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ABSTRACT 

K-Means clustering algorithm has been enhanced based on MapReduce such that it works in distributed 

Hadoop cluster for clustering big data. We found that the existing algorithm have not included techniques 

for computing the cluster metrics necessary for evaluating the quality of clusters and finding interesting 

patterns. This research adds this capability. Few metrics are computed in every iteration of k-Means in the 

Hadoop’s Reduce function such that when it is converged, the metrics are ready to be evaluated. We have 

implemented the proposed parallel k-Means and the experiments results show that the proposed metrics are 

useful for selecting clusters and finding interesting patterns.      
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1. INTRODUCTION 

The high utility of IT and the Internet by 
individuals as well as organizations have produced 
big data in recent years. Big data comes from 
various sources, such as sensor equipment, social 
media, website logs, clicks, and stored with either 
unstructured, semi structured or structured format. 
With the availability and accessibility of these data, 
analyzing them using data mining techniques, such 
as clustering, for obtaining valuable information has 
become a necessity in organizations. 

The emerging technology Hadoop with its 
MapReduce components have been developed for 
analyzing big data in a distributed computing 
environment. Hadoop offers few advantages, the one 
that is beneficial to small organizations is the 
machines in the distributed network can be just 
commodity computers [1]. A MapReduce program 
must processes data by manipulating key-value pairs 
and produce some other form of key-value pairs 
designed by developers. With this strict scheme, the 
“traditional” data mining techniques, such as k-
Means algorithm, should be enhanced such that it 
works in the Hadoop environment. 

A good clustering method will produce high 
quality clusters with high intra-class similarity and 
low inter-class similarity. It should also be able to 
discover the valuable hidden patterns [2,3].  

We have found two parallel k-Means developed 
for Hadoop environment discussed in [4] and [5] 
(see Subsection 2.4). Both enhanced k-Means 

consist of Map and Reduce algorithms and functions 
that do the k-Means computations. However, these 
algorithms have not computed sufficient metrics that 
are necessary for evaluating the clusters quality and 
valuable patterns.  

Issues of evaluating the cluster quality: It is 
known that k-Means takes k (number of clusters) as 
one of its inputs. Finding the best k requires trial and 
error by examining and evaluating the clusters based 
on few metrics such as the size of each cluster,  
cohesion of the clusters, and separation of the 
clusters [3]. Thus, parallel k-Means should also 
compute these metrics such that the clusters quality 
can be evaluated.   

Issues of discovering the valuable hidden 
patterns or knowledge from dataset: By taking 
inputs of dataset and k, k-Means then produces 
centroids of all cluster and labels each object in the 
dataset with its cluster number. The centroids can be 
used as a pattern metric. However, by using only the 
centroids, interesting patterns or knowledge may not 
be identified correctly/completely. Addressing this 
need, [3] have defined few other cluster pattern 
metrics, such deviation, minimum, maximum of 
object attribute values, and number of objects in 
each cluster.  Hence, these metrics should also be 
computed in the parallel k-Means.  

Given the fact that MapReduce works based on 
the key-value pairs, the research problem is: What 
metrics that are feasible and can be computed 
efficiently from big data? How to enhance the 
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previously developed parallel k-Means to compute 
these metrics efficiently in the distributed 
environment?  Once the algorithm has been 
enhanced, how to use this for obtaining interesting 
patterns from big data?  

In this research, we enhance the parallel k-Means 
to address those issues and conduct experiments 
using two sample of big data for obtaining 
knowledge. Our main contribution is enhancing the 
previously developed parallel k-Means based on 
MapReduce such that it has the capability to 
generate the necessary metrics for evaluating 
clusters quality and discovering interesting patterns.  

This paper presents some related literature 
review, proposed techniques, experiment results 
using two big dataset, conclusion and further works.  

 

2. LITERATURE REVIEW 

2.1. Clustering Stages 

Among business organizations, data mining 

techniques are commonly used in supporting 

customer relationship management. The cycle of 

using data mining include stages of identifying the 

business problem, mining data to transform the data 

into actionable information, acting on the 

information, measuring the results [6]. When the 

problem is lack of data insights, data miners can 

define the objective as to obtain knowledge from 

the data and select clustering technique to seek 

solutions.  The processes for clustering data is 

shown in Fig. 1.   Based on the objective, data 

miner should gather and select some raw data. 

Then, the selected dataset should be preprocessed 

that may involve data cleaning, attribute selection 

and transformations [3]. Data cleaning needs to be 

performed as raw dataset may contain missing 

values, outliers or unwanted values. Some attributes 

may be irrelevant such that these should be 

removed. Attribute values may need to be 

normalized or transformed into the certain values 

and/or types that are accepted by the algorithms. 

The patterns resulted from clustering are then 

evaluated by some measures to obtain knowledge, 

which can be used to design organizational actions.  

 

raw dataset

pre-

processed

clustering 

algorithm

patterns 

evaluation

knowledge
 

Figure.1:  Knowledge Discovery Process [7]. 

