
Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1844

PARALLEL K-MEANS FOR BIG DATA: ON ENHANCING

ITS CLUSTER METRICS AND PATTERNS

VERONICA S. MOERTINI
1
, LIPTIA VENICA

2

1,2
Informatics Department

Parahyangan Catholic University

Bandung – Indonesia

Email:
1
moertini@unpar.ac.id,

2
liptiavenica@gmail.com

ABSTRACT

K-Means clustering algorithm has been enhanced based on MapReduce such that it works in distributed

Hadoop cluster for clustering big data. We found that the existing algorithm have not included techniques

for computing the cluster metrics necessary for evaluating the quality of clusters and finding interesting

patterns. This research adds this capability. Few metrics are computed in every iteration of k-Means in the

Hadoop’s Reduce function such that when it is converged, the metrics are ready to be evaluated. We have

implemented the proposed parallel k-Means and the experiments results show that the proposed metrics are

useful for selecting clusters and finding interesting patterns.

Keywords: Clustering Big Data, Parallel k-Means, Hadoop MapReduce

1. INTRODUCTION

The high utility of IT and the Internet by
individuals as well as organizations have produced
big data in recent years. Big data comes from
various sources, such as sensor equipment, social
media, website logs, clicks, and stored with either
unstructured, semi structured or structured format.
With the availability and accessibility of these data,
analyzing them using data mining techniques, such
as clustering, for obtaining valuable information has
become a necessity in organizations.

The emerging technology Hadoop with its
MapReduce components have been developed for
analyzing big data in a distributed computing
environment. Hadoop offers few advantages, the one
that is beneficial to small organizations is the
machines in the distributed network can be just
commodity computers [1]. A MapReduce program
must processes data by manipulating key-value pairs
and produce some other form of key-value pairs
designed by developers. With this strict scheme, the
“traditional” data mining techniques, such as k-
Means algorithm, should be enhanced such that it
works in the Hadoop environment.

A good clustering method will produce high
quality clusters with high intra-class similarity and
low inter-class similarity. It should also be able to
discover the valuable hidden patterns [2,3].

We have found two parallel k-Means developed
for Hadoop environment discussed in [4] and [5]
(see Subsection 2.4). Both enhanced k-Means

consist of Map and Reduce algorithms and functions
that do the k-Means computations. However, these
algorithms have not computed sufficient metrics that
are necessary for evaluating the clusters quality and
valuable patterns.

Issues of evaluating the cluster quality: It is
known that k-Means takes k (number of clusters) as
one of its inputs. Finding the best k requires trial and
error by examining and evaluating the clusters based
on few metrics such as the size of each cluster,
cohesion of the clusters, and separation of the
clusters [3]. Thus, parallel k-Means should also
compute these metrics such that the clusters quality
can be evaluated.

Issues of discovering the valuable hidden
patterns or knowledge from dataset: By taking
inputs of dataset and k, k-Means then produces
centroids of all cluster and labels each object in the
dataset with its cluster number. The centroids can be
used as a pattern metric. However, by using only the
centroids, interesting patterns or knowledge may not
be identified correctly/completely. Addressing this
need, [3] have defined few other cluster pattern
metrics, such deviation, minimum, maximum of
object attribute values, and number of objects in
each cluster. Hence, these metrics should also be
computed in the parallel k-Means.

Given the fact that MapReduce works based on
the key-value pairs, the research problem is: What
metrics that are feasible and can be computed
efficiently from big data? How to enhance the

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1845

previously developed parallel k-Means to compute
these metrics efficiently in the distributed
environment? Once the algorithm has been
enhanced, how to use this for obtaining interesting
patterns from big data?

In this research, we enhance the parallel k-Means
to address those issues and conduct experiments
using two sample of big data for obtaining
knowledge. Our main contribution is enhancing the
previously developed parallel k-Means based on
MapReduce such that it has the capability to
generate the necessary metrics for evaluating
clusters quality and discovering interesting patterns.

This paper presents some related literature
review, proposed techniques, experiment results
using two big dataset, conclusion and further works.

2. LITERATURE REVIEW

2.1. Clustering Stages

Among business organizations, data mining

techniques are commonly used in supporting

customer relationship management. The cycle of

using data mining include stages of identifying the

business problem, mining data to transform the data

into actionable information, acting on the

information, measuring the results [6]. When the

problem is lack of data insights, data miners can

define the objective as to obtain knowledge from

the data and select clustering technique to seek

solutions. The processes for clustering data is

shown in Fig. 1. Based on the objective, data

miner should gather and select some raw data.

Then, the selected dataset should be preprocessed

that may involve data cleaning, attribute selection

and transformations [3]. Data cleaning needs to be

performed as raw dataset may contain missing

values, outliers or unwanted values. Some attributes

may be irrelevant such that these should be

removed. Attribute values may need to be

normalized or transformed into the certain values

and/or types that are accepted by the algorithms.

The patterns resulted from clustering are then

evaluated by some measures to obtain knowledge,

which can be used to design organizational actions.

raw dataset

pre-

processed

clustering

algorithm

patterns

evaluation

knowledge

Figure.1: Knowledge Discovery Process [7].

2.2. k-Means Algorithm, Cluster Quality and

Patterns Generation
Clustering aims to find similarities between data

objects according to the characteristics found in the
objects and grouping similar objects into clusters
[2]. As k-Means algorithm processes matrix data
input where all of the attributes must be numeric,
each object is a vector.

