
Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1781

XSD2OWL2: AUTOMATIC MAPPING FROM XML SCHEMA

INTO OWL2 ONTOLOGY

1
OUSSAMA EL HAJJAMY,

2
LARBI ALAOUI ,

3
MOHAMED BAHAJ

1,3
University Hassan I, FSTS Settat, Morocco

2
International University of Rabat 11100 Sala Al Jadida, Morocco

E-mail:
1
elhajjamyoussama@gmail.com,

2
larbi.alaoui@hotmail.de,

3
mohamedbahaj@gmail.com

ABSTRACT

XML (extensible Markup Language) nowadays is a common format widely used by domain experts to

exchange data and information on the internet. It allows systems to agree on a common syntax and

understand each data source that they access. On the other hand, OWL (Ontology web language) contains a

group of concepts and properties to make the information in the Web processable and semantically

understandable by machines. Compared to XML, OWL is a vision for the future web (web semantic), it

gives explicit meaning to information and provides additional vocabulary to formally describe the meaning

of the terminology used to annotate Web resources. In this paper we provide and develop a new solution

that converts the XML schema into OWL2 ontology. This solution takes an existing XML schema (XSD)

as input, loads the XSD document and parses it using DOM parser. Then it extracts its elements with as

much constraints as possible and applies our mapping algorithm to create the resulting OWL2 document.

Moreover, whole of the transformation processes are done automatically without any outside intervention.

Our aim in this work is to take a further step in the existing research works by considering other important

XSD aspects and minimizing our algorithm execution cost. In order to apply our approach in real

environments, we have developed a tool XSD2OWL2 that implements our mapping algorithm for our

conversion model and demonstrates the effectiveness and power of our strategy.

Keywords:- XML schema, XSD, OWL2, ontology, DOM parser

1. INTRODUCTION

Today, large volumes of data and information

are becoming available over the web. This

information’s can be structured, such as relational

databases, and semi-structured, such as XML

documents. However, the access to all information

available in applications that deal with

heterogeneous data remains limited and the

formalism of XML do not provide a format that is

at the same time both human readable and machine

interpretable. In contrast, OWL leverages current

languages and additionally provides the means by

which the semantics can be assigned to data

through a set of terms related to a body of

knowledge. This knowledge provides a technology

to solve the semantic heterogeneity problem.

Therefore, the problem of migrating XML to OWL

is becoming an active research domain.

Several reasons motivated this choice, the first

of them being that XML can translate data

grammars, whereas ontologies try to represent the

semantics of the objects. Another reason is that

applications based on ontologies are more and

more numerous since the emergence of the

semantic web, however, XML is the standard

format for data exchange between enterprise

applications on the Internet and companies do

always wish to keep the existing systems having in

mind the time and money already spent on them.

Thus, instead of rebuilding the applications and in

order to make the existing systems available for the

semantic web, it is more suitable to find good

solutions for the migration from xml document to

ontology web.

Towards this goal, we hereby propose a method,

called XSD2OWL2, for ontology creation from

xml schema. This method is based on some

mapping rules that automatically generate OWL

ontology from an XML data source.

Currently, there are two options recommended

by theW3C for defining an XML schema. One is

the Document Type Definition (DTD) and the

other is the XML Schema (XSD). We choose XML

Schema because:

• it has a powerful set of types and constraints

which leads to a better translation;

• it provides us with a more flexible and

powerful mechanism through “key” and

“keyref" constructs;

• and with XSD we are able to model complex

constraints.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1782

Our aim in this work is to take a further step in

the existing research works by identifying the

weaknesses and limitations of the different existing

techniques and proposals, and address other very

important aspects that have not been touched yet in

the world of conversion from XML to OWL. These

aspects are mainly related to Transitivity, circular

relations, bidirectional relations and some other

constraints.

We perform our work at two levels, one

providing a comparison of the existing mapping

methods from XML to OWL and the other

proposing a novel migration solution XSD2OWL2

that generalizes these methods, optimizes the

constraints extraction and refines the mapping rules

to be more expressive and less complicated.

 The rest of the paper is organized as follows. In

the following section we present an overview of

the different XML to OWL schema transformation

proposals. Needful terminology and several rules to

convert XML schema into OWL2 ontology are

presented in section 3. To illustrate how to

combine the rules together for a concise mapping,

sections 4 outline the automatic mapping algorithm

based on the list of rules. The implementation

based on the conversion approach is presented in

section 5. Finally, section 6 includes some

conclusions and future work.

2. COMPARISON OF EXESTING

MAPPING METHODS

As mentioned in section 1, there are many

researches that have been proposed to achieve

XML to OWL conversion. However the existing

studies do not provide a complete solution to this

problem and so far there still be no effective

proposals that could be considered as a standard

method that preserves the whole original structure

and constraints of the XML schema.

In this section, we make a literature review to

investigate some of existing approaches that

address the problematic of generating OWL

ontology from XML document. The investigation

of these methods is done with the focus on their

shortcomings with regards to the relevant elements

and constraints that are not considered in their

mapping process.

Jyun-Yao propose in [9] a template that can

handle extremely large XML data and provides

user friendly templates composed of RDF triple

patterns including simplified XPath expressions.

However this method has inherent drawbacks

because RDF does not have enough expressive

power to capture the knowledge of the source xml

document, and the generated RDF files are not

really semantically richer than the mapped XML

Schemas.

Ferdinand et al. [10] propose a mechanism to lift

XML structured data to semantic web. This

approach is twofold: mapping concepts from XML

to RDF and from XML Schema to OWL. In the

first mapping process, two categories of XML

elements are distinguished: 1) elements that have

sub-elements and/or attributes, 2) attributes and

elements that carry only a simple data type. In this

case, the mapping is performed by the following

procedure: for each sub-element and attribute of

the element that is currently processed, an RDF

property on the RDF resource created before in the

previous step is created. The value of this property

is determined as follows: elements and attributes

with data type component generate RDF literal on

the respective property, and elements and attributes

with Object component an anonymous RDF

resource is created and assigned as the value of the

respective property. Then, this component is

processed recursively. The second part is based on

a set of interpretation and transformation rules.