   
2.2. k-Means Algorithm, Cluster Quality and 

Patterns Generation 
Clustering aims to find similarities between data 

objects according to the characteristics found in the 
objects and grouping similar objects into clusters 
[2]. As k-Means algorithm processes matrix data 
input where all of the attributes must be numeric, 
each object is a vector.  

The k-means algorithm partitions a collection of 
n vector xj, j = 1,…,n into c groups Gi, i = 1,…,c, 
and finds a cluster center (centroid) in each group 
such that a cost function of dissimilarity  measure is 
minimized

 
([8] as appeared in [9, 11]). If a generic 

distance function d(xk,ci) is applied for vector xk in 
group i, the overall cost function is 
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where |Gi| is the size (object numbers) of Gi.   
The k-means algorithm is presented with a 

dataset xi, i = 1,…,n. The algorithm determines the 
centroid ci and the membership matrix U iteratively 
using the following steps: (1) Initialize the cluster 
center ci, i = 1,…,c; (2) Determine the membership 
matrix U; (3) Compute the cost function by Eq. (1).  
Stop if its improvement over previous iteration is 
below a certain threshold or maximum iteration 
(defined by data miners) is reached; (4) Update the 
cluster center by Eq. (2). Go to step 2. 

The performance of the k-means algorithm 
depends on the initial positions of the cluster 
centers. k-Means is relatively efficient with O(tkn), 
where n is total vectors/objects, k is the cluster 
numbers, and t is the iterations. Normally, k, t << n.  

Measuring Clustering Algorithm Quality: A 
good clustering method will produce high quality 
clusters with high intra-class similarity and low 
inter-class similarity. It should also be able to 
discover the hidden patterns [2]. Other requirements 
are: (1) Scalability; (2) Able to deal with noise and 
outliers; (3) Interpretability and usability, etc.    

Measuring Clustering Results Quality:  As 
defined in [2], high quality clusters should have high 
intra-class similarity and low inter-class similarity. 
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To achieve this, data miners should assess the 
homogeneity or cohesion of the clusters and the 
level of similarity of their members, as well as their 
separation.  

In examining and evaluating the clusters, [3] 
proposes 3 measures: 

(a) The number of clusters and the size of each 
cluster: A large, dominating cluster which 
concentrates most of the records may indicate the 
need for further segmentation. Conversely, a small 
cluster with a few records merits special attention. If 
considered as an outlier cluster, it could be set apart 
from the overall clustering solution and studied 
separately. 

(b) Cohesion of the clusters: A good clustering 
solution is expected to be composed of dense 
concentrations of records around their centroids. 
Two metrics can be calculated to summarize the 
concentration and the level of internal cohesion of 
the revealed clusters, which are:  

(b.1) Standard deviations of cluster attributes 
and pooled standard deviations of each cluster:  
Standard deviations of the attribute j in a cluster can 
be defined as:  

��� � ����	
��
	�           (3) 

where xi is the attribute value of object i, µ is the 
average of this attributes, N is the total object 
members in the corresponding cluster. 

The pooled standard deviation of a cluster 
having k attributes and N object members can be 
defined as: 

�� �	�∑ �	����������
�	�      (4) 

  
(b.2) Average of squared Euclidean distances 

(SSE) between the object and their centroid as 
follows:  

 �������	��� � 	 �
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(5)  
where Ci is the centroid of cluster i, x is an 

object of cluster i, and N is the total objects. 
(c) Separation of the clusters: High clusters 

should have low inter-cluster similarity or high 
inter-cluster dissimilarity. This can measured by 
computing the silhouette coefficients of the 
clustering results.  

The silhouette coefficient of each clustered 
object, S(i), is computed as: 
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where a(i) = average dissimilarity between 
object i and all other objects of the cluster to which i 
belongs and b(i) = average dissimilarity between 
object i and its “neighbor” cluster (the nearest 
cluster to which i belongs). In Eq. 6, 0 ≤ S(i) ≤ 1. 

Large value of S(i) denotes that object i is well 
clustered, small value denotes the opposite and 
negative value of S(i) denotes that object i is 
wrongly clustered. Generally if the average of S(i) 
for all clustered objects is greater than 0.5, then the 
cluster solution is acceptable.  

Patterns Generated from k-Means Output: 
Patterns of clusters can be found through profiling 
[3, 10]. One method of profiling is by comparing the 
objects attributes in clusters. Things that can be 
compared include the average (means), minimum, 
maximum, standard deviation of the attribute values 
and percentage of objects having each of the 
attribute values. Likewise, the number of object 
members in each cluster can also be examined.   

By understanding the metrics used to evaluated 
clusters quality and patterns generation, it is clear 
that  size of each cluster and standard deviations can 
be used in generating patterns as well as measuring 
clusters quality. Thus, computing these metrics is 
important.  

 

2.3.  Hadoop, HDFS and Map-Reduce 
Hadoop is a platform that has been developed 

for storing and analyzing big data in distributed 
systems [1]. It comes with master-slave architecture 
and consists of the Hadoop Distributed File System 
(HDFS) for storage and MapReduce for 
computational capabilities. Its storage and 
computational capabilities scale with the addition of 
hosts to a Hadoop cluster, and can reach volume 
sizes in the petabytes on clusters with thousands of 
hosts. The following is some brief overview of 
HDFS and MapReduce. 

