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ABSTRACT 

 

Advanced coding has been widely used to accomplish the high-performance requirements of wireless 

communications. While adhering to the perspective on energy-spectral efficiency, channel coding is still 

promising. To deal with such challenge, research initiatives on the linear block error correcting codes have 

gained accelerating momentum. In this paper we introduce polar codes which have proven to meet the 

typical use cases of the next generation mobile standard. Such work is motivated by the suitability of polar 

codes for the coming wireless era. Hence, we investigate the performance of polar codes in terms of bit 

error rate (BER) for several codeword lengths and code rates. We first perform a discrete search to find the 

best design signal to noise ratio (SNR) at two different code rates, while varying the blocklength. We find 

in our extensive simulations that the BER becomes more sensitive to design SNR as long as we increase the 

blocklength and code rate. Finally, we note that increasing blocklength achieves an SNR gain, while 

increasing code rate changes the operational SNR domain. This trade-off sorted out must be taken into 

consideration while designing polar codes for high-throughput application. 

Keywords: Polar Codes, Battacharrya Parameter, Successive Cancellation Decoding, Design SNR, BER 

 

1. INTRODUCTION  

 

With increase of high bandwidth wireless 

applications, more challenging channel coding 

schemes are required. Polar Coding scheme was 

proven to be capacity achieving for binary discrete 

memoryless channel (B-DMC). Combined with 

high order modulation, polar codes have been a 

powerful code candidate for the next generation 

mobile standard, where high transmission power 

efficiency and bandwidth efficiency are required 

[1]. Both polar encoding and decoding are of low 

complexity, which match green energy requirement 

[2]. Polar codes’ novelty enables their application 

in varying channels, which tackles the universal 

coverage requirement. On the other side, complex 

use scenarios result in heterogeneous networks 

where polar codes can find their suitable 

applications. Therefore, polar codes have become 

one popular topic and drawn intensive attentions 

from both academia and industry. Recent research 

progresses on polar codes can be mainly 

categorized into two trends: 1) advanced decoding 

algorithms for polar codes, and 2) efficient 

hardware implementation methods for polar codes 

[2]. 

Polar codes are linear block codes that rely on a 

polarization phenomenon. The advent of polar 

codes is based on the channel polarization theory. 

The core idea of polar coding is to split a given 

vector channel into multiple correlated bit channels 

and to use only the good ones, in the sense that they 

are either extremely noisy or noiseless. Then, one 

can employ a separate sequential decoder on each 

subchannel. Polar codes have performed state-of-

the-art codes of larger block lengths and code rates. 

Polar codes can also be used for source coding, but 

this use will not be discussed in this paper. 

In the level of theoretical analysis and 

development, substantial recent research progress 

has been achieved and reported. A by no means 

complete list of references is [3] [4], see also [5] 

and the references therein. 

The goal of this paper is to demonstrate how the 

code changes with the design SNR and the block 

length as well as the code rate for the additive white 

gaussian noise (AWGN) channel. Since it is not 

known what impact has the design SNR on the 
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BER performance of polar codes, this paper aims to 

open the related discussion. 

As concluded in [6] all polar code constructions are 

equally good in AWGN if the design SNR is 

optimized for the best performance. Thus in our 

work we may use simple algorithm only, namely 

Bhattacharyya bounds based construction. 

The remainder of this paper is outlined as follows. 

Section II describes polar codes that we study in 

this work. In Section III we review a simplest 

construction to select the bit-channels over which 

the information bits are transmitted. The decoder 

adopted is introduced in Section IV. Afterwards, 

simulation results are provided in Section V. 

Finally, conclusions and future works follow in 

Section VI. 

2. POLAR CODES 

Let ),( KN be a linear bock code, where  

� � 2� is the code length, � is an arbitrary integer, 

K is the code dimension, the code rate of such 

coding scheme is defined by � � � �⁄ , 0 
 � 
 � 

 

A binary polar code is completely specified by a 

triple ��, �, 
�, where 
 ⊆ �, |
| � � � �	is the 

set of the frozen bit indices. The remaining � 

elements are called the information bits indices. 

Let �⊗� � � ⊗ ⋯��	����� ⊗ � be the �-fold 

Kronecker product of Arikan’s standard polarizing 

kernel � ≜ �1 10 1   
The matrix �⊗� denotes the �-th tensor power of � 

and could be evaluated by applying the Kronecker 

product recursively according to �⊗� 	�	�⊗��!"� ⊗ �	
Then for a vector of information bits #	of length �, 

a codeword is generated as 

 $ � %. #         (1) 

 

where % ≜ ��⊗��
' is the generator matrix of 

polar code which picks a specific subset of � rows 

of the � ( � matrix, and 
) ≜ *0,1,⋯ ,� � 1+\
 

corresponds to the set of non-frozen bit indices. 

