integrating platform architecture during design
system via the transformation of models;
integrating of the technical details of the
execution platforms through the model
transformation in order to get a platform
specific model (PSM).

Basing on MDA approach, the software
development process becomes more modular rather
than the old methodologies which are based only on
UML.MDA approach defines three levels of
model's abstraction for representing system
model's, and for elaborating advanced design
system:

The first level so-called Computational
Independent Model (CIM) that gives a
requirements view, and describes the situation and
environment technical in which the produced
system will be used.

The second level called Platform
Independent Model (PIM) which represents an
analysis and design view. At this level, system
specifications or business logic of system will be
represented without considering used platform in
which the system will be deployed.

The third level called PSM which is
obtained from PIM and gives a code view.PSM
combines the system functionalities with a chosen
platform-specific in which the system will be used.

Practically, PIMs can be represented by
the domain class diagram, sequence diagram of
system’s internal or external behavior,
collaboration diagram, transition state diagram, or
communication diagram. In this contribution, we
have used communication diagram (CD) as PIM
Because CD more relevant to design phase rather
than others. Then, this PIM can be translated to one
or more platform-specific models (PSMs) including
CORBA, .NET, J2EE, etc...

In addition, success secret of MDA resides
in model transformation strategy which allows
automating code generation and to obtain a
significant gain in productivity. In MDA approach,
to go from PIM to PIM or PSM, or PSM to PSM or
final code, a model transition is the obligatory
stage. For that, these transitions involve some
mechanisms for model transformation. Regarding
model transformation, OMG has proposed a set of
the tools and transformation languages in order to
cover these transitions between different levels of
model's abstraction. We quote Atlas transformation
Language (ALT) [25] and Query, View, and
Transformation (QVT) which may be considered as
the most appropriate model's transformation
languages. There are also others tools.

In MDA, the language used to create and
validate different MDA models is called meta-
model or meta-modeling language which defines
the structure of the models; UML technology is the
appropriate meta-model in MDA methodology.
This meta-model is also represented in the form of
model, and collects a set of classes. Meta-modeling
language has also its meta-model called meta-meta-
model which is used to describe a meta-model
structure, and define a semantic to describe meta-
model architecture. In MDA context, this model
known as Meta-Object Facility (MOF) [26], and
which has the ability to describes itself.

Consequently, the final code will be
generated semi-automatically from PSM models
through models transformation. Figure 1 describes
the MDA architecture.

Figure 1: MDA architecture

3.2 MDA and Proposed Methodology

In this work, we have proposed a new
MDA methodology allowing security integration
and code generation by including data encryption,
secure communication, authentication, Message
integrity, and authorization concepts during system
design phase. In addition, we will improve this
approach to consider views generation from uses
cases in the future works. Figure 2 describes our
methodology in detail.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1660

3.3 MDA for Application Security

As already mentioned, MDA has been
proposed by OMG to automate software building
and allowing code generation for chosen platform
such as PHP, CORBA, NET, or J2EE basing on
MDA rules. Code generation was performed
through separation of the concerns, and use massive
of the models, and model transformation. In this
approach, MDA methodology has been focused
only on the functional aspect and code generation
only for this aspect without talked on security
aspect like allowing code generation for gutter,
setter, constructor, and same methods signatures. up
until now, generated code hasn't been fully
explored and there were other important further
improvements which represent the determinant
factor and success key. But they weren't integrated
yet as generating code correspond to calculate
methods, complex methods, and security
infrastructures.

In this work, we have focused our entire
concentration on non-functional aspect by
automating software development process, and
code generation. The new methodology of system
design will be enhanced by security aspect
integration during design phase and not after

Analysis and design phase. In previous
works, security policies are negotiated in an ad-hoc
manner after design phase by the system
administrator which has a lack of knowledge on
system architecture. This security integration
technique gives a divergence between the design
system and proposed security requirements, and
increasing vulnerabilities. Thus, we have used
MDA to improve software development process by
injecting security policies into design system
process to improve productivity gain and obtain
secure applications which are easy to maintain,
reusable, and scalability. In addition, our proposal
has also many advantages including reducing
implementation time, reducing design mistakes, and
increases the quality of service.