HDFS: HDFS is a distributed file system 
designed for large-scale distributed data processing 
under frameworks such as MapReduce and is 
optimized for high throughput. It automatically re-
replicates data blocks on nodes (the default is 3 
replications).   

MapReduce: MapReduce is a data processing 
model that has the advantage of easy scaling of data 
processing over multiple computing nodes. A 
MapReduce program processes data by 
manipulating (key/value) pairs in the general form:  

map: (k1,v1) ➞ list(k2,v2) 

reduce: (k2,list(v2)) ➞ list(k3,v3). 
Map receives (key, value) pairs, then based on 

the functions designed by developers, it generates 
one or more output pairs list (k2, v2). Through a 
shuffle and sort phase, the output pairs are 
partitioned and then transferred to reducers. Pairs 
with the same key are grouped together as (k2, 
list(v2)). Then the reduce function (designed by 
developers) generates the final output pairs list(k3, 
v3) for each group.  

In some situation, the traffic in the shuffle phase 
can be reduced by using local Combiner. Combiner 
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function is useful in the case when the reducer only 
performs a distributive function, such as maximum, 
minimum, and summation (counting). But many 
useful functions aren’t distributive such that using 
combiner doesn’t necessarily improve performance 
[12].  

The overall MapReduce processed is shown in 
Fig. 2 [1, 13]. A client submit a job to the master, 
which then assign and manage Map and Reduce job 
parts to slave nodes. Map will read and process 
blocks of files stored locally in the slave node. The 
Map output of pair key-values are sent to Reducer. 
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Figure 2: MapReduce Processes. 

 

2.4. Parallel k-Means for Hadoop 
We have found two parallel k-Means developed 

for Hadoop environment. The core concept of both 
is excerpted as follows. 

First, in [4], the map function assigns each 
object to the closest centroid while the reduce 
function performs the procedure of updating the new 
centroids. To decrease the cost of network 
communication, a combiner function combines the 
intermediate values with the same key within the 
same map task in a Hadoop node.  

The excerpt of the algorithm of Map, Combine 
and Reduce (detailed algorithm can be found in [4]):  
(a) Map-function: The input dataset is stored in 
HDFS as a sequence file of <key, value> pairs, each 
of which represents a record/instance/object in the 
dataset. Map computes the minimum distance for 
each object to all centroids. It then emits strings 
comprising of the index of its closest centroid (as 
key’) and object attributes (as value). 
(b) Combine-function: Processing key-value pair 
from Map, Combine partially sums the attribute 
values of the points assigned to the same cluster and 
number of objects in each cluster. It emits strings 
comprising of the index of its cluster centroid (as 
key’) and the sum of each attribute value of objects 
in this cluster.  
(c) Reduce-function:  Reduce function sums all the 
samples and compute the new centroids (centers) 
which are used for next iteration. It then emits key’ 
is the index of the cluster, value’ comprising a string 
representing the new centroids. 

Secondly, in [5], the parallel K-means algorithm 
is improved by removing noise, giving pre-
computed value of k and initial clusters (to reduce 
iterations). The excerpt of the general idea: The 
value of each attribute for each object is evaluated, 
then based on this value a GridId is assigned for 
each object. Object having attribute values beyond 
its threshold is removed. The centroid of the grids 
are fed into DBSCAN algorithm to obtain the best k 
value (the k initial cluster centers are computed from 
the sample of grids). The k and initial clusters are 
used as input of Map function of parallel k-Means 
based on MapReduce. 

Some drawbacks that we found on those existing 
parallel k-Means are:  
(a) Big data may (most likely) contains noise or 
outlier and missing value, hence it must be handled. 
If cleaning data is performed before the big data is 
fed into k-Means, it will be inefficient. This has not 
been addressed in the algorithm.  
(b) The Reduce function emits cluster centroids only 
as patterns. For some big data, such as organizations 
business data, this may not be sufficient.  
(c) If some more patterns need to be computed (in 
the Reduce) that require detailed information 
(attribute values) of each object, Combine (that 
sums up attribute values of “local cluster”) cannot 
be employed.  
(d) In [5], the formula for obtaining GridId is not 
presented clearly. While an object may have several 
attributes, the GridID of an object is computed 
based on a single value of (attribute) value. 
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(e) As the parallel DBSCAN algorithm is not 
included in the proposed technique, it seems that 
initial centroids are still computed at the outside of 
Hadoop system. 

By examining those drawbacks, we aim to 
develop a parallel k-Means with the capability to 
preprocess the big dataset and compute suitable 
metrics that can be used to evaluate cluster quality 
as well as patterns. 

 

3. PROPOSED TECHNIQUE 

 

In this section, we present the analysis of selecting 

cluster quality metrics, the enhancement of 

providing metrics and pattern components and the 

parallel k-Means algorithm based on MapReduce.  

Our proposed technique is designed based on 

the MapReduce concept as depicted in Section 2.3. 

Hence, the parallel k-Means is not applicable for 

other than Hadoop distributed environment.  