The k-means algorithm partitions a collection of
n vector xj, j = 1,…,n into c groups Gi, i = 1,…,c,
and finds a cluster center (centroid) in each group
such that a cost function of dissimilarity measure is
minimized

([8] as appeared in [9, 11]). If a generic

distance function d(xk,ci) is applied for vector xk in
group i, the overall cost function is

∑ ∑ ∑
= = ∈

−==

c

i

c

i Gxk ik

iki cxdJJ
1 1 ,

.)(

 (1)
The partitioned groups are represented by an c x

n binary membership matrix U, where element uij is
1 if the j

th
 data point xj belongs to group i, and 0

otherwise. The cluster center (centroid) ci is the
mean of all vectors in group i:

∑
∈

=
ik

k

i

i

Gxk

x
G

c
,||

1

 (2)

where |Gi| is the size (object numbers) of Gi.
The k-means algorithm is presented with a

dataset xi, i = 1,…,n. The algorithm determines the
centroid ci and the membership matrix U iteratively
using the following steps: (1) Initialize the cluster
center ci, i = 1,…,c; (2) Determine the membership
matrix U; (3) Compute the cost function by Eq. (1).
Stop if its improvement over previous iteration is
below a certain threshold or maximum iteration
(defined by data miners) is reached; (4) Update the
cluster center by Eq. (2). Go to step 2.

The performance of the k-means algorithm
depends on the initial positions of the cluster
centers. k-Means is relatively efficient with O(tkn),
where n is total vectors/objects, k is the cluster
numbers, and t is the iterations. Normally, k, t << n.

Measuring Clustering Algorithm Quality: A
good clustering method will produce high quality
clusters with high intra-class similarity and low
inter-class similarity. It should also be able to
discover the hidden patterns [2]. Other requirements
are: (1) Scalability; (2) Able to deal with noise and
outliers; (3) Interpretability and usability, etc.

Measuring Clustering Results Quality: As
defined in [2], high quality clusters should have high
intra-class similarity and low inter-class similarity.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1846

To achieve this, data miners should assess the
homogeneity or cohesion of the clusters and the
level of similarity of their members, as well as their
separation.

In examining and evaluating the clusters, [3]
proposes 3 measures:

(a) The number of clusters and the size of each
cluster: A large, dominating cluster which
concentrates most of the records may indicate the
need for further segmentation. Conversely, a small
cluster with a few records merits special attention. If
considered as an outlier cluster, it could be set apart
from the overall clustering solution and studied
separately.

(b) Cohesion of the clusters: A good clustering
solution is expected to be composed of dense
concentrations of records around their centroids.
Two metrics can be calculated to summarize the
concentration and the level of internal cohesion of
the revealed clusters, which are:

(b.1) Standard deviations of cluster attributes
and pooled standard deviations of each cluster:
Standard deviations of the attribute j in a cluster can
be defined as:

��� � ����	
��
	� (3)

where xi is the attribute value of object i, µ is the
average of this attributes, N is the total object
members in the corresponding cluster.

The pooled standard deviation of a cluster
having k attributes and N object members can be
defined as:

�� �	�∑ �	����������
�	� (4)

(b.2) Average of squared Euclidean distances

(SSE) between the object and their centroid as
follows:

 �������	��� � 	 �
 ∑ ∑ � !"�#, %&�'�()� 	&()

(5)
where Ci is the centroid of cluster i, x is an

object of cluster i, and N is the total objects.
(c) Separation of the clusters: High clusters

should have low inter-cluster similarity or high
inter-cluster dissimilarity. This can measured by
computing the silhouette coefficients of the
clustering results.

The silhouette coefficient of each clustered
object, S(i), is computed as:

))(),(max((

))()((
)(

ibia

iaib
iS

−
= (6)

where a(i) = average dissimilarity between
object i and all other objects of the cluster to which i
belongs and b(i) = average dissimilarity between
object i and its “neighbor” cluster (the nearest
cluster to which i belongs). In Eq. 6, 0 ≤ S(i) ≤ 1.

Large value of S(i) denotes that object i is well
clustered, small value denotes the opposite and
negative value of S(i) denotes that object i is
wrongly clustered. Generally if the average of S(i)
for all clustered objects is greater than 0.5, then the
cluster solution is acceptable.

Patterns Generated from k-Means Output:
Patterns of clusters can be found through profiling
[3, 10]. One method of profiling is by comparing the
objects attributes in clusters. Things that can be
compared include the average (means), minimum,
maximum, standard deviation of the attribute values
and percentage of objects having each of the
attribute values. Likewise, the number of object
members in each cluster can also be examined.

By understanding the metrics used to evaluated
clusters quality and patterns generation, it is clear
that size of each cluster and standard deviations can
be used in generating patterns as well as measuring
clusters quality. Thus, computing these metrics is
important.

2.3. Hadoop, HDFS and Map-Reduce
Hadoop is a platform that has been developed

for storing and analyzing big data in distributed
systems [1]. It comes with master-slave architecture
and consists of the Hadoop Distributed File System
(HDFS) for storage and MapReduce for
computational capabilities. Its storage and
computational capabilities scale with the addition of
hosts to a Hadoop cluster, and can reach volume
sizes in the petabytes on clusters with thousands of
hosts. The following is some brief overview of
HDFS and MapReduce.