Implicitly, with respect to classical � ( � matrix 

based encoding, the frozen bits 
 are set to zero 

and we follow this convention throughout the 

paper. Consider a channel W is used for 

transmitting the information between input and 

output. Let $ � �$", ⋯ , $-� be the inputs vector 

and . � �.", ⋯ , .-� be the outputs vector. 

Given a binary-input channel /:	1 → 3 with 1 � *0,1+, the Bhattacharyya parameter 4�/� can 

be used to measure the error performance of the 

channel. 

In general, we can choose the positions of the 

information bits and frozen bits by their 

Bhattacharyya parameter 4�/�, which can be 

defined as the upper bound of the decision error 

probability when the channel is used to transmit 

zero or one as follows : 

 

4�/� ≜ ∑ 67�.|0�7�.|1�8∈:   (2) 

 

where 7�.|;� is the conditionnal probability of the 

received . provided that ; ∈ *0,1+ is transmitted.  

As the bit-channels start polarizing, they approach 

either noiseless good bit-channel or a pure-noise 

bad bit-channel. The Bhattacharyya parameter 

indicates that the fraction of bitchannels approaches 

the mutual information <�/� as � → ∞.  

Even though systematic variants of polar encoding 

do exist, we construct the original polar codes 

which are non-systematic, and being a linear code, 

the encoding simply needs a matrix multiplication. 

Once the code size is larger, matrix multiplication 

becomes computationally expensive as far as >��?�. Thus, in our work we use an alternative 

implementation based on FFT’s butterfly circuit 

model, which exhibits significantly reduced 

computational complexity of  >��	@AB��. 

In our polar code design we use recursive 

estimation of the just introduced Bhattacharyya 

parameters of bit-channels, which is going to be 

detailed in the next section. 

 

3. BHATTACHARYYA BOUNDS BASED 

CONSTRUCTION 

  Recall that polar code construction is 

ranking algorithm that selects � best among � 

possible polar bit-channels, in terms of the bit error 

rate at a given initial value defined as the design 

SNR. The choice of the set of frozen bit F is an 

important step in polar coding often referred to as 

polar code construction. The original algorithm of 

polar codes is based on the evolution of simple 

bounds on the Bhattacharyya parameters of bit 

channels. Due to its simplicity, this construction has 

been widely used, and produced good polar codes. 

The basic idea is to create a coding system where 

one can access each bit-channel individually and 

send data only through those for its Bhattacharyya 

parameter is close to 0.  

The Bhattacharyya parameter 4�/� is an upper 

bound on the error probability of transmission over 

W with maximum likelihood (ML) decision when 
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the channel is used only once to transmit a 0 and 1. 

Intuitively, channels with 4�/� 
 C are almost 

noiseless, while channel with 4�/� D 1 � C are 

almost pure-noise channel for a given 0 
 C 
 1. 

The Bhattacharyya parameter of channel plays an 

important part in the construction of Polar codes.  

For a more detailed exposition, we confer the 

following recursion for E � 0,⋯ , � � 1	with initial FG,G � H!IJ chosen to optimize the code 

performance at a certain (�K), where K is the SNR 

value. 

 

FLM",� � N2FL,� � F?L,�
F?L,�!?O

0 
 P 
 2L
2L 
 P 
 2LM"      (3) 

The indices of the highest � � � values in the set 

of � final stage values *F�,�: P � 0,⋯ ,� � 1+, form 

the set 
. The code rate � can be varied by adding 

or deleting subchannels from the good subchannel 

set. With code length � increasing to infinity, bit-

channels polarize to be nearly noiseless or useless 

[1]. After performing channel polarization 

transform, the good subchannels are assigned 

information bits and the bad ones are set frozen 

bits. 

Let such a channel be defined by the transition 

probabilities /�.|$�, $ ∊ 1 � *0,1+ and . ∊ 3. 

Based on equation (2), the definition of the 

Bhattacharyya parameter of  / extended from 

discrete to continuous channel is given by 

 4�/� � R/�.|0�/�.|1�S.         (4) 

 

where /�.|;� is the transition probability of 

receiving . when  s ∊ *0,1+  has been sent. Then 

we analyze the initial value of 4�/� for Gaussian 

channel. At first, the initial value of Bhattacharyya 

parameter is definitely difficult since channels are 

continuous. Suppose there is a communication link 

with Gaussian noise with expectation 0 and 

variance U?. At the same time, BPSK is used as 

modulation. 

 

The recursive algorithm of construction requires an 

initial value, corresponding to the worst BER and 

may be replaced with H!IVW -X⁄ , where YZ  the 

energy spent per each information bit and �G 2⁄ �U?. Moreover, the initial value of Bhattacharyya 

parameter is not suitable for all communication 

channels since polar codes are channel specific 

designs. 