 

3.1. Selecting Cluster Quality Metrics and 

Pattern Components 

Big data may consist of millions or even 

billions of objects. Clustering big data will produce 

clusters where each cluster may have very large 

number of object members. The following is the 

feasibility review of using metrics depicted in 

Subsection 2.2 for measuring the quality of big data 

clusters: 

(a) Number of object members: In each iteration, 

the number of objects in every clusters are 

computed (and used to compute the new centroids), 

so having this metrics is feasible. 

(b) Standard deviations of cluster attributes and 

pooled standard deviations of each cluster: The 

computation of µ in  (xi - µ) (Eq. 3) requires that all 

of attribute values in every object in each cluster be 

stored in the slave node memory.  Storing the 

whole (raw) large number of objects and their 

attribute values in the slave nodes memory will not 

guarantee scalability (required for good clustering 

algorithm) in processing big data. Accessing each 

object (of million objects) in each iteration also 

worsens the time complexity. As a solution, we 

propose the following approach: As in each k-

Means iteration the cluster centroids are closer to 

the final centroids, the cluster centroids obtained 

from the previous iteration is used as µ in the 

current iteration such that while iterating the list of 

values (that include xi), Reducer functions compute 

(xi - µ) along with other computations (to produce 

pattern components). Then, after all of the 

computations are performed, the standard 

deviations of each attribute (SDj) and pooled 

standard deviation (SD) can also be computed.  

(c) Separation of the clusters: Computing silhouette 

coefficient of each clustered object, S(i), requires 

that the whole (raw) large number of objects and 

their attribute values be stored in the slave nodes 

memory in every k-Means iteration. This is 

necessary because a(i) and b(i) computations in Eq. 

6 need distance computation from one object to 

every other object in its cluster as well as other 

clusters.  If this metric is adopted for clustering big 

data, the computation will worsen the scalability 

and time complexity of the parallel k-Means. 

Hence, it is not feasible to be adopted.  

Based on those analysis, the metrics chosen for 

evaluating cluster quality are number of members 

and pooled standard deviations for every cluster.  

  

As discussed in Subsection 2.2, number of 

members and standard deviation of attributes in 

clusters can be regarded as cluster pattern 

components. Hence, we can include these as part of 

the patterns for reducing computations. Other 

components that we adopt are cluster centroids, the 

minimum and maximum of attribute values in every 

cluster. Computing those 5 pattern components will 

not add significant time complexity as it can be 

performed along with clustering process in every 

iteration.  
      

3.2. Parallel Clustering Technique  
In our previous work presented in a conference 

[7], we proposed a technique for clustering big data 
consisting of two stages that include data sampling 
for finding initial centroids and some enhancement 
as the following:  
(1) Data preprocessing: Attributes selection, 
cleaning and transformations are performed along 
with the clustering process, in the Map functions 
that takes input the raw dataset. Hence, the big data 
is not “visited” more than once.    
(2) Reducing iterations: MapReduce known for its 
inefficiency in iterative processes (such as in k-
Means algorithm) as in each pass the output must be 
written in HDFS. Reducing the iterations number is 
significant. We propose that initial centroids be 
computed by MapReduce from a sample of dataset, 
which are expected to be closer to the final 
centroids. 
(3) Adding computations in Reduce function for 
computing some pattern components. In this past 
research, we had not conducted experiments to 
support our concept.  

In [7], we present experiment results showing 
that the proposed technique is scalable but have not 
conducted experiments with real big data set for 
evaluating the cluster patterns.  

After further works, we find that the sampling 
does not always perform well for finding initial 
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centroids close to the real ones. Hence, that technique needs to be revised as depicted on Fig. 3. 
 

patterns

2
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Means

1

computing  

initial 

centroids 

initial centroids

HDFS
HDFS

 
 

Figure 3: Proposed Clustering Technique. 

 
The technique consist of 2 processes where the 
detailed design is discussed below. 
 
Process-1:    

Determining the initial centroids can be done by 

clustering a sample of dataset or other technique. 

The algorithm for parallel sampling and clustering 

the sample is discussed in [7].    

 
Process-2:  

This k-Means performs data preprocessing and 
produces metrics for measuring clusters quality and 
pattern components of each cluster at each iteration 
as follows:  
(1) Mapper: Performs  

a) Cleaning, attributes selection and 

transformations or normalizations;  

b) Finding the closest centroid for each object (Eq. 

2) and emit ID Cluster as the key and IdObject, 

the object distance to its centroid, the attribute 

values of this object as the value.  
(2) Reducer: By receiving key and list of value, 
Reducer produces metrics of cluster quality as well 
as pattern components as follows:  
a) Compute number of object members in each 

cluster, new centroids, sum of the distance of 
each object to its centroid (distCluster), 
minimum, standard deviation of each attribute 
value, pooled standard deviation for each 
cluster, and average SSE (Eq. 5). This 
computation is performed based on the Section 
3.A analysis and approach.  

b) Emit and write the IdCluster and all of the 
computation results.   