As we know, a secure system should be
used in a private manner and respects security
policies proposed by a security expert during
security requirements definition. Security criteria
can be divided into five important groups:
Confidentiality, Availability, Integrity, Traceability,
and no-repudiation of the crucial data of
information system (CAITN) standard. but in this
work, we have focused only on the integration of
Authorization, Authentication, Communication
encryption, and Integrity without discussing others
criteria. For that, we will enrich system
specifications models with security requirements in

order to automate security integration in the design
system, and allowing secure application's
generation which respect security policies already
established. To do this integration, we have tried to
transform security policies already proposed by the
security expert to models which give an abstraction
on security requirements.

Practically, we have used UML profile
technology to adapt UML concepts with security
policies and transform them into tagged values and
stereotypes in order to enrich system models with
proposed security policies or rather java models.
Security policies determine the necessary
preconditions and post-condition to achieve an
operation; UML profile is a technology used to tag
a design with information that is not captured in
UML.

In our study, we'll generate secure
applications from CD that is considered as PIM
models obtained from CIM models by applying a
set of model-to-model transition. To do so, a
structural or intermediate model (IM) of java
platform was generated from platform models (PM)
and business domain system (PIM).this IM will be
used to annotate PSM with
others technical improvements; we have used java
as the target platform to put into practice our
proposed contribution. in this work, we have
injected security policies into design system
through enriching system models with security
policies constraints by using this generated
intermediate model that will extend to introduce
further improvements. This enhancement is
performed by applying UML profile together with
OCL which is used to define informal
specifications. For example, we can use OCL to
make authorization policies constraints on the
system operations and to manage resources access
control. Consequently, the final code of the
chosen platform will be generated automatically
after applying a model to code transformation.

3.4 Models Overview and its Utility in Software

Engineering

MDA gives more time to modeling rather
than programming by using models at different
phase of software engineering. Indeed, we have
applied this philosophy to no-functional aspect by
integrating the security policies and further
improvements in the form of models at different
abstraction levels of the system as shown in
Figure3.this integration allows design engineer to
annotate system models with security policies and
allowing code generation by performing a set of

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1661

model transformation model-to-model (M2M) and
model-to-code (M2C).

In this work, the models can be used for
the following four activities in the development
process for developing secure applications.
� Documenting security requirements together

with functionality system.
� Checking and analyzing security constraints.
� Model-based transformation, we can transform

CIM models to PIM models by using the
models.

� Generating final code, including complete,
application security.

Figure 3: Use of models in MDA approach

Figure 2: Architecture of the proposed approach

4. PROPOSED APPROACH

4.1 Proposed Approach Description

In this work, we have proposed a

methodology for the automation of the entire
proposed software development process by
providing an efficient solution allowing security
policies integration during software development
process, and take them into account in the code
generation by generating security infrastructures
through a specific code generator.

 To do so, we have proposed a model-
driven code generator allowing code generation
from models. In this case, our proposed code
generator takes in input an intermediate model,
which is profiled with the further improvements,
then transform it towards a final code correspond to
chosen platform. Moreover, we have proposed
communication diagram meta-model (CDMM) that
will be employed as a validator of communication
diagram, and will be used as a semantic or
modeling language to define CD structure, because
it is used as a PIM obtained from CIM models.
Otherwise, we have chosen CD as PIM, because it
is the most relevant and appropriate diagram to
draw complete and secure interaction between
objects during execution of the
operation. In addition, CD determines correctly the
objects participant within the interaction and
showing spatially the objects participant in the
interactions.