HDFS: HDFS is a distributed file system
designed for large-scale distributed data processing
under frameworks such as MapReduce and is
optimized for high throughput. It automatically re-
replicates data blocks on nodes (the default is 3
replications).

MapReduce: MapReduce is a data processing
model that has the advantage of easy scaling of data
processing over multiple computing nodes. A
MapReduce program processes data by
manipulating (key/value) pairs in the general form:

map: (k1,v1) ➞ list(k2,v2)

reduce: (k2,list(v2)) ➞ list(k3,v3).
Map receives (key, value) pairs, then based on

the functions designed by developers, it generates
one or more output pairs list (k2, v2). Through a
shuffle and sort phase, the output pairs are
partitioned and then transferred to reducers. Pairs
with the same key are grouped together as (k2,
list(v2)). Then the reduce function (designed by
developers) generates the final output pairs list(k3,
v3) for each group.

In some situation, the traffic in the shuffle phase
can be reduced by using local Combiner. Combiner

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1847

function is useful in the case when the reducer only
performs a distributive function, such as maximum,
minimum, and summation (counting). But many
useful functions aren’t distributive such that using
combiner doesn’t necessarily improve performance
[12].

The overall MapReduce processed is shown in
Fig. 2 [1, 13]. A client submit a job to the master,
which then assign and manage Map and Reduce job
parts to slave nodes. Map will read and process
blocks of files stored locally in the slave node. The
Map output of pair key-values are sent to Reducer.

Blocks in

node-1

HDFS

Map

Map

Map

Map

Reduce

Reduce

Reduce

Output1

Output2

Output3

HDFS

Blocks in

node-2

Blocks in

node-3

Blocks in

node-n

shuffle

Client Hadoop

MapReduce

master

Job

Job parts
Job parts

Figure 2: MapReduce Processes.

2.4. Parallel k-Means for Hadoop
We have found two parallel k-Means developed

for Hadoop environment. The core concept of both
is excerpted as follows.

First, in [4], the map function assigns each
object to the closest centroid while the reduce
function performs the procedure of updating the new
centroids. To decrease the cost of network
communication, a combiner function combines the
intermediate values with the same key within the
same map task in a Hadoop node.

The excerpt of the algorithm of Map, Combine
and Reduce (detailed algorithm can be found in [4]):
(a) Map-function: The input dataset is stored in
HDFS as a sequence file of <key, value> pairs, each
of which represents a record/instance/object in the
dataset. Map computes the minimum distance for
each object to all centroids. It then emits strings
comprising of the index of its closest centroid (as
key’) and object attributes (as value).
(b) Combine-function: Processing key-value pair
from Map, Combine partially sums the attribute
values of the points assigned to the same cluster and
number of objects in each cluster. It emits strings
comprising of the index of its cluster centroid (as
key’) and the sum of each attribute value of objects
in this cluster.
(c) Reduce-function: Reduce function sums all the
samples and compute the new centroids (centers)
which are used for next iteration. It then emits key’
is the index of the cluster, value’ comprising a string
representing the new centroids.

Secondly, in [5], the parallel K-means algorithm
is improved by removing noise, giving pre-
computed value of k and initial clusters (to reduce
iterations). The excerpt of the general idea: The
value of each attribute for each object is evaluated,
then based on this value a GridId is assigned for
each object. Object having attribute values beyond
its threshold is removed. The centroid of the grids
are fed into DBSCAN algorithm to obtain the best k
value (the k initial cluster centers are computed from
the sample of grids). The k and initial clusters are
used as input of Map function of parallel k-Means
based on MapReduce.

Some drawbacks that we found on those existing
parallel k-Means are:
(a) Big data may (most likely) contains noise or
outlier and missing value, hence it must be handled.
If cleaning data is performed before the big data is
fed into k-Means, it will be inefficient. This has not
been addressed in the algorithm.
(b) The Reduce function emits cluster centroids only
as patterns. For some big data, such as organizations
business data, this may not be sufficient.
(c) If some more patterns need to be computed (in
the Reduce) that require detailed information
(attribute values) of each object, Combine (that
sums up attribute values of “local cluster”) cannot
be employed.
(d) In [5], the formula for obtaining GridId is not
presented clearly. While an object may have several
attributes, the GridID of an object is computed
based on a single value of (attribute) value.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1848

(e) As the parallel DBSCAN algorithm is not
included in the proposed technique, it seems that
initial centroids are still computed at the outside of
Hadoop system.

By examining those drawbacks, we aim to
develop a parallel k-Means with the capability to
preprocess the big dataset and compute suitable
metrics that can be used to evaluate cluster quality
as well as patterns.

3. PROPOSED TECHNIQUE

In this section, we present the analysis of selecting

cluster quality metrics, the enhancement of

providing metrics and pattern components and the

parallel k-Means algorithm based on MapReduce.

Our proposed technique is designed based on

the MapReduce concept as depicted in Section 2.3.

Hence, the parallel k-Means is not applicable for

other than Hadoop distributed environment.

3.1. Selecting Cluster Quality Metrics and

Pattern Components

Big data may consist of millions or even

billions of objects. Clustering big data will produce

clusters where each cluster may have very large

number of object members. The following is the

feasibility review of using metrics depicted in

Subsection 2.2 for measuring the quality of big data

clusters:

(a) Number of object members: In each iteration,

the number of objects in every clusters are

computed (and used to compute the new centroids),

so having this metrics is feasible.