Each complexType is mapped to an owl:Class.

Each element and attribute declaration is mapped

to an OWL property. Elements of simpleType and

all attributes are mapped to an

owl:DatatypeProperty and elements of

complexType are mapped to an

owl:ObjectProperty. This part also deals with

model groups, specialization and cardinality

constraints. However, these mapping concepts are

independent and they neglect many elements and

constraints of the source XML document.

F. Breitling [1] proposes a standard mapping

method from XML to RDF via XSLT. It provides

direct conversion and contains XPath information

for retaining the hierarchical information of the

XML data source. However, this approach has two

drawbacks. First users must have knowledge of the

complicated XSLT transformation language.

Second, the method requires the human

interactions to replace the subject URIs of the

generated RDF documents if the XPath-style

expressions are not deemed suitable as unique

URIs.

The approach proposed by An Yuan et al [22]

consists in constructing mapping rules between

XML schema and OWL ontology. Unlike other

methods, this method requires the existence of the

target ontology, and it is based on a heuristic

algorithm to find correspondences between the tree

structure of the XML Schema and the connections

of the different components of the ontology.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1783

Jiuyun Xu et al [8] propose an indirect method

to realize this transformation through the entity-

relation model to alleviate the difficulties of

transformation. Instead of a direct mapping, the

authors propose an XTR mapping (XML to

relational) to pass from the XML to the relational

model, followed by another RTO mapping

(relational to ontology) to extract the ontology

from this model. However, this approach is not

enough for expressing the full semantics of the

database domain, because the passage XTR and

RTO leads to a loss of information from the xml

source document.

Bedini et al [3], propose a tool called "Janus",

this last provides automatic derivation of

ontologies from XS files by applying a set of

derivation rules. Then, the same group proposed a

method based on patterns [4] that deals with 40

patterns and convert each pattern to equivalent

OWL ontology. However, this approach have

limited capacity in integration and merging and

further research is still needed to improve the

capacity to detect well-formed sources and

semantics.

All aforementioned ontology based transformation

present limitations in treating various important

XSD elements related to the art of elements,

relations or constraints. Our approach and

implementation present some innovative

advantages, it give other very important aspects

that have not been touched yet in the world of

conversion from XML to OWL.

3. XSD TO OWL2 MAPPING MODEL

Our approach aims at defining a correspondence
between the xml schema and OWL2 ontology. It
maintains the structure as well as the meaning of
XML schema. Moreover, our mapping method
provides more semantics for XML instances via
adding more definitions for elements and their
relationships in OWL ontology by using OWL2
functional-style syntax.
Our strategy consists of three separate phases as
shown in figure 1.

In the first step the system loads the XML
document and parses it using DOM technology
(Document Object Model). The output of DOM is
a set of objects representing the different elements
of the source xml schema (such as complex types,
simple types, Specialization, elements, attributes,
constraints and several relationships), this output is
extracted and used as the input of our mapping
algorithms in the second step. Finally the system
applies our algorithm based on the list of rules to
create the equivalent ontology in owl2. Figure 1

below shows the architecture of XSD2OWL2
implementation.

Figure 1 : XSD2OWL2 framework architecture

In the following, we propose to give clear and

concise conversion rules by taking into account all

such constructs of the source XML document. The

rules allow us to derive an algorithm that is as

simple as possible and which does not use any

intermediate language. To this end we consider

relevant categorizations related to the various

components in XML schema:

A. Mapping Complex type:

Complex type is normally used to define

components with child elements, attributes or text.

We can distinguish two kinds of complex types:

• Global named complex types: when the

complex type is globally declared for an

element.

• Local anonymous complex types: without

name when the complex type is used

locally for an element.

Rule1. Both cases are mapped to OWL classes.

The generated class will have the name of its

surrounding element.

Global named complex types:

<xsd:complexType name="ctName">

</xsd:complexType>

XML

document

OWL2

Ontology

Mapping Algorithm

DOM Parser

Extraction several

elements, constraints and

relationships

Phase 1

Phase 2

Phase 3

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1784

XML

Local anonymous complex types:

<xsd:element name="ctName">

<xsd:complexType>

</xsd:complexType>

</xsd:element>

OWL 2 Declaration(Class(:ctName))

B. Mapping Simple type

A simple type means that the content of an element

or attribute can only be a value of a predefined data

type such as an integer or a string. We can derive a

new simple type by restricting an existing simple

type. The Restriction on XML simple type is

normally a range of conditions to be applied on the

XML element to define accepted values for this

element.

Rule2. In XML schema, simple types are used in

defining concrete data type. For this reason, every

simple type is mapped into OWL2 datatype.

XML <xsd:simpleType name="stName">

OWL 2 Declaration(Datatype(:stName))

There are 3 ways in which a simple type can be

extended; Restriction, List and Union:

•An xsd:restriction: child element derives by

restricting the legal values of the base type.

•An xsd:union is a mechanism for combining two

or more different data types into one.

•An xsd:list child element derives a type as a white

space separated list of base type instances. A List is

constructed in a similar way to a Union. The

difference being that we can only specify a single

type. This mechanism has no equivalence in owl 2.

So we treat it as a simple type.

Restriction element XML Schema provides a

mechanism of restricting a given simple type,

which is known as facets. We can establish a set of

translation rules for all constraining facets provided

by XML Schema:

Rule3. Restriction using regular pattern: XML

schema defines the pattern constraint (xsd:pattern)

to limit the content of an XML element to define a

series of numbers or letters.