Practically, by performing a model to
model transformation, an intermediate model has
been generated from chosen platform PSM and
PIM. Generated IM will be used to improve java
models with security policies which are already
negotiated by security expert and design engineer at
the beginning of the analysis and design phase
CIM. To do so, IM will be extended to cover up the
further improvements by using UML profile
technology, and OCL [24] which is used to enrich
systems models with the constraints which couldn't
be formulated by UML models. In our work, we
have used OCL to improve system models with
security invariants such as data integrity, data
encryption, and authorization policies based on
RBAC. In addition, we have used OCL to
extend precondition and post-condition of
LARMAN operations contract (LOC) which is used
to describe system's statue before and after
operation execution. For that, we have extended
the pre and post conditions to support security rules
during interaction between objects, and resolve the
shortcomings related to the assignment of the
responsibilities to the objects.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1662

By the new definition of LOC, design
mistakes and security vulnerabilities will be
resolved by presenting a new semantic of LOC
called extended pre-condition and post-condition
matrix. In this EPPM, we have introduced General
responsibilities Assignment Software patterns
GRASP PATTERN for automating assign
responsibilities to the object responsible charge to
achieve pre-condition and post-condition of an
operation, and not manually. We have also
enhanced this pre-condition and post-condition to
take in account security integration during
interaction between objects by providing a secure
interaction basing on OCL. Then, operation body,
signature, and object responsible will be deducted
automatically through the tool EPPM with the code
generator. For example, to create a new contact,
staff manager should have a creation role, and must
be authenticated the user, and must inform valid
data, and date encryption as a password or sensitive
data. For checking these constraints, we have
applied EPPM tool by deducing the objects
responsible and participant to achieve create contact
operation.

Finally, by applying a model to code
transformation, the final code of the business logic,
and GUI, and security infrastructures will be
generated automatically from IM by the way of the
proposed code generator that takes in input a PSM
models. Then transform them to code correspond to
chosen platform.Figure4 below describe this
approach in detail.

Figure 4: Different transformation performed to generate

secure application starting from CD.

4.2 Enhancing system model with security

policies and code generation

In this section, we propose a methodology
to enrich structural model of the java model by
security policies about data encryption, message
integrity, authorization, and authentication concepts
into design system phase by applying OCL and
UML Profile. According to the syntax given below,
software engineers can enrich their system models
or system functionalities models with security
constraints or authorization constraints such as data
encryption, Access control based on RBAC extend
with constraints, assignment of write/read
privileges, data validation, Message Integrity, and
all informal specifications which can't be
formulated with UML models. Consequently, the
code source according to chosen platform will be
generated automatically from input models by
respecting the quality of services such as
Scalability, reusability, reliability, and data security
by the means of proposed code generator.

In another word, the Structural model has
been enriched by the security constraints basing on
security profile that is expressed according to UML
and OCL so that the system objects and resources
will be able to interact securely.

The figure 5 below shows a UML model
allowing enhanced with required security policies.
This figure describes also the future work that will
be focused on an approach allowing generating
GUI for each use case basing on the same code
generator.

Figure 5: Example of applying the security constraints on

systems operations and generating GUI.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1663

4.3 Applying EPPM Tool

In this section, we show an example of
creating the new user by describing the system's
statue before and after achievement of the use case
“CreateUser” by using OCL for verifying security
constraint and permissions which are granted to
protected resources, with profile UML to apply
security properties on class diagram during system
design phase. We have also addressed code
generation.