(b) Standard deviations of cluster attributes and

pooled standard deviations of each cluster: The

computation of µ in (xi - µ) (Eq. 3) requires that all

of attribute values in every object in each cluster be

stored in the slave node memory. Storing the

whole (raw) large number of objects and their

attribute values in the slave nodes memory will not

guarantee scalability (required for good clustering

algorithm) in processing big data. Accessing each

object (of million objects) in each iteration also

worsens the time complexity. As a solution, we

propose the following approach: As in each k-

Means iteration the cluster centroids are closer to

the final centroids, the cluster centroids obtained

from the previous iteration is used as µ in the

current iteration such that while iterating the list of

values (that include xi), Reducer functions compute

(xi - µ) along with other computations (to produce

pattern components). Then, after all of the

computations are performed, the standard

deviations of each attribute (SDj) and pooled

standard deviation (SD) can also be computed.

(c) Separation of the clusters: Computing silhouette

coefficient of each clustered object, S(i), requires

that the whole (raw) large number of objects and

their attribute values be stored in the slave nodes

memory in every k-Means iteration. This is

necessary because a(i) and b(i) computations in Eq.

6 need distance computation from one object to

every other object in its cluster as well as other

clusters. If this metric is adopted for clustering big

data, the computation will worsen the scalability

and time complexity of the parallel k-Means.

Hence, it is not feasible to be adopted.

Based on those analysis, the metrics chosen for

evaluating cluster quality are number of members

and pooled standard deviations for every cluster.

As discussed in Subsection 2.2, number of

members and standard deviation of attributes in

clusters can be regarded as cluster pattern

components. Hence, we can include these as part of

the patterns for reducing computations. Other

components that we adopt are cluster centroids, the

minimum and maximum of attribute values in every

cluster. Computing those 5 pattern components will

not add significant time complexity as it can be

performed along with clustering process in every

iteration.

3.2. Parallel Clustering Technique
In our previous work presented in a conference

[7], we proposed a technique for clustering big data
consisting of two stages that include data sampling
for finding initial centroids and some enhancement
as the following:
(1) Data preprocessing: Attributes selection,
cleaning and transformations are performed along
with the clustering process, in the Map functions
that takes input the raw dataset. Hence, the big data
is not “visited” more than once.
(2) Reducing iterations: MapReduce known for its
inefficiency in iterative processes (such as in k-
Means algorithm) as in each pass the output must be
written in HDFS. Reducing the iterations number is
significant. We propose that initial centroids be
computed by MapReduce from a sample of dataset,
which are expected to be closer to the final
centroids.
(3) Adding computations in Reduce function for
computing some pattern components. In this past
research, we had not conducted experiments to
support our concept.

In [7], we present experiment results showing
that the proposed technique is scalable but have not
conducted experiments with real big data set for
evaluating the cluster patterns.

After further works, we find that the sampling
does not always perform well for finding initial

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1849

centroids close to the real ones. Hence, that technique needs to be revised as depicted on Fig. 3.

patterns

2

enhanced

paralel k-

Means

1

computing

initial

centroids

initial centroids

HDFS
HDFS

Figure 3: Proposed Clustering Technique.

The technique consist of 2 processes where the
detailed design is discussed below.

Process-1:

Determining the initial centroids can be done by

clustering a sample of dataset or other technique.

The algorithm for parallel sampling and clustering

the sample is discussed in [7].

Process-2:

This k-Means performs data preprocessing and
produces metrics for measuring clusters quality and
pattern components of each cluster at each iteration
as follows:
(1) Mapper: Performs

a) Cleaning, attributes selection and

transformations or normalizations;

b) Finding the closest centroid for each object (Eq.

2) and emit ID Cluster as the key and IdObject,

the object distance to its centroid, the attribute

values of this object as the value.
(2) Reducer: By receiving key and list of value,
Reducer produces metrics of cluster quality as well
as pattern components as follows:
a) Compute number of object members in each

cluster, new centroids, sum of the distance of
each object to its centroid (distCluster),
minimum, standard deviation of each attribute
value, pooled standard deviation for each
cluster, and average SSE (Eq. 5). This
computation is performed based on the Section
3.A analysis and approach.

b) Emit and write the IdCluster and all of the
computation results.

(3) Job (main program): (a) Submitting MapReduce
functions to the master node; (b) Computing the cost
function by summing up all of the distCluster value
(of each cluster), Ji (Eq. 1) obtained from Reduce
output; (c) Checking the convergence by examining
the value of |Ji – Ji-1|, if it is greater than the
minimum cost then replace the initial centroids with

the current centroids and repeat the iteration by
submitting MapReduce functions to the master
node. Otherwise, stop the iteration.
The detailed algorithm is presented below.

Algorithm: Enhanced parallel k-Means
This k-Means consists of four algorithms as
depicted below (as improvement of the proposed
algorithm in [7, 14]).

Algorithm kM-1. configure
Input: Initial centroid file, fInitCentroids

Output: centers[][]

Descriptions: This algorithm is executed once

before map is called where it fills the array of

centroids, centers, from initial centroid file,

fInitCentroids.