By definition of polar codes, the construction 

should be repeated at every time channel changes. 

Nevertheless, we wish to construct a polar code at 

one design SNR and use it for a range of possible 

SNRs. This way, we use a unique code designed by 

running the code-construction at a single value of 

the channel-state and keeping the code unchanged 

for all channel conditions. As we see later, it is 

crucial to properly select the adequate design SNR 

given rate and blocklength for the performance in 

terms of bit error rate.  

 

4.  SUCCESSIVE CANCELLATION 

DECODING 

It is proven in [7] that for any ��, �� polar 

code on any B-DMC, there exists an encoder and a 

successive cancellation (SC) decoder each with the 

same order of complexity >��	@AB��. We assume 

that the decoder considered in the system is a SC 

decoder, for which polar codes are tailored. SC 

algorithm, which decodes each bit in a successive 

manner, is usually employed and proposed as sub-

optimal approach. 

By taking advantage of the polarization effect, 

polar codes can achieve the symmetric capacity of 

binary memoryless channels with low complexity 

SC decoding strategy [1]. Being fundamental for all 

the later advanced decoders that exhibit superior 

performance, one cannot avoid having an SC 

decoder. 

The SC algorithm traverses the entire polar code 

tree depth first, visiting all leaf nodes [8]. From 

decoding viewpoint, constructing a polar code of 

dimension � is equivalent to finding the � best bit-

channels that model the channel that the decoder 

sees when it recovers one by one the information 

bits corresponding to the received codeword by the 

SC decoder [9]. 

According to the construction of polar codes, two 

groups of bits are established from the many 

independent copies of channels. The first group is 

the information bits [
\ � �#�: 1 
 P 
 �� and the 

second one is the frozen bits [
 � �#L: 1 
 E 

� � �� that are made known to the decoder. The 

log-likelihood ratios (LLR) of the channel are 

calculated as 

 

LLR�.�� � ln a�8b|cbdG�
a�8b|cbd"�   (5) 

 

The SC applies the recursive calculations on the 

received LLRs from the equation (5) and the 

decision function for the SC decoder is defined by 

 

[e� � N0, ff��."- , ["�!"� D 0
1, LLR�."- , ["�!"� g 0  (6) 
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where LLR�."- , ["�!"� is equivalent to the likelihood 

ratio of [� given the channel output Y and ["�!" 

which are found previously by the decoder. It 

should be mentioned that, for the first bit [e" value, 

the decoder uses only . for the decision. 

In our simulation we use an implementation of the 

basic successive cancellation decoder, which we 

believe to be the simplest implementation possible. 

 

4. NUMERICAL RESULTS AND 

DISCUSSION 

In this section we report the results of our 

simulations. We consider comparing the 

performance of polar codes from various 

parameters. Even if the error performance of polar 

codes with short codeword length is already 

described by [4] as mediocre under SC algorithm, 

we insist on considering blocklengths �	 � 	32 in 

addition to three new blocklengths, namely �	 � 	64, � � 512 and �	 � 	2048. For each 

blocklength we consider moderate and high code 

rate �	 � 	1/2 and �	 � 	5/6 respectively. The 

conditions of simulation are described in Table 1.  

Table 1: Simulation parameters. 

Parameter name Value 
Minimum block 

samples 

1000 

Minimum bit 

errors 

100 

Modulation BPSK 

Channel BI-AWGN 

 

The transmission is supposed to be over a BI-

AWGN channel with zero mean. Without loss of 

generality, we normalize the noise variance to be 

unity in the remainder of our simulation. Bits in 

codeword are modulated using binary phase shift 

keying (BPSK). 

We ensure a practical values of BER	(e.g. order of 10!n and less), and guarantee a minimum of 1000 

block samples. For each evaluated SNR, we 

achieve at least bit errors.  

 

In order to study the impact of design SNR on the 

BER performance, we use the discrete search of 

design SNR over a finite interval. We carry out 

simulations and we plot the results in logarithmic 

domain. The discrete search consists on spanning 

the whole interval starting from the design SNR �2So as initial point. The search is pursued further 

by incrementing design SNR as long as the BER 

improves. We stop the discrete search once the 

BER performance degrades for at least one from 

the next design SNRs. By this way we retrieve the 

candidate design SNR whose BER curve is the first 

one which crosses the uncoded curve. We confirm 

the BER degradation by using some greater design 

SNR (e.g. 10So). Note that in each figure, the 

important portion of the BER curves is magnified, 

where curves of studied codes cross the curve of the 

uncoded system. 
 