(3) Job (main program): (a) Submitting MapReduce 
functions to the master node; (b) Computing the cost 
function by summing up all of the distCluster value 
(of each cluster), Ji (Eq. 1) obtained from Reduce 
output; (c) Checking the convergence by examining 
the value of  |Ji – Ji-1|,  if it is greater than the 
minimum cost then replace the initial centroids with 

the current centroids and repeat the iteration by 
submitting MapReduce functions to the master 
node. Otherwise, stop the iteration. 
The detailed algorithm is presented below. 

 
Algorithm: Enhanced  parallel k-Means 
This k-Means consists of four algorithms as 
depicted below (as improvement of the proposed 
algorithm in [7, 14]).  
 

 

Algorithm kM-1. configure  
Input: Initial centroid file, fInitCentroids 

Output: centers[][] 

Descriptions: This algorithm is executed once 

before map is called where it fills the array of 

centroids, centers, from initial centroid file, 

fInitCentroids.  

 

 

Algorithm kM-2. map  
Input: initial or current centroids, centers[][]; an 

offset key; a line comprising object attribute values, 

value; a set of valid  min-max value for every 

attribute 

Output: <key’, value’> pair, where the key’ is the Id 

of the closest centroid and value’ is a string 

comprise of object information 

Steps: 

1. Initialize arrRawAtr[] and arrAtr[]  

2. Get each of the object attribute value from value, 

store in arrRawAtr[],  

3. arrAtr[] = results of preprocessing arrRawAtr[], 

where preprocessing include data cleaning and 

transformation 

3. If arrAtr[] is valid 
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       determine the object’s cluster based on the 

closest centroid 

4.    construct value’ as a string comprising distance 

of the object to its cluster centroid and the values of 

arrAtr; 

5.  emit < index, value’>; 

 

Algorithm kM-3. reduce  
Input: index of the cluster, key; list of ordered values 

from all of hosts, ListVal; array of centroids from 

previous iteration, prevcenters; 

Output: < key’, value’> pair, where the key’ is the 

index of the cluster, value’ is a string comprising:  

centers[] (centroid of a clusters), number of objects 

in a cluster, countObj, minimum, maximum, 

average, standard deviation of every attribute, 

pooled standard deviation for a cluster, minAtrVal[], 

maxAtrVal[], StdAtrCluster[], PooldStdCluster; 

currentCostFunction, J; averageSSE, AvgSSE. 

Steps: 

1.   Initialize minAtrVal[], maxAtrVal[], 

SumDiffAtrPrevCenter[], SumAtr[],StdAtrCluster 

[], centers[] 

2.   countObj = 0; J = 0;  

3.   While(ListVal.hasNext()) 

4.       get the object attribute values and its distance 

to centroid  from value 

5.       for each attribute,  add its value to SumAtr[] 

accordingly,  subtract its value with its previous 

centroid stored in  prevcenters, compute the square 

of this result then add this to SumDiffAtrPrevCenter 

accordingly, compare its value to the corresponding 

element value in minAtrVal, maxAtrVal, replace 

value in minAtrVal, maxAtrVal,   

6.          J = J + dist; 

7.          countObj = countObj + 1 

8.   Compute new centroids by dividing SumAtr with 

countObj and store the results in centers; 

10. Compute approximate of standard deviation of 

every attribute in each cluster using 

SumDiffAtrPrevCenter, store the result in 

StdAtrCluster accordingly  

11. Compute PooldStdCluster using StdAtrCluster 

based on Eq. 3 and 4  

12. Compute AvgSSE by dividing J by countObj 

11. Construct value” as a string comprising 

countObj, centers, J, minAtrVal, maxAtrVal, 

StdAtrCluster, PooldStdCluster, AvgSSE  

12. Emit < key, value”>; 

  

Algorithm kM-4. run (the Hadoop job) 

Input: Array of cost function, J; maximum of 

iteration, maxIter; minimum of the different 

between current and previous iteration of cost 

function, Eps.  

Output: J 

Steps:  

1. Initialize J[maxIter];  

2. iter = 1;  

3. While iter <= maxIter {execute configure, map 

and reduce function; get J from the output of reduce 

function then store it in J[iter];  if absolute value of 

(J[iter] – J[iter-1]) <= Eps then break; else iter = 

iter + 1} 

 

4. EXPERIMENTS 

 
We have implemented the algorithms and 

performed a series of experiments using big dataset 
in a Hadoop cluster with a master (name node) and 
6 slave nodes. All of the nodes are commodity 
computers having low specification with processor 
of Quad-Core running at 3.2 GHz clock and RAM 
of 8 Gb. 

Dataset: The dataset of household energy 
consumption is obtained from:  
https://archive.ics.uci.edu/ml/datasets/ with the size 
of approximately 132 Mb. This archive contains 
2075259 measurements (records) gathered between 
December 2006 and November 2010 (47 months). 
The sample of the dataset are as follows: 
9/6/2007; 17:31:00 ; 0.486 ; 0.066; 241.810; 2.000; 
0.000 ; 0.000 ; 0.000 
9/6/2007; 17:32:00 ; 0.484 ; 0.066; 241.220; 2.000; 
0.000 ; 0.000; 0.000 
9/6/2007; 17:33:00 ; 0.484 ; 0.066 ; 241.510; 2.000; 
0.000 ; 0.000 ; 0.000 
Each line presents a record with 9 attributes, the 

excerpts are:  

(1) Date;  

(2) Time;  

(3, 4, 5, 6) some results of metrics;   

(7) sub_metering_1: energy sub-metering (watt-

hour) that corresponds to the kitchen,  

(8) sub_metering_2: energy sub-metering that 

corresponds to the laundry room;  

(9) sub_metering_3: energy sub-metering that 

corresponds to a water-heater and an air-

conditioner. 