XML

<xsd:simpleType name="stName">

 <xsd:restriction base="xsd:integer">

 <xsd:pattern value="[0-9]{5}"/>

 </xsd:restriction>

 </xsd:simpleType>

OWL 2

Declaration(Datatype(:stName))

DatatypeDefinition(

 :stName

 DatatypeRestriction(xsd:integer

 xsd:pattern "[0-9]{5}"))

Rule4. Restriction on value: Specifies the bounds

for numeric values (xsd:minIclusive,

xsd:minExclusive, xsd:maxInclusive,

xsd:maxExclusive).

XML

<xsd:simpleType name="stName">

 <xsd:restriction base="xsd:integer">

 <xsd:minExclusive value="0" />

 <xsd:maxExclusive value="20" />

 </xsd:restriction>

 </xsd:simpleType>

OWL 2

Declaration(Datatype(:stName))

DatatypeDefinition(

 :stName

 DatatypeRestriction(xsd:integer

 xsd:minExclusive "0"^^xsd:integer

 xsd:maxExclusive "20"^^xsd:integer))

Rule5. Restriction on length: XML use the length,

maxLength, and minLength constraints to limit the

length of a value in an element.

XML

<xsd:simpleType name="stName">

 <xsd:restriction base="xsd:string">

 <xsd:minLength value="10" />

 <xsd:maxLength value="20" />

 </xsd:restriction>

 </xsd:simpleType>

OWL 2

Declaration(Datatype(:stName))

DatatypeDefinition(

 :stName

 DatatypeRestriction(xsd:string

 xsd:minLength

"10"^^xsd:integer

 xsd:maxLength

"20"^^xsd:integer))

Rule6. Restriction on Set of Values: XML schema

defines the enumeration constraint

(xsd:enumeration) to limit the content of an XML

element to a set of acceptable values.

XML

<xsd:simpleType name="stName">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="value1"/>

 <xsd:enumeration value="value2"/>

 <xsd:enumeration value="value3"/>

 </xsd:restriction>

</xsd:simpleType>

OWL 2

Declaration(Datatype(:stName))

DatatypeDefinition(

 :stName

 DataOneOf("value1"^^xsd:string

 "value2"^^xsd:string

 "value3"^^xsd:string))

Rule7. Union element: This mechanism is

transformed in OWL2 to a new data type, using

DataUnionOf axiom.

XML

<xsd:simpleType name="stName1">

 <xsd:union memberTypes="xsd:string

 stName2"/>

</xsd:simpleType>

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1785

OWL 2

Declaration(Datatype(:stName1))

DatatypeDefinition(:stName1

 DataUnionOf(xsd:string stName2))

C. Mapping Specialisation:

XML schema supports two mechanisms of

Specialization: extension and restriction. Both of

these inheritance mechanisms can be included in

the following xsd elements: <xsd:simpleContent>

and <xsd:complexContent>. XSD provides two

forms of sub-classing type components:

Rule8. The first form extends the definition of

another base simple content (element or attribute)

to another specified data type. This construct can

be interpreted as a way to express new data range

that contains all tuples of literals that are contained

in the old and new simple types.

XML

<xsd:complexType name="ctName" >

 <xsd:simpleContent>

 <xsd:extension base="stName">

 <xsd:attribute name="attr"

 type="xsd:string"/>

 </xsd:extension>

 </xsd:simpleContent>

</xsd:complexType>

OWL 2

Declaration(DataProperty(:attr))

DataPropertyDomain(:attr :ctName)

DataPropertyRange(:attr

 DataUnionOf(:stName xsd:string))

Rule9. The second form defines a complex type as

an extension or a restriction of another base

complex type by using the XSD complex content.

In this case the class corresponding to this type is

set as subclass of the class corresponding to the

base type.

XML

<xsd:complexType name="ctName1" >

 <xsd:complexContent>

 <xsd:extension base="ctName2">

 </xsd:extension>

 </xsd:complexContent >

</xsd:complexType>

OWL 2 SubClassOf(:ctName1 :ctName2)

D. Mapping Element

The <xsd:element> element is the tag name that

will be used within the XML instance document. It

allows the description of simple and complex

entities. Elements can be declared via several

methods:

Rule10. Element declared with primitive data type:

is mapped directly to datatype properties by

respectively associating with its domain and range

the URI of the class corresponding to parent

element and the XSD type corresponding to the

type of the element.

XML

<xsd:complexType name="ctName" >

 <xsd:sequence>

 <xsd:element name="eName"

 type="xsd:string"/>

 </xsd:sequence>

</xsd:complexType>

OWL 2

Declaration(DataProperty(:eName))

DataPropertyDomain(:eName :ctName)

DataPropertyRange(:eName xsd:string)

)

Rule11. Element declared with simple type: is

mapped directly to datatype properties by

respectively associating with its domain and range

the URI of the class corresponding to parent

element and the inline simple type.

XML

<xsd:complexType name="ctName" >

 <xsd:sequence>

 <xsd:element name="eName"

 type="stName"/>

 </xsd:sequence>

</xsd:complexType>

 OWL 2 Declaration(DataProperty(:eName))

DataPropertyDomain(:eName :ctName)

DataPropertyRange(:eName :stName))

Rule12. Element refer to complex type: when a

complex type c1 contains an element e of type c2,

then an object property is created such that its

domain is the concept corresponding to c1 and its

range is the concept corresponding to c2.

XML

<xsd:complexType name="ctName1" >

 <xsd:sequence>

 <xsd:element name="eName"

 type="ctName2"/>

 </xsd:sequence>

</xsd:complexType>

OWL

2

Declaration(ObjectProperty(:haseName))

ObjectPropertyDomain(:haseName

 :ctName1)

ObjectPropertyRange(:haseName

 :ctName2)

Rule13. Global element declared with complex

type (global declaration): is mapped directly to

OWL class, and the class corresponding to the

element is set as subclass of the class

corresponding to its type.