4.3.1 Pre-condition and its OCL expression

In the first place, the staff Manager should
have a creation role and all privileges which allow
him to create a new user and must be authenticated
and authorized before invoking off the operation
concerned. The figure 7 bellow gives a syntax
allowing enhancing the system operations with the
security constraints about authentication and

permissions constraints�

context user:: createUser():User
pre: list_user->include(connected_User)
 and rules->include(connectedUser.role)
 and
self.createUser.actionTypePermission>include
(connectedUser.role.permission)

 Figure7: OCL expression allowing enhancing method

with security policies constraints

4.3.2 Verifying data integrity

In this section, we give syntax OCL
allowing enriching data models UML or more
precisely java models including java methods,
fields, interface, and classes with the confidentiality
and data integrity constraint. For example,
accessing to an operation should be restricted by
permissions and constraints which are formulated
by fallowing the below syntax. By the way, this
syntax is applicable to all java models.

context user:: createUser():User
pre: self.firstName->notEmpty
and self.latsName->notEmpty
 and self.login->notEmpty and
self.password->notEmpty

 Figure8: OCL expression allowing enhancing method

with confidentiality and data integrity constraints

4.3.3 Data encryption and its OCL expression

Data encryption becomes an obligation for
some sensible information like password, the
balance of accounts. Therefore, we have

incorporated the data encryption during system
design to indicate that an information or object
should be encrypted during the communication
between system objects, or between system and
external components. The figure 9 describes a OCL
syntax allowing to indicate that an element of
models is encrypted.

context user inv:pre: self.password.format->
include(user.password.applied_encryption_Type)

Figure9: OCL expression allowing enhancing data

models with encryption constraints

4.3.4 Post-condition description

In the post-condition, we describe system's
statue after the execution of an operation
(createUser) by taking into account the new tool
EPPM to assign automatically responsibilities to
the specific objects in charge to complete the
execution of the operation, and verifying data
integrity, and verifying identity of objects
participate in the achievement of the operation
before finishing the execution of the operation as
shown in the following example. Security Manager
will be an XML file generated automatically from
system models or than PSM (Platform Specific
Model) after their enhancement with requested
security properties.

1) The authenticated user sends a request
from (layer dialog) to the controller to
create a new user.

2) The controller sends a message to
security validator or security Manager
which is employed for verifying data
integrity (Data integrity and
confidentiality), and the identity of the

user (Authentication and authorization)
basing on GRASP PATTERNS low
coupling and high cohesion.

3) The controller sends a message to
responsible class to create an instance
from concerned subject class. By applying
GRASP PATTERN Creator, controller,
and Expert.

4) The responsible class sends a message to
subject class (user) to call its constructor
which has the same name as its subject
class to create a new instance based on
proposed security rules.

5) Finally, the responsible class sends a
message to Data Access Object (DAO) in
order to persist created object into the
database. We have applied GRASP
PATTERNS pure fabrication and Expert.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1664

In this example, there are five main
objects: connected user, Controller,
Security Manager, Subject class, and DAO.

4.3.5 Operation signature and its body

After applying the new tool EPPM and the
security properties at Communication diagram
elaboration, we are getting a complete PSM from
PIM which is enhanced with new features. Then by
applying a specific code generator, the final code
will be generated automatically from PSM. Figure
10 gives an example of code generated from User
class.

Public class User{
//gutters and setters
//create user method
Public user createUser(){
return new User();
}}

 Figure10: User Class code

Consequently, we have applied this
methodology to the java platform by enriching the
structure model of the java platform with the
proposed security policies such as privacy policies
based on RBAC, data integrity, data encryption,
and secure communication basing on OCL and
Profile UML. By the means of this enhancement of
the structural model, the system models PSMS will
be refined by security constraints which have been
performed through security profile so that to add all
constraints which cannot be formulated in system
models by using only UML meta-model.

4.4 Enhancing System Models with Security

Policies at Class Diagram Level

In this section, we propose a syntax
allowing improving the structural model of the java
model by security policies into design system phase
by applying OCL and UML Profile. According to
the syntax given below, software engineers can
enrich their system models with security constraints
such as data encryption, Access control based on
RBAC extend with constraints, assignment of
write/read privileges, data validation, and all
informal specifications which can't be formulated
with UML models. Consequently, the code source
according to chosen platform will be generated
automatically from input models PSM by
respecting the proposed quality of services such as
Scalability, reusability, reliability, and data
security.