Algorithm kM-2. map
Input: initial or current centroids, centers[][]; an

offset key; a line comprising object attribute values,

value; a set of valid min-max value for every

attribute

Output: <key’, value’> pair, where the key’ is the Id

of the closest centroid and value’ is a string

comprise of object information

Steps:

1. Initialize arrRawAtr[] and arrAtr[]

2. Get each of the object attribute value from value,

store in arrRawAtr[],

3. arrAtr[] = results of preprocessing arrRawAtr[],

where preprocessing include data cleaning and

transformation

3. If arrAtr[] is valid

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1850

 determine the object’s cluster based on the

closest centroid

4. construct value’ as a string comprising distance

of the object to its cluster centroid and the values of

arrAtr;

5. emit < index, value’>;

Algorithm kM-3. reduce
Input: index of the cluster, key; list of ordered values

from all of hosts, ListVal; array of centroids from

previous iteration, prevcenters;

Output: < key’, value’> pair, where the key’ is the

index of the cluster, value’ is a string comprising:

centers[] (centroid of a clusters), number of objects

in a cluster, countObj, minimum, maximum,

average, standard deviation of every attribute,

pooled standard deviation for a cluster, minAtrVal[],

maxAtrVal[], StdAtrCluster[], PooldStdCluster;

currentCostFunction, J; averageSSE, AvgSSE.

Steps:

1. Initialize minAtrVal[], maxAtrVal[],

SumDiffAtrPrevCenter[], SumAtr[],StdAtrCluster

[], centers[]

2. countObj = 0; J = 0;

3. While(ListVal.hasNext())

4. get the object attribute values and its distance

to centroid from value

5. for each attribute, add its value to SumAtr[]

accordingly, subtract its value with its previous

centroid stored in prevcenters, compute the square

of this result then add this to SumDiffAtrPrevCenter

accordingly, compare its value to the corresponding

element value in minAtrVal, maxAtrVal, replace

value in minAtrVal, maxAtrVal,

6. J = J + dist;

7. countObj = countObj + 1

8. Compute new centroids by dividing SumAtr with

countObj and store the results in centers;

10. Compute approximate of standard deviation of

every attribute in each cluster using

SumDiffAtrPrevCenter, store the result in

StdAtrCluster accordingly

11. Compute PooldStdCluster using StdAtrCluster

based on Eq. 3 and 4

12. Compute AvgSSE by dividing J by countObj

11. Construct value” as a string comprising

countObj, centers, J, minAtrVal, maxAtrVal,

StdAtrCluster, PooldStdCluster, AvgSSE

12. Emit < key, value”>;

Algorithm kM-4. run (the Hadoop job)

Input: Array of cost function, J; maximum of

iteration, maxIter; minimum of the different

between current and previous iteration of cost

function, Eps.

Output: J

Steps:

1. Initialize J[maxIter];

2. iter = 1;

3. While iter <= maxIter {execute configure, map

and reduce function; get J from the output of reduce

function then store it in J[iter]; if absolute value of

(J[iter] – J[iter-1]) <= Eps then break; else iter =

iter + 1}

4. EXPERIMENTS

We have implemented the algorithms and

performed a series of experiments using big dataset
in a Hadoop cluster with a master (name node) and
6 slave nodes. All of the nodes are commodity
computers having low specification with processor
of Quad-Core running at 3.2 GHz clock and RAM
of 8 Gb.

Dataset: The dataset of household energy
consumption is obtained from:
https://archive.ics.uci.edu/ml/datasets/ with the size
of approximately 132 Mb. This archive contains
2075259 measurements (records) gathered between
December 2006 and November 2010 (47 months).
The sample of the dataset are as follows:
9/6/2007; 17:31:00 ; 0.486 ; 0.066; 241.810; 2.000;
0.000 ; 0.000 ; 0.000
9/6/2007; 17:32:00 ; 0.484 ; 0.066; 241.220; 2.000;
0.000 ; 0.000; 0.000
9/6/2007; 17:33:00 ; 0.484 ; 0.066 ; 241.510; 2.000;
0.000 ; 0.000 ; 0.000
Each line presents a record with 9 attributes, the

excerpts are:

(1) Date;

(2) Time;

(3, 4, 5, 6) some results of metrics;

(7) sub_metering_1: energy sub-metering (watt-

hour) that corresponds to the kitchen,

(8) sub_metering_2: energy sub-metering that

corresponds to the laundry room;

(9) sub_metering_3: energy sub-metering that

corresponds to a water-heater and an air-

conditioner.

Mining objective: By understanding the dataset,

the objective that is feasible is to obtain energy

consumption patterns of the household. Knowing

this, the power provider may design better services

for this household.

Data Preprocessing: Based on the objective,

we intend to find the patterns of electricity power

usage of sub-metering 1-2-3 based on day number

(1 = Monday, 2 = Tuesday, …, 7 = Sunday) and

hour. Hence, the data preprocessing performed in

Map function is as follows:

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1851

a) Number of day (1, 2, …7) is extracted from

Date and stored as attribute-1;

b) Hour (1, 2,…24) is extracted from Time and

stored as attribute-2;

c) The value of sub_metering_1, _2 and _3 are

taken as is and stored as attribute-3, -4, -5.

Thus, the preprocessed dataset has 5 attributes,

which are day number, hour and 3 sub-metering

measures.