XML <xsd:element name="eName"

 type="ctName"/>

OWL 2 Declaration(Class(:eName))

SubClassOf(:eName :ctName)

Elements that embed other elements or attributes

must have a complex type. In this case, we use

Rule1 to convert them to owl classes.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1786

E. Mapping Attribute

An attribute is used to declare simple values for a

given complex element. Attributes themselves are

always declared with a simple type or primitive

data type.

Rule14. Attribute with primitive data type is

treated as simple element with primitive data type

(Rule10) and will be mapped to datatype properties

by respectively associating with its domain and

range the URI of the class corresponding to parent

element and the XSD type corresponding to the

type of the attribute.

Rule15. Attribute with simple type is treated as

element declared with simple type (Rule11) and

will be mapped to datatype properties by

respectively associating with its domain and range

the URI of the class corresponding to parent

element and the inline simple type.

F. Mapping Grouping concepts

The XML Schema Recommendation allows to

specify groups of elements and groups of attributes

using <xsd:group> and <xsd:attributeGroup>.

When a group is referred to, it is as if its contents

have been copied into the location it is referenced

from.

Rule16. The XSD element group and attribute

group are used by a complex Type to assemble

several elements together. These elements are

mapped to a simple class. This class is linked to the

class that represents the complex type by an object

property axiom named "hasElementGroupeName".

The class representing the group is also the domain

of the data type properties that represents the

simple elements/attributes of the group.

 XML

<xsd:group name="grName">

 <xsd:sequence>

 </xsd:sequence>

</xsd:group>

<xsd:complexType name="ctName">

 <xsd:sequence>

 <xsd:group ref="grName" />

 </xsd:sequence>

</xsd:complexType>

 OWL 2

Declaration(Class(:grName))

Declaration(Class(:ctName))

Declaration(ObjectProperty(

 :hasgrName))

ObjectPropertyDomain(:hasgrName

 :ctName)

ObjectPropertyRange(:hasgrName

 :grName)

G. Mapping Transitive Chain

Rule17. Let ctName1, ctName2 and ctName3 be

three different complex types or Global elements

declared with complex type. If ctName2 is declared

as a child of ctName1 and ctName3 as a child of

ctName2, then there is a transitivity chain between

ctName1 and ctName3. We use

TransitiveObjectProperty axiom to express it.

 XML

<xsd:element name="ctName1">

 <xsd:complexType>

 <sequence>

 <xsd:element name="ctName2">

 <xsd:complexType>

 <sequence>

 <xsd:element name="ctName3">

 <xsd:complexType>

 </xsd:complexType>

 <sequence>

 </xsd:complexType>

 </sequence>

 </xsd:complexType>

</xsd:element>

 OWL 2

Declaration(ObjectProperty(

 :ctName1_has_ctName3))

ObjectPropertyDomain(

 :ctName1_has_ctName3 :ctName1)

ObjectPropertyRange(

 :ctName1_has_ctName3 :ctName3)

TransitiveObjectProperty(

 :ctName1_has_ctName3)

H. Mapping Integrity constraints

XML Schema supports two mechanisms to

represent identity and reference, key/keyref. It is

similar to the primary key and foreign key in the

database. The reason for this is that keys and

foreign keys establish meaningful connections

between different elements. In general, the

semantic assertion of a key is that the data entities

in an XML document are unique and not null, and

the purpose of foreign key is to define the

association of two elements in a XML document.

Rule18. An xsd:key uniquely identifies the element

in xml document. This implies that the values of

the data type property that represent this element

must be unique. Therefore, these properties must

be declared with OWL2 HasKey property.

 XML

<xsd:element name="ctName">

 <xsd:complexType>

 <sequence>

 <xsd:attribute name="idattr"

type="xsd:attrType">

 </sequence>

 </xsd:complexType>

</xsd:element>

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1787

<xsd:key name="ctNameKey">

 <xsd:selector xpath=".//ctName"/>

 <xsd:field xpath="./@idattr"/>

</xsd:key>

 OWL 2

Declaration(Data Property(:idattr))

DataPropertyDomain(:idattr :ctName)

DataPropertyRange(:idattr

xsd:attrType)

HasKey(:ctName :idattr)

Rule19. xsd:KeyRef : For complex types (or

Global elements declared with complex type)

ctName1 and ctName2, if an attribute att2 in

ctName2 references another attribute att1 in

ctName1, then an object property is generated, and

with its domain and range we respectively

associate the URI of the class corresponding to

ctName2 and the URI of the class that represents

ctName1. To ensure atomicity of the attribute we

declare the object property as a

"FunctionalObjectProperty".

 XML

<xsd:key name=" ctNameKey">

 <xsd:selector xpath=".//ctName1"/>

 <xsd:field xpath="./@att1"/>

</xsd:key>

<xsd:keyRef name="ctNameRef"

 refer="ctNameKey">

 <xsd:selector xpath=".//ctName2"/>

 <xsd:field xpath="./@att2"/>

</xsd:keyRef>

 OWL 2

Declaration(ObjectProperty(

 :ctNameRef))

ObjectPropertyDomain(:ctNameRef:

 :ctName2)

ObjectPropertyRange(:ctNameRef:

 :ctName1)

FunctionalObjectProperty(:ctNameRef)

I. Mapping Cyclic Relations
For a set of complex types (or Global elements

declared with complex type) ctName1 … ctNamen

(n ≥ 2) such that ctNamei is referenced by

ctName(i+1) (2 ≤ i ≤ n) and ctNamen is referenced

by ctName1, we say that a cyclic relationship exists

between these elements. Note that if n= 2 then we

get a Bidirectional relation, and if n > 2 then we get

a circular relationship between the elements.

Rule20. Bidirectional relations are represented by

two Key/Keyref references in the XML Schema. In

this case we generate two pairs of inverse object

properties.