In other word, Structural model has been
enriched by the security constraints basing on
security profile which is expressed according to

UML, and OCL. As a result, system objects and
resources will be able to interact securely.

Figure 11 describes a Syntax allowing
enhancing system operation by security constraints
so that to restrict unauthorized access. This
improvement was done at UML profile level.

Context X ::
Operation_Name(param:Type):return_Type
pre: $param->NotEmplty
and list_users->include(connected_user)
and list_roles->include(connected_user.roles)
and list_permissions->
include(connected_user.roles.permissions)
and connected_user.list_permissions->
include(self.Operation_Name.actionTypeName)
post: result.oclsnew()

 Figure11: Syntax allowing restricting unauthorized

access to system operation

4.5 Security Profile Description

In this section, we proposed a security
profile that includes the security policies or security
requirements which are obtained from the security
expert. By means of this profile, we have the ability
to integrate easy all shortcomings about security
concerns so that for keeping a good data
consistency check. The figure 12 below shows the
proposed security profile that has been used to
integrate the security properties whose we have
talked in the previous section. In this work, we have
concentrated only on authorization, authentication,
Message integrity, and data encryption security
policies.

 Figure 12: Proposed security profile

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1665

4.5.1 Applying security profile on class

diagram

After applying security profile on the
structure java model, deduced models will be
profiled automatically according to the security
requirements by following the new software
engineering process. Figure 13 show a UML class
enhanced with security policies by the means of the
proposed profile.

Figure13: A UML Class Profiled By Security Profile

5. TOOLS AND TECHNICALS

Practically, for allowing to software

engineers getting secure application from profiled
models (extended PSM with no-functional aspect)
automatically. It’s very important to deals with this
technical’s improvements by providing a specific
code generator dedicated to this mission or update
the existing code generators for supporting these
changes which were performed at the system design
process level. Therefore, the final code
corresponding to functional and no-functional
models will be generated automatically from
secured models which are designed basing on MDA
approach.

For that, we have performed some
comparison study stuck between different well-
known existing code generators by recounting the
strong and weak point for each code generator. This
comparison is based on criteria of the generated
code technical’s details, and the structure of the
code generator on another side. Although there are
several code generators, they are still now incapable
of generating secure applications and immature to
take into account the both aspects: functional and
no-functional at the same time for generating the
code complete of an application.

For example, the first tool is startigo/XT
which is frequently deployed as a creator of code
generators. In spite of the diverging structure, this
generator stays incapable of producing secure
applications which incorporate at the same time
functional and no-functional aspects. In addition,
startigo/XT hasn't a concrete syntax and doesn't
cover up the complete development process of
software. So it remains incapable of supporting the
object-oriented and complex system. Therefore, its
syntax need to some modifications allowing secure
application generation.

In the second kind, we found the classical
code generators which are based on Petri nets
theory. Really, this type was specifically intended
for requirements validation because they have not
standardized yet to support the entire development
process, and not yet adapted for supporting the
complex system object-oriented system. In
addition, those generators don't have a concrete
syntax and can’t allow secure application
generation.

The third code generator is [27], this
category has been anticipated to determine the
shortcomings resulting from startigo/XT and Petri
nets solutions. This category provides a code
generator that supports the entire development
process of software, and support object-oriented
system. In addition, it takes into account the
structural model. But it doesn't generate CRUD
operations, and GUI interfaces, and controllers, and
security infrastructure files. So this kind also needs
to some modification so that it can deploy as a code
generator.

The fourth code generator is WebML
which is designed for the web application like
WebDSL. This generator provides many
advantages such as generation of CRUD operation,
method bodies, and GUI interfaces. In addition, it
uses a concrete syntax. But at the same, it has a few
weaknesses like:
� WebML doesn't integrate the structural model

which is essential elements of this approach.
� WebML doesn't support the entire

development process.
� WebML doesn't generate applications

controller.
� WebML doesn't generate security

infrastructure files like security Manager.
Finally, the fifth code generator is Acceleo

which is more similar to WebML. But, the
difference that Acceleo supports the entire
development process while WebML not doing it.
Additionally, Acceleo stays still immature to

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1666

generate secure applications supporting code
generation of the security infrastructure files.