Testing the performance of the proposed

parallel k-Means: For experimenting speed and

scalability, we created several simulation dataset

with the size of 0.2, 0.4, 0.8, …, 2 gigabyte as the

“multiplications” of the original dataset. We use

HDFS block size of 32 and 64 Mb. We then

repeatedly clustered each of the dataset stored using

k = 3 for each of the block size setting. We then

averaged the execution times on every blocks and

plotted the results as depicted on Fig. 5. The speed

with 32 and 64 Mb block size is almost the same.

The time execution plots are linear, which indicates

that the execution of the proposed k-Means scales

linearly to the size of dataset or guarantee

scalability.

Figure 5: Average Iteration Performances on Two HDFS Block Sizes.

Mining knowledge from the dataset: The

experiments for obtaining the best k, patterns and

knowledge are presented as follows.

Selecting the best k using the cluster quality

metrics: This experiment is intended to show how

to use the proposed quality metrics for finding the

best cluster number, k. We cluster the preprocessed

dataset with k = 3, 4, 5, 6 and 7. The count of

iterations until k-Means reach convergence and the

average execution time (in seconds) for each k are:

k = 3: 11 - 60; k = 4: 10 - 61.88; k = 5: 15 - 63.13;

k = 6: 15 - 65 and k = 7: 16 - 66.25. The results for

each metrics are depicted in Table 1, 2 and 3.

Table 1: Comparison of Cluster Members.

Cluster k = 3 k = 4 k = 5 k = 6 k = 7

1 663,773 56,087 55,224 55,213 55,091

2 712,262 692,418 673,913 444,285 671,641

3 699,224 665,814 47,042 46,990 46,807

4 660,940 660,524 574,555 73,335

5 638,556 636,918 223,860

6 317,298 351,961

7 652,564

Total 2,075,259 2,075,259 2,075,259 2,075,259 2,075,259

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1852

Table 2: Comparison of Pooled Standard Deviation.

Cls k = 3 k = 4 k = 5 k = 6 k = 7

1 16.20 200.57 174.51 174.47 173.95

2 70.61 35.75 15.37 12.25 14.69

3 132.48 68.75 196.41 196.31 196.01

4 11.53 10.29 8.32 15.39

5 30.42 30.25 19.91

6 9.80 14.87

7 8.44

Table 3: Comparison of Average SSE.

Cls k = 3 k = 4 k = 5 k = 6 k = 7

1 3.52 13.21 12.57 12.57 12.55

2 6.06 5.01 4.09 3.28 4.06

3 9.06 7.23 14.01 14.01 13.99

4 3.44 3.42 3.02 4.04

5 5.81 5.79 3.87

6 3.09 3.38

7 3.33

 Note: Cls = cluster

Based on the metric results, the best k is selected as

follows:

a) By comparing the number of cluster members

(Table 1), k = 3, 4 and 5 can be selected as the

candidates of the best k as there is no obvious

dominating cluster (there are at least 3 clusters

that have almost equal members).

b) Among the clustering results with k = 3, 4 and

5, by examining the contents of Table 2 and 3,

it is found that for k = 3:

• the maximum of standard deviations

(belongs to cluster 3), which is 132.48, is

less than 200.57 (cluster 1 in k = 4) and

174.51 (cluster 1 in k = 5);

• the maximum of average SSE (belongs to

cluster 3), which is 9.06, is less than 13.21

(cluster 1 in k = 4) and 12.57 (cluster 1 in

k = 5).

Hence, it can be concluded that the best k is 3 and

the clustering patterns can be interpreted from the 3

clusters.

Pattern interpretation of 3 clusters: The

components of the patterns, which are the average

(centroids) and deviation of each attribute for every

cluster and member of each cluster is shown on Fig.

6. The other pattern components, which are the

minimum and maximum of the 5 attribute values

are as follows:

a) Cluster-1: minimum: 1,0,0,0,0; maximum: 7,

10, 45, 76, 13;

b) Cluster-2: minimum: 1, 7, 0, 0, 0; maximum: 7,

23, 81, 80, 11;

c) Cluster-3: minimum: 1,0, 0, 0, 4; maximum: 7,

23, 88, 78, 31.

Figure 6: Patterns of Three Clusters (Cluster-1 = pink, 2 = green, 3 = blue).

As attribute 1, 2, 3, 4, and 5 corresponds to number

of day, hour, results of energy submeter in the

kitchen, laundry room, and water-heater and air-

conditioner, the interpretations of the pattern for

each cluster are as follows:

a) Cluster-1 (pink): As the centroids of submeter-

1,-2,-3 value are low while standard deviations

are also low with almost one-third of the

members, this means that most of the day at

the early of hour, in the whole house (on 3 sub-

meters), the energy consumption are low.

Sometimes the house do not use electricity at

all and the maximum energy usage in 3

submeters are 45, 76 and 13.

b) Cluster-2 (green): The centroids of the hour is

high, submeter -1,-2,-3 values are low while

standard deviations are rather high on

submeter-1 (kitchen) and -2 (laundry), with

almost one-third of the members. This means

that most of the day at the mid-day, the average

energy consumption are low on 3 sub-meters,

but kitchen and laundry rooms sometime

consume high energy (with maximum of 81

and 80).