 XML

 <xsd:element name="ctName1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref=" ctName2"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name=" ctName2">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref=" ctName1"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 OWL 2

Declaration(ObjectProperty(

 :hasctName1))

ObjectPropertyDomain(:hasctName1

 :ctName2)

ObjectPropertyRange(:hasctName1

 :ctName1)

FunctionalObjectProperty(:hasctName1)

Declaration(ObjectProperty(

 :hasctName2))

ObjectPropertyDomain(:hasctName2

 :ctName1)

ObjectPropertyRange(:hasctName2

 :ctName2)

FunctionalObjectProperty(:hasctName2)

InverseObjectProperty(:hasctName1

 :hasctName2)

Rule21. A circular relation is defined as a set of

relations ctName1 ... ctNamen (n > 2), where

ctNamei is referenced by ctNamei+1 (2 ≤ i ≤ n) and

ctNamen is referenced by ctName1. In OWL2 this

can be expressed using chain axiom property and

self restriction objectHasSelf.

 XML

<xsd:element name="ctName1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref=" ctName2"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<xsd:element name=" ctName2">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref=" ctName3"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name=" ctName3">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref=" ctName1"

 minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

 OWL 2

SubObjectPropertyOf(

ObjectPropertyChain(:ctName1_ctName2

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1788

 :ctName2_ctName3

 :ctName3_ctName1) :Z)

 SubClassOf(ObjectHasSelf(:Z)

 :ctName1_ctName1)

J. Mapping Constraints

In our transformation rules, other constraints, such

as xsd:unique, xsd:use, and max/min occurence are

also taken into account to make the mapping

complete. We aim to preserve as many constraints

as possible.

Rule22. For each element with a UNIQUE

constraint we set maxCardinality restriction to 1 in

order to prevent the creation of individuals having

the same value.

 XML

<xsd:element name="ctName">

 <xsd:complexType>

 <sequence>

 <xsd:attribute name="uqattr"

 type="xsd:attrType">

 </sequence>

 </xsd:complexType>

</xsd:element>

<xsd:unique name="ctNameKey">

 <xsd:selector xpath=".//ctName"/>

 <xsd:field xpath="./@uqattr"/>

</xsd:unique>

 OWL 2

Declaration(Data Property(:uqattr))

DataPropertyDomain(:uqattr

 :ctName)

DataPropertyRange(:uqattr

 xsd:attrType)

DataMaxCardinality(1 :uqattr)

Rule23. The syntax for specifying occurrences of

attributes is different than the syntax for elements.

Attributes can be declared with a use attribute to

indicate whether the attribute is required, optional,

or even prohibited. On the other side, elements use

Occurrence indicators to define how often an

element can occur. The associated conversion rules

are given as follow:

Attributes

use="required Set DataMinCardinality to 1

use="optional" Set DataMinCardinality to 0

Elements converted to DataProperty

minOccurs DataMinCardinality

maxOccurs DataMaxCardinality

Elements converted to ObjectProperty

minOccurs ObjectMinCardinality

maxOccurs ObjectMaxCardinality

4. XML TO OWL2 MAPPING

ALGORITHM

In this section, we present our algorithm for the
automatic construction of OWL2 Ontology from
xml schema. This algorithm takes into
consideration all the aforementioned conversion
rules. It captures the semantic properties of XSD
such as specialization, restriction, extension,
transitivity, cyclic relationships … .

We introduce a simple XML schema as a running
example. This example will be used throughout the
following sections in order to illustrate the different
steps of mapping generation algorithm and ontology
generation process.

<xsd:schema

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="targetNamespaceURI"

 xmlns="targetNamespaceURI"

 elementFormDefault="qualified">

<xsd:element name="Author" type="Person"/>

<xsd:complexType name="Person">

<xsd:sequence>

<xsd:group ref="PersonInfo"/>

<xsd:element maxOccurs="1" ref="University"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Address">

<xsd:sequence>

<xsd:element name="name" type="xsd:string" />

<xsd:element name="street" type="xsd:string" />

<xsd:element maxOccurs="1" ref="City />

</xsd:sequence>

<xsd:attribute name="refCountry"

 type="xsd:string" />

</xsd:complexType>

<xsd:element name="Country ">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="City" minOccurs="0"/>

<xsd:element name="nameCountry"

 type="xsd:string" />

</xsd:sequence>

<xsd:attribute name="idCou" type="xsd:integer"

 use="required"/>

</xsd:complexType>

<xsd:key name=" CountryKey">

<xsd:selector xpath=".//Country"/>

<xsd:field xpath="./@idCou"/>

</xsd:key>

<xsd:keyRef name="CountryRef"

 refer="CountryKey">

<xsd:selector xpath=".//Address"/>

<xsd:field xpath="./@refCountry"/>

</xsd:keyRef>

</xsd:element>

<xsd:element name="City">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="University" minOccurs="0"/>

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1789

<xsd:element name="nameCity" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="University">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="Country" minOccurs="0" />

<xsd:element name="nameUniversity"

 type="xsd:string" />

</xsd:sequence>

<xsd:simpleContent>

<xsd:extension base="xsd:integer">

<xsd:attribute name="idUniv" type="xsd:string"

 use="required"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:unique name=" UniversityKey">

<xsd:selector xpath=".//University"/>

<xsd:field xpath="./@idUniv"/>

</xsd:key>

<xsd:keyRef name="ctNameRef"

 refer="ctNameKey">

<xsd:selector xpath=".//ctName2"/>

<xsd:field xpath="./@att2"/>

</xsd:keyRef>

</xsd:element>

<xsd:element name="Student" type="Person"/>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="namStudent" type="string" />

<xsd:element name="Department">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="nameDepartment"

 type="xsd:string" />

<xsd:element name="researchLab" />

<xsd:complexType>

<xsd:sequence>

<xsd:element name="nameresearchLab"

 type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:group name="PersonInfo">

<xsd:sequence>

<xsd:element name="namePerson"

 type="xsd:string" />

<xsd:element name="gender" type="GenderType" />

<xsd:element name="AddressPerson"

 type="Address" />

</xsd:sequence>

</xsd:group>

<xsd:simpleType name=" GenderType ">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Male"/>

<xsd:enumeration value="Female"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Our algorithm is based on an XML Schema Graph

G = (V,E).