At the beginning, we have used Acceleo as
a code generator to start the unit testing of the
suggestion. While in the same time, we have built
in parallel our code generator for automating the
key phases of software development by covering
the entire development process from specifications
phase (CIM) to implementation phase (PSM) as
shown in the figure 2 by allowing code generation
of the security Manager file, GUI interfaces,
Controller, operations bodies. This generator will
be available in the next paper. In addition, our
proposed code generator is going to provide many
advantages:
� The proposal supports the structural model.
� The proposal covers the entire development

process and object-oriented system.
� The proposal allows applications controller

generation.
� The proposal generates security infrastructure

files, and method signatures and their bodies.
� The proposal generates security infrastructure

files and CRUD operations.

6. RESULTS

As results, we have proposed a new
model-driven methodology allowing automating
the entire software development process which is
beginning from specification requirements phase
and finishing by implementation. In this
methodology, we have applied a radical change on
a MDA approach by adding the new iterations to
MDA process like the enhancements of the PSM
with authorizations policies, generating secure
application, and taking into account models
refinements to as well separate functional and no-
functional models. To put into practice the new
methodology and security integration during design
system phase, we have proposed a new specific tool
called Extended Pre-conditions Post-conditions
Matrix (EPPM), which is based on LARMAN
operations contract, security profile, and OCL.

In this tool, we have extended the old
LARMAN operations contract to a new version
more detailed description than its original version
to support securities policies integration during
software design phase, and more precisely during
interaction between systems objects. To do so, the
generated structural model of the java platform has
been enriched by applying the security profile in
order to apply the securities policies rules which are
defined in four essential elements: authorization;
authentication; data encryption; and data integrity.

So by means of this extension, specifications
models will be improved by security policies which
can be formulated in the form of the models via
UML profile. The security models will be merged
with specifications models through the model's
transformation at different abstractions of the
MDA. In other words, from now on any access to
an instance of Java Class, class Methods, relations,
and java Fields will be controlled by security
policies which are already addressed by the security
expert and transformed in the form of the security
profile.

By applying security profile on the
generated structural model, access to java class
becomes restricted by login, password, and
privileges. Therefore, access the instance of a class
includes a previously authentication and
authorization. Thereby a user must have prior
access permission with required roles that allow
him to interact with these instances of a class and
its content. On the other hand, methods and
attributes of a class will be restricted by access
controls, including assignment of reading/writing
privileges, data encryption, and data validation by
applying security profile with OCL for verifying
security policies constraints, and verifying the
identity of a user. By the means of this
methodology, the final code will be generated with
its security infrastructures including security
controller and security manager.

In this work, we have also proposed a
communication diagram meta-model allowing
describing the communication diagram structure
which will be used as a PIM obtained from CIM.
This PIM has been transformed into PSM by
performing a set of model-to-model transformation.
Then, the structural model of the java platform has
been generated from PSM after their enhancement
with the security needs basing on customers need.

Finally, by applying a model-to-code
transformation, the code source according to the
JAVA platform will be obtained from PSM which
has already improved with security policies. This
generation includes also applications security files
like security manager and the security controller,
which contains all authorization policies described
in the form of the XML file.

7. CONCLUSIONS AND FUTURE WORK

In this work, we introduced the Model
Driven Engineering (MDE) and its implementation
Model Driven Architecture (MDA). We have also
concentrated on the application security integration
during MDA process at the same time by proposing

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1667

a model-driven oriented-object methodology that
combine the functional aspects and no-functional
aspects at the same time to get a tailored solution
which cover all aspects basing on the potential
offered by MDA approach, and its utility in relation
to the productivity of the models, sustainability, and
platform description integration trough the model
transformations.