Mining objective: By understanding the dataset, 

the objective that is feasible is to obtain energy 

consumption patterns of the household. Knowing 

this, the power provider may design better services 

for this household. 

Data Preprocessing:  Based on the objective, 

we intend to find the patterns of electricity power 

usage of sub-metering 1-2-3 based on day number 

(1 = Monday, 2 = Tuesday, …, 7 = Sunday) and 

hour. Hence, the data preprocessing performed in 

Map function is as follows: 
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a) Number of day (1, 2, …7) is extracted from 

Date and stored as attribute-1; 

b) Hour (1, 2,…24) is extracted from Time and 

stored as attribute-2; 

c) The value of sub_metering_1, _2 and _3 are 

taken as is and stored as attribute-3, -4, -5.  

Thus, the preprocessed dataset has 5 attributes, 

which are day number, hour and 3 sub-metering 

measures. 
 

Testing the performance of the proposed 

parallel k-Means: For experimenting speed and 

scalability, we created several simulation dataset 

with the size of 0.2, 0.4, 0.8, …, 2 gigabyte as the 

“multiplications” of the original dataset. We use 

HDFS block size of 32 and 64 Mb. We then 

repeatedly clustered each of the dataset stored using 

k = 3 for each of the block size setting. We then 

averaged the execution times on every blocks and 

plotted the results as depicted on Fig. 5. The speed 

with 32 and 64 Mb block size is almost the same. 

The time execution plots are linear, which indicates 

that the execution of the proposed k-Means scales 

linearly to the size of dataset or guarantee 

scalability. 

 

 
Figure 5:  Average Iteration Performances on Two HDFS Block Sizes. 

 
Mining knowledge from the dataset: The 

experiments for obtaining the best k, patterns and 

knowledge are presented as follows. 

Selecting the best k using the cluster quality 

metrics: This experiment is intended to show how 

to use the proposed quality metrics for finding the 

best cluster number, k. We cluster the preprocessed 

dataset with k = 3, 4, 5, 6 and 7. The count of 

iterations until k-Means reach convergence and the 

average execution time (in seconds) for each k are: 

k = 3: 11 -  60; k = 4: 10 - 61.88;  k = 5: 15 - 63.13; 

k = 6: 15 - 65 and k = 7: 16 - 66.25. The results for 

each metrics are depicted in Table 1, 2 and 3.  

  
Table 1: Comparison of Cluster Members. 

Cluster k = 3 k = 4 k = 5  k = 6  k = 7  

1 663,773 56,087 55,224 55,213 55,091 

2 712,262 692,418 673,913 444,285 671,641 

3 699,224 665,814 47,042 46,990 46,807 

4   660,940 660,524 574,555 73,335 

5     638,556 636,918 223,860 

6       317,298 351,961 

7         652,564 

Total 2,075,259 2,075,259 2,075,259 2,075,259 2,075,259 
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Table 2: Comparison of Pooled Standard Deviation. 

Cls k = 3 k = 4 k = 5 k = 6 k = 7 

1 16.20 200.57 174.51 174.47 173.95 

2 70.61 35.75 15.37 12.25 14.69 

3 132.48 68.75 196.41 196.31 196.01 

4   11.53 10.29 8.32 15.39 

5     30.42 30.25 19.91 

6       9.80 14.87 

7         8.44 

 
 

 

Table 3: Comparison of Average SSE. 

Cls k = 3 k = 4 k = 5 k = 6 k = 7 

1 3.52 13.21 12.57 12.57 12.55 

2 6.06 5.01 4.09 3.28 4.06 

3 9.06 7.23 14.01 14.01 13.99 

4   3.44 3.42 3.02 4.04 

5     5.81 5.79 3.87 

6       3.09 3.38 

7         3.33 

 Note: Cls = cluster

 
Based on the metric results, the best k is selected as 

follows: 

a) By comparing the number of cluster members 

(Table 1), k = 3, 4 and 5 can be selected as the 

candidates of the best k as there is no obvious 

dominating cluster (there are at least 3 clusters 

that have almost equal members).  

b) Among the clustering results with k = 3, 4 and 

5,   by examining the contents of Table 2 and 3, 

it is found that for k = 3:   

• the maximum of standard deviations 

(belongs to cluster 3), which is 132.48, is 

less than 200.57 (cluster 1 in k = 4) and 

174.51 (cluster 1 in k = 5);  

• the maximum of average SSE (belongs to 

cluster 3), which is 9.06, is less than 13.21 

(cluster 1 in k = 4) and 12.57 (cluster 1 in 

k = 5).  