V is the vertex set who can be one of the following

elements:

Complex type (CT), simple type (ST), elements

(ET), attributes (att), group (GR) or Global element

declared with complex type (GEwCT).

E is the edge set, who can be one of the following

elements:

Contain (Cont), Refer (Ref), has key (hasKey), has

keyRef (hasKeyRef), type, extension base CT

(ECT) or extension base ST (EST).
For example, Figure 2 shows the XSG of the XML
schema of our running example.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1790

Figure 2 : XSG of the running example

MappingXMLSchema()

Input: XSD schema S

Begin

 MappingConcepts(S)

 MappingCircularRelation(S)

 MappingTransitiveChain(S)

 MappingBinaryRelations(S)

End

MappingConcepts

Input: XSG = (V,E)

Begin

 For each v ∈ V Loop

 e = incoming edge of v

 e’ = outgoing edge of v

 if v = {CT or GR} then

 if e ≠ {refer and type} then

 Apply rule 1 or 16 : create OWL2 class

 End if

 Else if v = GEwCT then

 if e’ = type then

 Apply rule 13 : use class and subClassOf axiom

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1791

 End if

 Else if v = ST then

 Apply rule 2 : create DataType axiom

 Apply rule 3, 4, 5, 6 or 7 to convert restriction constraints if they exist

 Else if v = CT and e = ECT then

 Apply rule 9 : use SubClassOf OWL2 axiom

 Else if v = {element or attribute} then

 if e’ = type and v’ = {Primitive type or simple type } then

 Apply rule 10, 11, 14 or 15 : Create OWL2 DataProperty axiom

 Convert constraints if they exist

 End if

 Else if v = CT and e = ECT then

 Apply rule 8 : Create DataProperty axiom with DataUnionOf axiom

 Else if v = {CT, GR or att} and e = {refer, contain or hasKeyRef} then

 Apply rule 12, 16 or 19 : create ObjectProperty axiom

 Convert constraints if they exist

 Else if e = hasKey then

 Apply rule 18 : Create DataProperty with OWL2 HasKey axiom

 End if

 End loop

End

To convert the binary relations, transitive chain and

circular relation, we used the algorithms presented

in our previous work [6].

MappingCircularRelation() procedure uses a

recursive function (FindCircularRelation()) to

detect if there are any circular relations in XML

schema.

5. IMPLEMENTATION AND

VALIDATION

In this chapter, we present XSD2OWL2, our tool
for XML schema to ontology mapping. This tool
takes as input an XML schema document. Then, it
extracts elements, relations and all constraints using

DOM technology and applies our algorithm based
on the list of rules to create the equivalent OWL2
ontology. The DOM parser allows a convenient
method for accessing any piece of data in the XML
document and also preserves the order of elements.
The created ontology is described in OWL2
functional-style syntax. The tool is implemented
using Java solutions mainly due to its platform-
independent capabilities.

In the following, we provide an example of our
platform conversion. Figures 2 and 3 respectively
show the screenshot of XSD2OWL2 tool and the
OWL2 structure corresponding to the XML schema
in our running example.

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1792

Figure 3 : Screenshot of XSD2OWL2 tool

Figure 4 : Mapping result of XML schema

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1793

The sample screenshot in Figure 6 shows both the
extracted circular relationships and their converted
OWL2 parts.

Figure 5 : Mapping result of circular relations

The basic ontology graph structure of our running
example is as follow:

Declaration(Class(:Author))

Declaration(Class(:Person))

SubClassOf(:Author :Person)

Declaration(ObjectProperty(:hasPersonInfo))

ObjectPropertyDomain(:hasPersonInfo :Person)

ObjectPropertyRange(:hasPersonInfo :PersonInfo)

Declaration(ObjectProperty(:hasUniversity))

ObjectPropertyDomain(:hasUniversity :Person)

ObjectPropertyRange(:hasUniversity :University)

ObjectMaxCardinality(1 :hasUniversity)

Declaration(Class(:Address))

Declaration(DataProperty(:name))

DataPropertyDomain(:name :Address)

DataPropertyRange(:name xsd:string))

Declaration(DataProperty(:street))

DataPropertyDomain(:street :Address)

DataPropertyRange(:street xsd:string))

Declaration(ObjectProperty(:hasCity))

ObjectPropertyDomain(:hasCity :Address)

ObjectPropertyRange(:hasCity :City)

ObjectMaxCardinality(1 :hasCity)

Declaration(Class(:Country))

Declaration(ObjectProperty(:hasCity))

ObjectPropertyDomain(:hasCity :Country)

ObjectPropertyRange(:hasCity :City)

ObjectMinCardinality(1 :hasCity)

Declaration(DataProperty(:nameCountry))

DataPropertyDomain(:nameCountry :Country)

DataPropertyRange(:nameCountry :xsd:string))

Declaration(Data Property(:idCou))

DataPropertyDomain(:idCou :Country)

DataPropertyRange(:idCou xsd:integer)

HasKey(:Country :idCou)

Declaration(ObjectProperty(:CountryRef))

ObjectPropertyDomain(:CountryRef :Address)

ObjectPropertyRange(:CountryRef :Country)
FunctionalObjectProperty(:CountryRef)

Declaration(Class(:City))

Declaration(ObjectProperty(:hasUniversity))