Within this context, we have contributed
by proposing an enhanced MDA approach for
generating secure applications from communication
diagram which is described by its meta-model,
which gives the structure or semantic of the
communication diagram (communication diagram
meta-model). So the software development process
which is based on traditional software engineering
methods becomes more automatic by automating
software development process basing on second
code generation which is based on model transition:
model-to-model, and model-to-code
transformations, and MDA approach. By means of
this transformation, the security concerns will be
incorporated into models. In other words, the core
idea behind automating software process is
allowing code generation for chosen platform from
communication diagram by taking into account the
security policies requirements integration into the
software design phase and automating code
generation corresponding to application security,
more precisely during interaction between system
objects. We have also obtained PIM
(communication diagram) from CIM by applying
model transformation mechanisms and a set of
models refinements. In addition, getting PIM has
been performed by using design patterns GRASP
PATTERNS and the new semantic of LARMAN
operations contract (EPPM) in which we integrated
security constraints basing on OCL pre and post-
conditions for checking authorization policies, and
data integrity, and data encryption during
interaction between system objects.

The main objective of this integration is
enriching the structural model of the chosen
platform with the security policies proposed by the
security expert in order to obtain a secure
application from models by means of the code
generator and the new approach of MDA. Therefore
this methodology allows generating the complete
methods signatures and their body. all the generated
methods will be generated with its security
properties and the permissions needed to do the
method. It allow also obtaining security controller
that is used to verify the authorization policies like
authentication and authorization of the users before
accessing to a method or resources. So this

approach is very useful in the case of an object-
oriented and complex system.

In addition, the future version of code
generator will be enhanced to include additional
information on code generation of the embedded
system, improving existing code generator to
support GUI interfaces generation for different uses
cases according to chosen technology, and finishing
the proposed code generator to take into account all
these details within the system design and code
generation phase.

REFRENCES:

[1] OMG, « Object Constraint Language (OCL)
Specification, version 2.0 », 2006. http
://www.omg.org/spec/OCL/2.0/.

[2] OMG: MDA GUIDE, Version 1.0.1 Object
Management Group document number
omg/2003-06-01 available at
http://www.omg.org/docs/omg/03-06-01.pdf.

[3] OMG: Object Management Group.
www.omg.org
http://www.omg.org/docs/omg/03-06-01.pdf.

[4] C. Girault, R. Valk, Petri-nets for systems
engineering,Springer, 2003, berlin.

[5] S.S. Huang, Y. Smaragdakis, “Easy language
extension with Meta- AspectJ,” In ICSE 06
Proceeding of the 28th International Conference
on Software Engineering, ACM, New York
2006 , pp. 865-868.

[6] D. Zook, S.S Huang, Y. Smaragdakis,
“Generating AspectJ Programs with Meta-
AspectJ, ” In Generative Programming and
Component Engineering Conference, GPCE
2004, Vancouver, Canada, October, 2004, vol.
3286, pp. 1-18.

[7] Code generation through model transformation
http://alexandria.tue.nl/extra2/afstversl/wsk-
i/verstraeten2008.pdf.

[8] B. Bouseta, O. El Beggar, T. Gadi, ” Generating
operations specifications from domain class
diagram using transition state diagram, ”
international journal of computer and
information technology, January, 2013, vol. 02
, pp. 29-36.

[9] O. El Beggar,B. Bouseta, T. Gadi Taoufiq, “
automatic code generation by model
transformation from sequence diagram of
system’s internal behavior,” international
journal of computer and information
technology, November, 2013, vol. 02 , pp. 129-
146.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1668

[10] Z. Hemel, L.C.L Kats, E. Visser, “Code
Generation by Model Transformation A Case
Study in Transformation Modularity, Chapter
Theory and Practice of Model
Transformations,” series Lecture Notes in
Computer Science, vol. 5063, pp 183-198.