Hence, it can be concluded that the best k is 3 and 

the clustering patterns can be interpreted from the 3 

clusters. 

Pattern interpretation of 3 clusters: The 

components of the patterns, which are the average 

(centroids) and deviation of each attribute for every 

cluster and member of each cluster is shown on Fig. 

6. The other pattern components, which are the 

minimum and maximum of the 5 attribute values 

are as follows: 

a) Cluster-1: minimum: 1,0,0,0,0; maximum: 7, 

10, 45, 76, 13;  

b) Cluster-2: minimum: 1, 7, 0, 0, 0; maximum: 7, 

23, 81, 80, 11;  

c) Cluster-3: minimum: 1,0, 0, 0, 4; maximum: 7, 

23, 88, 78, 31. 

 

 
 

Figure 6: Patterns of Three Clusters (Cluster-1 = pink, 2 = green, 3 = blue). 

As attribute 1, 2, 3, 4, and 5 corresponds to number 

of day, hour, results of energy submeter in the  

kitchen, laundry room, and  water-heater and air-

conditioner,  the interpretations of the pattern for 

each cluster are as follows: 

a) Cluster-1 (pink): As the centroids of submeter-

1,-2,-3 value are low while standard deviations 

are also low with almost one-third of the 

members, this  means that most of the day at 

the early of hour, in the whole house (on 3 sub-

meters), the energy consumption are low. 

Sometimes the house do not use electricity at 

all and the maximum energy usage in 3 

submeters are 45, 76 and 13.   

b) Cluster-2 (green): The centroids of the hour is 

high, submeter -1,-2,-3 values are low while 

standard deviations are rather high on 

submeter-1 (kitchen) and -2 (laundry), with 

almost one-third of the members. This  means 

that most of the day at the mid-day, the average 

energy consumption are low on 3 sub-meters, 

but kitchen and laundry rooms sometime 

consume high energy (with maximum of 81 

and 80).   
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c) Cluster-3 (blue): The centroids of the hour is 

rather high, submeter -1,-2 (kitchen and 

laundry) values are low, submeter-3 value is 

high, while standard deviations of the hour, 

submeter-1 in the kitchen is high (with 

maximum value of 88) and submeter-2 in the 

laundry room are quite high (maximum value 

is 78), and submeter-3 is low, with almost one-

third of the members. This means that most of 

the day at around mid-day, the average energy 

consumption in the kitchen and laundry are low 

but with high fluctuation, while water-heater 

and an air-conditioner is almost always high.  

Based on the patterns interpretation of those 3 

clusters, the overall knowledge can be summarized 

as follows: The family consume low energy at most 

of the time. But, they frequently use water-heater 

and air condition during mid-day and sometimes do 

laundry during also around the mid-day. This 

knowledge seems to be logical or make sense. 

Hence, this experiments prove that the 3 quality 

cluster metrics and 5 components of cluster pattern 

can be adopted for clustering big data.    

To show that the pattern components are also 

useful for clustering other big data, in the Appendix 

A, we present the experiment results for mining 

historical weather patterns from big data recorded 

by weather stations. 

   

5. CONCLUSION 

Parallel k-Means based on MapReduce can 
further be enhanced by adding the capability for 
computing metrics that can be used for evaluating 
cluster quality as well as generating patterns from 
big data. The computations are included in the 
Reduce function. Our experiment results using big 
datasets show that time execution scale linearly and 
the metrics are useful for finding knowledge. 
However, we have not address the metrics for 
measuring separation of the clusters. Hence, this 
issue is left for further works. 

For finding the best k using our proposed 
technique, big data is clustered several times. Also, 
in every iteration of k-Means, big data is read from 
HDFS. Both of these lead to inefficiency. Hence, 
further improvement of the proposed technique is 
required. One option for reducing the number of 
reading HDFS is by storing the big data in parallel 
memory. While for finding the best k, other 
technique may be employed. One option is by 
enhancing grid-based clustering technique in the 
parallel computation environment.  
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APPENDIX A 

MINING HISTORICAL PATTERNS FROM WEATHER 

DATA 
 

This experiment is intended to show the use of the 

proposed technique for obtaining patterns and 

knowledge from  the big historical data of weather. 

Dataset: The data is downloaded from NOAA's 

National Centers for Environmental Information, 

http://www1.ncdc.noaa.gov/pub/data/noaa/.  There 

are thousands of files which are stored and 

organized based on the measurement year (1901, 

1902, ….2015, 2016). Each file represent measure 

results from a station in a single year and named 

using the format of XXXXXX-NNNNN-YYYY.gz 

(for example, 010010-99999-1973.gz and 072010-

99999-1991.gz) where XXXXXX represents the 

station number, NNNNN is WBAN weather station 

identifier and YYYY denotes year. The size of each 

file varies, depending on the frequency of 

measurements. Total size of all files are more that 

500 Gb. Each file contains records of weather 

measures for a station in a year. Each record is 

presented in one line and represented in text string 

and consists of 31 attributes, such as station 

identifier, observation date, time, latitude, longitude 

of observation point, elevation, wind direction, 

wind speed, visibility distance, air temperature, dew 

point temperature, atmospheric pressure and other 

attributes. One example of file content (one 

records) are as follows: 
0207010010999992001010118004+70930-008660FM-

12+0009ENJA V0203501N004610090019N0200001N1-

00711-

00901100351ADDAA112000791AY181061AY231061

GF108991071081004501041999KA1120M-

00401MA1999999100231MD1110041+9999MW1031R

EMSYN094AAXX  01184 01001 11470 83509 11071 

21090 30023 40035 51004 69902 70383 8784/ 333 

11040 91114; 