ObjectPropertyDomain(:hasUniversity :City)

ObjectPropertyRange(:hasUniversity :University)

ObjectMinCardinality(1 :hasUniversity)

Declaration(DataProperty(:nameCity))

DataPropertyDomain(:nameCity :City)

DataPropertyRange(:nameCity :xsd:string))

Declaration(Class(:University))

Declaration(ObjectProperty(:hasCountry))

ObjectPropertyDomain(:hasCountry :University)

ObjectPropertyRange(:hasCountry :Country)

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1794

ObjectMinCardinality(1 :hasCountry)

Declaration(DataProperty(:nameUniversity))

DataPropertyDomain(:nameUniversity :University)

DataPropertyRange(:nameUniversity :xsd:string))

Declaration(DataProperty(:idUniv))

DataPropertyDomain(:idUniv :University)

DataPropertyRange(:idUniv

 DataUnionOf(xsd:integer xsd:string))
DataMaxCardinality(1 :idUniv)

Declaration(Class(:Student))

SubClassOf(:Student :Person)

Declaration(DataProperty(:nameStudent))

DataPropertyDomain(:nameStudent :Student)
DataPropertyRange(:nameStudent :xsd:string))

Declaration(Class(:Department))

Declaration(ObjectProperty(:hasDepartment))

ObjectPropertyDomain(:hasDepartment :Student)

ObjectPropertyRange(:hasDepartment :Department)

Declaration(DataProperty(:nameDepartment))

DataPropertyDomain(:nameDepartment

 :Department)

DataPropertyRange(:nameDepartment :xsd:string))

Declaration(Class(:researchLab))

Declaration(ObjectProperty(:hasresearchLab))

ObjectPropertyDomain(:hasresearchLab

 :Department)

ObjectPropertyRange(:hasreseachLab :researchLab)

Declaration(DataProperty(:nameresearchLab))

DataPropertyDomain(:nameresearchLab

 :reseachLab)

DataPropertyRange(:nameresearchLab :xsd:string))

Declaration(ObjectProperty(

 :Student_has_researchLab))

ObjectPropertyDomain(:Student_has_researchLab

 :Student)

ObjectPropertyRange(:Student_has_researchLab

 :researchLab)

TransitiveObjectProperty(:Student_has_researchLab)

Declaration(Class(:PersonInfo))

Declaration(DataProperty(:namePerson))

DataPropertyDomain(:namePerson :PersonInfo)

DataPropertyRange(:namePerson :xsd:string))

Declaration(DataProperty(:gender))

DataPropertyDomain(:gender :PersonInfo)

DataPropertyRange(:gender :GenderType))

Declaration(ObjectProperty(:AddressPerson))

ObjectPropertyDomain(:AddresPerson :PersonInfo)

ObjectPropertyRange(:AddressPerson :Address)

Declaration(Datatype(:GenderType))

DatatypeDefinition(:GenderType

 DataOneOf("Male"^^xsd:string

 "Female"^^xsd:string))

SubObjectPropertyOf(

 ObjectPropertyChain(:Country_City

 :City_University

 :University_Country) :Z)

SubClassOf(ObjectHasSelf(:Z) : Country_Country)

SubObjectPropertyOf(

 ObjectPropertyChain(:City_University

 :University_Country

 :Country_City) :Z)

 SubClassOf(ObjectHasSelf(:Z) : City_City)

SubObjectPropertyOf(

 ObjectPropertyChain(:University_Country

 :Country_City

 :City_University) :Z)

SubClassOf(ObjectHasSelf(:Z)

 :University_University)

We have compared our method to some of the
existing approaches. The following table
summarizes all mentioned rules and the approaches
that have considered them.

TABLE 1 XML TO ONTOLOGY MAPPING COMPARISON METHODS

Constraints [1] [4] [8] [9] [10] [22] XSD2OWL2

Complex type � � � � � � �

Simple type � � � � � � �

Restriction (regular pattern) � � � � � � �

Restriction (on value) � � � � � � �

Restriction (on length) � � � � � � �

Restriction on set of values � � � � � � �

Union � � � � � � �

Extension from simple type � � � � � � �

Extension from complex type � � � � � � �

Element with primitve data type � � � � � � �

Element with simple type � � � � � � �

Element refer to complex type � � � � � � �

Global element declared with CT � � � � � � �

Attribute with primitive data type � � � � � � �

Attribute with simple type � � � � � � �

Group � � � � � � �

Transitive chain � � � � � � �

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1795

Key � � � � � � �

KeyRef � � � � � � �

Bidirectional relations � � � � � � �

Circular relations � � � � � � �

Unique � � � � � � �

Occurence � � � � � � �

In this table we have identified commonalities and
differences between existing mapping techniques
and our mapping method. In comparison with other
related works, our approach has more advantages
since none of the existing transformation tools
satisfies all the requirements of transforming xsd
schema into OWL ontology. We evaluated each of
them on the number of constraints processed
during the conversion and the implicit semantics
expressed in the source XSD document. Table I
shows that these transformation approaches still
expose several limitations and do not provide a
complete solution to the problematic. Contrary to
these existing solutions our developed
XSD2OWL2 approach achieves a complete
migration of xsd schema into OWL2. Our approach
does this conversion in an automatic way, captures
richer knowledge of common XSD constraints and
uses OWL2 as the target ontology language. Our
results can be used immediately without any
modification and can be applied to convert
arbitrary XSD schema.

6. CONCLUSION AND PERSPECTIVES

The increasing use of ontologies in applications
and the wide acceptance of XML as data exchange
format have made the problem of migration of
XML to the web ontology a fertile area for
researchers. In this paper, a systematic approach
XSD2OWL2 for an automatic transformation
between xml schema and OWL2 is proposed. We
especially gave a thorough analysis and comparison
of existing mapping methods and identified their
weaknesses and limitations. As a result we gave a
complete list of elements that are crucial for the
conversion and a complete list of associated
mapping rules.