[11] A. Manoli, J. Cabot, C. Gómez , V. Pelechano ,
“Generating operation specifications from UML
class diagrams: A model transformation
approach, ” Data & Knowledge Engineering ,
April, 2011, vol. 70, pp. 365-389.

[12] E.B Fernardez, M.M Larondo-Petrie,
T.Sorgente, M.Vanhilst, a Methodology to
develop secure systems using patterns, 2008.

[13] G.-J. Ahn, M. E. Shin, “UML-based
representation of role-based access control,” In
Proceedings of the 9th IEEE International
Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises
(WETICE'00), IEEE Computer Society, Jun,
2000, pp. 195-200.

[14] D. Basin, J. Doser, T. Lodderstedt, “Model
driven security for process-oriented systems,”
In Proceedings of the 8th ACM Symposium on
Access Control Models and Technologies
(SACMAT '03), ACM Digital Library, Jun,
2OO3, pp.100-109.

[15] J. Jürjens, “UMLsec: Extending UML for
secure systems development,” In Proceedings of
the 5th International Conference on the Unifed
Modeling Language (UML'02), LNCS,
October, 2002, vol. 2460, pp. 412-425.

[16] D. Basin, J. Doser, T. Lodderstedt, “Model
driven security for process-oriented systems,”
In Proceedings of the 8th ACM Symposium on
Access Control Models and Technologies
(SACMAT '03), ACM Press , Jun, 2003, pp.
100-109.

[17] X. Jin, Applying model driven architecture
approach to model role based access control
system (Doctoral dissertation, University of
Ottawa).

[18] D. Basin, J. Doser, T. Lodderstedt,
“SecureUML: A UML-Based Modeling
Language for Model-Driven Security,” In
Proceedings of the 5th International Conference
on the Unifed Modeling Language (UML'02),
LNCS, October, 2002, vol. 2460, pp. 426-441.

[19] D. Basin, J. Doser, T. Lodderstedt, “Model
driven security: From UML models to access
control infrastructures,” ACM Transactions on
Software Engineering and Methodology
(TOSEM), Jun, 2006, vol. 15, pp. 39-91.

[20] E. Fernandez--Medina, J. Trujillo, R. Villarroel,
M. Piattini, “Developing secure data
warehouses with a UML extension,”
Information Systems, September, 2007, vol. 32,
pp. 826-856.

[21] J. Reznik, T. Ritter, “Model Driven
Development of Security Aspects,” In
Proceedings of the Second International
Workshop on Aspect-Based and Model-Based
Separation of Concerns in Software Systems
(ABMB 2006), Electronic Notes in Theoretical
Computer Science , April, 2007, vol. 163, pp.
65-79.

[22] J. Trujillo, E. Soler, E. Fernández-Medina, M.
Piattini, “An engineering process for developing
Secure Data Warehouses,”Information and
Software Technology, Jun, 2009, vol. 51, pp.
1033-1051,.

[23] C. Blanco, I. García-Rodríguez de Guzmán, E.
Fernández-Medina, J. Trujillo,M. Piattini,
“Applying an MDA-Based Approach to
Consider Security Rules in the Development of
Secure DWs,” IEEE Xplore digital library ,
Jun, 2009, vol. 51, pp. 1-25.

[24] J. Miller, J. Mukerji, MDA Guide Version
1.0.1. Technical report, Object Management
Group (OMG), 2003.

[25] F. Allilaire , J. Bézivin , F. Jouault , I. Kurtev,
ATL–Eclipse Support for Model
Transformation (2006) : Proc. of the Eclipse
Technology eXchange Workshop (eTX) at
ECOOP.

[26] Object Management Group, Inc. Meta Object
Facility (MOF) 2.0 Core Specification, Final
Adopted Specification, January 2006.

[27] S. Philippi, “Automatic code generation from
high-level Petri-Nets for model driven systems
engineering,” The Journal of Systems and
Software, 2006, vol. 79, pp. 1444-1455.