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1853

c) Cluster-3 (blue): The centroids of the hour is

rather high, submeter -1,-2 (kitchen and

laundry) values are low, submeter-3 value is

high, while standard deviations of the hour,

submeter-1 in the kitchen is high (with

maximum value of 88) and submeter-2 in the

laundry room are quite high (maximum value

is 78), and submeter-3 is low, with almost one-

third of the members. This means that most of

the day at around mid-day, the average energy

consumption in the kitchen and laundry are low

but with high fluctuation, while water-heater

and an air-conditioner is almost always high.

Based on the patterns interpretation of those 3

clusters, the overall knowledge can be summarized

as follows: The family consume low energy at most

of the time. But, they frequently use water-heater

and air condition during mid-day and sometimes do

laundry during also around the mid-day. This

knowledge seems to be logical or make sense.

Hence, this experiments prove that the 3 quality

cluster metrics and 5 components of cluster pattern

can be adopted for clustering big data.

To show that the pattern components are also

useful for clustering other big data, in the Appendix

A, we present the experiment results for mining

historical weather patterns from big data recorded

by weather stations.

5. CONCLUSION

Parallel k-Means based on MapReduce can
further be enhanced by adding the capability for
computing metrics that can be used for evaluating
cluster quality as well as generating patterns from
big data. The computations are included in the
Reduce function. Our experiment results using big
datasets show that time execution scale linearly and
the metrics are useful for finding knowledge.
However, we have not address the metrics for
measuring separation of the clusters. Hence, this
issue is left for further works.

For finding the best k using our proposed
technique, big data is clustered several times. Also,
in every iteration of k-Means, big data is read from
HDFS. Both of these lead to inefficiency. Hence,
further improvement of the proposed technique is
required. One option for reducing the number of
reading HDFS is by storing the big data in parallel
memory. While for finding the best k, other
technique may be employed. One option is by
enhancing grid-based clustering technique in the
parallel computation environment.

ACKNOWLEDGMENT

We like to thank to the Directorate General of
Higher Education of Ministry of Research,
Technology and Higher Education of the Republic
of Indonesia who is funding this research in
2016-2017 through Hibah Bersaing scheme with
contract number of III/LPPM/2016-06/134-P.

REFERENCES

[1] A. Holmes, 2012. Hadoop in Practice, Manning

Publications Co., USA.

[2] J. Han and M. Kamber, 2011. Data Mining

Concepts and Techniques 2
nd

Ed., Morgan

Kaufmann Pub., USA.

[3] K. Tsiptsis and A. Chorianopoulos, 2009. Data

Mining Techniques in CRM: Inside Customer

Segmentation, John Wiley and Sons, L., UK.

[4] W. Zhao, H. Ma and Q. He, 2009. “Parallel K-

Means Clustering Based on MapReduce”,

CloudCom 2009, LNCS 5931, pp. 674–679,

Berlin Heidelberg: Springer-Verlag.

[5] L. Ma, L. Gu, B. Li, Y. Ma and J. Wang, 2015.

“An Improved K-means Algorithm based on

Mapreduce and Grid”, International Journal of

Grid Distribution Computing, vol.8, no.1,

pp.189-200.

[6] Berry, M.J.A. and Linoff, G.S., 2004. Data

Mining Techniques for Marketing, Sales and

Customer Relationship Management, 2
nd

 Ed,

Wiley Publ., USA.

[7] V. S. Moertini and L. Venica, 2016. Enhancing

Parallel k-Means Using Map Reduce for

Discovering Knowledge from Big Data,

Proceedings of the 2016 Intl. Conf. on Cloud

Computing and Big Data Analysis (ICCCBDA

2016), pp. 81- 87, Chengdu China, 5-7 July.

[8] Jang, J.-S.R.; Sun, C. –T and Mizutani E., 1997.

Neuro-Fuzzy and Soft Computing, Prentice Hall

Inc., USA.

[9] Moertini, V.S., 2002. “Introduction to Five Data

Clustering Algorithms”, Integral, Vol. 7, No. 2,

pp. 87-96.

[10] S. Chius and D. Tavella, 2011. Data Mining

and Market Intelligent for Optimal Marketing

Returns, Routledge Pub., UK.

[11] S. Padmaja and A. Sheshasaayee, “Clustering

of User Behaviour based on Web Log Data

using Improved K-Means Clustering

Algorithm”, International Journal of

Engineering and Technology (IJET), Vol. 8, No

1, pp. 305-310, 2016.

[12] C. Lam, 2010. Hadoop in Action, Manning

Publ., USA

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1854

[13] E. Sammer, 2012. Hadoop Operations,

O’Reilly Media, Inc., USA.

[14] L. Venica, 2015. Algorithm of Parallel

Clustering k-Means with Map Reduce on

Hadoop Distributed System, Final Project,

Informatics Dept., Parahyangan Catholic Univ.,

Indonesia, unpublished.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1855

APPENDIX A

MINING HISTORICAL PATTERNS FROM WEATHER

DATA

This experiment is intended to show the use of the

proposed technique for obtaining patterns and

knowledge from the big historical data of weather.