Compared to the existing approaches, our new
solution optimizes constraints extraction, and
supports all of the most common XSD elements
such as complex types, simple types, restriction,
specialization, integrity constraints, transitive chain,
cyclic relations, cardinality constraints and all type
of elements and attributes. The XSD2OWL2 tool is
much simpler in its design and more complete than
others in transformation capacity.

Thanks to OWL 2 the rules are also refined to
be more expressive and less complicated using
more expressive constructs (e.g., hasKey,
DataUnionOf, TransitiveObjectProperty,

ObjectHasSelf…). OWL2 also simplifies many
programmatic tasks associated with ontologies,
including ontology querying and processing. In
addition OWL2 can be used to construct full
applications that have dependencies on complex
ontologies. A limitation of our mapping approach is
that it does not treat the mapping at the data-level
yet. For our future research related to this topic the
focus will be at this "data"-level in order to convert
a XML document into the instances part of
ontology (ABOX) with all assertions of the
different elements from the schema level.

REFERENCES

[1] F Breitling. “A standard transformation from

XML to RDF via XSLT”. In: Astronomische

Nachrichten 330.7 (2009), pp. 755–760.

[2] G. Klyne and J. Carroll (2004). Resource

Description Framework (RDF) Concepts and

abstract syntax. W3C Recommendation 10

February 2004, World Wide Web Consortium.

http://www.w3.org/TR/rdf-concepts/.

[3] I. Bedini, N. Benjamin , and G. Gardarin,

"Janus: Automatic Ontology Builder from

XSD files". arXiv preprint arXiv:1001.4892

(2010)

[4] I. Bedini, C. Matheus, P. F. Patel-Schneider,

"Transforming XML Schema to OWL Using

Patterns". In Semantic Computing (ICSC),

2011 Fifth IEEE International Conference,

October 2011.

[5] I. Bedini, "Deriving ontologies automatically

from XML Schemas applied to the B2B

domain". Doctoral dissertation, University of

Versailles, France. January, 2010. Retrieved

April 15, 2011.

[6] L.Alaoui, O. Elhajjamy, M. Bahaj,

"RDB2OWL2: Schema and Data Conversion

from RDB into OWL2

". In International Journal of Engineering

Research & Technology (IJERT), Vol. 3 Issue

11, November-2014.

[7] T. Bray, J. Paoli , C. M. Sperberg-McQueen,

E. Maler, and F. Yergeau, "Extensible Markup

Language (XML) 1.0 (Fifth Edition). W3C

Recommendation 26 November 2008".

[8] J. Xu, W. Li, "Using relational database to

build OWL ontology from XML data sources".

In Computational Intelligence and Security

Journal of Theoretical and Applied Information Technology
30th April 2017. Vol.95. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1796

Workshops, 2007. (CISW 2007). International

Conference on. IEEE. , 15-19 Dec. 2007.

[9] J. Y. Huang, C. Lange, S. Auer, "Streaming

Transformation of XML to RDF using XPath-

based Mappings". Proceedings of the 11th

International Conference on Semantic

Systems, SEMANTICS 2015, Vienna, Austria,

September 15-17.

[10] M. Ferdinand, C. Zirpins, and D. Trastour,

"Lifting XML Schema to OWL". In Web

Engineering - 4th International Conference,

ICWE 2004, Munich, Germany, July 26-30,

2004, Proceedings (2004).

[11] M. K. Smith, C. Welty, D. L. McGuinness,

OWL Web Ontology Language Guide (W3C

Recommendation 10 February 2004) [EB/OL].

http://www.w3.org/TR/owl-features/, (last

modified on 10 February 2004).

[12] M. Schneider, S. Rudolph2, G. Rudolph,

"Modeling in OWL 2 without Restrictions".

arXiv: 1212.2902 v3 [cs.AI] 28 Apr 2013.

[13] N. Anicic, N.Ivezic, , and Z.Marjanovic,

"Mapping XML Schema to OWL". In

Enterprise Interoperability (2007).

[14] N. Kobeissy, , M. G. Genet, and D. Zeghlache,

"Mapping XML to OWL for Seamless

Information Retrieval in Context-Aware

Environments". In International Conference on

Pervasive Services (Los Alamitos, CA, USA,

2007), IEEE Computer Society, pp. 361-366.

[15] OWL, “Web Ontology Language (OWL),”

http://www.w3.org/2004/OWL, 2004.

[16] P. T. T. Thuy, Y. K. Lee, and S. Lee.

“XSD2RDFS and XML2RDF Transformation:

a Semantic Approach”. In The Second

International Conference on Emerging

Database (EDB 2010), Jeju, Korea. 2010.

[17] P. V. Biron, and A.Malhotra, "XML Schema

Part 2: Datatypes Second Edition". Tech. rep.,

W3C, October 2004. W3C Recommendation.

[18] R. Ghawi, and N.Cullot, "Building Ontologies

from XML Data Sources". In 1st International

Workshop on Modelling and Visualization of

XML and Semantic Web Data Linz, Austria,

September 2009.

[19] S.Tschirner, A.Scherp, S.Staab, "Semantic

access to INSPIRE". Terra Cognita Workshop

(2011).

[20] W3C, OWL Working Group, "OWL 2 Web

ontology language document overview. W3C

Recommendation 27 October 2009,"

http://www.w3.org/TR/owl2-overview/.

[21] W3C, OWL Working Group, “OWL 2 Web

Ontology Language Structural Specification

and Functional-Style Syntax. W3C

Recommendation 11 December 2012,”

http://www.w3.org/TR/owl2- syntax/

[22] Y. An, a. Borgida, and J. Mylopoulos

"Constructing complex semantic mappings

between XML data and ontologies". The

Semantic Web–ISWC 2005.