The objectives: Mining patterns of “snapshots” 

of the historical data weather and then comparing 

the resulted patterns of each snapshot for observing 

weather changes across the periods. In these 

experiments, the patterns are produced from the 

four selected attributes, which are wind speed, 

temperature, dew point temperature and 

atmospheric pressure.  

Data selection and preprocessing: In order to 

observe meaningful weather pattern changes, it 

would be improper if the whole weather data are 

analyzed at once as the data are measured from all 

over places/points of the world at various altitude 

and longitude having 4 seasons (summer, fall, 

winter and spring) or tropical seasons (simply rainy 

and dry).  Instead, weather data  should be selected 

from a station or some nearby stations. Aiming to 

obtain historical patterns, we cluster the data from 

consecutive “snapshot” periods. Some example of 

the periods are 1973-1980, 1981-1985, 1986-1990, 

1991-1995, …., 2010-2015. We then cluster the 

data at each snapshot time using the four selected 

attributes, analyze and compare the patterns 

generated.    

Data selection and preprocessing in Map 

functions: 

a) As Map function can take HDFS folder name 

containing those thousands of files and the data 

weather is presented in files having their 

station number and year measured, we define 

the station numbers as well as the snapshot 

periods as Map variables such that Map select 

and read the files associated with the stations 

and the snapshots time at each pass.  

b) Map then select the 4 attributes and transform 

these as follows: (1) Wind speed, temperature, 

dew point temperature are divided by 10 (as 

the recorded data are multiplied by 10, we 

normalized those into their real values); (2) 

Pressure is divided by 1000 such that this 

attribute value does not differ greatly with the 

others, which could lead into the most 

dominant attribute (in calculating the object 

distance using Euclidean method). 

Defining k and clustering process:  We have 

clustered the snapshots of weather data from few 

stations. Here, we present the experiment results of 

clustering the 8 snapshot data from station 010010 

at Jan Mayen (Nor-Navy) Norway as an example. 

Expecting to obtain patterns related to cold, middle 

and hot seasons, we cluster the data of each of the 8 

snapshots (1973-1980, 1981-1985, 1986-1990, 

1991-1995, …., 2010-2015) into 3 clusters (k = 3). 

The number of k-Means iterations (until 

convergence is reached) and execution times are 

depicted in Table A.1.  
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Table A.1: Iterations and execution times of data from a station at Norway 
Period #Iterations Time (sec) AvgTime (sec) 

1973 - 1980 11 426 39 

1981-1985 22 872 40 

1986-1990 9 349 39 

1991-1995 13 512 39 

1996-2000 9 354 39 

2001-2005 17 676 40 

2006-2010 15 581 39 

2011-2015 15 603 40 

Average 13.875 546.64 39.32 

 
Interpreting patterns:  In Fig. A.1, we present the 

sample of patterns obtained from 3 snapshot 

periods (1973-1980, 1991-1995 and 2010-2015) 

only. Each cluster pattern is represented with blue, 

magenta and red plots. The pattern components are 

centroids, deviations, minimum, maximum of 

attribute values in each cluster and object members.  

 

 

 

 

 

 

  

 
Wsp: wind speed, Tem: air temperature, Dew: dew point temperature, Prs: atmospheric pressure. 

Figure A.1: Patterns of weather from station 010010 at Jan Mayen Norway, with (a) centroids, (b) deviations, (c) 

minimum, (d) maximum of attribute values in each cluster, (e) object members in each cluster.  
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Some observable of weather changes interpreted 

from the patterns as follows: 

a) Centroids: While the magenta and read seem to 

be steady, the blue cluster dew point 

temperatures increased starting from 1991-

1995 snapshot. 

b) Deviations: The wind speed differ greatly in 

blue cluster, the attribute values of the blue one 

differ the most (have the most variety values), 

while the pressure differ slightly only at all 

clusters.  

c) Minimum attribute values: the blue cluster dew 

point temperatures also increased starting from 

1991-1995 snapshot.   

d) Maximum attribute values: no obvious change 

found. 

e) Cluster member: If the weather data were 

recorded evenly from this station during those 

snapshot, the following is the interpretation: (1) 

In 1973-1980, Jan Mayen was mostly 

warm/hot; (2) In 1973-1980 and 2011-2015, 

the blue cluster (cold weather) have smaller 

members; (3) In 1991-1995, the members 

number of blue and red cluster differ slightly 

suggesting that the cold weather happened 

almost as long as hot weather.  

The knowledge: The blue cluster, which represent 

the cold related seasons at the Jan Mayen Norway 

station, is the one that show obvious changes across 

the last decades. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