Dataset: The data is downloaded from NOAA's

National Centers for Environmental Information,

http://www1.ncdc.noaa.gov/pub/data/noaa/. There

are thousands of files which are stored and

organized based on the measurement year (1901,

1902, ….2015, 2016). Each file represent measure

results from a station in a single year and named

using the format of XXXXXX-NNNNN-YYYY.gz

(for example, 010010-99999-1973.gz and 072010-

99999-1991.gz) where XXXXXX represents the

station number, NNNNN is WBAN weather station

identifier and YYYY denotes year. The size of each

file varies, depending on the frequency of

measurements. Total size of all files are more that

500 Gb. Each file contains records of weather

measures for a station in a year. Each record is

presented in one line and represented in text string

and consists of 31 attributes, such as station

identifier, observation date, time, latitude, longitude

of observation point, elevation, wind direction,

wind speed, visibility distance, air temperature, dew

point temperature, atmospheric pressure and other

attributes. One example of file content (one

records) are as follows:
0207010010999992001010118004+70930-008660FM-

12+0009ENJA V0203501N004610090019N0200001N1-

00711-

00901100351ADDAA112000791AY181061AY231061

GF108991071081004501041999KA1120M-

00401MA1999999100231MD1110041+9999MW1031R

EMSYN094AAXX 01184 01001 11470 83509 11071

21090 30023 40035 51004 69902 70383 8784/ 333

11040 91114;

The objectives: Mining patterns of “snapshots”

of the historical data weather and then comparing

the resulted patterns of each snapshot for observing

weather changes across the periods. In these

experiments, the patterns are produced from the

four selected attributes, which are wind speed,

temperature, dew point temperature and

atmospheric pressure.

Data selection and preprocessing: In order to

observe meaningful weather pattern changes, it

would be improper if the whole weather data are

analyzed at once as the data are measured from all

over places/points of the world at various altitude

and longitude having 4 seasons (summer, fall,

winter and spring) or tropical seasons (simply rainy

and dry). Instead, weather data should be selected

from a station or some nearby stations. Aiming to

obtain historical patterns, we cluster the data from

consecutive “snapshot” periods. Some example of

the periods are 1973-1980, 1981-1985, 1986-1990,

1991-1995, …., 2010-2015. We then cluster the

data at each snapshot time using the four selected

attributes, analyze and compare the patterns

generated.

Data selection and preprocessing in Map

functions:

a) As Map function can take HDFS folder name

containing those thousands of files and the data

weather is presented in files having their

station number and year measured, we define

the station numbers as well as the snapshot

periods as Map variables such that Map select

and read the files associated with the stations

and the snapshots time at each pass.

b) Map then select the 4 attributes and transform

these as follows: (1) Wind speed, temperature,

dew point temperature are divided by 10 (as

the recorded data are multiplied by 10, we

normalized those into their real values); (2)

Pressure is divided by 1000 such that this

attribute value does not differ greatly with the

others, which could lead into the most

dominant attribute (in calculating the object

distance using Euclidean method).

Defining k and clustering process: We have

clustered the snapshots of weather data from few

stations. Here, we present the experiment results of

clustering the 8 snapshot data from station 010010

at Jan Mayen (Nor-Navy) Norway as an example.

Expecting to obtain patterns related to cold, middle

and hot seasons, we cluster the data of each of the 8

snapshots (1973-1980, 1981-1985, 1986-1990,

1991-1995, …., 2010-2015) into 3 clusters (k = 3).

The number of k-Means iterations (until

convergence is reached) and execution times are

depicted in Table A.1.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1856

Table A.1: Iterations and execution times of data from a station at Norway
Period #Iterations Time (sec) AvgTime (sec)

1973 - 1980 11 426 39

1981-1985 22 872 40

1986-1990 9 349 39

1991-1995 13 512 39

1996-2000 9 354 39

2001-2005 17 676 40

2006-2010 15 581 39

2011-2015 15 603 40

Average 13.875 546.64 39.32

Interpreting patterns: In Fig. A.1, we present the

sample of patterns obtained from 3 snapshot

periods (1973-1980, 1991-1995 and 2010-2015)

only. Each cluster pattern is represented with blue,

magenta and red plots. The pattern components are

centroids, deviations, minimum, maximum of

attribute values in each cluster and object members.

Wsp: wind speed, Tem: air temperature, Dew: dew point temperature, Prs: atmospheric pressure.

Figure A.1: Patterns of weather from station 010010 at Jan Mayen Norway, with (a) centroids, (b) deviations, (c)

minimum, (d) maximum of attribute values in each cluster, (e) object members in each cluster.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1857

Some observable of weather changes interpreted

from the patterns as follows:

a) Centroids: While the magenta and read seem to

be steady, the blue cluster dew point

temperatures increased starting from 1991-

1995 snapshot.

b) Deviations: The wind speed differ greatly in

blue cluster, the attribute values of the blue one

differ the most (have the most variety values),

while the pressure differ slightly only at all

clusters.

c) Minimum attribute values: the blue cluster dew

point temperatures also increased starting from

1991-1995 snapshot.

d) Maximum attribute values: no obvious change

found.

e) Cluster member: If the weather data were

recorded evenly from this station during those

snapshot, the following is the interpretation: (1)

In 1973-1980, Jan Mayen was mostly

warm/hot; (2) In 1973-1980 and 2011-2015,

the blue cluster (cold weather) have smaller

members; (3) In 1991-1995, the members

number of blue and red cluster differ slightly

suggesting that the cold weather happened

almost as long as hot weather.

The knowledge: The blue cluster, which represent

the cold related seasons at the Jan Mayen Norway

station, is the one that show obvious changes across

the last decades.