Figures 1 and 2 illustrate SNR versus BER for � � 32 at �	 � 	1/2 and �	 � 5/6 respectively. It 

can be noted that almost all design SNR offer the 

same performance. It is also shown that the 

uncoded case offers better performance in terms of 

BER than the coded one since SNR is less than 1.65So for � � 1/2 and less than 4.02So for � � 	5/6. According to our adopted method based 

on discrete search, the candidate design SNR is  �1So for � � 1/2, and 0So for � � 5/6. 

 

 
 

Figure 1: The BER sensitivity to design SNR for N=32 at 

R=1/2 
 

 

 

Figure 2: The BER sensitivity to design SNR for N=32 at 

R=5/6 
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Increasing � to 64 makes the performance weakly 

sensitive to design SNR, as depicted in figures 3 

and 4. It is shown once again that the uncoded case 

offers better performance than the coded one since 

SNR is less than 1.62So for � � 	1/2  and less 

than 3.72So for � � 5/6. From the zoom part, the 

candidate design SNR is 2So for � � 1/2, and �1So for � � 5/6. 

 

Figure 3: The BER sensitivity to design SNR for N=64 at 

R=1/2 

 

Figure 4: The BER sensitivity to design SNR for N=64 at 

R=5/6 

 

Figures 5 and 6 depict the performance of polar 

codes produced for �	 � 	512 at �	 � 	1/2 and �	 � 5/6 respectively. Unlike small blocklengths, 

it is shown that for � � 512 the BER becomes 

more sensitive to design SNR. For instance, with � � 1/2 the BER degradation starts at design 

SNR=5So and degrades dramatically when design 

SNR reaches 10So. The uncoded system offers 

better performance than the coded one in terms of 

BER since SNR is less than 1.52So for � � 1/2 

and less than 3.72So for  � � 5/6 . It can be noted 

that the candidate design SNR is 2So for � � 1/2 

and 4So for � � 5/6.  

 

Figure 5: The BER sensitivity to design SNR for N=512 

at R=1/2 

 

 

Figure 6: The BER sensitivity to design SNR for N=512 

at R=5/6 

 

Figures 7 and 8 illustrate the performance of polar 
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Figure 7: The BER sensitivity to design SNR for N=2048 

at R=1/2 

 

 

Figure 8: The BER sensitivity to design SNR for N=2048 

at R=5/6 

 

As recapitulation, increasing blocklength makes 

BER performance sensitive to design SNR. Design 

SNR is indeed critical to construct polar code with 

a good BER performance. This has been already 

stated in [6] but only for blocklength � � 2048 

and code rate � � 1/2. To avoid confusion and 

stress the differences, let us summarize the results 

in Table 2. The candidate design SNR corresponds 

to a selected value according to the discrete search 

method.  

 

 

 

 

 

 

 

Table 2: Sensitivity of BER to design SNR 

Parameter 

name 

Value Value Value 

32 1/2 Low -1 

32 5/6 Low 0 

64 1/2 Medium 2 

64 5/6 Medium -1 

512 1/2 High 2 

512 5/6 High 4 

2048 1/2 Very high 2 

2048 5/6 Very high 4 

 

Figure 9 illustrates the construction chart for code 

rates � � 1/2 and � � 5/6. Clearly for a given code 

rate �, the higher blocklength is, the earlier the 

coded system outperforms the uncoded one. 

 

Figure 9: Construction chart for code rates R=1/2 and 

R=5/6 

 

The dashed curves demonstrate the BER 
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10!x. For the blocklength of 2048, increasing code 

rate from R � 1/2 to R � 5/6, changes the 

operational SNR domain by ∆yz{{ � 1.8dB at the 

BER of 10!x. This trade-off sorted out must be 

taken into consideration while designing polar 

codes for high-throughput application. 
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short codeword length the effect of design SNR is 

less meaningful, for both moderate and high code 

rates. It is also observed that for long blocklength, 

design SNR have an enormous impact on BER 

performance for both moderate and high rates. 

Interestingly, under the same conditions, our best 

design SNR obtained is different from the optimal 

one found by [6]. In this work, the BER 

performance study is summarized to open the 

discussion on an important to-be developed issue, 

from the construction perspective. We hope this 

paper contributes to pave the path towards this end. 

The results shown are preliminary and the work 

needs to be carried out further to prove that the 

study is indeed viable for Rayleigh fading channel. 

We intend to investigate in a future work the 

performance analysis of the considered construction 

under orthogonal frequency-division multiplexing 

(OFDM). However, the decoding performance of 

SC algorithm is still not satisfying. We may obtain 

better performance using an iterative decoder. 

There is also a need to discuss the effect of initial 

value of Bhattacharyya parameter on system’s 

performance. 
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